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Abstract. Dealing with time-varying high dimensional data is a big problem for 

real time pattern recognition. Only linear projections, like principal component 

analysis, are used in real time while nonlinear techniques need the whole data-

base (offline). Their incremental variants do no work properly. The onCCA 

neural network addresses this problem; it is incremental and performs simulta-

neously the data quantization and projection by using the Curvilinear Compo-

nent Analysis (CCA), a distance-preserving reduction technique. However, 

onCCA requires an initial architecture, provided by a small offline CCA. This 

paper presents a variant of onCCA, called growing CCA (GCCA), which has a 

self-organized incremental architecture adapting to the nonstationary data dis-

tribution. This is achieved by introducing the ideas of “seeds”, pairs of neurons 

which colonize the input domain, and “bridge”, a different kind of edge in the 

manifold graph, which signal the data nonstationarity. Some examples from ar-

tificial problems and a real application are given. 

Keywords: dimensionality reduction; curvilinear component analysis; online 

algorithm; neural network; vector quantization; projection; seed; bridge. 

1 Introduction  

Data mining is ever increasingly facing the extraction of meaningful information 

from big data (e.g. from internet), which are often very high dimensional. For both 

visualization and automatic purposes, their dimensionality has to be reduced. This is 

also important in order to learn the data manifold, which, in general, is lower dimen-

sional than the original data. Dimensionality reduction (DR) also mitigates the curse 

of dimensionality: e.g., it helps classification, analysis and compression of high-

dimensional data. Most DR techniques work offline, i.e. they require a static database 

(batch) of data, whose dimensionality is reduced. They can be divided into linear and 

nonlinear techniques, the latter being in general slower, but more accurate in real 

world scenarios. See for an overview [1]. However, the possibility of using a DR 

technique working in real time is very important, because it allows not only having a 

projection after only the presentation of few data, but also tracking non-stationary 
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data distributions (e.g. time-varying data manifolds). This can be used, for example, 

for all applications of real time pattern recognition, where the data reduction step 

plays a very important role: fault diagnosis, novelty detection, intrusion detection for 

alarm systems, computer vision and scene analysis and so on. Working in real time 

requires a data stream, a continuous input for the DR algorithms, which are defined as 

on-line or, sometimes, incremental (synonym for non-batch). They require, in general, 

data drawn from a stationary distribution. The fastest algorithms are linear and use the 

Principal Component Analysis (PCA) by means of linear neural networks, like the 

Generalized Hebbian Algorithm (GHA, [2] and the incremental PCA (candid covari-

ance-free CCIPCA [3]).  Nonlinear DR techniques are not suitable for online applica-

tions. Many efforts have been tried in order to speed up these algorithms: updating the 

structure information (graph), new data prediction, embedding updating. However, 

these incremental versions (e.g. iterative LLE, [4]) require too a cumbersome compu-

tational burden and are useless in real time applications. Neural networks can also be 

used for data projection. In general they are trained offline and used in real time (re-

call phase). In this case, they work only for stationary data and can be better consid-

ered as implicit models of the embedding. Radial basis functions and multilayer per-

ceptrons work well for this purpose (out-of-sample techniques). However, their adap-

tivity can be exploited by either creating ad hoc architectures and error functions or 

using self-organizing maps (SOM) and variants. The former comprises multilayer 

perceptrons trained on a precomputed Sammon’s mapping or with a backpropagation 

rule based on the Sammon’s technique and an unsupervised architecture (SAMANN, 

[5]). These techniques require the stationarity of their training set. The latter family of 

neural networks comprises the self-organizing feature maps (SOM) and its incremen-

tal variants. SOM is inherently a feature mapper with fixed topology (which is also its 

limit). Its variants have no topology (neural gas, NG [6]) or a variable topology and 

pave the way to pure incremental networks like growing neural gas (GNG, [7]). These 

networks, in conjunction with the Competitive Hebbian Learning (CHL, [8]), create a 

graph representing the manifold, which is the first step for most DR techniques. NG 

plus CHL is called Topology representing network (TRN, [9]). The approach is called 

TRNMap [10] if the DR technique is a multidimensional scaling (MDS); here the 

projection follows the graph estimation, which results in the impossibility to track 

changes in real time. If the graph is computed by GNG, then the DR can be computed 

by OVI-NG [11], if Euclidean distances are used, and GNLG-NG [12] if geodesic 

distances replace Euclidean distances. However, from the point of view of real time 

applications, only the former is interesting, because it estimates, in the same time, the 

graph updating and its projection. For data drawn from a nonstationary distribution, as 

it is the case for fault and prefault diagnosis and system modeling, the above cited 

techniques basically fail. For instance, the methods based on geodesic distances al-

ways require a connected graph. If the distribution changes abruptly (jump), they 

cannot track anymore. Recently, an ad hoc architecture has been proposed (onCCA, 

[13]), which tracks nonstationarity by using an incremental quantization synchronous-

ly with a fast projection based on the Curvilinear Component Analysis (CCA, [22]). It 

requires an initial architecture provided by a fast offline CCA. 



  The purpose of this paper is the presentation of an improved version of 

onCCA, here called growing CCA (GCCA), which, by using the new idea of seed, 

does not need an initial CCA architecture. It also uses the principle of bridges in order 

to detect changes in the data stream. After the presentation of the traditional (offline) 

CCA in Sec. 2, Sec. 3 introduces the new algorithm and discusses both its basic ideas 

and the influence of its user-dependent parameters. Sec. 4 shows the results of a few 

simulations on artificial and real problems. Sec. 5 presents the conclusions. 

2 The curvilinear component analysis 

One of the most important nonlinear techniques for dimensionality reduction is the 

Curvilinear Component Analysis (CCA, [14]), which is a non-convex technique based 

on weighted distances. It derives from the Sammon mapping [1], but improves it be-

cause of its properties of unfolding data and extrapolation. CCA is a self-organizing 

neural network. It performs the quantization of a data training set (input space, say X) 

for estimating the corresponding non-linear projection into a lower dimensional space 

(latent space, say Y). Two weights are attached to each neuron. The first one has the 

dimensionality of the X space and is here called X-weight: it quantizes the input data. 

The second one, here called Y-weight, is placed in the latent space and represents the 

projection of the X-weight. In a sense, each neuron can be considered as a corre-

spondence between a vector and its projection. The input vector quantization can be 

performed in several ways, by using, for instance, classical neural unsupervised tech-

niques. The CCA projection, which is the core of the algorithm, works as follows. For 

each pair of different weight vectors in the X space (data space), a between-point 

distance 𝐷𝑖𝑗 , calculated as 𝐷𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖. The objective is to constraint the distance 

𝐿𝑖𝑗  of the associated Y-weights in the latent space, computed as 𝐿𝑖𝑗 = ‖𝑦𝑖 − 𝑦𝑗‖, to 

be equal to 𝐷𝑖𝑗. Obviously, this is possible only if all input data lay on a linear mani-

fold. In order to face this problem, CCA defines a distance function, which, in its 

simplest form, is the following: 
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That is a step function for constraining only the under threshold between-point dis-

tances 𝐿𝑖𝑗 . In this way, the CCA favors short distances, which implies local distance 

preservation. For each pair i, j of N neurons, the CCA error function is given by: 
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Defining as 𝒚(𝑗) the weight of the j-th projecting neuron, the stochastic gradient 

algorithm for minimizing (2) follows: 
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where 𝛼 is the learning rate. 

3 The GROWING CCA (GCCA) 

The growing CCA is a neural network whose number of neurons is determined 

by the quantization of the input space. Each neuron has two weights: the first in the 

data space (X-weight) is used for representing the input distribution, the second in the 

latent space (Y-weight) yields the corresponding projection. The neurons are connect-

ed by links which define the manifold topology. The original concepts are the idea of 

seed and bridge. The seed is a pair of neurons, which (except in the network initializa-

tion) colonize the nonstationary input distribution, in the sense that they are the first 

neurons representing the change in data. Seeds are created by the neuron doubling 

explained in Fig. 1. The bridge is a qualitatively different link, which indicates a non-

stationarity of the input. Hence, there are two types of links: edges, created by CHL, 

and bridges. Each neuron is equipped with a threshold which represents its receptive 

field in data space. It is estimated as the distance in X-space between the neuron and 

its farthest neighbor (neighbors are defined by the graph) and is used for determining 

the novelty of input data. GCCA is incremental both in the sense that it can increase 

or decrease (pruning by age) the number of neurons and the quantization and the pro-

jection work simultaneously. The learning rule is the soft competitive learning (SCL, 

[13]) except in neuron doubling, which requires the hard competitive learning (HCL, 

[13]). The projection is based on (3), which, as a consequence of the choice of (1), 

implies the idea of λ-neurons. 

3.1 The Algorithm 

The initial structure of GCCA is a seed, i.e. a pair of neurons. The X-weights are 
random. However, a good choice is the use of two randomly drawn inputs. The asso-
ciated Y-weights can be chosen randomly, but it is better that one projection is the 
zero vector, for normalization purposes. 

The basic iteration, represented in the flowchart of Fig. 1, starts at the presentation 
of a new data, say 𝑥0 𝜖 𝑋 . All neurons are sorted according to the Euclidean distances 
between 𝑥0 and their X-weights. The neuron with the shortest distance (𝑑1) is the 
winner. If its distance is higher than the scalar threshold of the neuron (novelty test), a 
new neuron is created. Otherwise, there is a weight adaptation and a linking phase. 

Neuron creation. The X-weight vector is given by x0. The winner and the new 
neuron are linked by a bridge (this link does not respect CHL). The new neuron 
threshold is 𝑑1. The associated projection (Y-weight) in latent space requires two 
steps: 



1. Determination of the initial values of the projection (y0): a triangulation inspired 

by [15] is used, in which the winner and second winner projections are the centers 

of two circles (in the first two dimensions of the latent space), whose radii are the 

distances in data space from the input data, respectively. There are two intersec-

tions and the initial two components are chosen as the farthest from the third win-

ner projection. If the latent space is more than two-dimensional, the other compo-

nents are chosen randomly. 

2. One or several CCA iterations (3) in which the first and second winner projections 

are considered as fixed, in order to estimate the new y0 (extrapolation). 

Adaptation, linking and doubling. If a new neuron is not created, it is checked if the 

winner, whose X-weight is x-1, and the second winner, whose X-weight is x-2, are 

connected by a bridge.  

 

Fig. 1. The GCCA flowchart 

1. If there is no bridge, these two neurons are linked by an edge (whose age is set to 

zero) and the same age procedure as in [13] is used as follows. The age of all other 

links emanating from the winner is incremented by one; if a link age is greater than 

the agemax scalar parameter, it is eliminated. If a neuron remains without links, it 

is removed (pruning). X-weights are adapted by using SCL [13]:  x-1 and its direct 

topological neighbors are moved towards x0 by fractions α1 and αn, respectively, of 

the total distance 

 
                           ∆𝑥−𝑖 =  𝛼1(𝑥0 − 𝑥−𝑖)             i = 1                                                    (4𝑎) 

                          ∆𝑥−𝑖 =  𝛼𝑛(𝑥0 − 𝑥−𝑖)    otherwise                                                   (4𝑏)
 

 



and the thresholds of the winner and second winner are recomputed. Then the neu-

rons whose Y-weights are within the sphere of radius λ centered in the first winner 

are determined, say λ-neurons (topological constraint). One or several CCA itera-

tions (3), in which the first winner projection is fixed, are done for estimating the 

new projections of the λ-neurons (interpolation). 

2. If it is a bridge, it is checked if the winner is the bridge tail; in this case step 1 is 

done and the bridge becomes an edge. Otherwise, a seed is created by means of the 

neuron doubling:  

(a) A virtual adaptation of the X-weight of the winner is estimated by HCL (only 

(4a) is used) and considered as the X-weight of a new neuron (doubling). 

(b) The winner and the new neuron are linked (age set to zero) and their thresholds 

are computed (it corresponds to their Euclidean distance). 

(c) The initial projection of the new neuron (Y-weight) is estimated by the same 

triangulation as before. 

(d) One or several CCA iterations (3) in which the projections of the two neurons 

of the bridge are considered as fixed, in order to estimate the final projection of 

the new neuron (extrapolation). 

3.2 Considerations 

The algorithm requires very few user-dependent parameters. They are needed for the 

CCA projection, the competitive learning and the pruning. The CCA projection re-

quires the learning rate α and the λ parameter, which determines the choice of the 

neurons for the projection step. The selection of this parameter is very important, 

because a too small value could imply a collection of local projections without any 

coordination. Indeed, the accurate setting of λ is the way GCCA creates its global 

projection. Instead, the network is not very sensitive to the choice of the number of 

iterations for each projection. The neuron pruning requires setting the value of edge-

max, i.e. the maximum value of the age before pruning: a too low value implies a 

smaller number of neurons. The constant learning parameters α1 for the first winner 

(for CHL and HCL, see (4a)) and αn: constant learning rate for the first winner neigh-

bors (for CHL, see (4b)) are needed for the X-weight adaptation. 

Bridges are fundamental in tracking nonstationary data. They are links between a 

neuron and a new data (new neuron). As a consequence, they point to the change in 

data. They have two basic characteristics: the length and the density. A long bridge, 

whose new neuron has doubled, represents an effective change in the input distribu-

tion; instead, if the new neuron has no edges, it represents an outlier. The density 

yields further insight in the time-varying distribution. In case of abrupt change in the 

input distribution (jump), there are a few long bridges. In case of smooth displace-

ment of data, the density of bridges is proportional to the displacement speed of the 

distribution. In case of very slow displacement, only the border (frontier of the distri-

bution domain) neurons win the competition and move in average in the direction of 

the displacement. The other neurons are static. Very slow displacement implies no 

bridges. Bridges appear only if the learning rate of SCL is not constant. 



4 Examples 

Two examples, showing a two-dimensional projection (for visualization) follow: 

the first one deals with a static unidimensional manifold embedded in the three-

dimensional space, the second one, instead, with nonstationary data in a fault diagno-

sis. 
All the simulations have been implemented on MATLAB®. The first deals with 

data drawn uniformly from a spiral distribution of 30000 noiseless points (see Fig. 2 
left). The parameters of GCCA are the following: ρ=0.07, α1=0.4, αn=0.1, agemax=2, 
λi=20, λf=0.6, epochsi=5, epochsf=1, αcca=0.001. The results are shown in Fig. 2 right 
after 30000 instants. It can be deduced that the quantization spans the input domain 
uniformly and the projection unfolds data correctly. 

.  

Fig. 2. 3D-Spiral (left); 2D projection (right)  

The second example deals with a more challenging problem: data drawn from a da-

taset coming from the bearing failure diagnostic and prognostic platform [16], which 

provides access to accelerated bearing degradation tests. Here, the dataset contains 

2155 5-dimensional vectors whose components correspond to statistical features ex-

tracted by measurements drawn from four vibration transducers installed in a kine-

matic chain of an electrical motor. In particular, this test deals with a nonstationary 

framework which evolves from the healthy state to a double fault occurring in the 

inner-race of a bearing and in the ball of another bearing. The parameters of GCCA 

are the following: ρ=0.01, α1=0.05, αn=0.005, agemax=2, λi=20, λf=0.6, epochsi=1, 

epochsf=1, αcca=0.01. The GCCA learns the chain behavior and tracks it, by adapting 

in real time the data projection. Fig. 3 shows the motor life-cycle, from the initial 

transient phase, through the healthy state, towards, first, a prefault (characterized by 

an increasing bridges density), and, finally, the two faults which are clearly identified 

in the figure by the longer bridges. 



 

 

Fig. 3. GCCA edges and bridges for the bearing diagnostic experiment 

5 Conclusion 

The GCCA neural network is the only method able to track a nonstationary input 

distribution and to project it in a lower dimensional space. In a sense, GCCA learns a 

time-varying manifold. The algorithm is based on three key ideas: the first is the seed, 

a pair of neurons which colonizes (start of the new vectorization) a change in the in-

put distribution domain; the second is the bridge, which not only allows the visualiza-

tion of data changes, but also discriminates the outliers and yields the possibility (by 

its geometry and density) to infer more information about the nonstationarity; the 

third is the locality of the projection, given by the selection of the λ-neurons for the 

CCA iterations. The global coherence of the projection is obtained by modulating λ. 

Future work will deal with the implementation in this network of other projection 

techniques, a deeper analysis of bridges and a minor change in the computation of the 

short distances for approximating the geodesic distances. 
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