
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Growing Curvilinear Component Analysis (GCCA) for Dimensionality Reduction of Nonstationary Data / Cirrincione,
Giansalvo; Randazzo, Vincenzo; Pasero, EROS GIAN ALESSANDRO (SMART INNOVATION, SYSTEMS AND
TECHNOLOGIES). - In: Multidisciplinary Approaches to Neural Computing / Esposito, A., Faundez-Zanuy, M., Morabito,
F.C., Pasero, E.. - ELETTRONICO. - [s.l] : Springer International Publishing, 2017. - ISBN 978-3-319-56904-8. - pp. 151-
160 [10.1007/978-3-319-56904-8_15]

Original

Growing Curvilinear Component Analysis (GCCA) for Dimensionality Reduction of Nonstationary Data

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/978-3-319-56904-8_15

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-319-56904-8_15

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2679577 since: 2020-10-21T11:11:17Z

Springer International Publishing

Growing Curvilinear Component Analysis (GCCA) for

Dimensionality Reduction of Nonstationary Data

Giansalvo Cirrincione1, Vincenzo Randazzo2 and Eros Pasero2

1University of Picardie Jules Verne, Lab. LTI, Amiens, France

exin@u-picardie.fr
2Politecnico di Torino, DET, Turin, Italy

{vincenzo.randazzo,eros.pasero}@polito.it

Abstract. Dealing with time-varying high dimensional data is a big problem for

real time pattern recognition. Only linear projections, like principal component

analysis, are used in real time while nonlinear techniques need the whole data-

base (offline). Their incremental variants do no work properly. The onCCA

neural network addresses this problem; it is incremental and performs simulta-

neously the data quantization and projection by using the Curvilinear Compo-

nent Analysis (CCA), a distance-preserving reduction technique. However,

onCCA requires an initial architecture, provided by a small offline CCA. This

paper presents a variant of onCCA, called growing CCA (GCCA), which has a

self-organized incremental architecture adapting to the nonstationary data dis-

tribution. This is achieved by introducing the ideas of “seeds”, pairs of neurons

which colonize the input domain, and “bridge”, a different kind of edge in the

manifold graph, which signal the data nonstationarity. Some examples from ar-

tificial problems and a real application are given.

Keywords: dimensionality reduction; curvilinear component analysis; online

algorithm; neural network; vector quantization; projection; seed; bridge.

1 Introduction

Data mining is ever increasingly facing the extraction of meaningful information

from big data (e.g. from internet), which are often very high dimensional. For both

visualization and automatic purposes, their dimensionality has to be reduced. This is

also important in order to learn the data manifold, which, in general, is lower dimen-

sional than the original data. Dimensionality reduction (DR) also mitigates the curse

of dimensionality: e.g., it helps classification, analysis and compression of high-

dimensional data. Most DR techniques work offline, i.e. they require a static database

(batch) of data, whose dimensionality is reduced. They can be divided into linear and

nonlinear techniques, the latter being in general slower, but more accurate in real

world scenarios. See for an overview [1]. However, the possibility of using a DR

technique working in real time is very important, because it allows not only having a

projection after only the presentation of few data, but also tracking non-stationary

mailto:vincenzo.randazzo@polito.it

data distributions (e.g. time-varying data manifolds). This can be used, for example,

for all applications of real time pattern recognition, where the data reduction step

plays a very important role: fault diagnosis, novelty detection, intrusion detection for

alarm systems, computer vision and scene analysis and so on. Working in real time

requires a data stream, a continuous input for the DR algorithms, which are defined as

on-line or, sometimes, incremental (synonym for non-batch). They require, in general,

data drawn from a stationary distribution. The fastest algorithms are linear and use the

Principal Component Analysis (PCA) by means of linear neural networks, like the

Generalized Hebbian Algorithm (GHA, [2] and the incremental PCA (candid covari-

ance-free CCIPCA [3]). Nonlinear DR techniques are not suitable for online applica-

tions. Many efforts have been tried in order to speed up these algorithms: updating the

structure information (graph), new data prediction, embedding updating. However,

these incremental versions (e.g. iterative LLE, [4]) require too a cumbersome compu-

tational burden and are useless in real time applications. Neural networks can also be

used for data projection. In general they are trained offline and used in real time (re-

call phase). In this case, they work only for stationary data and can be better consid-

ered as implicit models of the embedding. Radial basis functions and multilayer per-

ceptrons work well for this purpose (out-of-sample techniques). However, their adap-

tivity can be exploited by either creating ad hoc architectures and error functions or

using self-organizing maps (SOM) and variants. The former comprises multilayer

perceptrons trained on a precomputed Sammon’s mapping or with a backpropagation

rule based on the Sammon’s technique and an unsupervised architecture (SAMANN,

[5]). These techniques require the stationarity of their training set. The latter family of

neural networks comprises the self-organizing feature maps (SOM) and its incremen-

tal variants. SOM is inherently a feature mapper with fixed topology (which is also its

limit). Its variants have no topology (neural gas, NG [6]) or a variable topology and

pave the way to pure incremental networks like growing neural gas (GNG, [7]). These

networks, in conjunction with the Competitive Hebbian Learning (CHL, [8]), create a

graph representing the manifold, which is the first step for most DR techniques. NG

plus CHL is called Topology representing network (TRN, [9]). The approach is called

TRNMap [10] if the DR technique is a multidimensional scaling (MDS); here the

projection follows the graph estimation, which results in the impossibility to track

changes in real time. If the graph is computed by GNG, then the DR can be computed

by OVI-NG [11], if Euclidean distances are used, and GNLG-NG [12] if geodesic

distances replace Euclidean distances. However, from the point of view of real time

applications, only the former is interesting, because it estimates, in the same time, the

graph updating and its projection. For data drawn from a nonstationary distribution, as

it is the case for fault and prefault diagnosis and system modeling, the above cited

techniques basically fail. For instance, the methods based on geodesic distances al-

ways require a connected graph. If the distribution changes abruptly (jump), they

cannot track anymore. Recently, an ad hoc architecture has been proposed (onCCA,

[13]), which tracks nonstationarity by using an incremental quantization synchronous-

ly with a fast projection based on the Curvilinear Component Analysis (CCA, [22]). It

requires an initial architecture provided by a fast offline CCA.

 The purpose of this paper is the presentation of an improved version of

onCCA, here called growing CCA (GCCA), which, by using the new idea of seed,

does not need an initial CCA architecture. It also uses the principle of bridges in order

to detect changes in the data stream. After the presentation of the traditional (offline)

CCA in Sec. 2, Sec. 3 introduces the new algorithm and discusses both its basic ideas

and the influence of its user-dependent parameters. Sec. 4 shows the results of a few

simulations on artificial and real problems. Sec. 5 presents the conclusions.

2 The curvilinear component analysis

One of the most important nonlinear techniques for dimensionality reduction is the

Curvilinear Component Analysis (CCA, [14]), which is a non-convex technique based

on weighted distances. It derives from the Sammon mapping [1], but improves it be-

cause of its properties of unfolding data and extrapolation. CCA is a self-organizing

neural network. It performs the quantization of a data training set (input space, say X)

for estimating the corresponding non-linear projection into a lower dimensional space

(latent space, say Y). Two weights are attached to each neuron. The first one has the

dimensionality of the X space and is here called X-weight: it quantizes the input data.

The second one, here called Y-weight, is placed in the latent space and represents the

projection of the X-weight. In a sense, each neuron can be considered as a corre-

spondence between a vector and its projection. The input vector quantization can be

performed in several ways, by using, for instance, classical neural unsupervised tech-

niques. The CCA projection, which is the core of the algorithm, works as follows. For

each pair of different weight vectors in the X space (data space), a between-point

distance 𝐷𝑖𝑗 , calculated as 𝐷𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖. The objective is to constraint the distance

𝐿𝑖𝑗 of the associated Y-weights in the latent space, computed as 𝐿𝑖𝑗 = ‖𝑦𝑖 − 𝑦𝑗‖, to

be equal to 𝐷𝑖𝑗. Obviously, this is possible only if all input data lay on a linear mani-

fold. In order to face this problem, CCA defines a distance function, which, in its

simplest form, is the following:

 (1)

That is a step function for constraining only the under threshold between-point dis-

tances 𝐿𝑖𝑗 . In this way, the CCA favors short distances, which implies local distance

preservation. For each pair i, j of N neurons, the CCA error function is given by:

    
ij

N

i

N

j

ijij

N

i

i

CCACCA LFLDEE 

2

1 11 2

1

2

1

 

 (2)

Defining as 𝒚(𝑗) the weight of the j-th projecting neuron, the stochastic gradient

algorithm for minimizing (2) follows:

 










ij

ij
ij L

L
L F





 if 1

 if 0

            

ij

ijijij
L

ij
LFLDjj

yy
yy


  (3)

where 𝛼 is the learning rate.

3 The GROWING CCA (GCCA)

The growing CCA is a neural network whose number of neurons is determined

by the quantization of the input space. Each neuron has two weights: the first in the

data space (X-weight) is used for representing the input distribution, the second in the

latent space (Y-weight) yields the corresponding projection. The neurons are connect-

ed by links which define the manifold topology. The original concepts are the idea of

seed and bridge. The seed is a pair of neurons, which (except in the network initializa-

tion) colonize the nonstationary input distribution, in the sense that they are the first

neurons representing the change in data. Seeds are created by the neuron doubling

explained in Fig. 1. The bridge is a qualitatively different link, which indicates a non-

stationarity of the input. Hence, there are two types of links: edges, created by CHL,

and bridges. Each neuron is equipped with a threshold which represents its receptive

field in data space. It is estimated as the distance in X-space between the neuron and

its farthest neighbor (neighbors are defined by the graph) and is used for determining

the novelty of input data. GCCA is incremental both in the sense that it can increase

or decrease (pruning by age) the number of neurons and the quantization and the pro-

jection work simultaneously. The learning rule is the soft competitive learning (SCL,

[13]) except in neuron doubling, which requires the hard competitive learning (HCL,

[13]). The projection is based on (3), which, as a consequence of the choice of (1),

implies the idea of λ-neurons.

3.1 The Algorithm

The initial structure of GCCA is a seed, i.e. a pair of neurons. The X-weights are
random. However, a good choice is the use of two randomly drawn inputs. The asso-
ciated Y-weights can be chosen randomly, but it is better that one projection is the
zero vector, for normalization purposes.

The basic iteration, represented in the flowchart of Fig. 1, starts at the presentation
of a new data, say 𝑥0 𝜖 𝑋 . All neurons are sorted according to the Euclidean distances
between 𝑥0 and their X-weights. The neuron with the shortest distance (𝑑1) is the
winner. If its distance is higher than the scalar threshold of the neuron (novelty test), a
new neuron is created. Otherwise, there is a weight adaptation and a linking phase.

Neuron creation. The X-weight vector is given by x0. The winner and the new
neuron are linked by a bridge (this link does not respect CHL). The new neuron
threshold is 𝑑1. The associated projection (Y-weight) in latent space requires two
steps:

1. Determination of the initial values of the projection (y0): a triangulation inspired

by [15] is used, in which the winner and second winner projections are the centers

of two circles (in the first two dimensions of the latent space), whose radii are the

distances in data space from the input data, respectively. There are two intersec-

tions and the initial two components are chosen as the farthest from the third win-

ner projection. If the latent space is more than two-dimensional, the other compo-

nents are chosen randomly.

2. One or several CCA iterations (3) in which the first and second winner projections

are considered as fixed, in order to estimate the new y0 (extrapolation).

Adaptation, linking and doubling. If a new neuron is not created, it is checked if the

winner, whose X-weight is x-1, and the second winner, whose X-weight is x-2, are

connected by a bridge.

Fig. 1. The GCCA flowchart

1. If there is no bridge, these two neurons are linked by an edge (whose age is set to

zero) and the same age procedure as in [13] is used as follows. The age of all other

links emanating from the winner is incremented by one; if a link age is greater than

the agemax scalar parameter, it is eliminated. If a neuron remains without links, it

is removed (pruning). X-weights are adapted by using SCL [13]: x-1 and its direct

topological neighbors are moved towards x0 by fractions α1 and αn, respectively, of

the total distance

 ∆𝑥−𝑖 = 𝛼1(𝑥0 − 𝑥−𝑖) i = 1 (4𝑎)

 ∆𝑥−𝑖 = 𝛼𝑛(𝑥0 − 𝑥−𝑖) otherwise (4𝑏)

and the thresholds of the winner and second winner are recomputed. Then the neu-

rons whose Y-weights are within the sphere of radius λ centered in the first winner

are determined, say λ-neurons (topological constraint). One or several CCA itera-

tions (3), in which the first winner projection is fixed, are done for estimating the

new projections of the λ-neurons (interpolation).

2. If it is a bridge, it is checked if the winner is the bridge tail; in this case step 1 is

done and the bridge becomes an edge. Otherwise, a seed is created by means of the

neuron doubling:

(a) A virtual adaptation of the X-weight of the winner is estimated by HCL (only

(4a) is used) and considered as the X-weight of a new neuron (doubling).

(b) The winner and the new neuron are linked (age set to zero) and their thresholds

are computed (it corresponds to their Euclidean distance).

(c) The initial projection of the new neuron (Y-weight) is estimated by the same

triangulation as before.

(d) One or several CCA iterations (3) in which the projections of the two neurons

of the bridge are considered as fixed, in order to estimate the final projection of

the new neuron (extrapolation).

3.2 Considerations

The algorithm requires very few user-dependent parameters. They are needed for the

CCA projection, the competitive learning and the pruning. The CCA projection re-

quires the learning rate α and the λ parameter, which determines the choice of the

neurons for the projection step. The selection of this parameter is very important,

because a too small value could imply a collection of local projections without any

coordination. Indeed, the accurate setting of λ is the way GCCA creates its global

projection. Instead, the network is not very sensitive to the choice of the number of

iterations for each projection. The neuron pruning requires setting the value of edge-

max, i.e. the maximum value of the age before pruning: a too low value implies a

smaller number of neurons. The constant learning parameters α1 for the first winner

(for CHL and HCL, see (4a)) and αn: constant learning rate for the first winner neigh-

bors (for CHL, see (4b)) are needed for the X-weight adaptation.

Bridges are fundamental in tracking nonstationary data. They are links between a

neuron and a new data (new neuron). As a consequence, they point to the change in

data. They have two basic characteristics: the length and the density. A long bridge,

whose new neuron has doubled, represents an effective change in the input distribu-

tion; instead, if the new neuron has no edges, it represents an outlier. The density

yields further insight in the time-varying distribution. In case of abrupt change in the

input distribution (jump), there are a few long bridges. In case of smooth displace-

ment of data, the density of bridges is proportional to the displacement speed of the

distribution. In case of very slow displacement, only the border (frontier of the distri-

bution domain) neurons win the competition and move in average in the direction of

the displacement. The other neurons are static. Very slow displacement implies no

bridges. Bridges appear only if the learning rate of SCL is not constant.

4 Examples

Two examples, showing a two-dimensional projection (for visualization) follow:

the first one deals with a static unidimensional manifold embedded in the three-

dimensional space, the second one, instead, with nonstationary data in a fault diagno-

sis.
All the simulations have been implemented on MATLAB®. The first deals with

data drawn uniformly from a spiral distribution of 30000 noiseless points (see Fig. 2
left). The parameters of GCCA are the following: ρ=0.07, α1=0.4, αn=0.1, agemax=2,
λi=20, λf=0.6, epochsi=5, epochsf=1, αcca=0.001. The results are shown in Fig. 2 right
after 30000 instants. It can be deduced that the quantization spans the input domain
uniformly and the projection unfolds data correctly.

.

Fig. 2. 3D-Spiral (left); 2D projection (right)

The second example deals with a more challenging problem: data drawn from a da-

taset coming from the bearing failure diagnostic and prognostic platform [16], which

provides access to accelerated bearing degradation tests. Here, the dataset contains

2155 5-dimensional vectors whose components correspond to statistical features ex-

tracted by measurements drawn from four vibration transducers installed in a kine-

matic chain of an electrical motor. In particular, this test deals with a nonstationary

framework which evolves from the healthy state to a double fault occurring in the

inner-race of a bearing and in the ball of another bearing. The parameters of GCCA

are the following: ρ=0.01, α1=0.05, αn=0.005, agemax=2, λi=20, λf=0.6, epochsi=1,

epochsf=1, αcca=0.01. The GCCA learns the chain behavior and tracks it, by adapting

in real time the data projection. Fig. 3 shows the motor life-cycle, from the initial

transient phase, through the healthy state, towards, first, a prefault (characterized by

an increasing bridges density), and, finally, the two faults which are clearly identified

in the figure by the longer bridges.

Fig. 3. GCCA edges and bridges for the bearing diagnostic experiment

5 Conclusion

The GCCA neural network is the only method able to track a nonstationary input

distribution and to project it in a lower dimensional space. In a sense, GCCA learns a

time-varying manifold. The algorithm is based on three key ideas: the first is the seed,

a pair of neurons which colonizes (start of the new vectorization) a change in the in-

put distribution domain; the second is the bridge, which not only allows the visualiza-

tion of data changes, but also discriminates the outliers and yields the possibility (by

its geometry and density) to infer more information about the nonstationarity; the

third is the locality of the projection, given by the selection of the λ-neurons for the

CCA iterations. The global coherence of the projection is obtained by modulating λ.

Future work will deal with the implementation in this network of other projection

techniques, a deeper analysis of bridges and a minor change in the computation of the

short distances for approximating the geodesic distances.

Acknowledgments

This work has been partly supported by OPLON Italian MIUR project.

References

1. Van der Maaten, L., Postma, E., Van der Herik, H.: Dimensionality Reduction: a Compar-

ative Review. TiCC TR 2009-005, Delft University of Technology, 2009.

2. Sanger, T.D.: Optimal Unsupervised Learning in a Single-Layer Neural Network, Neural

Networks, vol. 2, pp. 459-473, 1989.

3. Weng, J., Zhang, Y., Hwang W.S.: Candid covariance-free incremental principal compo-

nents analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25

(8), pp. 1034-1040, 2003.

4. Kouropteva, O., Okun, O., Pietikainen, M.: Incremental locally linear embedding, Pattern

Recognition, vol. 38, pp. 1764-1767, 2005.

5. De Ridder, D., Duin, R.: Sammon’s mapping using neural networks: a comparison, Pattern

Recognition Letters, vol. 18, pp. 1307-1316, 1997.

6. Martinetz, T., Schulten, K.: A "neural gas" network learns topologies, Artificial Neural

Networks, Elsevier, pp. 397–402, 1991.

7. Fritzke, B.: A Growing Neural Gas Network Learns Topologies, in Advances in Neural In-

formation Processing System, 7, MIT Press, pp. 625-632, 1995.

8. White, R.: Competitive Hebbian Learning: Algorithm and Demonstations, Neural Net-

works, vol. 5, no. 2, pp. 261-275, 1992.

9. Martinetz, T., Schulten, K.: Topology representing networks, Neural Networks, vol. 7 (3),

pp. 507-522, 1994.

10. Vathy-Fogarassy, A., Kiss, A., Abonyi, J.: Topology Representing Network Map – A New

Tool for Visualization of High-Dimensional Data, in Transactions on Computational Sci-

ence I, Vol. 4750 of the series Lecture Notes in Computer Science pp 61-84, 2008.

11. Estevez, P., Figueroa, C.: Online data visualization using the neural gas network, Neural

Networks, vol. 19, pp. 923-934, 2006.

12. Estevez, P., Chong, A., Held, C., Perez, C.: Nonlinear projection using geodesic distances

and the neural gas network, Lect. Notes Comput. Sci., 4131, pp. 464-473, 2006.

13. Cirrincione, G., Hérault, J., Randazzo, V.: The on-line curvilinear component analysis

(onCCA) for real-time data reduction, International Joint Conference on Neural Networks

(IJCNN), pp. 157-165, 2015.

14. Demartines, P., Hérault, J.: Curvilinear Component Analysis: A Self-Organizing Neural

Network for Nonlinear Mapping of Data Sets, IEEE Transaction on Neural Networks, vol.

8, no. 1, pp. 148-154, 1997.

15. Karbauskaitė, R., Dzemyda, G.: Multidimensional data projection algorithms saving cal-

culations of distances, Information Technology and Control, vol.35, no.1, pp. 57-61, 2006.

16. Nasa prognostic data repository,

http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-

repository

