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Abstract—OpenFlow represents a new powerful paradigm that
combines the flexibility of the software with the efficiency of
a programmable hardware switch. However, such an approach
is currently reserved for new hardware devices, specifically
engineered for this paradigm.

This paper presents our experience and findings about se-
lectively offloading OpenFlow rules into a non-OpenFlow com-
patible hardware switch silicon, which enables existing (legacy)
hardware ASICs to become compatible with the SDN paradigm.
We describe our solution that transparently offloads the portion
of OpenFlow rules supported by the hardware while keeping
in software the remaining ones, and that is able to support
the presence of multiple hardware tables although with limited
capabilities in terms of matches and actions. Moreover, we
illustrate the design choices used to implement all the basic
functionalities required by the OpenFlow protocol (e.g., packet-in,
packet-out messages) and then we demonstrate the considerable
advantage in terms of performance that can be obtained by
performing switching in hardware, while maintaining an SDN-
type ability to program and to instantiate desired network
operations from a central controller.

Index Terms—Software Defined Networks, OpenFlow, Hard-
ware Offloading.

I. INTRODUCTION

Although over the years several hardware-based OpenFlow
switches have been released [1] that perform very high-
speed OpenFlow switching, the majority of Customer Premises
Equipments (CPEs) such as residential gateways use System
on Chip (SoC) architectures with an integrated layer 2 de-
vice, and are ideally suited for use in mixed control and
data plane applications. Layer 2 switching is hardware-based,
which means switches use application-specific integrated cir-
cuit (ASICs) for making switching decisions very quickly.
They are usually traditional, non OpenFlow compatible ASICs,
which makes the transition to SDN-compliant solutions far
away.

Bringing OpenFlow on these devices, without the need of
changing the existing hardware, enables more flexible and
granular service provisioning even to relatively small compa-
nies that could not afford the effort required to upgrade their
network with new devices that support natively the OpenFlow
protocol.

In their natural mode of operation, traditional switching
ASICs can move packets between all of their ports at full
line rate, so it is a reasonable assumption that they can do the
same when used with OpenFlow. Sadly, that is not the case.

Every hardware switch has a finite number of TCAM, critical
for implementing line-speed forwarding, and it can hold only
a limited number of flows. Moreover, for some hardware, the
number of flows is only one kind of limitation. Most switches
were not designed with anything like OpenFlow in mind,
especially when their interface ASICs were laid out. The chips
do a excellent job of switching, and frequently handle basic
Layer 3-4 functions as well, but OpenFlow asks for a great
deal more.

This paper presents our experience in porting OpenFlow
on already existing hardware switch with no support for the
OpenFlow standard. We describe our solution for compensat-
ing the hardware limitations in terms of supported matches
and actions, offloading only part of the OpenFlow rules that
can be handled by the hardware. Of course, this offloading
requires a translation between the OpenFlow specific messages
to hardware related commands, which means to take the
OpenFlow commands and map them to API calls inside of
the switch. While this mapping could result more vendor
specific, we believe that the overall architecture for the of-
floading presented in this paper is vendor neutral enough to
be exported in other platforms with similar characteristics.
Moreover, hardware switches have multiple tables (e.g., MAC,
VLAN, ACL, etc. . . ), hence offloading OpenFlow rules on the
switch require to fit them into the existing hardware pipeline,
taking into account the precedence between rules in order to
preserve their semantic. In our work, we used the hardware
pipeline of the NXP QorIQ T1040 platform, dividing the
supported rules within the tables available in the integrated
switch silicon. Finally, all the rules (including either the match
or the action part) that cannot be mapped with the existing
hardware, such as rewriting a MAC header, are executed in
the software pipeline, which is based on the open source xDPd
project.

This paper is organized as follows: we briefly discuss related
works in Section II, while Section III describes the architecture
of the platform used to validate our selective offloading algo-
rithm. Section IV illustrates our architectural design for the
OpenFlow rules offloading, and Section V presents the most
significant implementation details of our prototype. Finally we
show the evaluation and results in Section VI and conclude the
paper in Section VII.



II. RELATED WORK

While OpenFlow is an evolving technology, a lot of at-
tention has been paid to improve the OpenFlow switching
performance using hardware components. Several works [2, 3]
focused on the idea of offloading OpenFlow packet processing
from the host CPU level to onboard NIC hardware using FP-
GAs or Network Processors (NPs). Tanyingyong et al. [4] used
a different approach based on a regular commodity Intel NIC
rather than specialized NICs with FPGAs or NPs. In particular,
they used the Intel Ethernet Flow Director component in the
NIC, which provides filters that redirect packets, according
to their flows, to queues for classification purposes, so as to
be subsequently sent to a specific core into the host CPU for
further processing. Although these works improved the lookup
performance of the OpenFlow switching, they focused more on
the software-based OpenFlow switching, as the only hardware-
based feature used in the above prototypes was the hardware
classifier available on selected network interface cards (NICs).

During years, several companies tried to bring OpenFlow
on their switch ASIC. The OpenFlow Data Plane Abstrac-
tion (OF-DPA) software defines and implements a hardware
abstraction layer that maps the pipeline of Broadcom silicon
switches to the OpenFlow 1.3.4 logical switch pipeline, utiliz-
ing the multiple device tables available in physical switches.
This requires the controller to parse the hardware description
contained in the Table Type Pattern (TTP) [5] to understand
the capabilities and availability of hardware resources. Our
work is based on a different concept. We expose to the
controller a fully programmable OpenFlow switch, moving to
our switch implementation the task of deciding which rules
can be offloaded into the hardware.

A similar idea has been presented by Netronome [6],
which accelerates a software OpenFlow implementation (Open
vSwitch) using a programmable network processor (NPU).
However, being NPUs programmable, do not have the many
limitations that we can encounter in existing hardware switch-
ing ASICs.

Finally, several commercial solutions are now available that
transform selected hardware switch ASICs into OpenFlow-
compatible devices. However, at the time of writing, no open
source implementations are available that provide an insight
about how this translation is done internally and how the
OpenFlow messages (e.g. Packet-In, Packet-out, . . . ) can be
implemented in presence of an hardware pipeline.

III. BACKGROUND

This section provides a description of the architecture we
based our solution on, including the way we can program its
PHY registers and the structure of its hardware pipeline, which
is required to process the mapping between OpenFlow rules
and device-specific entries.

A. NXP QorIQ T1040

The NXP QorIQ T1040 platform contains a four 64 bits
CPU cores (PowerPC e5500), connected to additional mod-
ules belonging to the Data Path Acceleration Architecture
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Fig. 1: NXP QorIQ T1040 platform

(DPAA) [7] and peripheral network interfaces required for
networking and telecommunications.

The above platform integrates also a Gigabit Ethernet switch
core that supports eight 1 Gbps external PHY ports and two
internal 2.5 Gbps ports connected to Frame Manager (FMan)1

ports, as shown in Figure 1. While the switching core operates
at layer two, this module integrates also a Layer 2-4 TCAM-
based traffic classifier operating on the ingress traffic, which
can select and perform basic actions on the incoming traffic
(e.g., packet redirect) based on information such as MAC
addresses, EtherType, VLAN tags, IP addresses, DSCP and
TCP/UDP ports and ranges, as detailed in Figure 2. The L2
switch core supports wire-speed, hardware-based learning, and
CPU-based software learning that is configurable per port.

The LAN ports of the L2 Switch make forwarding decisions
based only on L2 switch logic, with no involvement from
the FMan or CPU. As a consequence, the CPU cannot track
the packets switched between the eight external L2 Switch
ports, which might not be desirable in some use cases. To
overcome this limitation, we can use the Port-based VLAN
feature, which assigns a VLAN to all packets coming from
a given physical port, hence avoiding switching in the L2
Switch and preserving ingress port information. However, this
introduces two additional issues: (i) if a packet arrives at an
external port already tagged, it will be classified based on the
VLAN ID specified in the VLAN tag, ignoring the port-based
VLAN setting; and (ii) the aggregated throughput of all eight
external ports cannot be higher than 5 Gbps due to the speed
of the internal ports. Moreover, given that all frames received
by the LAN ports will be redirected to the CPU and processed

1The Frame Manager is a component of the DPAA architecture which
combines the Ethernet network interfaces with packet distribution logic to
provide intelligent distribution and queuing decisions for incoming traffic.



by the software switch logic, we may not be able to manage
the received frames at the same speed of the hardware switch.

1) Access to L2 Switch PHY registers: A dedicated
UIO Kernel Module2, part of the NXP software development
kit, maps L2 Switch and PHY registers into user space,
hence offering the possibility to program and control the
behavior of the L2 Switch through sysfs entries. Notably,
this kernel module avoids the commonly required context
switching between kernel and userspace, because the device is
accessed directly from user space. This enables programmers
to define optimized access to the hardware switch traffic,
sending/receiving frames through a char device.

2) L2 Switch APIs: The L2 Switch API represents a
comprehensive, user-friendly and robust function library that
enables to program the switching module through high-level
primitives, without having to deal with individual registers. It
includes the most common functions such as device initializa-
tion, port map setup, port reset and configuration, port status
polling and configuration based on auto-negotiation, mirroring,
link aggregation, port VLAN statistics, Quality of Service
(QoS) configurations and Access Control Lists (ACLs).

3) L2 Switch Hardware Pipeline: The NXP L2 Switch
hardware pipeline is rather complex, as shown in the high-
level view depicted in Figure 2. When a packet arrives at a
particular ingress port, the MAC controller of the port checks
the Frame Check Sequence (FCS) and the VLAN tag size,
if they are not valid, the frame is discarded without further
processing.

After traversing the port MAC controller, the packet goes
through the Ingress Processing pipeline, where is subjected to
two classification steps. In the first (basic) classification stage,
the packet is accepted if contains a valid VLAN tag and valid
MAC addresses. During this stage, some basic information
(VLAN tag, QoS class, DP level, DSCP value) are extracted
from the packet and used in the next classification step. In
the second, Advanced Multi-stage classification step, three
TCAMs (named IS1, IS2 and ES0) serve different purposes.
The IS1 table implements an L3-aware classification, allowing
to override DSCP, QoS, VLAN ID values as a result of a
lookup on L3-L4 headers. In particular it is possible to add
rules that modify QoS parameters (e.g. DSCP, PCP, DP, . . . )
or set the VLAN ID for a matching frame. A second lookup
is then made on the IS2 table, which applies typical ACL
actions (i.e., permit, deny, police, redirect, mirror and copy to
CPU) to the matched frame. Packets are matched against ACL
rules in a strictly sequential order, which means that when a
packet matches the condition of a given ACL, the processing
is stopped and the action contained in the matched rule is
enforced. If no matches are found a default action is applied,
which usually denies the traffic. Finally, the ES0 table handles
the egress forwarding based on VLAN and QoS policies. The

2The Userspace I/O framework (UIO) allows developers to write user-
space-based device drivers. It defines a small kernel-space component that
indicates device memory regions to user space and provides interrupt indica-
tion to user space.
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Fig. 2: L2 switch hardware pipeline

size of these TCAMs is fixed, but the number of allowed
entries depends on the complexity of each entry rule.

As shown in Figure 2, the L2 forwarding module is based
on a MAC Table supporting 8K entries; the L2 forwarding is
done based on the VLAN classification, MAC addresses and
the security enforcement as result of IS2.

B. xDPd Software Switch

The eXtensible DataPath daemon (xDPd) [8] is a multi-
platform open-source datapath supporting multiple OpenFlow
versions and built focusing on performance and extensibility,
in particular with respect to (i) new hardware platforms
(network processors, FPGAs, ASICs), (ii) new OpenFlow ver-
sions and extensions, and (iii) different management interfaces
(OFConfig, CLI, AMQP, Netconf. . . ).

The xDPd architecture, shown in Figure 3, includes a
Hardware Abstraction Layer (HAL) that facilitates the porting
of the OpenFlow pipeline on different hardware. In fact, this
hides the hardware technology and vendor-specific features
from the management and control plane logic, hence allowing
to return a simple OpenFlow switch to upper layers. It uses the
ROFL (Revised OpenFlow Library) libraries [9] as an HAL
implementation and framework for creating OpenFlow agents
communicating with different types of hardware platforms.

The ROFL library set is mainly composed of three different
components. The ROFL-common library provides basic sup-
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port for the OpenFlow protocol and maps the protocols wire
representation to a set of C++ classes. The ROFL-hal library
provides a set of basic callback that should be implemented by
the platform-specific driver to support the OpenFlow protocol
features. Finally, the ROFL-pipeline library is a platform-
agnostic OpenFlow 1.0, 1.2 and 1.3.X pipeline implementation
that can be reused in several platforms. It is used as software
OpenFlow packet processing library and serves as data-model
and state manager for the ROFL-hal library.

IV. OPENFLOW RULES OFFLOADING ARCHITECTURE

This section presents the architecture that has been defined
to offload OpenFlow rules on our traditional (non-OpenFlow)
switching ASIC, which is shown in Figure 4. Briefly, a high-
performance hardware switch is introduced in the switch’s
fast path, that is, the part of the switch that performs packet
forwarding operations, while a software switch is in charge of
processing all the packets whose matches or actions are not
supported by the hardware. When a packet arrives at an ingress
port, it goes through the hardware pipeline (Section III-A3)
and is processed according to the installed rules. The hardware
is programmed in such a way that packets that cannot be
handled by the L2 switch will match a default entry in the
ACL table, that will redirect the packet to the NXP CPU where
is processed by the xDPd software switch.

A. The Selective Offloading Logic component

The Selective Offloading Logic represents the central com-
ponent of the architecture and is located in the slow path of the
system. It manages the installation of the flow table entries,
maintains per port counters and translates the OpenFlow
messages coming from the controller with the corresponding
primitives required to interact with the hardware switch. This
process typically involves deciding which flow entry the device
can support (based on its feature set) and to sync the statistics
from the device to the host. It consists of a northbound
part that is responsible for the selection of the supported
OpenFlow rules and a southbound side which is in charge
of the communication with the device and is therefore strictly
dependent on it.

The Northbound Interface should be aware of the switch
pipeline capabilities, in particular regarding device tables, the
match types and the actions allowed on each table. It maintains
a data structure for each hardware table containing the device
capabilities regarding supported matches and actions, which
is used to check if a new flow rule is suitable for hardware
offloading, e.g., if its matching fields are a subset of the ones
supported by the hardware.

While the NB interface is generic enough for being exported
from different devices (with similar hardware pipeline), the SB
part should be changed to support the new device because it
involves the flow entry insertion stage, which can obviously
change depending on the underlying hardware switch. The
description of how the communication with the hardware
device has been implemented is described in Section V.

B. Selection of the OpenFlow rules for the offloading

An OpenFlow flow mod message is used to install, delete
and modify a flow table entry. The Algorithm 1 shows the
pseudo-code used to select the rule suitable for the hardware
offloading. When a new flow mod comes from the OpenFlow
controller, it is always installed in the Software Switch table.
The reason for this is twofold. Firstly, the installation time in
the software table is usually faster than the hardware because
it is not affected by the other entries already installed in the
forwarding tables. Secondly, having all rules in the software
pipeline help us to process the received PacketOut messages.
Indeed, when a PacketOut is received, it should be injected
into the data plane of the switch, carrying either a raw packet
or indicating a local buffer on the switch containing a raw
packet to release. Since the buffers are held by the software
switch implementation and the software pipeline includes all
the rules issued by the controller, its processing in the software
pipeline is faster than injecting the packet in the hardware
switch pipeline.

When the flow mod is installed in the software table, it is
checked to verify its suitability for the hardware offloading. In
this case, the Selective Offloading Logic compares the matches
and actions contained in the message with the data structure of
each hardware table. If the flow includes matches and actions
supported by the device tables the Selective Offloading Logic
decides the right table (ACL or MAC table) in which place
the rule (depending on their features set).

Particularly, the new flow mod is installed in the MAC-
table if it contains only L2 dest MAC and VLAN as match
criteria and the actions are the supported ones; redirect-to-
port and send-to-controller. The remaining supported flows are
placed in the ACL-table. After this process, the northbound
interface calls the southbound part which takes care of install
the specified rule in the hardware tables.

However, if the hardware device supports the matches
contained in the new entry but not its actions list, we need to
process the packet matching that rule in the software pipeline.
In this case, we inject the new rule in the hardware pipeline
but with a single action to redirect the packet to the CPU,
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where the software pipeline processing applies the full action
set contained in the original flow mod.

Finally, if the device does not support the new rule matches,
to redirect the packets in the software pipeline, we should
remove all hardware entries that interfere with the new rule
matches set, avoiding that a new packet matches the hardware
rule instead of the software one. When a correlated rule is
discovered, it is deleted from the device tables so that a new
packet will match the default rule that redirects all packets to
the CPU for the software pipeline processing.

Algorithm 1 Selection of the rule to offload
1: procedure flow mod add (flow entry t* new entry)

add entry to sw table(new entry);
2: if matches supported(new entry)

&& actions supported(new entry) then
3: offload(new rule);
4: else
5: if matches supported(new entry)

&& !actions supported(new entry) then
6: new entry.actions = copy to cpu;
7: offload(new entry);
8: else
9: if !matches supported(new entry) then

10: for each rule in hwTables do
11: if rules set(rule) ⊆ rules set(new rule) then
12: if check correlation(new rule, rule) then
13: delete from hardware(rule);
14: end if
15: end if
16: end for
17: end if
18: end if
19: end if
20: end procedure

C. Mapping selected OpenFlow rules on Hardware Tables

The Southbound Interface of the Selective Offloading Logic
handles the mapping of the chosen OpenFlow rules in the
hardware tables. This mapping is, of course, dependent on the
underlying device. However, the organization of the MAC or
ACL table is almost the same in all hardware switch ASICs,
making the concepts applied to our offloading architecture also
applicable to other architectures.

If a flow can be offloaded in the MAC table, the cor-
responding hardware entry contains its fixed MAC address
and VLAN ID. If the entry contains an output action to a
specific port, the list of destination port in the hardware entry
is filled with a boolean value indicating if the packet should
be forwarded to that particular port. The output to controller
action is converted into an action with the copy to cpu flag
enabled, indicating that the packet should be sent to a specific
CPU queue and then redirected to the controller (how this task
is achieved is specified in Section V).

When a flow is offloaded to the ACL table, it is necessary to
translate the formalism used by OpenFlow with the common
fields contained in an ACL entry. The ACL uses a list of
ports affected by that entry. In this case, if a rules specifies
an ingress port, its corresponding boolean value is enabled in
that list. If not, the list includes all switch ports. An important
consideration about this port list is required. Indeed, when
an ACL rules include a behavior that also affects an output
port, that port should also be added to the monitored port
list. The actions supported by the ACL table are: permit,
deny, redirect and copy to cpu. An OpenFlow drop action
is translated in a deny action of the ACL, including a list of
output ports for which the action should be applied. An OF
output to port action is converted in a ACL redirect action,
while the output to controller produces the enabling of the
copy to cpu flag.

The process of moving a flow table entry to the hardware
layer requires additional work if the table contains lower prior-
ity flow entries that (partially) overlap the newly installed flow
entry. In these cases, together with the flow entry installation
in the software layer, the Selective Offloading Logic decides
to add them to the ACL table because the MAC table does not
have a priority notion. Also, it performs an additional action
that is the deletion of the flow table entries with lower priority,
that are temporarily copied in the system’s memory and the
installation of the new flow entry with the other previously
copied. On the other hand, if the new rule has a lower priority
compared with those already installed in the ACL, it is inserted
at the end of the list without moving the others. The flow
table entry deletion from a hardware table is, in principle, a
faster and simpler operation, while the installation requires a
reorganization of the previously installed entries.

V. IMPLEMENTATION DETAILS

The xDPd/ROFL library set provides a Hardware Abstrac-
tion Layer that aims at simplifying the support of Open-
Flow on a new platform. The Platform Driver, shown in
Figure 3, includes the Selective Offloading Logic together



with implementations for the buffer pool and the software
pipeline used internally to simplify the OpenFlow porting of
the NXP platform. The Platform Driver, also, uses the ROFL-
pipeline library to implement an OpenFlow software switch
and includes the logic to translate the OpenFlow messages
coming from the controller in specific rules (if supported) for
the hardware device.

The main functionality provided by the driver, can be
grouped in these 4 parts: (i) device and driver initialization,
(ii) OpenFlow abstraction of the hardware switch, (iii) port
status and statistics, (iv) packet-in and packet-out.

A. Device and Driver initialization

The L2 Switch APIs provide an interface for accessing the
physical registers of the underlying device, exposed to the
user space applications through the kernel module described
in Section III-A1. Writing these records allow us to program
and control the behavior of the physical switch (insert flow
rules, get statistics, change ports behavior, etc. . . ).

However, we also need to send/receive frames to and from
each device port. The NXP Gigabit Ethernet switch core uses
the MII (Media Independent Interface), which provides a Data
interface to the Ethernet MAC for sending and receiving
Ethernet frames, and a PHY management interface called
MDIO (Management Data Input/Output) used to read and
write the control and status registers.

At start-up time, the driver performs some initialization
steps. Firstly, it locates (usually under /dev/uioX) and opens the
UIO device, obtaining its file descriptor. Subsequently, it calls
the mmap function to map the device memory into userspace,
hence providing access to the device registers. In the end, the
MDIO physical registers and devices are opened and used to
read and write Ethernet frames from the physical ports.

B. OpenFlow abstraction of the hardware switch

An OpenFlow switch typically consists of several compo-
nents. A virtual port module, which maps ingress and egress
ports to some port abstraction, maintaining per-port counters;
a flow table which performs lookups on flow keys extracted
from packet headers; an action module, which executes a set of
actions depending on the result of the flow table lookup. Our
implementation mirrors these elements to allow the proposed
selective offload.

During the initialization phase, our device driver discovers
the physical ports available in the hardware switch and adds
them to the xDPd physical_switch structure, which
represents a simple abstraction used to control a generic switch
while hiding platform-specific features. xDPd partitions the
physical switch into Logical Switch Instances (LSIs), also
known as virtual switches. In this driver we use a one-to-one
mapping between the physical switch and a single LSI3, hence
mapping the physical ports directly to OpenFlow physical

3The current prototype does not support multiple LSI levels. This extension
is left for future work.

ports4. Since the OpenFlow controller can add or remove an
OpenFlow physical port from the LSI, the LSI may contain
only a subset of the hardware switch ports.

C. Port Management

The OpenFlow protocol includes also primitives to control
and manage the status of the physical switch, such as reading
the status of each port, add/modify/remove a port from the
datapath, enable/disable forwarding, retrieve port statistics and
more. The Platform Driver redirects these requests to the
hardware switch once translated with the corresponding SDK
API call. Furthermore, a controller can ask for port statistics
(bytes received, dropped, etc. . . ). Therefore the driver should
read these statistics from the hardware switch and combine
them with the similar stats of the software pipeline.

As presented before, the OpenFlow physical ports of the LSI
can be a subset of the hardware ports available in the switch;
hence the Platform Driver keeps the explicit mapping between
them, such as the fact that the hardware port #5 may actually
corresponds to the OpenFlow port #2. When the controller
sends a message referring to an LSI port, the driver retrieves
the corresponding device port from an internal data structure
and translates the OpenFlow command to the corresponding
SDK API call.

To provide a seamless compatibility with OpenFlow, the
Platform Driver needs to implement also an asynchronous
event handling mechanism, which is used to send the cor-
responding message to the OpenFlow controller (e.g., link
detected, detached, etc. . . ). However, while the SDK APIs
provide several functions to query the switch for port status
and statistics, they do not provide any asynchronous notifica-
tion mechanism. Therefore, the Platform Driver uses a back-
ground task manager that checks every second the port status
and, if necessary, notifies the xDPd Content and Management
Module (CMM), which in turn passes this information to the
OpenFlow controller. In short, the background task manager
is used to check the following events: (i) expiration of a flow
entry, (ii) free the space in the buffer pool when a packet
becomes too old, (iii) update the port status and statistics and
(iv) update the flow stats.

D. Packet-In and Packet-Out

Packet-In and Packet-Out messages are a fundamental fea-
ture of the OpenFlow protocol. The Packet-In enables a
controller to receive packets from the OpenFlow switch as a
result of a specific match-action tuple, which allows context-
aware forwarding. Similarly, a Packet-Out message enables
a controller to inject a particular packet into the switch,
hence generating ad-hoc traffic for specific purposes (e.g.,
management).

4The OpenFlow physical ports correspond to a hardware interface of the
switch. For example, on an Ethernet switch, physical ports map one-to-one
to the Ethernet interfaces. The current prototype does not support OpenFlow
virtual ports.



1) Handling Packet-in messages: The generation of a
Packet-In message is a consequence of a redirect-to-controller
action in the flow table, which requires copying the packet
from the physical switch to the Platform Driver. When a
new flow mod containing the redirect-to-controller action is
received, the Selective Offloading Logic converts that action
into a hardware-dependent rule with the redirect-to-cpu flag
enabled, which is supported by both ACL and MAC table. In
this way, such a packet is no longer passing through the L2
switch; instead, it is delivered to the CPU port (the port #10
in Figure 2) and stored in a specific CPU queue5, as shown in
Figure 5. At this point, the Platform Driver can read the packet
using the SDK APIs, hence triggering the generation of the
appropriate OpenFlow message toward the controller. Packets
that do not have to go to CPU ports are handled entirely by the
switch logic and do not require any CPU cycles and happen
at wire speed for any frame size.

However, since the Platform Driver does not receive any
notification when the packet reaches the CPU queue, a new
background frame extractor thread has been created that
polls continuously the CPU queues for new packets. When a
new packet is detected, it generates a Packet-In message and
sends it to the OpenFlow controller through the xDPd Control
and Management Module.

Packet-in messages can contain either the entire packet,
or only a portion of it. In the latter case, the message will
contain only the packet headers plus a BufferID (automatically
generated by platform driver and opaque to the controller) that
identifies the precise buffer that contains the actual (whole)
packet. The controller can use the above BufferID when a
packet-out is generated, telling that the packet under consider-
ation is the one identified with the given BufferID. The driver
locks any buffer currently in use, hence preventing it from
being reused until it has been handled by the controller or a
configurable amount of time has passed, avoiding zombies and
memory exhaustion. Since the hardware switch does not have
enough memory to store all the above packets, we move them
in the memory buffer pool provided by xDPd, implemented in
the device memory and linked to the corresponding LSI.

2) Handling Packet-out messages: Packet-Out messages
are used by the controller to force a specific packet (e.g., the
one received via Packet-in) to be sent out of a specified port
of the switch. These messages contain a full packet or a buffer
ID referencing a packet stored in the buffer pool. The message
must also include a list of actions to be applied in the order
they are specified; an empty action list drops the packet.

When the Packet-Out message contains an action list with
only an output action, the packet is retrieved from the local
buffer and injected, using the hardware switch APIs, into a
physical port of the switch. Otherwise, the packet is injected
directly into the software switch pipeline, which contains the
whole set of flow rules, including the ones that are offloaded to
the hardware. In this way the above packet will always cross

5The NXP platform defines eight different hardware memory pools that are
associated to the internal CPU; when the packet is transfered to the CPU port,
we have to specify which one among the above queues has to be used.

Fig. 5: Packet-in and Packet-out

only the software pipeline even if it is compatible with the
rules present in the hardware pipeline; the limited generation
rate of packet out messages makes this behavior insignificant
from the performance perspective.

VI. EVALUATION

A. Experiment setup

The proposed architecture has been evaluated with the
experimental setup depicted in Figure 6. A workstation acting
as both traffic generator (source) and receiver (sink) with
the sufficient number of Gigabit Ethernet ports has been
connected to the NXP hardware platform under test, i.e., the
one presented in Section III-A. Traffic is generated with the
DPDK version of Pktgen [10], which has been modified in
order to send traffic with the proper network parameters (e.g.,
MAC addresses) required by the specific test. In particular, we
used DPDK 17.02.0-rc0 and Pktgen 3.0.17.

In addition, a second workstation hosts the open source
Ryu [11] OpenFlow controller, which is connected to a
WAN port that is not terminated on the hardware switch
of the NXP board. For our tests, we used the L2 learning
switch application, which reads the source MAC addresses of
the received packets (sent to the OpenFlow controller using
Packet-in messages) and installs a new forwarding rule in the
hardware switch as soon as a new MAC address is recognized.

B. Experiment scenario

To investigate how much we gain from offloading the
lookup and switching process task to the hardware switch, we
carried out two experiments to compare the application pro-
cessing performance of a standard software switch implemen-
tation (xDPd with the GNU/Linux driver) and our driver that
implements the proposed Selective Offloading architecture.
The goal of this experiment is not to show how the hardware
can outperform the software, which is evident. Instead, we aim
at demonstrating that (i) using the hardware available in the
platform we can reduce the CPU processing that consequently
becomes free for other tasks, and (ii) that we can introduce
more flexibiliby to the platform, potentially enabling to support
rules that are not natively supported in the hardware, while
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Fig. 6: Test scenario with the Ryu OF controller and the
forwarding: (a) with the implemented driver (green path), (b)
with the software xDPd pipeline as a reference (blue path).

TABLE I: CPU load and RAM utilization with the xDPd
GNU/Linux driver and the L2Switch hardware driver.

Pkt size Software pipeline Hardware pipeline

(bytes) CPU load RAM (MB) CPU load RAM (MB)

64 3.61 / 4 540 0.21 / 4 360

128 3.52 / 4 532 0.13 / 4 350

256 3.44 / 4 532 0.12 / 4 341

512 3.39 / 4 532 0.12 / 4 340

1024 3.36 / 4 532 0.12 / 4 334

1280 3.20 / 4 532 0.12 / 4 320

1500 3.19 / 4 532 0.12 / 4 320

still leveragin the hardware for fast offloading, in a way that
is completely transparent to the forwarding application.

Our tests measure the throughput of the switch in two
different operating conditions. First, we used the Port-based
VLAN functionality, as described in Section III-A, which
redirects all the packets received by the hardware switch to the
internal CPU, maintaining ingress port information and avoid
switching in the L2Switch. This is used as a benchmarking,
since it provides a simple way to introduce OpenFlow support
in a traditional switch by moving all the processing in soft-
ware. Second, we tested our offloading driver by selectively
moving all the supported rules into the hardware switch, hence
providing a more optimized way to bring OpenFlow support
to an existing switching ASIC.

We performed two different tests to assess the performance
of the xDPd GNU/Linux driver and compare them with the
implemented offloading driver. We are interested in both the
maximum throughput and in how it is affected by the number
of ports involved and the packet size, with the companion CPU
consumption. The throughput is measured in million packets
per second (Mpps), for various packet sizes.

In the first test, PC1 and PC2 exchange a bidirectional traffic
flow at the maximum speed (2 x 1Gbps). When the rules
are installed correctly, the overall throughput of the system
is depicted in Figure 7, which shows that our driver leads
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Fig. 7: Forwarding between 2 ports

to a significant performance improvement compared to the
software-only version. In fact, we can notice that the line rate
is never reached when the switching is performed entirely in
software, likely due to the overhead caused by copying the
packet data from user-space to kernel-space memory and vice
versa. With our driver, the switching is performed entirely
in hardware at line rate, as shown by the line associated to
the throughput of the xDPd hardware, which is completely
overlapped with the line rate.

In the second experiment, we used a third machine PC3
equipped with a quad-port Intel I350 Gigabit Ethernet NIC,
which was installed also in PC1. The four ports on PC1
are connected to the first four ports of the switch, while
the remaining ports are attached to PC3. Both PC1 and
PC3 generate bidirectional traffic using Pktgen DPDK at the
maximum rate, with the same L2 Switch Ryu application used
before.

Results are shown in Figure 8, with confirms that the
hardware is still able to perform at line rate for whatever
packet size, while the software is still very much beyond
that throughput. It is worth noting that the line rate cannot
be reached even in case of a more powerful CPU, as this
component is connected to the switching hardware with a
maximum aggregated bandwidth of 5Gbps, given by the two
FMAN ports shown in Figure 1. Instead, the physical ports
connected to the switch account for 8 Gbps of bidirectional
traffic, i.e., 16Gbps, which is almost three time the capacity
of the internal paths.

Table I compares the CPU load and RAM consumption
between the xDPd GNU/Linux pure software implementation
and the same values using the implemented driver. In the
second experiment, where all ports receive frames at the
maximum rate, the software xDPd implementation consumes
almost all available CPU in the platform (4.0 on a quad core
represents 100% utilization), given that every flow is handled
by the system CPU. Comparing this result with the L2switch
hardware driver confirms that, the use of the hardware device
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to perform the packet switching does not involve the CPU,
which can be utilized by the other system processes.

Of course, there are optimized OpenFlow switch imple-
mentations (OvS-DPDK or xDPd-DPDK) that use a software
approach to obtain significant values of throughput. However,
these technologies require too many resources (i.e., CPU
cores) that would be prohibitive in a residential CPE, whose
cost is a very important parameter to consider.

VII. CONCLUSION AND FUTURE WORK

This paper proposes an architecture for the Selective Of-
floading of OpenFlow rules into non-OpenFlow compatible
hardware ASICs, to enable existing (legacy) network equip-
ment to support the OpenFlow protocol.

Our solution is based on selecting the right OpenFlow rules
suitable for the hardware offloading while maintaining the
unsupported ones in the software pipeline. Specifically, we
offload the chosen rules into the hardware switch pipeline
and in particular into the ACL and MAC table, performing
the conversion between OpenFlow rules to the table-specific
matches and actions.

We outline a design architecture and present the imple-
mentation details of an userspace driver for xDPd, a multi-
platform OpenFlow switch, that accesses to the hardware
switch registers to implement (when possible) forwarding
decisions directly in the hardware pipeline, although the latter
is not OpenFlow compliant. We illustrate the design choices
to implement all the core functionalities required by the Open-
Flow protocol (e.g., Packet-in, Packet-out messages), and then
we present an experimental evaluation of the performance gain
we can achieve with the hardware switching and classification
compared with the software-only counterpart.

As expected, the implemented driver shows a considerable
advantage with respect to throughput and CPU consumption,
thanks to its capability to exploit the existing non-OpenFlow
hardware available in the platform. This performance gain is
significant particularly in residential gateways where the lim-

ited resources can be a barrier for providing flexible network
services, and that are so widely deployed in the nowadays
Internet as home/business gateways that looks economically
challenging to replace them with a new version with native
OpenFlow support in hardware.

The idea of splitting the rules across the hardware and
software pipelines is particularly suitable for OpenFlow 1.0,
which operates with a single logical table. In this case, flow
rules are inspected and offloaded to the hardware according
to the capabilities of the ACL and MAC tables. In the case
of a logical pipeline that includes multiple tables, only the
flow rules that are installed in the first table are potentially
offloaded to the hardware switch.

A future version of the Selective Offloading Logic could be
to incorporate the work of [13] in the current architecture,
which enables the convertion of a M-stage pipeline (with
M flow tables) into a N-stage pipeline, hence adapting the
logical pipeline to the physical pipeline of the hardware. In this
case, the Flow Adapter could handle the conversion between
the software and the hardware pipelines and the Selective
Offloading Logic could maintain the ability to select which
rules can be offloaded and how to translate them to fit into
the actual hardware device.
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