
Doctoral Dissertation

Doctoral Program in Applied Mathematics (29thcycle)

Energy and Density Distortion
in an

Oscillator Chain

By

Antonella Verderosa
******

Supervisor(s):
Prof. Lamberto Rondoni, Supervisor

Doctoral Examination Committee:
Prof. O. Jepps , Referee, University of Griffith, Australia
Prof. S. Banerjee, Referee, University of Putra Malaysia, Malaysia
Prof. A. Chauviere, Université Grenoble Aples, France
Prof. R. Natalini, IAC M.Picone, CNR Roma, Italy

Politecnico di Torino

2017



2



Contents

1 Introduction 7

1.1 Oscillator Chains . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Equilibrium Conditions . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Gibbs’ Ensemble . . . . . . . . . . . . . . . . . . . . . 8

1.3 Non Equilibrium Conditions . . . . . . . . . . . . . . . . . . . 10

1.3.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . 11

1.3.2 Stochastic Kernel . . . . . . . . . . . . . . . . . . . . . 12

1.3.3 Langevin Equations . . . . . . . . . . . . . . . . . . . . 15

1.4 Our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 FPU Potential . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 A Brief Explanation . . . . . . . . . . . . . . . . . . . . . . . 20

2 Theoretical Model 25

2.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Normal Coordinates . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Definition of the Hamiltonian . . . . . . . . . . . . . . 27

2.2.2 Definition of the Current . . . . . . . . . . . . . . . . . 28

2.2.3 Calculation of 〈x2 − x1〉 . . . . . . . . . . . . . . . . . 28

2.3 Cartesian Coordinates and Velocities . . . . . . . . . . . . . . 32

2.3.1 Definition of the Hamiltonian . . . . . . . . . . . . . . 32

3



4 CONTENTS

2.3.2 Definition of the Current . . . . . . . . . . . . . . . . . 32

3 Analytical Results 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Calculation of 〈x2 − x1〉 . . . . . . . . . . . . . . . . . . . . . 36

3.3 Calculation of 〈x2
1〉 and 〈x2

2〉 . . . . . . . . . . . . . . . . . . . 40

3.4 Calculation of 〈v2 − v1〉 . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Calculation of 〈v2
1〉 and 〈v2

2〉 . . . . . . . . . . . . . . . . . . . 42

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Numerical Results 45

4.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . 45

4.2 The Idea Behind Code . . . . . . . . . . . . . . . . . . . . . . 48

4.3 2-Particle System . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 50-Particle System . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Analytical Results 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Calculation of 〈x2 − x1〉 . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Infinite Space Domain . . . . . . . . . . . . . . . . . . 66

5.2.2 Restricted Space Domain . . . . . . . . . . . . . . . . . 68

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Numerical Results 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 50-Particle System . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



CONTENTS 5

7 Conclusions 89

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Further Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A Normal Modes 93

A.1 Theoretical Calculation . . . . . . . . . . . . . . . . . . . . . . 93

A.2 2-Particle System . . . . . . . . . . . . . . . . . . . . . . . . . 97

B Numerical Codes 103

B.1 Harmonic Potential . . . . . . . . . . . . . . . . . . . . . . . . 103

B.2 FPU Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C Journal Papers 129

C.1 Focus on Some Nonequilibrium Issues . . . . . . . . . . . . . . 131

C.2 t-mixing: from Fluctuation Relations to Response and Irre-

versibility in MD . . . . . . . . . . . . . . . . . . . . . . . . . 145

Bibliography 159



6 CONTENTS



Chapter 1

Introduction

1.1 Oscillator Chains

Non equilibrium phenomena are incredibly widespread and characterize our

surrounding world from its microscopic to its macroscopic aspects. Still a

complete theory for these kinds of systems is not yet achieved and, in par-

ticular, non equilibrium statistical mechanics is not as well developed as its

equilibrium counterpart [1,2].

One of the reason for this lack of success is given by the difficulties one en-

counters when it comes to give a full description of these phenomena: non

equilibrium observables require in fact a bigger amount of information com-

pared to the equilibrium ones so the task is actually more complicated [3,4].

In this thesis we deal with one of the most studied and most basic models

of both equilibrium and non equilibrium statistical mechanics: a chain of

oscillators.

This ideal system consists of a one-dimensional chain of point particles (called

oscillators) which are linked to each other through a potential which is usu-

ally, but not always, harmonic (in this case we call them harmonic oscilla-
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8 CHAPTER 1. INTRODUCTION

tors).

The Hamiltonian that describes a chain of N particles is

H = T + V =
1

2

N∑
i=1

miv
2
i +

1

2

N∑
i,j=1

kΦijxixj (1.1)

where xi and vi are respectively the Cartesian coordinate and velocity of the

i-th particle, mi is its mass, k the elastic constant (which is usually the same

for all particles) and Φijxixj is the potential energy where the explicit form of

Φij depends on the kind of potential (as it will be explained in the following

sections).

N can be finite or infinite and the edges can be fixed, free or with periodic

boundary conditions. It is important to underline that, both in equilibrium

and non equilibrium situations, the boundary conditions have a significant

role in determining the properties of the chain, even for a large number of

particles.

That means that the influence of the system boundary is strong in all the

points in the chain, whereas normally it should decay at a few correlation

length from the ends of the chain [5,6,7].

This is a peculiar feature of this 1-dimensional physical system: in fact it

does not occur in 2 or 3 dimensional grids of particles [8]. This is the reason

why we are going to put a great emphasis on the boundary conditions that

describe the system.

1.2 Equilibrium Conditions

1.2.1 Gibbs’ Ensemble

In the equilibrium case one usually considers a chain with a fixed edge and

with the other one in contact with a heat bath, or reservoir, at a temperature
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T . The reservoir has an infinite heat capacity and this is usually done by

considering it as made by an infinite number of oscillators [1].

Here the chain is a system which has a fixed number of particles, volume and

temperature (which is the same as the heat bath): these are the characteris-

tics of what is described by a canonical ensemble, at equilibrium

Before explaining this, it is better to give a quick review of the Gibbs’ en-

semble theory [9]. It is used in statistical mechanics to deal with systems

consisting in a huge number of particles (the order of the Avogadro’s number

N ≈ 1023), where it is impossible to solve the equations of motion of every

single particle.

We know that to define a macroscopic state we need to know all the positions

and the velocities of all particles, which means all the microscopic states.

An ensemble is a set of microscopic states that satisfies some macroscopical

constraints, which means that correspond to the same macroscopic state. In

particular, a canonical ensemble is a set of all microscopic states with a fixed

number of molecules, volume and temperature: a chain of oscillators in equi-

librium with a heat bath is a typical example of this kind of ensemble.

These microscopic states ”live” in the phase space, a space whose coordi-

nates are the Cartesian coordinates and the momenta. Every point in this

space represents a microspic state and these points are distributed following

a probability distribution which depends on the type of ensemble.

In our case, the canonical one, the distribution is given by

f(x, v) =
e−βH(x,v)∫

e−βH(x,v)dxdv
=
e−βH(x,v)

Z
(1.2)

with β = 1
kBT

, kB = 1.38 × 10−23J/K the Boltzmann constant and Z is

the partition function and it is used for the normalization. The integral

is computed in the phase space coordinates, which in our case will be the

positions x and the velocities v, equivalent to the momenta p = mv, since in
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the numerical calculations the mass will be equal to 1.

If we want to compute the expectation value of an observable A according to

the distribution of the canonical ensemble we can use the following definition

〈A〉 =
∫
A(x, v)f(x, v)dxdv =

∫
A(x, v)e−βH(x,v)dxdv

Z
(1.3)

Consequently all the observables of this system (such as the energy, the

average position of the particles...) will be computed following the formula

(1.3).

Figure 1.1: A one-dimensional harmonic oscillator in the phase space. The

different levels represent different energies of the system.

1.3 Non Equilibrium Conditions

In non equilibrium conditions, two reservoirs at different temperature are

usually situated at the edges of the chain: this causes a temperature gradient

along a chain which is translated in a heat flux going from the hotter reservoir

to the colder one through the chain. In the following sections we are going to
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illustrate different methods, analytical and/or numerical, used to study this

system.

1.3.1 Molecular Dynamics

One of the most widespread methods used to study numerically non equi-

librium problems is molecular dynamics which is is a computer simulation

method for studying the physical movements of atoms and molecules.

The aim of this procedure is to solve the Newton’s equations of motion that

describe the system usually to get the trajectories of the particles. MD is

actually meant to perform in the microcanonical ensemble but various algo-

rithm have been developed that that allow us to investigate systems that are

described by the canonical ensemble.

One of the most important of these algorithms is the Nosé-Hoover algorithm

and it is used for systems in contact with a heat bath [10,11].

This extended system method was originally introduced by Nosé and subse-

quently developed by Hoover [12]. Usually the equations of motion concern

just the system, namely the chain: the idea is to consider the heat bath as

an integral part of the system by addition of an artificial variable s̃ in the

equation of motion, associated with a mass Q > 0 and a velocity ˜̇s.

The Lagrangian for the extended system is [10]

L =
∑
i

mi

2
s̃2 ˜̇x

2

i − U(x̃) +
1

2
Q˜̇s

2

i − gkBT0 ln s̃ (1.4)

where the first two terms are the kinetic and the potential energy, the third

term is the kinetic energy of s̃ and the last is its potential (which ensure that

the algorithm is canonical) and g = Ndf .

The corresponding equations of motion are

˜̈xi =
F̃i

mis̃2
− 2˜̇s˜̇xi

s̃
(1.5)
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˜̈s =
1

Qs̃

(∑
i

mis̃
2 ˜̇x

2

i − gkBT0

)
(1.6)

These equations sample a microcanonical ensemble in the extended system

(x̃, p̃, s̃), that is because in the microcanonical ensemble the energy is con-

served; this means that while the chain alone cannot be considered as a

microcanonical ensemble, the chain and the reservoirs together can, since

the energy is actually conserved in this whole new system.

However, the energy of the chain is not constant: accompanying the fluctua-

tions of s̃ heat transfers occur between the system and the heat bath, which

regulate the system temperature. These equations of motion sample a canon-

ical ensemble in the real system. The basic Nose-Hoover algorithm is used

to study chains in thermodynamic equilibrium but with some modifications

can be easily extended to non equilibrium systems [12].

1.3.2 Stochastic Kernel

We have seen in the previous section that it is possible to solve numerically

the equations of motion concerning the chain of oscillators to extrapolate

some properties of the system. What can we say about the analytical solu-

tions?

It is important to underline that a complete analytical theory on the har-

monic oscillator chain in non equilibrium conditions already exists thanks to

the work of Rieder, Lebowitz and Lieb in [13], where the method of stochastic

kernel is used [14].

The aim of this method is to get a generalized Liouville equation, that is usu-

ally used to describe the evolution of the phase space ensemble density, when

the system is in non equilibrium conditions. The interaction of the chain

with the reservoirs is considered an impulsive interaction and the Langevin
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equation is written as

∂µ(x, t)

∂t
+ (µ,H)x =

∫
x′

[K(x, x′)µ(x′)−K(x′, x)µ(x)]dx′ (1.7)

where K(x′, x) is the transition probability density in the phase space of the

system: it tells us the probability that the point of the system in the location

x will be thrown into the volume element dx′ by one of these impulsive

interactions.

Knowing the Hamiltonian of the system is given by

H = T + V =
1

2

2N∑
i=N+1

x2
i +

1

2

N∑
i,j=1

Φijxixj (1.8)

where now the potential Φijxixj is harmonic, then the generalized Liouville

equation can be written as

∂µ(x, t)

∂t
=

2N∑
i=1

∂

∂xi
ξiµ+

1

2

2N∑
i,j=1

∂2

∂xi∂xj
dijµ (1.9)

with

ξi =
2N∑
j=1

aijxj (1.10)

and

a =

 0 −I

Φ R

 and d =

 0 0

0 ε

 (1.11)

with Rij = λαδαiδij, λα = ραAα(8mαkTα/M
2
α)(1/2), Aα the collision cross

section of the α-th piston and εij = 2kTiRij. Since we are interested in the

stationary solutions we put in (1.9) ∂µ/∂t = 0 and we obtain

µs(x) = (2π)−NDet[b−
1
2 ]exp

−1

2

2N∑
i,j=1

b−1
ij xixj

 (1.12)

where b is the covariance matrix written as
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b =

 x z

z† y

 (1.13)

with

xij = 〈qiqj〉 and yij = 〈pipj〉 and zij = 〈qipj〉 (1.14)

where qi is the displacement from the equilibrium position of the i-th particle

and pi its momentum.

Hence if know the values of the matrix we can get the kinetic temperature

and the flux of the system.

To have the explicit solutions for the matrix b one has to solve the following

matrix equations

Z = −Z† (1.15)

Y = XG + ZR (1.16)

2E−YR−RY = ν[GZ− ZG] (1.17)

and then, by using the following relations

kT (j, ν;N) = 〈p2
j〉 = 〈xi∂H/∂xi〉 (1.18)

ji−1,i = ω2〈qi−1pi〉 = ω2Z12 ≡ J (1.19)

we can compute the kinetic temperature T and the flux J which is the same

for all particles.

It is important to stress that the concept of temperature is based on the

distribution of the canonical ensemble average with respect to the whole sys-

tem. This ensemble is defined only in equilibrium conditions, so in this case

the temperature can be defined on the distribution of partial energy: in this

case we talk about local or kinetic temperature, to distinguish it from the

equilibrium case.
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1.3.3 Langevin Equations

Another method commonly used to study oscillator chains is to solve the

Langevin equations. In this way it is possible to obtain not only numerical

but also analytical results in the limit of N → ∞ [15]. Also, analytically

exact solutions are possible in the thermodynamic limit for the quantum

version of oscillator chain [16, 17].

The Langevin equation is a stochastic differential equation that describes

the time evolution of a subset of the degrees of freedom. The original equa-

tion was built to describe Brownian motion, given by the collision with the

molecules of the fluid with the particle submerged in that very fluid

m
d2x

dt2
= −λdx

dt
+ η(t) (1.20)

where x and m are the position and the mass of the particle, λ represents the

viscous forces and η(t) is the noise term describing the effects of the collisions

with the molecules of the fluid.

It is actually possible to derive a general Langevin equation from classical

mechanics, that is widely used in non equilibrium statistical mechanics: the

one in (1.20) is a special case of the general one. In the specific case of

oscillator chains in contact at the edges with two reservoirs and with fixed

boundary conditions, one has first to consider the Hamiltonian of the system

[18]

H(x, p) =
N∑
i=1

[
p2
i

2mi

+ U(xi)

]
+

N∑
i=1

[V (xi+i − xi)] (1.21)

with V the nearest-neighbour interaction potential and U an external po-

tential (which in our work is not considered). The second step is to add

to the equations of motion that derive from the Hamiltonian in (1.21) some

additional forces, usually one dissipative and one stochastic term (which is

usually a Gaussian white noise), to take into account the interaction of the
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edges of the chain with the heat baths.

The equations of motion are

ṗ1 = f1 −
γL
m1

p1 + ηL(t) (1.22)

ṗi = fi for i = 2...N − 1 (1.23)

ṗN = fN −
γR
mN

pN + ηR(t) (1.24)

with fi = − ∂H
∂xi

, ηN,L the noise terms and γN,L the dissipation coefficients.

The solutions of these equations are used to evaluate quantities like the

steady-state current and the temperature profile as in the previous section.

We are not using this method for various reasons: first, as we have just stated,

the Langevin equations are mainly used for the computation of observables,

like the current, which are not studied in our work. Secondly, analytical

solutions exist exclusively in the thermodynamic limit: we are looking for

exact analytical solutions with no approximations.

However we note this method because it is one of the most widespread

method used to deal with oscillator chains.

1.4 Our Work

The work of this thesis is focused on the thermodynamic properties of mi-

croscopic systems in low dimensions which, as we have explained, are char-

acterized by peculiar features.

In particular we will try to understand how the density and the energy of the

particles in a chain change due to the presence of non equilibrium conditions.

As we have just illustrated, this kind of system has been studied countless

number of times: here we choose a different approach, starting from an idea

given in [19] and we deal with the problem in a different way.
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More precisely, instead of dealing with the dynamics of the chain and its in-

teraction with the reservoirs, we focus on the heat flux that travels through

the chain and that will represent our non equilibrium condition.

This heat flux is taken into account by adding a distortion to the Hamilto-

nian that describes the oscillator chain.

Even if we share the starting point, we take another path respect to the work

in [19], that concerns information theory [20].

We follow instead the steps in [21]: using the distortion of the Hamiltonian

as the non equilibrium condition, a harmonic chain with only one fixed edge

and where the mass is concentrated on the last particle is studied from three

different points of view: analitically, numerically and experimentally. In all

the three cases, an amount of energy is detected and it is assumed to be

caused by the non equilibrium conditions.

We will build a similar, but not identical, model: in our case a chain of os-

cillators with fixed edges and equal masses for all particles is used. We try

to check if with this new model the energy distortion is actually observed

first by trying to get some exact analytical solutions (those in [21] are just

obtained with some approximations) and afterwards with some numerical

calculations. Here, also the density distortion of particles is taken into ac-

count and we check this result by comparing it with the ones obtained in [22]

through molecular dynamics.

We are going to consider two different potential energies: the harmonic and

the FPU potential, on which we are going to give an overview in the following

section.
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1.4.1 FPU Potential

The Fermi-Pasta-Ulam potential bears the name of three scientists (Enrico

Fermi, John R. Pasta and Stanislaw M. Ulam) that in the 50’s decided to test

one of the first computers (MANIAC) by solving a theoretical physics prob-

lem [23]. It is not commonly known the computer simulation was actually

conducted by Mary Tsingou, an American scientist who was working in the

MANIAC group as a programmer, hence there were four scientists involved

[24].

This was one of the first numerical simulation ever run and that opened the

new branch of numerical experiments : in fact Fermi had the brilliant idea

that computers could be used to study physical problems, not only to per-

form mere calculation [25].

The aim of their work was to calculate numerically how a crystal reached

thermal equilibrium: they considered a chain of particles of unitary mass,

linked by a quadratic interaction potential plus a weak nonlinear term. The

Hamiltonian of the system was [25]

H =
N∑
i=1

1

2
p2
i +

N−1∑
i=1

[
1

2
(qi+1 − qi)2 +

α

3
(qi+1 − qi)3

]
(1.25)

where qi = xi − x0i is the displacement from equilibrium of the i-th particle

and pi the momentum.

In normal modes the Hamiltonian is expressed as

H =
1

2

N∑
k=1

ξ̇2
k + ω2

kξ
2
k +

α

3

N∑
k,l,m=01

cklmξkξlξmωkωlωm

 (1.26)

with ξi the i-th normal mode (for the whole procedure on normal modes see

Appendix A).

What the three scientists thought was that if the energy was concentrated in

the first normal mode at the beginning, then after a suitable amount of time
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Figure 1.2: Recurrence in FPU model: it is shown how the energy Ek =

1
2

(
ξ̇2
k + ω2

kξ
2
k

)
of the first four modes change during time.

it would spread in all the other modes and equipartition would be reached.

They were so sure about this result that the simulation was actually run just

as a check (as they believed they already knew the behavior of the system).

Ironically, what they discovered only by accident was that after remaining

in a steady state for a while, the energy was distributed again through the

same mode as in their initial conditions. Calculations done years later on

more powerful computers showed the same phenomenon.

The explanation of this strange behavior was found ten years later when

Zabusky and Kruskal [26] considered the equations of motion of the Hamil-

tonian in (1.25)

q̈i = (qi+1 + qi−1 − 2qi) + α[(qi+1 − qi)− (qiqi−1)2] (1.27)

and where the concept of solitons was introduced.

It can be actually shown that solitons with sinusoidal initial conditions in a

finite system with periodic boundary conditions can go back to their initial
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conditions.

Here we are not going to discuss this explanation further since we are inter-

ested in the shape of the FPU potential: in fact even now models with FPU

potential are widely used to describe a wide range of physical systems [27].

In our work we are going to consider this potential as described in [31], where

it takes the form

V (q) =
1

2
(q − a)2 +

α

3
(q − a)3 +

β

4
(q − a)4 (1.28)

with q the displacement from equilibrium, a the equilibrium length between 2

particles and α and β the coupling constants. Usually a subversion of (1.28)

is generally used where only the cubic or the quartic term is considered: they

are called respectively the α and β-FPU model.

We are considering the β-FPU model as in [22] and we are comparing the

results. In [22] molecular dynamics is used, and we want to check if our

model, even using a complete different procedure, gives the same results and

hence is consistent for a chain oscillators with this kind of potential. In an

affirmative case we will try to find the analytical solutions of some basic

observables of the model, which up to now do not exist.

1.5 A Brief Explanation

We are going to explain briefly what the aim of this work is and why we are

studing the model with both harmonic and anharmonic potentials. Begin-

ning with the hamonic one, we know that the solutions for this model already

exist not only numerically but also analytically.

We are starting with it to check if our model is consistent: if our results agree

with the ones already known in literature then we can have a simpler way
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to deal with the harmonic chain (since our calculations are easier than the

ones in [13]) and, more important, we can extend our model to anharmonic

chains by using the FPU potential where exact analytical solutions are still

unknown.

Our work is organized as follow: first, we try to build the model with the

Hamiltonian distortion given by the heat flux; then we compute some basic

observables both analytically and numerically to check if the model is con-

sistent and in agreement with the known results for the harmonic potential.

In a positive case we then study the same observables with the FPU poten-

tial, also here from both the analytical and numerical point of view, and we

try to understand how energy and density of the particles change given the

presence of the flux.

A further step to undertake if the model is proved to be successful is to under-

stand if a fluctuation theorem can be applied also in this case. In Appendix

C we have illustrated all the fluctuation theorems from the Onsager-Machlup

relation to the newest ones from Evans and Searles and Gallavotti and Cohen

[28, 29]. This treatment has been done from the analytical point of view and,

since it involves ensemble, it is a logical consequence to understand if also

with other model which use a modified version of an ensemble, it is possible

to extract some fluctuation relations.
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PART 1: HARMONIC POTENTIAL

23



24 CHAPTER 1. INTRODUCTION



Chapter 2

Theoretical Model

2.1 Basic Idea

As illustrated in the previous chapter, the first step is to build an alternative

model that describes a chain of harmonic oscillators in non equilibrium con-

ditions: here we take into account not only the system but also the reservoirs

at the edges of the chain.

We can now go deeper in the model and explain the idea on which it is

based: instead of considering the dynamics of the system and its interaction

with the two reservoirs (as in molecular dynamics or in the Langevin equa-

tions), we handle the problem from the Gibb’s ensemble point of view [19].

The non equilibrium condition is seen as a distortion of the Hamiltonian as

in [21]

H → H + γkBTJ (2.1)

where J and T are the ensemble average flux and temperature of the system

and γ a Lagrangian multiplier, which means that the non equilibrium con-

ditions are not described by the interaction with the reservoirs, but by the

25
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presence of the heat flux which is generated by this interaction. Hence we

focus on the consequence of the non equilibrium condition instead that on

the condition (reservoirs) itself.

We have stated in Chapter 1 that in equilibrium a chain of oscillators in

contact with a reservoir is described by a canonical ensemble: here, because

we are out of equilibrium, we follow the idea in [19] and [21] and we consider

a modified ensemble with the Hamiltonian and its distortion.

This means that we set

f(x, v) =
e−βH(x,v)−γJ(x,v)

K (2.2)

as the new probability distribution of this ’ensemble’ that takes into account

the chain and the reservoirs (through the flux) with

K =
∫
e−βH(x,v)−γJ(x,v)dxdv (2.3)

the new partition function (from now on we are going to drop the quotations

on the term ensemble and all the other ones correlated with it since we have

fully explained what we mean with these definitions).

In this way, we can use the definition in (1.3) and define the ensemble average

of an observables A of the system in the new ensemble as

〈A〉 =
∫
A(x, v)f(x, v)dxdv =

∫
A(x, v)e−βH(x,v)−γJ(x,v)dxdv

K (2.4)

This formula will be the starting point of all the analytical, and later numer-

ical, calculations.
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2.2 Normal Coordinates

2.2.1 Definition of the Hamiltonian

Since in [19] and [21] the Hamiltonian is defined in normal modes we follow

the same path and we consider a chain of N particles with the same mass

and elastic constant and with fixed edges.

k k

m m
...

Figure 2.1: Chain of harmonic oscillators with the same mass and elastic

constants for all the particles

In this first part, as explained in the introduction, we will deal with a

harmonic potential, therefore the Hamiltonian is given by

H = T (vi) + V (xi) =
1

2

N∑
i=0

[
mv2

i + k(xi+1 − xi)2
]

(2.5)

with xi and vi the Cartesian coordinates and velocities, and with the following

boundary conditions: x0 = 0, xN+1 = x3 = L (the length of the chain),

v0 = v3 = L̇ = 0.

If we translate it in normal modes we get (see Appendix A for the whole

calculation, where the procedure in [30] has been followed)

H =
1

2

N∑
i=1

[
ω2
i x̃

2
i + ṽ2

i

]
(2.6)



28 CHAPTER 2. THEORETICAL MODEL

where x̃i and ṽi are normal coordinates, with x̃i = cie
−iωit and ṽi = ˙̃xi and

where ωi is the frequency associated with the i-th mode.

2.2.2 Definition of the Current

Since for the definition of the Hamiltonian we have used the one in [21], we

do the same for the current, hence the global flux is given by

J = − 1

2N

1,N∑
i 6=k

jik(x̃iṽk − x̃kṽi) = − 1

N

1,N∑
i 6=k

jik(x̃iṽk) (2.7)

where N is the number of particles, jik is the coupling constant between

the modes i and k and the last equality is obtained through the invariance

under the transformation x̃iṽk → −x̃kṽi because 〈x̃iṽk〉 = 〈x̃kṽi〉 [21]. This

definition of the flux, which is quite widespread in the literature, we have

made is not going to work for this model: this will become clear when we will

deal with the computation of the observables of the system in the following

paragraph.

2.2.3 Calculation of 〈x2 − x1〉

The natural step to undertake now is to check the consistency of the model:

this is done by computing some basic observables of the system.

For the analytical calculation we are going to use a chain of 2 harmonic

oscillators: we start with the quantity 〈x2−x1〉, the ensemble average of the

distance between the 2 particles, and we try to compute it analytically with

the use of the formula (2.4).

For a 2-particle system the Hamiltonian and the global flux are defined as

H =
1

2

2∑
i=1

[
ω2
i x̃

2
i + ṽ2

i

]
=
[
ω2

1x̃
2
1 + ω2

2x̃
2
2 + ṽ2

1 + ṽ2
2

]
(2.8)
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and

J = − 1

N

1,2∑
i 6=k

jik(x̃iṽk) = −1

2
[j12x̃1ṽ2 + j21x̃2ṽ1] (2.9)

The quantity we are going to compute is

〈x2 − x1〉 =

∫
(x2 − x1)e−βH(x̃,ṽ)−γJ(x̃,ṽ)dx̃dṽ∫

e−βH(x̃,ṽ)−γJ(x̃,ṽ)dx̃dṽ
(2.10)

with x̃ = (x̃1, x̃2) and ṽ = (ṽ1, ṽ2) and, using (2.8) and (2.9), we can rewrite

(2.10) as

〈x2−x1〉 =

∫
(x2 − x1)e−

β
2

[(ω2
1 x̃

2
1+ṽ2

1)+(ω2
2 x̃

2
2+ṽ2

2)]+ γ
2

[j12(x̃1ṽ2)+j21(x̃2ṽ1)]dx̃dṽ∫
e−

β
2

[(ω2
1 x̃

2
1+ṽ2

1)+(ω2
2 x̃

2
2+ṽ2

2)]+ γ
2

[j12(x̃1ṽ2)+j21(x̃2ṽ1)]dx̃dṽ
(2.11)

It is really important to underline that while the quantity 〈x2 − x1〉, and

consequently (x2−x1) in the integrand, is expressed in Cartesian coordinates,

all the other variables are expressed in normal coordinates (we can see in the

notation the presence of the tilde to specify this difference). Therefore we

have to express also x1 and x2 in normal coordinates

x1 = x01 + η1 (2.12)

x2 = x02 + η2 (2.13)

where x01 and x02 are respectively the equilibrium position of particle 1 and

2, x02 − x01 = a with a the equilibrium position between the two particles

and η1 and η2 the displacement from the equilibrium position (see [30] for

reference). Following the procedure illustrated in Appendix A, we can use

the relations

η1 = c1
1√
2m

e−iω1t + c2
1√
2m

e−iω2t (2.14)

η2 = c1
1√
2m

e−iω1t − c2
1√
2m

e−iω2t (2.15)



30 CHAPTER 2. THEORETICAL MODEL

we obtain

x2 − x1 = x02 + c1
1√
2m

e−iω1t − c2
1√
2m

e−iω2t

− x01 − c1
1√
2m

e−iω1t − c2
1√
2m

e−iω2t

= a− 2c2√
2m

e−iω2t = a−
√

2

m
x̃2 (2.16)

The integral in (2.11) becomes

〈x2 − x1〉 =

∫
(a−

√
2
m
x̃2)e−

β
2

[(ω2
1 x̃

2
1+ṽ2

1)+(ω2
2 x̃

2
2+ṽ2

2)]+ γ
2

[j12(x̃1ṽ2)+j21(x̃2ṽ1)]dx̃dṽ∫
e−

β
2

[(ω2
1 x̃

2
1+ṽ2

1)+(ω2
2 x̃

2
2+ṽ2

2)]+ γ
2

[j12(x̃1ṽ2)+j21(x̃2ṽ1)]dx̃dṽ
(2.17)

The solution of (2.11) can be obtained without making any explicit calcu-

lation. We start with the numerator and we consider the first term in the

brackets, whose solution is straightforward∫
ae−

β
2

[(ω2
1 x̃

2
1+ṽ2

1)+(ω2
2 x̃

2
2+ṽ2

2)]+ γ
2

[j12(x̃1ṽ2)+j21(x̃2ṽ1)]dx̃dṽ

= a
∫
e−

β
2

[(ω2
1 x̃

2
1+ṽ2

1)+(ω2
2 x̃

2
2+ṽ2

2)]+ γ
2

[j12(x̃1ṽ2)+j21(x̃2ṽ1)]dx̃dṽ

= aK (2.18)

with K partition function.

We can go on with the second term in the brackets∫
−
√

2

m
x̃2e
−β

2
[(ω2

1 x̃
2
1+ṽ2

1)+(ω2
2 x̃

2
2+ṽ2

2)]+ γ
2

[j12(x̃1ṽ2)+j21(x̃2ṽ1)]dx̃dṽ

−
√

2

m

∫
x̃2e
−β

2
[(ω2

1 x̃
2
1+ṽ2

1)+(ω2
2 x̃

2
2+ṽ2

2)]+ γ
2

[j12(x̃1ṽ2)+j21(x̃2ṽ1)]dx̃dṽ (2.19)

also here we do not need any calculation: the result in (2.19) is zero, because

we are integrating a function, x̃2 times all the quadratic exponential terms,

that is odd in a symmetric domain (from −∞ to +∞).

The solution of (2.10) is then

〈x2 − x1〉 =
aK
K = a (2.20)
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which, as we have said before, corresponds to the equilibrium position be-

tween particles 1 and 2.

In conclusion there is no trace of the distortion in the computed observ-

able, no matter the number of particles: this is not only the opposite of what

we would have expected from a theoretical point of view (since there is a

distortion and we should be able to see its effects) but also from what we

know from the experiments [21].

Anyway, this is not in contrast with the work in [19] and [21] for two rea-

sons: first of all, as we have stressed in the introduction, the properties of

the chain are strongly dependent on the boundary conditions and ours are

different from the ones in [19] and [21]. Secondly, in the two papers only

quadratic observables are taken into account while we are also interested in

the linear ones and the problem we have just illustrated arises with these last

kind of observables.

To solve this impasse two paths are feasible: either we change the defini-

tion of the flux or we consider a new whole ensemble (to which a distortion

will be added later). We choose to first path because in the previous work,

starting with a modified canonical ensemble has given primising results, so

it seems quite reasonable to persist on this route.

Also, the microscopical definition of the flux is not univocal and the question

of whether or not it is possible to find one that is suitable for all physical

systems is still an open problem.



32 CHAPTER 2. THEORETICAL MODEL

2.3 Cartesian Coordinates and Velocities

2.3.1 Definition of the Hamiltonian

Since we have decided to use a different definition of the current, we express

now the Hamiltonian in Cartesian coordinates: the only reason to use the

normal ones was to compare our results more easily with the ones in [19]

and [21], but now this direct comparison is not possible anymore. Hence,

we have decided to use the Cartesian coordinates so that there is no need to

pass from one coordinate to the other, simplifying the calculation.

In Cartesian coordinates, the Hamiltonian for a 2-particle system is writ-

ten as

H =
1

2

2∑
i=0

[
mv2

i + k(xi+1 − xi)2
]

=
[
m

2
v2

1 +
m

2
v2

2 + kx2
1 + kx2

2 − kx1x2 +
1

2
kL2

]
(2.21)

with the following boundary conditions x0 = 0, x3 = L (L is the length of

the chain) and v0 = v3 = L̇ = 0 and with the same properties as before:

fixed edges, same value of the mass and the elastic constant for all particles.

2.3.2 Definition of the Current

We have ruled out the definitions for the flux in [19] and [21], because here

the fluxes are both described by using only quadratic variables and we would

have the problem observed in the previous section for linear observables.

Since we have written the Hamiltonian in Cartesian coordinates, we have to

do the same with the flux.

We have followed the formula used in [31] and [18] where an extensive treate-

ment of chain of oscillators is illustrated.
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In particular we focus on the definition for the flux in [31] in which a chain

of oscillators is described by

H =
N∑
i

[
p2
i

2mi

+ U(xi) + V (xi+1 − xi)
]

(2.22)

Here also the mass and the coupling constant are the same for all particles

(which is suitable with our case), V (xi+1 − xi) is the interaction potential

between two particles, which is not explicitly specified here and, along with

our case, will be a harmonic or a FPU potential, and U(xi) is the on site

potential of the particle i.

In [31], a continuity equation is used to get the microscopic definition of the

flux: we will do the same, except that in our case U(xi) = 0.

In a one-dimensional fluid or in solid, the heat flux is stated to coincide with

the energy flux, so we can write the continuity equation as

dh(x, t)

dt
+
∂j(x, t)

∂x
= 0 (2.23)

with j(x, t) the energy current density and h(x, t) the energy density, which

can be written as the sum of the contributions of the particles, each one

located in the instantaneous position x

h =
∑
i

hiδ(x− xi) (2.24)

and with hi, the microscopic energy density, defined as

hi =
p2
i

2mi

+
1

2
[V (xi+1 − xi) + V (xi − xi−1)] (2.25)

Also the flux is defined as the sum of local contributions

j(x, t) =
∑
i

jiδ(x− xi) (2.26)

We are looking for the local definition of the flux ji. If we time-derive hi we

obtain

dhi
dt

= miẋiẍi−
1

2
[(xi+1 − xi)F (xi+1 − xi) + (xi − xi−1)F (xi − xi−1)] (2.27)
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since the equations of motion are

miẍi = −F (xi+1 − xi) + F (xi − xi−1) (2.28)

we can substitute (2.28) in (2.27), which brings to

dhi
dt

= −1

2
[(ẋi+1 + ẋi)F (xi+1 − xi)− (ẋi + ẋi−1)F (xi − xi−1)] (2.29)

that we can write as
dhi
dt

+
ji − ji−1

a
= 0 (2.30)

with ji the microscopic flux defined as

ji = −1

2
a(ẋi+1 + ẋi)F (xi+1 − xi) (2.31)

with F (xi+1− xi) = − ∂V
∂xi

and a the equilibrium distance between two parti-

cles.

This definition of the flux raises no problem for this model: all the ana-

lytical computations done to show this statement will be illustrated in the

next section.



Chapter 3

Analytical Results

3.1 Introduction

In the previous chapter we have found a definition of the current that can

be suitable for our model, hence the aim is now to check if our description

of the system is consistent with this definition.

For this reason we first try to compute some basic properties of the chain,

to understand if it is possible to obtain exact analytical solutions for the

observables that characterize the system.

As before, we start by considering a chain of N = 2 harmonic oscillators: if

the problem is analytically solved we can extend the calculation to a larger

number of particles.

In the chain, masses and elastic couplings are equal for all particles and edges

are fixed. In equilibrium conditions the Hamiltonian is given by

H = T (vi) + V (xi) =
1

2

2∑
i=0

[
mv2

i + k(xi+1 − xi)2
]

(3.1)

with xi and vi the Cartesian coordinates and velocities, and with the following

boundary conditions: x0 = 0, xN+1 = x3 = L (the length of the chain),

35
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v0 = v3 = L̇ = 0.

For N = 2 particles the Hamiltonian is explicitly defined as in (2.21)

H =

[
k

(
x2

1 + x2
2 − x1x2 +

L2

2

)
+
m

2

(
v2

1 + v2
2

)]
(3.2)

As explained before, non equilibrium conditions are now given by a correction

to the Hamiltonian: the global flux, for the 2-particle case, is the sum of the

following microscopic fluxes (see (2.26))

J =
2∑
i=0

= j0 + j1 + j2 (3.3)

with, following the definition in (2.31) and with F (xi+1−xi) = −k(xi+1−xi),

j0 = −ka
2

(x1v1)

j1 = −ka
2

(v2x2 − x1v2 + x2v1 − x1v1)

j2 = −ka
2

(Lv2 − x2v2)

The global flux in (3.3) explicitly becomes

J = −ka
2

(v1x2 − x1v2 + Lv2) (3.4)

3.2 Calculation of 〈x2 − x1〉

We start by computing the ensemble average of the distance between the two

particles, which is defined as

〈x2 − x1〉 =

∫
(x2 − x1)e−βH(x,v)−γJ(x,v)dxdv

K (3.5)
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with H and J given explicitly by (3.2) and (3.4), x = (x1, x2) and v = (v1, v2)

the phase space coordinates and K the partition function in the modified

ensemble, so that the whole integral is

〈x2 − x1〉 =

∫
(x2 − x1)e

−βk
(
x2

1+x2
2−x1x2+L2

2

)
−βm

2 (ẋ2
1+ẋ2

2)+ γka
2

(ẋ1x2−x1ẋ2+Lẋ2)
dxdv∫

e
−βk

(
x2

1+x2
2−x1x2+L2

2

)
−βm

2 (ẋ2
1+ẋ2

2)+ γka
2

(ẋ1x2−x1ẋ2+Lẋ2)
dxdv

(3.6)

We illustrate the full procedure for the computation of the integral in (3.6)

for completeness: it will be the same for all the following integrals.

We start by computing the partition function in the denominator: we first in-

tegrate the variable v1 and v2 so we consider all the terms in the denominator

in (3.6) that depends on this variable

∫
e−

βm
2
v2
1+ γka

2
v1x2dv1 =

√
2π√
βm

e
a2γ2k2

8βm
x2

2 (3.7)

∫
e−

βm
2
v2
2−

γka
2
x1v2+ γka

2
Lv2dv2 =

√
2π√
βm

e
a2γ2k2

8βm
L2+a2γ2k2

8βm
x2

1−
a2γ2k2

4βm
Lx1 (3.8)

We can go on with this procedure and integrate the remaining variables x1

and x2. Which means∫
e−βkx

2
1+βkx1x2+a2γ2k2

8βm
x2

1−
a2γ2k2

4βm
Lx1dx1 = (3.9)

√
8πβm

−8β2km+ a2k2γ2
e
− k4a4γ4L2

k2a2γ2−8β2mk
− 2β3mk2x2

2
k2a2γ2−8β2mk

+
βk3a2γ2Lx2

k2a2γ2−8β2mk (3.10)

and for the last variable x2∫
e
−βkx2

2+βkLx2+
k2a2γ2x2

2
8βm

− 2β3mk2x2
2

k2a2γ2−8β2mk
=+ βk3a2γ2L

k2a2γ2−8β2mkdx2 = (3.11)
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√
π
√

8βm(8β2mk − k2a2γ2)
√

48β4m2k2 − 16β2mk3a2γ2 + k4a4γ4
e
− 16β2m2(−8β3mk2L+2βk3a2γ2)2

(48β4m2k2−16β2mk3a2γ2+k4a4γ4)2 (3.12)

In conclusion the result for the partition function is

K =
16π3

√
48β4m2k2 − 16β2mk3a2γ2 + k4a4γ4

× (3.13)

e
−βkL

2

2
+ k2a2γ2L2

8βm
− k4a4γ4L2

k2a2γ2−8β2mk
− 16β2m2(−8β3mk2L+2βk3a2γ2)2

(48β4m2k2−16β2mk3a2γ2+k4a4γ4)2 (3.14)

Following the same procedure we can integrate also the numerator and con-

sidering the following integrals

∫
x1e
−βH(x,v)−γJ(x,v)dxdv and

∫
x2e
−βH(x,v)−γJ(x,v)dxdv (3.15)

and putting everything together, the final results are

〈x1〉 =
16β4m2k2L− 8β2mk3a2γ2L+ k4a4γ4L

48β4m2k2 − 16β2mk3a2γ2 + k4a4γ4
(3.16)

〈x2〉 =
32β4m2k2L− 8β2mk3a2γ2L

48β4m2k2 − 16β2mk3a2γ2 + k4a4γ4
(3.17)

which brings to

〈x2 − x1〉 =
16β4m2k2L− k4a4γ4L

48β4m2k2 − 16β2mk3a2γ2 + k4a4γ4
(3.18)

To obtain these results, the following constraints have to be observed



−βm < 0

−βk +
k2a2γ2

8βm
< 0

48β4k2m2 − 16β2mk3a2γ2 + k4a4γ4

8βm(k2a2γ2 − 8β2mk)
< 0
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The first inequality is always satified, because β and m are always posi-

tive. After some manipulations and decomposition of the numerator in the

third inequality the system becomes


8β2m > ka2γ2

(k2a2γ2 − 4β2mk)(k2a2γ2 − 12β2mk)

8βm(k2a2γ2 − 8β2mk)
< 0

and with some calculation in the second inequality

 8β2m > ka2γ2

4β2m > ka2γ2 ∨ 8β2m > ka2γ2 > 12β2m

which brings to the following solution for our system

4β2m > ka2γ2 (3.19)

We can get some qualitative considerations in (3.19) by putting a = 1, which

is a usual routine for oscillator chains, and by putting also k = m = 1:

this is done because we are dealing with systems where the mass and the

coupling constant have the same weight in the dynamics since our first aim

is to understand the relation between the Hamiltonian and its distortion.

In this way, the inequality becomes

4β2 > γ2 (3.20)

which in the end gives

2β > γ (3.21)

This means that the contribution of the current to the ensemble cannot

be preponderant with respec to the contribution of the energy of the chain
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in equilibrium.

It is also important to stress that this inequalities proved to be quite easy to

solve only because all the constants are positive by definition.

3.3 Calculation of 〈x2
1〉 and 〈x2

2〉

As a second step we calculate the second momentum of the variable x1 and

x2, whose results are

〈x2
1〉 = (256β8m4k4L2 + 1536β7m4k3 − 256β6m3k5a2γ2L2 − 704β5m3k4a2γ2

+96β4m2k6a4γ4L2 + 96β3m2k5a4γ4 − 16β2mk7a6γ6L2 − 4βmk6a6γ6

+k8a8γ8L2)/

(2304β8m4k4 − 1536β6m3k5a2γ2 + 352β4m2k6a4γ4 − 32β2mk7a6γ6 +

k8a8γ8) (3.22)

〈x2
2〉 = (1024β8m4k4L2 + 1536β7m4k3 − 512β6m3k5a2γ2L2 − 702β5m3k4a2γ2

+64β4m2k6a4γ4L2 + 96β3m2k5a4γ4 − 4βmk6a6γ6)/

(2304β8m4k4 − 1536β6m3k5a2γ2 + 352β4m2k6a4γ4 − 32β2mk7a6γ6

+k8a8γ8) (3.23)

where the calculations lead to the same constraints on the parameter space

as before.

We are actually more interested in the variance of this observables since

our first aim was to understand if the presence of a heat flux leads to an

energy distortion. The results are the following
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〈x2
1〉 − 〈x1〉2 = 〈x2

2〉 − 〈x2〉2 = (1536β7m4k3 − 704β5m3k4a2γ2

+96β3m2k5a4γ4 − 4βmk6a6γ6)/

(2304β8m4k4 − 1536β6m3k5a2γ2

+352β4m2k6a4γ4 − 32β2mk7a6γ6

+k8a8γ8) (3.24)

It is straightforward to notice that the variance is the same for the two

particles.

3.4 Calculation of 〈v2 − v1〉

After considering the spatial coordinates, we can now focus on the velocities

of the two particles

〈v1〉 = 〈v2〉 =
48β3mkaγL− 12βk2a3γ3L

144β4m2 − 48β2mka2γ2 + 3k2a4γ4
(3.25)

as expected this observable is the same for both particles.

For these results, we have the following constraints


−βm

2
+
ka2γ2

12β
< 0

48β4m2 − 16β2mka2γ2 + k2a4γ4

16β(ka2γ2 − 6β2m)
< 0

which, after some manipulations, leads to


6β2m > ka2γ2

(ka2γ2 − 4β2m)(ka2γ2 − 12β2m)

16β(ka2γ2 − 6β2m)
< 0



42 CHAPTER 3. ANALYTICAL RESULTS

After some calculation in the second inequality we have

 6β2m > ka2γ2

4β2m > ka2γ2 ∨ 6β2m > ka2γ2 > 12β2m

which brings to the following solution for our system

4β2m > a2γ2k (3.26)

the same as in (3.19).

3.5 Calculation of 〈v2
1〉 and 〈v2

2〉

The second momentum of v1 and v2 is

〈v2
1〉 = 〈v2

2〉 = (20736β7m3 + 2304β6m2k2a2γ2L2 − 10368β5m2ka2γ2

−1152β4mk3a4γ4L2 + 1584β3mk2a4γ4 + 144β2k4a6γ6L2

−72βk3a6γ6)/

(20736β8m4 − 13824β6m3ka2γ2 + 3168β4m2k2a4γ4

−288β2mk3a6γ6 + 9k4a8γ8) (3.27)

while the variance is given by

〈v2
1〉 − 〈v1〉2 = 〈v2

2〉 − 〈v2〉2 = (20736β7m3 − 10368β5m2ka2γ2

+1584β3mk2a4γ4 − 72βk3a6γ6)/

(20736β8m4k4 − 13824β6m3ka2γ2

+3168β4m2k2a4γ4 − 288β2mk3a6γ6

+9k4a8γ8) (3.28)
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Also here, the costraints we have to observe in the parameter space are

the same as before.

3.6 Conclusions

In conclusion we have just shown that the observable can be defined analyt-

ically for a 2-particle system and with the definition of Hamiltonian in (3.1)

and of the flux in (2.31): anyway this is possible only with some constraints

in the parameter space, which are the same for all the observables (3.19) and

reduce to (3.21) if the constants are all set to 1.

One can notice that, since we are focused on the correlation between H and

J , which means between β and γ that are the physical parameters of the

model representing the system and its distortion, this inequality can be seen

as an upper limit for γ, that cannot be higher than a certain value repre-

sented by β = 1/kBT with T the temperature of the chain in equilibrium.

Finally, it is important to underline that for γ = 0, we obtain the same value

as the ones in equilibrium condition (as we would have expected).
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Chapter 4

Numerical Results

4.1 Monte Carlo Simulation

After dealing with the analytical calculation and the theoretical model is

fixed, the following step is to investigate if and how the properties of the

system change for a large number of particles: to answer this question, a

Monte Carlo simulation is needed [32].

Our aim is to study the behavior of a N = 50 particle system through the

computation of the same observables of the previous chapter.

For the numerical computation a basic Monte Carlo formula for the resolution

of integrals is used [33, 34].

If one wants to compute the quantity

I =
∫ b

a
f(ξ)dξ (4.1)

without actually solving the integral, meaning without finding the primitive

of the integrand f(ξ), a simple formula can be used. In fact it is possible to

evaluate the function f(ξ) forN times, where each time ξ is a random number

from a uniform distribution in the interval [0, 1] which can be extended to

45
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the generic interval [a, b].

In this way the value of the integral is obtained through the formula

I =

N∑
i=1

f(ξi)

N (4.2)

that is, by getting the average of f(ξ) over N , the number of times the value

f(ξ) is estimated.

Of course it is possible with some manipulation to consider different kinds of

distributions instead of the uniform one and to extend the formula to multi-

ple dimensions by considering random vectors instead of random numbers.

For example, in statistical mechanics one usually has to deal with the com-

putation of the ensemble average of the observables.

For the canonical ensemble we have seen that (1.3)

〈A〉 =

∫
A(ξ)e−βH(ξ)dξ

Z
(4.3)

with ξ = (x, v) represents the spatial and momentum coordinates in the

phase space and Z is the partition function.

In this case, if we want to apply the same formula as in (4.2) we need to

evaluate the observable A(ξ) number of times N , where ξ is now a random

vector of dimension 2N , because our model is one-dimensional, given by the

distribution

ρ(ξ)EQ =
e−βH(ξ)

Z
(4.4)

which is obviously a Gaussian distribution.

In our model, because of the presence of the flux, the quantity in the expo-

nential has an additional term, and the ensemble average of the observable

is

〈A〉 =

∫
A(ξ)e−βH(ξ)−γJ(ξ)dξ

K (4.5)
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The only difference with respect to the equilibrium case is the distribution

for the randon vector ξ, which is now

ρ(ξ) =
e−βH(ξ)−γJ(ξ)

K (4.6)

with

K =
∫
e−βH(ξ)−γJ(ξ)dξ (4.7)

and that should be a multivariate Gaussian distribution in order to create

the N random vectors ξ. That means it should have the form

ρ(ξ)GAUSS =
1

(2π)k/2|Σ| 12
e−

1
2

(ξ−µ)TΣ−1(ξ−µ) (4.8)

with Σ the covariance matrix and µ the average of the distribution.

Which values should Σ and µ have to reproduce (4.6)?

To answer this question, we should solve the following equation

−1

2
(ξ − µ)TΣ−1(ξ − µ) = −βH(ξ)− γJ(ξ) (4.9)

We can make some manipulation on the left hand side of (4.9) which brings

to

−1

2
(ξ − µ)TΣ−1(ξ − µ) = −1

2

(
ξTΣ−1ξ − ξTΣ−1µ− µTΣ−1ξ + µTΣ−1µ

)
= −1

2

(
ξTΣ−1ξ − 2ξTΣ−1µ+ µTΣ−1µ

)
(4.10)

Now we can solve (4.9) by considering the linear and the quadratic terms

separately (the constant term will be ruled out by the normalization). We

put all the quadratic terms of the right hand side of (4.9) equal to first term
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in the parenthesis in (4.10) and the linear terms equal to the second one.

By solving these two equations we get the values of Σ and µ that reproduce

the probability distribution in (4.6) and we can get N times the random

vector ξ. By applying the formula in (4.2), we can then compute (4.5).

4.2 The Idea Behind Code

We now try to give a few insights on the code used to compute quantities such

as (4.5) using the Monte Carlo method explained in the previous section.

First of all we have to build the covariance matrix Σ and the average µ to

get the probability distribution f(ξ) of the random vectors ξ.

Our code runs in this way: we first construct a matrix with the quadratic

terms of −βH(ξ)−γJ(ξ) for a certain number of particles (in our case it will

be N = 50) and we get the matrix Σ−1.

Since we need to put the value of the covariance matrix Σ in the Monte Carlo

simulation, with the second code we get the inverse of Σ−1. Afterwards we

get the average µ by comparing the linear terms in (4.9). Finally, when we

have all the values we need for the probability distribution we can run the

last code by using Σ and µ and compute the observables of the system we

are studing.

The complete codes used to run the simulations are illustrated in Appendix

B.

4.3 2-Particle System

The first step has been to run our code for a N = 2 particle system, to check

if the results were the same both analytically and numerically. We have made
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different tests in which the values of the parameters have been changed to be

sure to have a strong correspondence between the analytical and numerical

results for a wide range of the parameter space.

As it is shown in the charts the agreement between the results is quite sat-

isfactory. In the first column there are the analytical results, while in the

second one the numerical data which have been cut off to the decimal digit

in which we have uncertainty due to statistical error.
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Observable Analytical Result Numerical Result ± Standard Deviation

〈x1〉 0.818181813 0.819 ± 1 · 10−3

〈x2〉 2.18181801 2.182 ± 1 · 10−3

〈x2
1〉 1.51790631 1.517 ± 2 · 10−3

〈x2
2〉 5.60881519 5.611 ± 4 · 10−3

〈v1〉 = 〈v2〉 1.09090912 1.090 ± 1 · 10−3

〈v2
1〉 = 〈v2

2〉 2.40220404 2.401 ± 3 · 10−3

Table 4.1: β = γ = m = k = a = 1

Observable Analytical Result Numerical Result ± Standard Deviation

〈x1〉 0.973614812 0.974 ± 1 · 10−3

〈x2〉 2.02638507 2.027 ± 1 · 10−3

〈x2
1〉 2.32630682 2.325 ± 2 · 10−3

〈x2
2〉 5.48461819 5.487 ± 4 · 10−3

〈v1〉 = 〈v2〉 0.316622674 0.317 ± 1 · 10−3

〈v2
1〉 = 〈v2

2〉 1.38390183 1.383 ± 2 · 10−3

Table 4.2: β = a = 1, m = 0.8 and γ = k = 0.5
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Observable Analytical Result Numerical Result ± Standard Deviation

〈x1〉 0.473684311 0.475 ± 2 · 10−3

〈x2〉 2.52631617 2.528 ± 2 · 10−3

〈x2
1〉 2.63666081 2.633 ± 4 · 10−3

〈x2
2〉 8.79455376 8.798 ± 9 · 10−3

〈v1〉 = 〈v2〉 2.52631593 2.527 ± 2 · 10−3

〈v2
1〉 = 〈v2

2〉 11.2945518 11.29 ± 1 · 10−2

Table 4.3: γ = a = 1, β = k = 0.8 and m = 0.5

4.4 50-Particle System

Since we know that with our model for a 2-particle system it is possible to

obtain analytical results that are in agreement with the ones from the Monte

Carlo simulations we can now consider a larger number of particles and run

our code for a 50-particle system. Here, as before, we are computing some

basic observable of our oscillator chain for different values of γ (hence for

different values of the distortion).

The aim of this part of the work is to understand, first, if our results are in

agreement with the ones already known for harmonic oscillator chains, and,

secondly, how the observables are affected by non equilibrium conditions and

if it is actually possible to see a distortion with respect to the equilibrium
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case.

One of the most important result of this section is the computation of

the kinetic energy 〈p2
i 〉. For system out of equilibrium we have the relation

〈p2
i 〉 = Ti defines the kinetic temperature Ti [13].

It is important to stress that we use the term kinetic temperature because

it is impossible in this condition to define the temperature as in the classic

mechanic statistical case, where it is based on the canonical distribution with

respect to the energy of the whole system (see [14] for a full explanation).

What we can observe in figure (4.1) is that the kinetic temperature has a

constant behavior (with the exception of the particles at the boundaries),

with a shift depending on the strength of the distortion, the same that was

observed in [13] (see Fig.(4.2)) and that was the most important result on

the paper.

We want to stress the fact that up to now the agreement between the two

results is only qualitative: in fact we are considering different values of the

distortion (which is not done in [13]), so we are just focused on the general

behavior of the observable.

The same results are obtained in [22] (see Fig.(4.3)), where the chain is also

harmonic, however they are obtained through molecular dynamics simula-

tions. In the paper, since the equations of motion are considered, the results

are obtained for different values of the intensity of the interaction between

the chain and the reservoirs: as in our case there is a shift for these different

values but the temperature profile is always constant. That means that our

model with the harmonic potential is in agreement, for this observable, with

both analytical and numerical solutions already known in literature.

Also another important quantity, the variance of 〈x〉, which is defined
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Figure 4.1: Ensemble Average of the Kinetic Energy of the i particle for

different values of γ

Figure 4.2: Kinetic Temperature of the j particle from [13] (reproduced with

the permission of Journal of Mathematical Physics)
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Figure 4.3: Temperature Profile of a 100-particle system in [22] for different

values of θ, which represents the strength of the interaction between the chain

and the reservoirs (reproduced with the permission of Phys. Rev. E )

as 〈x2〉 − 〈x〉2, has been taken into account to compare it with the results

obtained in [21].

It is commonly known that the variance of the position is connected to the en-

ergy: in fact the larger the amplitude of oscillations, the greater the required

energy. Also, thanks to the virial theorem, the kinetic energy is connected

in turn to the potential energy. Hence we can state that the variance is an

indicator of the potential energy of the system.

In Fig.(4.4) it is straightforward to notice that there is an increase of the vari-

ance proportional to the intensity of the distortion, represented by γ. Also,

the particles in the middle of the chain seem more affected by the increase

of the distortion with respect to the ones at the borders. Also in Fig.(4.5),

there is a difference between the equilibrium and non equilibrium conditions:

here, as we have said in Chapter 2, the Hamiltonian is expressed in normal



4.4. 50-PARTICLE SYSTEM 55

modes, but as in the Cartesian coordinates, the variance is connected also

to the energy. Therefore, what we can deduce from Fig. (4.4) is that non

equilibrium conditions cause an increase of the energy, as in [21].
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Figure 4.4: Variance of the Space Coordinates for different values of γ

The last observables we have analyzed are the ensemble average positions

of the particles in the chain and the ensemble average distance between each

other. We do not have comparison with other previous work we have stud-

ied since these kind of observables are not usually the most interesting for

people who study oscillator chains. In fact one usually focuses their atten-

tion on the flux or on the energy in the chain but, since we are interested in

the density distortion, we also consider these linear observables. In Fig.(4.6)

the ensemble average position of particles is shown: it says that the density

profile is practically constant for the harmonic case (Fig. 4.7), even if there

is a temperature difference at the ends of the chain. This agrees with the

formula in [22] and the theory of [13].
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Figure 4.5: Variance of the Normal Modes in [21], where the blue and red

lines represent respectively the equilibrium and non equilibrium situation

(reproduced with the permission of J. Stat. Mech.)

Moreover, the temperature profile has also been studied numerically. In

[22] the relation 〈p2
i 〉 = β1〈xi+1 − xi〉 + β2 has been found: in our case we

can see from (4.7) that the observable 〈xi+1 − xi〉 is the same for all values

of γ, while in Fig.(4.1) the quantity < v2
i > differs for the different values of

γ only by a constant. This means that for us the relation above is reduced

to 〈v2
i 〉 = 〈xi+1 − xi〉+ β2, because β1 is equal to 1.

In this case the parameter β2 describes how the system is deviating from an

ideal gas behavior: in fact we know that for ideal gas the following formula

holds

PV = nRT (4.11)

with P the pressure of the gas, V The volume, n the number of moles,

T the temperature and the constant R = 8.314 J/mol K. For the chain
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V = 1/〈xi+1 − xi〉 and P ∝ T ∼ 〈p2
i 〉 and putting n = 1, the formula in

(4.11) can be translated as

〈p2
i 〉 ∝ 〈xi+1 − xi〉 (4.12)

the differs from the one we use for the term β2.

As we can observe in Fig.(4.8), for γ = 0, β2 is equal to zero and the two

quantities coincide, except for the particles on the right edge.

For all the other cases represented in Fig.(4.9) 〈v2
i 〉 and 〈xi+1 − xi〉 differ by

a constant which depends on the values of γ. In particular in Fig.(4.10) we

can see the dependence of β2 on γ and it is straightforward to realize that it

is actually a quadratic dependence.
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Figure 4.8: Relation 〈v2
i 〉 = 〈xi+1 − xi〉 for γ = 0

4.5 Conclusions

In this chapter we have tried to extrapolate some basic properties of the

oscillator chain by running some numerical computations. We have first
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considered a 2-particle chain to be able to do a comparison with the analytical

results of the previous chapter.

Once the agreement of the results was confirmed, we have run a simulation

for a 50-particle system to understand the behavior of the observables that

characterize the chain in relation to the intensity of the distortion, which

means for different values of γ.

As we have explained in the introduction, chains of oscillators with harmonic

potential (harmonic oscillator chains) have been deeply and widely studied

in literature and exact analitycal solutions already exist.

The reason of this part of the work was in fact to check the agreement of

our results, both analytical and numerical, with the ones already known to

check the consistency of our model. If this was proved to be true than we

could focus on other kind of potential, like the FPU potential, that does not

have exact analytical results.
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The observables we have considered in this chapter are the variance of the

position, the kinetic temperature, the density of the chain and finally also

the temperature profile. We have seen than the system, described with our

model, shares indeed the same properties of the ones studied in [21,22,13]

and that the dependence on the non equilibrium conditions is qualitatively

the same.

Thanks to these promising results, in the second part of our work we can

focus our attention on an oscillator chain characterized by a FPU potential

to investigate if this model can be successful also in this case.
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PART 2: FPU POTENTIAL

63



64 CHAPTER 4. NUMERICAL RESULTS



Chapter 5

Analytical Results

5.1 Introduction

In this second part of the work we are studing the chain of oscillators with

a new potential: now in the Hamiltonian, instead of the harmonic one, we

consider the so-called α-Fermi-Pasta-Ulam potential written in the following

form

V (x) =
N∑
i=0

[
k

2
(xi+1 − xi)2 +

k3

3
(xi+1 − xi)3

]
(5.1)

with N the number of particles, k and k3 respectively the coupling constant

of the quadratic and cubic terms. As before, the first step is to understand

if exact analytical solutions are possible for some basic observables of the

system with this new potential. In this case it is actually more important to

investigate the existence of analytical solutions with respect to the previous

case since as we have explained in the introduction, they haven’t been found

up to now for this kind of potential.

We begin again by considering a 2-particle system whose Hamiltonian is now

H =
2∑
i=0

[
k

2
(xi+1 − xi)2 +

1

3
k3(xi+1 − xi)3 +

m

2
v2
i

]
(5.2)

65
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while the heat flux is the same as in (3.4), since the different potential does

not affect the definition of the current that was built under very general

conditions and is given by

J = −ka
2

(v1x2 − x1v2 + Lv2) (5.3)

5.2 Calculation of 〈x2 − x1〉

5.2.1 Infinite Space Domain

We start our computation again with the quantity 〈x2−x1〉. That means we

have to solve the following integral

〈x2 − x1〉 =

∫
(x2 − x1)e−βH(x,v)−γJ(x,v)dxdv

K (5.4)

with H is now given by (5.2), J by (5.3), Γ = (x, v) is the phase space

coordinates and K the new partition function. Explicitly the integral is

〈x2 − x1〉 =
∫

(x2 − x1)

× exp

[
−βk

(
x2

1 + x2
2 − x1x2 − Lx2 +

L2

2

)

+ βk3

(
x1x

2
2 − x2

1x2 − Lx2
2 + L2x2 −

L3

3

)

− βm

2

(
v2

1 + v2
2

)
+
γka

2
(v1x2 − x1v2 + Lv2)

]
dxdv/

∫
exp

[
−βk

(
x2

1 + x2
2 − x1x2 − Lx2 +

L2

2

)

+ βk3

(
x1x

2
2 − x2

1x2 − Lx2
2 + L2x2 −

L3

3

)

− βm

2

(
v2

1 + v2
2

)
+
γka

2
(v1x2 − x1v2 + Lv2)

]
dxdv (5.5)
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We first try to compute the partition function K, which means the integral

in the denominator of (5.5).

We start by integrating in the variable v1

∫
e−

βm
2
v2
1+ γka

2
x2v1dv1 =

√
2π

βm
e
a2γ2k2

8βm
x2

2 (5.6)

and then the variable v2

∫
e−

βm
2
x2

2−
γka

2
x1v2+ γka

2
Lv2dv2 =

√
2π

βm
e
a2γ2k2

8βm
(L−x1)2

=

√
2π

βm
e
a2γ2k2

8βm
L2+a2γ2k2

8βm
x2

1−
a2γ2k2

4βm
Lx1 (5.7)

The result in (5.6) and (5.7) are possible under the costraint

−βm
2

< 0 (5.8)

which is always true, since β and m are positive.

We can now move to the space coordinates, starting with x1

∫
e−βkx

2
1+βkx1x2+βk3x1x2

2−βk3x2x2
1+a2γ2k2

8βm
x2

1−
a2γ2k2

4βm
Lx1dx1 =

2
√

2π√
−a2γ2k2

βm
+ 8β(k + k3x2)

e
− (a2γ2k2L−4β2mx2(k+k3x2))2

8βm(a2γ2k2−8β2m(k+k3x2)) =

2
√

2π√
−a2γ2k2

βm
+ 8β(k + k3x2)

×

e
−a4γ4k4L2−16β4m2k2x2

2−16β4m2k2
3x

4
2+8β2a2γ2k3Lmx2+8β2a2γ2k2k3mLx

2
2−32β4m2kk3x

3
2

8βm(a2γ2k2−8β2m(k+k3x2)) (5.9)

It is crucial now to underline that this result is possible with a restriction not

only on the parameter space but also on the variable x2. In fact the following

inequality is needed

−βk − βk3x2 +
a2γ2k2

8βm
< 0 (5.10)
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which is translated in a constraint in the x2 variable

x2 >
a2γ2k2

8β2k3m
− k

k3

(5.11)

This is a different consequence from the constraints we encountered in Chap-

ter 3: in fact in that case the constraints were only on the parameter space,

while now it is on the domain on a variable.

This means that the partition function, and consequently the integral, di-

verges because in the model considered the range of the variable x2 includes

the whole phase space and no restrictions are present.

5.2.2 Restricted Space Domain

Since the system with a α-FPU potential is not normalizable, it is not suit-

able to describe chains of particles which are free to space on the whole real

line.

On the other hand, from a physical point of view, confined systems between

two walls are usually more interesting and more realistic. Therefore we can

consider a restricted domain for the space variables, while there is no con-

straint on the value of the velocities.

It is straightforward to decide the boundaries of our new domain: since we

are considering a chain of length L and the Hamiltonian is written with the

Cartesian axis starting from 0, then the domain for the x1 and x2 variables

will be [0, L].

The computation of 〈x2−x1〉 is the same for v1 and v2 so we obtain the same

results as in (5.6) and (5.7). We can consider the integral of the two space

variables together which means
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∫ L

0

∫ L

0
exp

[
−βkx2

1 − βkx2
2 + βk3x1x

2
2 − βk3x

2
1x2

+βkx1x2 + βkLx2 + βk3L
2x2 − βk3Lx

2
2

+
a2γ2k2

8βm
x2

1 −
a2γ2k2

4βm
Lx1 +

a2γ2k2

8βm
x2

2

]
dx1dx2 (5.12)

We did not succeed in finding the primitive of the integrand. However, as

we have done in the previous section, we can do some consideration on the

convergence of the integral in (5.12).

We are now dealing with an integrand that is a continuous function in two

variables in a compact domain: hence, the convergence of the integral is

guaranteed.

5.3 Conclusions

In this Chapter we have considered the Fermi-Pasta-Ulam potential instead

of the harmonic one and we have tried to understand if exact analytical so-

lutions exist for the observables of this system.

Because of the new cubic terms in the potential we encountered some ob-

stacles because the partition function does not converge in the whole phase

space.

For this reason we have decided to restrict the space domain to the interval

[0, L], with L the length of the chain, which is a reasonable choice since the

edges of the chain are fixed. In this case the convergence is assured, still we

were unable to find the primitive of the integrand and consequently we were

not able to find exact analytical solutions for the observables the characterize

this system, even in a confined space domain.

This means we are going to study the system only through numerical calcu-

lation in the following chapter.
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Chapter 6

Numerical Results

6.1 Introduction

We have proved in the previous chapter that exact analytical solutions are

not possible for a chain of oscillators with a FPU potential. Nevertheless

we know that the integral used to compute the observables converges if we

consider a restricted space domain, still we do not know their exact values.

Hence the next step is to try to compute numerically these quantities since,

as explained in Chapter 4, Monte Carlo simulation is used to obtain the value

of an integral without explicitly knowing the primitive of the integrand. In

this case we are dealing with problems not previously considered. In fact, in

Chapter 4, to compute the ensemble average of an observable A, we used the

formula (4.5)

〈A〉 =

∫
A(ξ)e−βH(ξ)−γJ(ξ)dξ

K (6.1)

with ξ = (x, v) the spatial and momentum coordinates in the phase space

and K the partition function and where the probability density was given by

(4.6)

ρ(ξ) =
e−βH(ξ)−γJ(ξ)

K (6.2)

71
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and it was considered as the Gaussian distribution of the initial random

vectors ξ. Afterwards, we built the covariance matrix Σ and the average µ

of the distribution by using the equality (4.9)

−1

2
(ξ − µ)TΣ−1(ξ − µ) = −βH(ξ)− γJ(ξ) (6.3)

where the quadratic terms were considered in the covariance matrix and the

linear ones in the average.

The change in potential causes not only some difference in the analytical

computation but also in the Monte Carlo simulations. In fact, if we consider

for example a 2-particle system with the FPU potential we know that some

cubic terms arise (5.1)

V (x) =
2∑
i=0

[
1

2
k(xi+1 − xi)2 +

1

3
k3(xi+1 − xi)3

]
=

k(x2
1 + x2

2 − x1x2 − Lx2 +
L2

2
) + k3(x1x

2
2 − x2

1x2 − Lx2
2 + L2x2 −

L3

3
) (6.4)

that cannot be considered in Σ nor in µ. A solution of this problem is

to consider in (6.3) only the quadratic and linear terms that arise from

−βH(ξ) − γJ(ξ) and to study the cubic terms k3(x1x
2
2 − x2

1x2) together

with the observable A so that the integral becomes

〈A〉 =

∫
A(ξ)e−βk3(x1x2

2−x2
1x2)e∆dξ∫

e−βk3(x1x2
2−x2

1x2)e∆dξ
(6.5)

where ∆ contains all the linear and quadratic terms that arise from the right

hand side of (6.3). We can now manipulate (6.5) in the following way

〈A〉 =

∫
A(ξ)e−βk3(x1x2

2−x2
1x2)e∆dξ∫

e−βk3(x1x2
2−x2

1x2)e∆dξ

=

∫
A(ξ)e−βk3(x1x2

2−x2
1x2)e∆dξ∫

e−βk3(x1x2
2−x2

1x2)e∆dξ

∫
e∆dξ∫
e∆dξ

=

∫
A(ξ)e−βk3(x1x2

2−x2
1x2)e∆dξ∫

e∆dξ

∫
e∆dξ∫

e−βk3(x1x2
2−x2

1x2)e∆dξ

=

∫
A(ξ)e−βk3(x1x2

2−x2
1x2)ρ′(ξ)dξ∫

e−βk3(x1x2
2−x2

1x2)ρ′(ξ)dξ
=
〈Ae−βk3(x1x2

2−x2
1x2)〉ρ′

〈e−βk3(x1x2
2−x2

1x2)〉ρ′
(6.6)
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with ρ′(ξ) = e∆∫
e∆dξ

= e∆

K′ the new distribution function and K′ the new

partition function. This means that the final result is

〈A〉ρ =
〈Ae−βk3(x1x2

2−x2
1x2)〉ρ′

〈e−βk3(x1x2
2−x2

1x2)〉ρ′
(6.7)

6.2 50-Particle System

We have seen in Chapter 5 that exact analytical solutions for the observables

that characterize the system are not possible with a α-FPU potential.

The consequence is that we cannot do a comparison, as we did in Chapter 4,

between the analytical and numerical results: in this case we are just going

to evaluate the observables numerically for a 50-particle system.

The observables considered are the same as in the harmonic potential case,

here we have studied the system for three different values of the coupling

constant k3 of the FPU potential: 0.001, 0.002 and 0.003, while k, the cou-

pling constant of the quadratic term, is still set to 1.

We have chosen small values of k3 because our interest is to understand how

the properties of system change as we slowly move from the harmonic case,

which is the one known.

For all the observables it is straightforward to notice that if we set k3 = 0.001

the behavior is similar to the harmonic case, while, as the value of k3 increases

it becomes more and more irregular, while we know that from the physical

point of view a smooth trend is expected. The reason is that, as we move

from the harmonic case better statistics, which means a higher number of

samples, are needed to run to sufficient accuracy the Monte Carlo simula-

tions.

In fact we have noticed that by increasing the number of samples the observ-

ables becomes smoother: in this work, we do not have the efficiency required
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to increase the number of samples for all the observables to a value that

would be suitable for the case with k3 = 0.002 and k3 = 0.003.

Nevertheless, even in this case, one can notice that the dependence on the

non equilibrium conditions is similar to the harmonic case: in fact the mo-

mentum and the variance of the space variables are increasing as γ takes

higher values, while the ensemble average of the position and of the distance

between two particles do not seem affected by γ.

For this reason we can say that the model, at least qualitatively, seems to

share the same properties as in [21,22], concerning the dependence on non

equilibrium conditions for systems with FPU potential.
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Figure 6.1: Ensemble Average of the Momentum of the i particle for different

values of γ and with k3 = 0.001

Finally, we have taken into account the temperature profile: the steps are

the same as in Chapter 4, beginning with the case with γ = 0. Also here we

consider the relation 〈v2
i 〉 = β1〈xi+1 − xi〉 + β2, with β1 = 1. Also here β2
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Figure 6.12: Ensemble Average of the distance Between two Particles for

different values of γ and with k3 = 0.003

represents the deviation from an ideal gas behavior.

We have started with k3 = 0.001 where it is possible to notice that, unlike

the harmonic case, for γ = 0, β2 is not zero. Also here we have shown the

dependence of β2 on γ that can be approximated to a parabola. For the

cases with k3 = 0.002 and k3 = 0.003 it is not possible to do a compari-

son between the data of the observables 〈v2
i 〉 and 〈xi+1 − xi〉 due to their

irregular behavior. Hence it is necessary to first approximate the trend of

this observables to a constant, which is the expected approximated behavior.

Afterwards we compare the approximations for the different values of γ to

get β2. The results are shown in figures (6.16) and (6.18).

Also, in figures (6.17) and (6.19) it is straightforward to see that the depen-

dence of β2 on γ can be approximated to a parabola.

Finally we compared the dependence of β2 on γ for all the cases we

studied. In figure (6.20) the case with the harmonic potential and with the
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Figure 6.13: Relation 〈v2
i 〉 = 〈xi+1 − xi〉 for γ = 0 and with k3 = 0.001

three values for the FPU potential is shown: as we said before β2 has a

quadratic dependence on γ and its values are increasing as we move away

from the harmonic case.

6.3 Conclusions

In this Chapter we have computed numerically the same observables as in

Chapter 4 with a different potential. Here we have chosen three values for the

coupling constant of the cubic term: we have noticed that, in the k3 = 0.001

case, the behaviour of the observables is similar to the harmonic case, while

for the other two values the trend proved to be quite irregular, due to a lack

of statistics.

Nevertheless in all three cases it was possible to see that the dependence

of the observables on the non equilibrium condition is the qualitatively the

same as in the harmonic case and in [21,22].
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(b) γ = 0.2, β2 = 0.06
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(c) γ = 0.3, β2 = 0.135
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(d) γ = 0.4, β2 = 0.245
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Figure 6.14: Relation 〈v2
i 〉 = 〈xi+1 − xi〉 + β2 for different values of γ and
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Figure 6.15: Dependence of β2 on γ with fit with the function f(x) = c +
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Finally we have also computed the temperature profile and checked the rela-

tion between β2 and γ that for all the three values of the coupling constant

can be approximated to a parabola, with the value of β2 increasing with the

coupling constant of the cubic term k3.
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Chapter 7

Conclusions

7.1 Conclusions

In this thesis we have dealt with low dimensional systems in non equilibrium

conditions, which possess some peculiar characteristics in comparison to sys-

tems with a higher number of degrees of freedom.

In particular, we have focused our attention on a 1-dimensional chain of os-

cillators, hence with a phase space of 2N degrees of freedom, with N the

number of particles, and we have tried to extrapolate some properties of this

physical system by computing some basic observables that characterize the

chain.

Actually, this kind of system has been studied deeply in literature: our pur-

pose was in fact to find an alternative model to describe it, instead of the

usual ones as explained in the introduction.

One of the reason was to find an easier way to study oscillator chains both

from the analytical and numerical point of view.

In the first part of the thesis the attention was focused on a harmonic oscil-

lator chain, which means on a chain with a harmonic potential: in this case
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not only numerical but also exact analytical solutions already exist. Indeed

we have used the harmonic chain as a check, to understand if our results

were in agreement with the known ones and, as a consequence, if our model

could be considered consistent.

We have started in Chapter 3 with the computation of the analytical solu-

tions of some basic observables for a 2-particle system and we have proved

that exact solutions exist for this model but only under some constraints on

the parameter space.

The quantities considered were the kinetic temperature, the variance of the

space variables, the average position of the particles and the average of the

distance between two particles.

We have then studied the same observables in Chapter 4 for a 50-particle

system by running some Monte Carlo simulations; the results were quite

promising: the qualitative behavior of all the quantities considered proved

to be similar to the ones obtained in [21,22,13].

From the numerical point of view we have also considered the temperature

profile to check if the relation 〈v2
i 〉 = β1 < xi+1 − xi > +β2 in [22] could also

be applied in our case. Indeed the relation still stands for our model with

β1 = 1 and β2 having a quadratic dependence on γ.

Given the promising results with the harmonic potential, in the second part

of the thesis, we have considered a different potential for the chain: an α-

FPU potential. In this case exact analytical solutions do not exist yet and

in Chapter 5 we have tried to understand if with this model it was possible

to overcome this problem, by computing the observables as in Chapter 3: we

indeed did not succeed in this task, even if some approximated solutions can

be obtained by considering a restricted phase space.
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In Chapter 6 we have then run the numerical simulations for the 50-particle

system: here we have used three values of the coupling constant k3 of the

cubic term in the FPU-potential because our interest was to understand how

the system was changing as we slowly moved away from the harmonic case.

For k3 = 0.001 it was straightforward to notice that the behavior was similar

to the harmonic case for all variables, while for k3 = 0.002 and k3 = 0.003

the trend proved to be more irregular.

This was due to a lack of numerical efficiency since a higher number of sam-

ples is needed in the Monte Carlo simulations for higher values of k3. Anyway,

the dependence of these quantities on the non equilibrium conditions, for all

the three values was the same as in the harmonic case with the momentum

and the variance increasing with the intensity of the distortion. Finally, by

studing the temperature profile, we could see that also the dependence of β2

on γ was the same, with β1 = 1 and β2 with a quadratic dependence on γ

and increasing as we moved away from the harmonic case.

7.2 Further Studies

In this work we have dealt with an oscillator chain with different kind of

potential by using an alternative model with respect to the most common

ones. The results we have obtained so far are quite promising but some issues

remain still open.

First of all we have seen in Chapter 6 that with the values k3 = 0.002 and

k3 = 0.003 in the α-FPU potential the behavior of the observables proved to

be quite irregular. As we have explained this is due to a lack of efficiency

in the numerical computations: it would be interesting to investigate this

problem further by increasing the number of samples.
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Moreover, we have considered only the α-FPU potential, which means the

FPU potential with only the quadratic and the cubic terms. One possible

step further could be to study also the β-FPU model, in which the quartic

term is considered, instead of the cubic ones. This model is actually more

widespread and more used to study physical system: hence including this

potential would be a natural consequence of the path we have traced so far.

Finally, an engaging to task would be to extend this model, which concerns

only classical mechanics, to a quantum one to investigate the potentials of

this model also in the subatomic case.



Appendix A

Normal Modes

A.1 Theoretical Calculation

We are going to give an overview of the theoretical calculation of the normal

modes, with reference to [30]. In this section we are treating the general case

while in the next one we will describe the whole procedure for a 2-particle

system, whose properties are illustrated in Chapter 2.

Before dealing with the computation, it is important to understand what a

normal mode is. A normal mode of an oscillating system is a kind of motion

where all the components of the system move with the same frequency and

with a fixed phase relation. Every normal mode has its fixed frequency which

is called natural frequency or resonant frequency. Usually the motion of a

system is a superposition of normal modes: these modes are independent,

meaning they are orthogonal to each other.

This is one of the reason why they are often used to describe physical sys-

tems: if normal coordinates are used then the Lagrangian or the Hamiltonian

of the system will be in diagonal form, a fact that will simplify the calculation.
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Consider now a general system of N particles: we are treating system close to

equilibrium. The condition for equilibrium is that the sum of the generalized

or Cartesian coordinates that act on the system is zero, which means(
∂V

∂xi

)
0

= 0 (A.1)

with xi, the generalized coordinate of the ith-particle and V the potential

energy. The displacement from the equilibrium position is defined as

ηi = xi − x0i (A.2)

with x0i the equilibrium position of the i particle. We can now make a Taylor

expansion of the potential energy V around the equilibrium position

V (x1...xN) = V (x01...x0N) +

(
∂V

∂xi

)
0

(xi − xi0) +
1

2

(
∂2V

∂xjxi

)
(xi − xi0)2 + ...

= V (x01...x0N) +
1

2

(
∂2V

∂xjxi

)
ηiηj + o(η2) (A.3)

since V (x01...x0N) is a constant we can put it equal to zero and we obtain

the relation

V =
1

2

(
∂2V

∂xjxi

)
ηiηj =

1

2
Vijηiηj (A.4)

Also the kinetic energy can be rewritten in term of ηi

T =
1

2
mijẋiẋj =

1

2
mij(ẋ0i + η̇i)(ẋ0j + η̇j) =

1

2
mij η̇iη̇j =

1

2
Tij η̇iη̇j (A.5)

This means that the Lagrangian is in the form

L = T − V =
1

2
(Tij η̇iη̇j − Vijηiηj) (A.6)

Using the following results

∂L
∂ηi

=
∂

∂ηi

(
1

2
(Tjkη̇j η̇k − Vjkηjηk)

)
= −1

2
Vjk

∂

∂ηi
(ηjηk)

= −1

2
Vjk (ηjδji + ηkδki) = −1

2
(Vikηk + Vjiηk)

= −1

2
(Vijηj + Vijηj) = −Vijηj (A.7)
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∂L
∂η̇i

=
∂

∂η̇i

(
1

2
(Tjkη̇j η̇k − Vjkηjηk)

)
= −1

2
Tjk

∂

∂η̇i
(η̇j η̇k)

= −1

2
Tjk (η̇jδji + η̇kδki) = −1

2
(Tikη̇k + Tjiη̇k)

= −1

2
(Tij η̇j + Tij η̇j) = −Tij η̇j (A.8)

d

dt
(Tij η̇j) = Tij η̈j (A.9)

since Vij = Vji and Tij = Tji, the equation of motion respect to ηi are

d

dt

∂L
∂η̇i
− ∂L
∂ηi

= Tij η̈j + Vijηj = 0 (A.10)

The solution of this equation is in the form ηi = Caie
−iωt, with Cai the

complex amplitude of ηi (C is a scale factor).

If we substitute this definition in (A.10) we obtain

Vijaj − ω2Tijaj = 0 (A.11)

these areN homogeneous linear equations in aj that have non trivial solutions

if the determinant is zero.

This means we have to compute∣∣∣∣∣∣∣∣∣∣∣
V11 − ω2T11 ....... V1N − ω2T1N

..... ....... .....

VN1 − ω2TN1 ....... VNN − ω2TNN

∣∣∣∣∣∣∣∣∣∣∣
= 0 (A.12)

That is an algebraic equation of N -th order in ω2. For each value of ω2 we

can solve aj in (A.11). That means that (A.11) can be seen as an eigenvalue

equation

Va = λTa (A.13)

with V = Vij,T = Tij, λ = ω2 and a is the eigenvector associated to λ.

Hence we can also write (A.4) and (A.5) in the matrix form

V =
1

2
η̃Vη and T =

1

2
˜̇ηTη̇ (A.14)
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with

η =


η1

...

ηN

 and η̃ = (η1 ... ηN) (A.15)

There is still an indetermination on aij that can be solved by putting

ãTa = 1, which in matrix form is translated as

ÃTA = 1 (A.16)

or

ÃVA = λ (A.17)

with A = aij, the eigenvector matrix.

We have said before that ηi = Caie
−iωt is the solution of the equation of

motion in (A.10), but specifically the complete solution is a superposition of

the permitted frequencies, which means it is written as

ηi = Ckaike
−iωkt (A.18)

that is simply a sum on the index k, which means that every ηi is the sum

of harmonic oscillations with frequencies ωk that satisfy (A.11).

Now we have the frequencies ωk and the amplitude aik, we are just missing

the scale factors Ck which will be given by

η(0) = AReC or similarly ReC = ÃTη(0) (A.19)

We can now obtain the normal variables by using the relation

η = Aξ or ξ = ÃTη (A.20)

where ξk are the normal modes.

In this way the potential and kinetic energies become

V =
1

2
η̃Vη =

1

2
ÃξVAξ =

1

2
ξ̃ÃVAξ =

1

2
ξ̃λξ =

1

2
ω2
kξ

2
k (A.21)
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T =
1

2
˜̇ηTη̇ =

1

2
˙̃ξÃTAξ̇ =

1

2
˜̇ξξ̇ =

1

2
ξ̇2
k (A.22)

where the relations (A.16) and (A.17) have been used.

Now both the matrices V and T are in diagonal form and their terms are all

quadratic. The new Lagrangian is

L =
1

2
(ξ̇2
k − ω2

kξ
2
k) (A.23)

and the corresponding Hamiltonian

H =
1

2
(ξ̇2
k + ω2

kξ
2
k) (A.24)

and both, as we said before, are in diagonal form, since they are the sum of

diagonal matrices.

The equations of motion are now

ξ̈k + ω2
kξ

2
k = 0 (A.25)

whose solutions are

ξk = cke
−iωkt (A.26)

this means that every coordinate ξk is a periodic function in t corresponding

to one single resonance frequency ωk and all these variables are independent

from each other.

A.2 2-Particle System

In this section we are going to illustrate the full procedure about how writing

the Hamiltonian in normal modes starting from Cartesian, or generalized,

coordinates.

Here the system is made by two particles with the same mass and elastic
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constant (the case we are dealing with in Chapter 2). The Hamiltonian is

obviously written as in (2.21)

H =
1

2

2∑
i=0

[
mẋ2

i + k(xi+1 − xi)2
]

=
[
m

2
ẋ2

1 +
m

2
ẋ2

2 + kx2
1 + kx2

2 − kx1x2 +
1

2
kL2

]
(A.27)

with x3 = L the total length of the chain, x0 = 0 and ẋ0 = ẋ3 = 0 (fixed

edges). We now make the following change of variables

x1 = x01 + η1 (A.28)

x2 = x02 + η2 (A.29)

with η1 and η2 the displacement from the equilibrium position of particle 1

and 2 and x01 and x02 their equilibrium position (in this case x02 − x01 =

L− x02 = a).

The kinetic energy is

T =
1

2
mẋ2

1 +
1

2
mẋ2

2 =
1

2
mη̇2

1 +
1

2
mη̇2

2 =
1

2
η̇TTη̇ (A.30)

because ẋ01 = ẋ02 = 0 and with

T =

 m 0

0 m

 and η̇ =

 η̇1

η̇2

 and η̇ = (η̇1 η̇2) (A.31)

The potential energy is now

V =
1

2
(x1 − a)2 +

1

2
(x2 − x1 − a)2 +

1

2
(L− x2 − a)2

=
1

2
(x01 + η1 − a)2 +

1

2
(x02 + η2 − x01 − η1 − a)2

+
1

2
(L− x02 − η2 − x1 − a)2

=
1

2

[
2η2

2 + 2η2
1 − 2η1η2

]
=

1

2
ηTVη (A.32)
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with

V = k

 2 −1

−1 2

 and η =

 η1

η2

 and η = (η1 η2) (A.33)

It is important to underline that, concerning the displacement from equilib-

rium, we are treating here x01 = a (following the path of [30]) while in the

analytical calculations in Chapter 2 x01 = 0. This is actually of no impor-

tance because the results for the kinetic and potential energy is going to be

the same in the two cases.

We have to find now the eigenvalues of the secular equation as in (A.12)

Det
(
V − ω2T

)
= 0 with ω2 = λ (A.34)

∣∣∣∣∣∣∣
2k − λm −k
−k 2k − λm

∣∣∣∣∣∣∣ = (2k − λm)2 − k2 = 0 (A.35)

whose result are

λ1 = k/m = ω2
1 λ1 = 3k/m = ω2

2 (A.36)

that brings to ω1 =
√
k/m and ω2 =

√
3k/m, since the negative frequencies

are ruled out.

Now we are getting the eigenvectors of each frequency starting from ω1, that

means we have to solve the following equation

(V − ω2
1T)ai1 = 0 (A.37)

that in matrix form is 2k − k

m
−k

−k 2k − k

m


 a11

a21

 =

 k −k
−k k


 a11

a21

 =

 0

0

 (A.38)

that brings to

(a11 a21) ∝ (1 1) (A.39)
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For the normalization we can use ãkTãk = 1 (as in (A.16)) that in matrix

form is

(a11 a21)

 m 0

0 m


 a11

a21

 = ma2
11 +ma2

21 = 2ma2
11 = 1 (A.40)

which means

a11 =
1√
2m

(A.41)

In conclusion we have

ai1 =
1√
2m

 1

1

 (A.42)

For the second eigenvalue ω2
2 = 3k

m
we follow the same procedure and we have

ai2 =
1√
2m

 1

−1

 (A.43)

The matrix A of the eigenvectors is then

A =

 1/
√

2m 1/
√

2m

1/
√

2m −1/
√

2m

 (A.44)

We can now write ηi (A.18)

η1 = c1a11e
−iω1t + c2a12e

−iω2t = c1
1√
2m

e−i
√

k
m t+ c2

1√
2m

e−i
√

3k
m t (A.45)

η2 = c1a21e
−iω1t + c2a22e

−iω2t = c1
1√
2m

e−i
√

k
m t− c2

1√
2m

e−i
√

3k
m t (A.46)

we can finally obtain the normal modes ξi by using the relation in (A.20)

ξ = ÃTη. The matrix ÃT is

ÃT =

 1/
√

2m 1/
√

2m

1/
√

2m −1/
√

2m


 m 0

0 m

 =
1√
2m

 m m

m −m

 (A.47)
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so that our solutions are ξ1

ξ2

 =
1√
2m

 m m

m −m


 η1

η2

 (A.48)

and we explicitly obtain

ξ1 = c1e
−iω1t (A.49)

ξ2 = c2e
−iω2t (A.50)

with c1 and c2 given by the initial conditions (in Chapter 2 c1 = c2 = 1).

These are the variables that we are using in the Hamiltonian in (2.8) where

ω1 =
√
k/m, ω2 =

√
3k/m and x̃i = ξi and ṽi = ξ̇i for i = 1, 2.
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Appendix B

Numerical Codes

In this Appendix we are illustrating the complete codes that have been used

for the numerical simulations. We separate the two cases referring to the

harmonic and the FPU potential since some changes are needed to pass from

one scenario to the other one. All the codes are written in Fortran90.

B.1 Harmonic Potential

As explained in Chapter 4, the simulation is divided into four steps. The

first is to build Σ−1, the inverse of the covariance matrix, using (4.9), basi-

cally all the quadratic terms in −βH(x, v) − γJ(x, v), the argument of the

exponential in the probability density function in (4.6).

The code is written with allocatable arrays, so that the number of particles

in the chain is not fixed but it can be changed every time the simulation

is run. Hence, the first program builds this matrix, where also the various

parameters that describe the system, like the mass, the elastic coupling or

the intensity of the distortion, can be modified.

103
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! the different parameters of the system are set

module parametri

real,parameter:: m=1.

real,parameter:: k=1.

real, parameter::beta=1.

real, parameter::a0=1.

real, parameter::g=1.

end module parametri

!main program

program matrix

use parametri

implicit none

integer :: i1, i2, j1, j2, k1, k2, n

real, allocatable, dimension(:,:) :: H, J, S, U

open (unit=1, file="matrice.dat")

open (unit=2, file="numero_particelle.dat")

! the number of particles in the chain is set

write(*,*) "Numero di particelle?"

read(*,*) n

write(2,*) n

allocate (H(2*n,2*n),J(2*n,2*n),U(2*n,2*n),S(2*n,2*n))

do i1=1,2*n

do i2=1,2*n

if (i1<n+1 .and. i2<n+1 .and. i1==i2) then

H(i1,i2)=2*beta*k

else if (i1<n+1 .and. i2<n+1 .and. i1==i2+1 ) then

H(i1,i2)=-1*beta*k

else if (i1<n+1 .and. i2<n+1 .and. i1+1==i2 ) then

H(i1,i2)=-1*beta*k

else if (i1>n .and. i2>n .and. i1==i2) then
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H(i1,i2)=1*beta*m

else

H(i1,i2)=0

end if

end do

end do

do j1=1,2*n

do j2=1,2*n

if (j1==j2+n+1) then

J(j1,j2)=(1/2.)*(g*k*a0)

else if (j2==j1+n+1) then

J(j1,j2)=(1/2.)*(g*k*a0)

else if (j2>n .and. j2<2*n .and. j1==j2-n+1 ) then

J(j1,j2)=-(1/2.)*(g*k*a0)

else if (j1>n .and. j1<2*n .and. j2==j1-n+1 ) then

J(j1,j2)=-(1/2.)*(g*k*a0)

else

J(j1,j2)=0

end if

end do

end do

S=H+J

! here the final matrix with the quadratic terms in H+J is written to a file

write(1,*) S

close(1)

close(2)

end program matrix
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The aim of the second code is to get the average µ we need to build our

random number distribution in (4.6), using the relation (4.9).

! the different parameters of the system are set

module parametri

real,parameter:: m=1.

real,parameter:: k=1.

real, parameter::beta=1.

real, parameter::a0=1.

real, parameter::g=1.

end module parametri

program media

use parametri

implicit none

real, allocatable, dimension(:,:) :: a

real, allocatable, dimension(:) :: mu, b

integer :: L, i, n

open(1,file="numero_particelle.dat",status="old",action="read")

open(2,file="matrice.dat",status="old",action="read")

open(3,file="media.dat")

read(1,*) n

allocate (a(2*n,2*n),mu(2*n),b(2*n))

L=n+1

! the equation in (4.8) for the average is built

b=0.0

b(n)=beta*k*L

b(2*n)=g*k*a0*L/2.

read(2,*) a

mu(2*n)=b(2*n)/a(2*n,2*n)
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!here the equation is solved

call gauss (n,a,b)

call triangsuperiore (n,a,b,mu)

!the average is written to a file

write(3,*) mu

close(1)

close(2)

close(3)

end program media

!subroutine used to solve matrix equation AX=B

subroutine gauss (n,a,b)

implicit none

integer :: n,k,i,err

real :: a(1:2*n,1:2*n), b(1:2*n), aux

do k=1,2*n-1

call pivot()

err=k

if (ABS(a(k,k))<1.E-09) return

do i = k+1,2*n

aux = a(i,k)/a(k,k)

a(i,k)=0

a(i,k+1:2*n) = a(i,k+1:2*n) - aux*a(k,k+1:2*n)

b(i)=b(i)-aux*b(k)

end do

end do

err=0

if (ABS(a(2*n,2*n))<1.E-09) err=2*n

contains
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subroutine pivot()

integer :: iipiv(1)

real :: apiv(k:2*n), bpiv

iipiv = MAXLOC (ABS(a(k:2*n,k))) +k-1

if (iipiv(1) /= k) then

apiv = a(k,k:2*n)

bpiv = b(k)

a(k,k:2*n) = a(iipiv(1),k:2*n)

b(k) = b(iipiv(1))

a(iipiv(1),k:2*n)=apiv

b(iipiv(1))=bpiv

end if

end subroutine pivot

end subroutine gauss

!subroutine used to transform the initial matrix

!in a upper triangular matrix

subroutine triangsuperiore (n,a,b,mu)

implicit none

integer :: n, i, k

real :: a(2*n,2*n),b(2*n),mu(2*n),err

do i=1,2*n

if(ABS(a(i,i))<1.E-9) then

err=i

return

end if

end do

err=0

mu(2*n)=b(2*n)/a(2*n,2*n)
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do k=2*n-1,1,-1

mu(k)=b(k)

mu(k)=b(k)-DOT_PRODUCT(a(k,k+1:2*n),mu(k+1:2*n))

mu(k)=mu(k)/a(k,k)

end do

end subroutine triangsuperiore

After the average is gotten, we still need the covariance matrix Σ for the

distribution of the initial random numbers. Σ is the inverse of the matrix that

contains the quadratic terms of −βH(x, v) − γJ(x, v), but some constants.

Hence this code considers the matrix printed in the first code and gives as

an output the inverse with the suitable constants as illustrated in (4.9).

program elim_gauss

implicit none

integer :: n, k, i, err, ipiv, j

real, allocatable :: a(:,:), ao(:,:), b(:), e(:), inv(:,:), x(:), sol(:)

open(1,file="numero_particelle.dat",status="old",action="read")

open(2,file="matrice.dat",status="old",action="read")

open(3,file="inversa.dat")

read (1,*) n

n=2*n

allocate (a(1:n,1:n),ao(1:n,1:n),b(1:n),e(1:n),inv(1:n,1:n),x(1:n),sol(1:n))

read (2,*) ao

write(*,*),’ Vuoi usare il pivoting ? ( si = 1 )’ ; READ*,ipiv

do j=1,n

a=ao

e=0
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e(j)=1

call gauss(n,a,e,ipiv,err)

if (err /=0) PRINT*,’ gauss err’,j

call triangsuperiore(n,a,e,x,err)

if (err /=0) PRINT*,’ ts err’,j

inv(1:n,j)=x(1:n)

end do

! the covariance matrix is printed to a file

if (err==0) then

do k=1,n

write(3,*) inv(k,1:n)

end do

end if

if (err /=0) write(*,*),’La matrice e’’ singolare, elemento(’, err,’) nullo’

close(1)

close(2)

close(3)

end program elim_gauss

! subroutine the solves the matrix equation in the form AX=B

subroutine gauss (n,a,b,ipiv,err)

implicit none

integer :: n, k, i, err, ipiv

real :: a(1:n,1:n), b(1:n), aux

do k=1,n-1

if (ipiv==1) call pivot()

err=k

if (ABS(a(k,k))<1.E-09) return

do i = k+1,n

aux = a(i,k)/a(k,k)

a(i,k)=0

a(i,k+1:n) = a(i,k+1:n) - aux*a(k,k+1:n)
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b(i)=b(i)-aux*b(k)

end do

end do

err=0

if (ABS(a(n,n))<1.E-09) err=n

contains

subroutine pivot()

integer :: iipiv(1)

real :: apiv(k:n), bpiv

iipiv = MAXLOC (ABS(a(k:n,k))) +k-1

if (iipiv(1) /= k) then

apiv = a(k,k:n)

bpiv = b(k)

a(k,k:n) = a(iipiv(1),k:n)

b(k) = b(iipiv(1))

a(iipiv(1),k:n)=apiv

b(iipiv(1))=bpiv

end if

end subroutine pivot

end subroutine gauss

!subroutine used to transform the initial matrix

!in a upper triangular matrix

subroutine triangsuperiore (n,a,b,sol,err)

implicit none

integer :: n, err, i, k

real :: a(n,n), b(n), sol(n)

do i=1,n
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if(ABS(a(i,i))<1.E-9) then

err=i

return

end if

end do

err=0

sol(n)=b(n)/a(n,n)

do k=n-1,1,-1

sol(k)=b(k)

sol(k)=b(k)-DOT_PRODUCT(a(k,k+1:n),sol(k+1:n))

sol(k)=sol(k)/a(k,k)

end do

end subroutine triangsuperiore

Finally, having Σ and µ, hence the distribution of the random numbers,

we can run the Monte Carlo simulation to compute the different observables

of the system.

Module UniformDev

Interface

Function Random ()

Implicit None

Real(8) :: Random

End Function Random

End Interface

End Module UniformDev

Module GaussianDev

Interface

Function GasDev(c,w)

Use UniformDev

Implicit None

Real(8), Intent(In) :: c,w

Real(8) :: GasDev

End Function GasDev
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End Interface

End Module GaussianDev

! Uniform Random Generator.

Function Random ()

Implicit None

Real(8) :: Random

Real(8) :: r

Call Random_Number(r)

Random = r

End Function Random

! Gaussian Random Generator (It uses the function Random)

! P(x)dx = (2*pi*w)^(-1/2) * exp ( -(1/(2*w))*(x-c)^2 ) dx

! Then the distribution is normalized Gaussian distribution centered

! around "c" and with a variance <x^2> - <x>^2 = w.

Function GasDev(c,w)

Use UniformDev

Implicit None

Real(8), Intent(In) :: c, w

Real(8) :: GasDev

Real(8) :: v1, v2, rsq, fac

rsq = 0.0

do

if ((rsq < 1.0_8) .and. (rsq /= 0.0_8)) exit

v1 = 2.0_8*Random() - 1.0_8

v2 = 2.0_8*Random() - 1.0_8

rsq = v1*v1 + v2*v2

end do

fac = sqrt(-2.0_8*w*log(rsq)/rsq)

GasDev = v2*fac + c

end function GasDev
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program main

Use GaussianDev

Use UniformDev

implicit none

integer :: enne=1000000

integer :: i, j, k1, k2, n, l

real,allocatable,dimension(:) :: mu, x, f, f2, y, var

real,allocatable,dimension(:,:) :: sigma, inv

character(3) :: sdim

character(40) :: sf

open(1,file="numero_particelle.dat",status="old",action="read")

open(2,file="media.dat",status="old",action="read")

open(3,file="inversa.dat",status="old",action="read")

open(4,file="x_medio.dat")

open(5,file="v_medio.dat")

open(7,file="x_quadro.dat")

open(8,file="x_varianza.dat")

! values of the average and the covariance matrix

read(1,*) n

allocate(mu(2*n),x(2*n),y(2*n),var(2*n),sigma(2*n,2*n),f(2*n),f2(2*n))

f= 0.0

f2 = 0.0

read(2,*) mu

read(3,*) sigma

!-- sigma corresponds to -2 times the covariance matrix.

!-- We first perform the Cholesky decomposition

Call Cholesky(sigma,2*n)

do i = 1,enne !-- enne realizations

!-- First we generate a vector y whose components are i.i.d.

!random variables with zero mean and unit variance.
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do k1 = 1,2*n

y(k1) = real(GasDev(0.0_8,1.0_8))

end do

!-- Now we generate a vector x which is a random deviate of the multivariate

!-- measure with mean mu and covariance matrix sigma

x = 0.0

do k1 = 1,2*n

do k2 = 1,k1

x(k1) = x(k1) + sigma(k1,k2)*y(k2)

end do

end do

x = x + mu

f = f+x

f2 = f2+x**2

end do

! we take the average of f and f2

f = f/real(enne)

f2 = f2/real(enne)

! print the observables <x>, <x^2>, and <v>

! observable <x>

do l=1,n-1

write (4,*) l, (f(l+1)-f(l))

end do

! observable <v>

do l=n+1, 2*n

write (5,*) l, f(l)

end do

! observable <x^2>

do l=1,n

write (7,*) l, f2(l)

end do

! variance of <x>
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do l=1,n

write (8,*) l, f2(l)-f(l)**2

end do

close(1)

close(2)

close(3)

close(4)

close(5)

close(7)

close(8)

end program main

subroutine Cholesky(A,n)

Implicit None

integer, intent(In) :: n ! dimension of the matrix (for us 2N)

real, intent(InOut) :: A(n,n) ! matrix to be decomposed

integer :: i,j

do j = 1,n

!-- perform diagonal component

A(j,j) = sqrt(A(j,j) - dot_product(A(j,1:j-1),A(j,1:j-1)))

!-- perform off-diagonal component

If (j < n) Then

A(j+1:n,j) = (A(j+1:n,j) - matmul(A(j+1:n,1:j-1),A(j,1:j-1)))/A(j,j)

end if

end do

do i = 1,n

do j = 1,n

if (j > i) A(i,j) = 0.0

end do

end do

end subroutine Cholesky
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B.2 FPU Potential

The logical structure of the code for the FPU potential is the same as the

previous one. Anyway, some changes are needed. The covariance matrix and

the average of the distribution of the random numbers have some additional

terms, due to the fact the the argument in the exponential of (6.1) has now

more linear and quadratic terms. This is the first difference between the

two potentials. Below there is the code to build the matrix Σ−1, with these

additional terms on the n-the and 2n-th variables.

! the different parameters of the system are set

module parametri

real,parameter:: m=1.

real,parameter:: k=1.

real, parameter::beta=1.

real, parameter::a0=1.

real, parameter::g=1.

end module parametri

!main program

program matrix

use parametri

implicit none

integer :: i1, i2, j1, j2, k1, k2, n

real, allocatable, dimension(:,:) :: H, J, S, U

open (unit=1, file="matrice.dat")

open (unit=2, file="numero_particelle.dat")

! the number of particles in the chain is set

write(*,*) "Numero di particelle?"

read(*,*) n

write(2,*) n
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allocate (H(2*n,2*n),J(2*n,2*n),U(2*n,2*n),S(2*n,2*n))

do i1=1,2*n

do i2=1,2*n

if (i1<n+1 .and. i2<n+1 .and. i1==i2) then

H(i1,i2)=2*beta*k

!here there is the difference respect to the harmonic potential case

else if (i1==n .and. i2==n) then

H(i1,i2)=2*beta*(k+k3*L)

else if (i1<n+1 .and. i2<n+1 .and. i1==i2+1 ) then

H(i1,i2)=-1*beta*k

else if (i1<n+1 .and. i2<n+1 .and. i1+1==i2 ) then

H(i1,i2)=-1*beta*k

else if (i1>n .and. i2>n .and. i1==i2) then

H(i1,i2)=1*beta*m

else

H(i1,i2)=0

end if

end do

end do

do j1=1,2*n

do j2=1,2*n

if (j1==j2+n+1) then

J(j1,j2)=(1/2.)*(g*k*a0)

else if (j2==j1+n+1) then

J(j1,j2)=(1/2.)*(g*k*a0)

else if (j2>n .and. j2<2*n .and. j1==j2-n+1 ) then

J(j1,j2)=-(1/2.)*(g*k*a0)

else if (j1>n .and. j1<2*n .and. j2==j1-n+1 ) then

J(j1,j2)=-(1/2.)*(g*k*a0)

else

J(j1,j2)=0

end if
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end do

end do

S=H+J

! here the final matrix H+J is written to a file

write(1,*) S

close(1)

close(2)

end program matrix

As a second step we build the average µ we need for the distribution (6.2): as

before we have some additional terms only on the n-th and 2n-th variables.

The third code used to get the inverse of the matrix Σ−1 is not written, since

it is the same as in the harmonic case.

! the different parameters of the system are set

module parametri

real,parameter:: m=1.

real,parameter:: k=1.

real, parameter::beta=1.

real, parameter::a0=1.

real, parameter::g=1.

end module parametri

program media

use parametri

implicit none

real, allocatable, dimension(:,:) :: a

real, allocatable, dimension(:) :: mu, b

integer :: L, i, n
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open(1,file="numero_particelle.dat",status="old",action="read")

open(2,file="matrice.dat",status="old",action="read")

open(3,file="media.dat")

read(1,*) n

allocate (a(2*n,2*n),mu(2*n),b(2*n))

L=n+1

! the equation in (4.8) for the average is built

b=0.0

!here there is the difference respect to the harmonic potential case

b(n)=beta*k*L+beta*k3*L**2

b(2*n)=g*k*a0*L/2.

read(2,*) a

mu(2*n)=b(2*n)/a(2*n,2*n)

!here the equation is solved

call gauss (n,a,b)

call triangsuperiore (n,a,b,mu)

!the average is written to a file

write(3,*) mu

close(1)

close(2)

close(3)

end program media

!subroutine used to solve matrix equation

subroutine gauss (n,a,b)

implicit none

integer :: n,k,i,err

real :: a(1:2*n,1:2*n), b(1:2*n), aux
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do k=1,2*n-1

call pivot()

err=k

if (ABS(a(k,k))<1.E-09) return

do i = k+1,2*n

aux = a(i,k)/a(k,k)

a(i,k)=0

a(i,k+1:2*n) = a(i,k+1:2*n) - aux*a(k,k+1:2*n)

b(i)=b(i)-aux*b(k)

end do

end do

err=0

if (ABS(a(2*n,2*n))<1.E-09) err=2*n

contains

subroutine pivot()

integer :: iipiv(1)

real :: apiv(k:2*n), bpiv

iipiv = MAXLOC (ABS(a(k:2*n,k))) +k-1

if (iipiv(1) /= k) then

apiv = a(k,k:2*n)

bpiv = b(k)

a(k,k:2*n) = a(iipiv(1),k:2*n)

b(k) = b(iipiv(1))

a(iipiv(1),k:2*n)=apiv

b(iipiv(1))=bpiv

end if

end subroutine pivot

end subroutine gauss

!subroutine used to transform the initial matrix
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!in a upper triangular matrix

subroutine triangsuperiore (n,a,b,mu)

implicit none

integer :: n, i, k

real :: a(2*n,2*n),b(2*n),mu(2*n),err

do i=1,2*n

if(ABS(a(i,i))<1.E-9) then

err=i

return

end if

end do

err=0

mu(2*n)=b(2*n)/a(2*n,2*n)

do k=2*n-1,1,-1

mu(k)=b(k)

mu(k)=b(k)-DOT_PRODUCT(a(k,k+1:2*n),mu(k+1:2*n))

mu(k)=mu(k)/a(k,k)

end do

end subroutine triangsuperiore

Finally, as before, we have the covariance matrix Σ and the average µ and

we can run the Monte Carlo simulation. Also here, there are some difference

respect to the previous case. Now the computation is not only on a generic

observable A but also on some cubic terms in the exponent (6.7), hence the

function we are evaluating is the observable times a sum of exponential cubic

terms. Observing the formula in (6.7), we are evaluating two function and

then we are getting their ratio: in this way we can obtain the original value
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〈A〉 with the corresponding measure of the ensemble.

Also, in this case a change in the memory of some variables is needed since the

Monte Carlo works on the sum of a function evaluated N times: here there

are some cubic terms in the exponential and the value of the sum increases

dramatically fast. Hence, the variables that evaluate these sum are changed

from variable of kind 8 to variable of kind 10.

Moreover, we have seen in Chapter 5 that the space variables need to have

a restricted domain to ensure the convergence of the partition function: this

is translated in the following code by rejecting all the random vectors whose

values of the space coordinates are not included in the interval [0, L], with L

the length of the chain.

module parametri

real,parameter:: m=1.

real,parameter:: k=1.

real, parameter::beta=1.

real, parameter::a0=1.

real, parameter::g=1.

real, parameter::k3=1.

end module parametri

Module UniformDev

Interface

Function Random ()

Implicit None

Real(8) :: Random

End Function Random

End Interface

End Module UniformDev

Module GaussianDev

Interface

Function GasDev(c,w)

Use UniformDev

Implicit None
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Real(8), Intent(In) :: c,w

Real(8) :: GasDev

End Function GasDev

End Interface

End Module GaussianDev

! F90 Uniform Random Generator

Function Random ()

Implicit None

Real(8) :: Random

Real(8) :: r

Call Random_Number(r)

Random = r

End Function Random

! Gaussian Random Generator (It uses the function Random)

! P(x)dx = (2*pi*w)^(-1/2) * exp ( -(1/(2*w))*(x-c)^2 ) dx

!

! Then the distribution is normalized Gaussian distribution centered

! around "c" and with a variance <x^2> - <x>^2 = w.

Function GasDev(c,w)

Use UniformDev

Implicit None

Real(8), Intent(In) :: c,w

Real(8) :: GasDev

Real(8) :: v1,v2,rsq,fac

rsq = 0.0

do

if ((rsq < 1.0_8) .and. (rsq /= 0.0_8)) exit

v1 = 2.0_8*Random() - 1.0_8

v2 = 2.0_8*Random() - 1.0_8

rsq = v1*v1 + v2*v2

end do

fac = sqrt(-2.0_8*w*log(rsq)/rsq)
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GasDev = v2*fac + c

end function GasDev

program main

use parametri

use GaussianDev

use UniformDev

implicit none

integer:: enne=100000

integer :: i,k1,k2,n,l, emme, p, elle

real(8),allocatable,dimension(:) :: mu,x,y,var

real(10),allocatable,dimension(:) ::f, f2

real(10)::f_new2,f_new

real(8),allocatable,dimension(:,:)::sigma

open(1,file="numero_particelle.dat",status="old",action="read")

open(2,file="media.dat",status="old",action="read")

open(3,file="inversa.dat",status="old",action="read")

open(4,file="x_medio.dat")

open(5,file="v_medio.dat")

open(7,file="x_quadro.dat")

open(8,file="x_varianza.dat")

!values of the average and of the covariance matrix

read(1,*) n

allocate(mu(2*n),x(2*n),y(2*n),var(2*n),sigma(2*n,2*n),f(2*n),f2(2*n))

f= 0.0

f2 = 0.0

f_new2=0.0

read(2,*) mu

read(3,*) sigma

!-- sigma corresponds to -2 times the covariance matrix.

!-- We first perform the Cholesky decomposition

Call Cholesky(sigma,2*n)
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i=0

do while (i <= enne) !-- enne realizations

!-- First we generate a vector y whose components are i.i.d.

!random variables with zero mean and unit variance.

do k1 = 1,2*n

y(k1) = real(GasDev(0.0_8,1.0_8))

end do

!-- Now we generate a vector x which is a random deviate of the

!multivariate measure with mean mu and covariance matrix sigma

x = 0.0

do k1 = 1,2*n

do k2 = 1,k1

x(k1) = x(k1) + sigma(k1,k2)*y(k2)

end do

end do

x = x + mu

emme=0

do p=1,n

if ((x(p)<0) .OR. (x(p)>elle)) then

emme=emme+1

end if

end do

if (emme>=1) cycle

i=i+1

f_new= 0.0

do l=1,n-1

f_new = f_new + x(l)*x(l+1)**2-x(l)**2*x(l+1)

end do
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f_new2 = f_new2 + 2.718**(beta*k3*f_new)

f=f+x*2.718**(beta*k3*f_new)

f2 = f2+x**2

end do

f = f/real(enne)

f_new2 = f_new2/real(enne)

f2 = f2/real(enne)

! print the observables <x>, <x^2>, and <v>

! observable <x>

do l=1,n-1

write (4,*) l, (f(l+1)-f(l))/f_new2

end do

! observable <v>

do l=n+1, 2*n

write (5,*) l, f(l)/f_new2

end do

! observable <x^2>

do l=1,n

write (7,*) l, f2(l)/f_new2

end do

! variance of <x>

do l=1,n

write (8,*) l, f2(l)/f_new2-(f(l)/f_new2)**2

end do

close(1)

close(2)

close(3)

close(4)

close(5)

close(7)

close(8)



128 APPENDIX B. NUMERICAL CODES

end program main

Subroutine Cholesky(A,n)

Implicit None

Integer, Intent(In) :: n ! dimension of the matrix (for us 2N)

Real(8), Intent(InOut) :: A(n,n) ! matrix to be decomposed

Integer :: i,j

Do j = 1,n

!-- perform diagonal component

A(j,j) = sqrt(A(j,j) - dot_product(A(j,1:j-1),A(j,1:j-1)))

!-- perform off-diagonal component

If (j < n) Then

A(j+1:n,j) = (A(j+1:n,j) - matmul(A(j+1:n,1:j-1),A(j,1:j-1)))/A(j,j)

End If

End Do

Do i = 1,n

Do j = 1,n

If (j > i) A(i,j) = 0.0

End Do

End Do

End Subroutine Cholesky
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1. Introduction

Statistical Mechanics provides a mathematical formal-
ism to bridge different scales of investigation of natural
phenomena: (a) the microscopic scale, concerning the sta-
tistical or collective behaviour of large assemblies of atoms
and molecules, approached e.g. in terms of statistical
ensembles; (b) the mesoscopic scale, commonly described
by the Boltzmann equation and its variations, or by more
general and abstract stochastic processes; (c) and the mac-
roscopic level, by and large the realm of fluid dynamics and
Irreversible Thermodynamics which consider matter as a
continuum.

Equilibrium phenomena have been investigated and
understood much more thoroughly than non-equilibrium
ones. At present, the theory may be considered complete,
for what concerns the microscopic foundations of equilib-
rium thermodynamics, including the theory of phase transi-
tions and critical phenomena. Differently, in spite of its
celebrated history and of the countless and deep results
obtained so far, Statistical Mechanics has not produced yet
a comprehensive theoretical framework for non-equilibrium
phenomena. These, indeed, are much more numerous,
diverse and complex than equilibrium phenomena.

Nevertheless, problems posed, in particular, by the
modern bio- and nano-technologies, have turned the
attention of a large fraction of the Statistical Mechanics
community towards the non-equilibrium phenomena. This
has been possible also thanks to the progress of dynamical
systems theory, which becomes necessary when the classi-
cal hypotheses of local equilibrium or kinetic theory [1]
fail, as well as in describing macroscopic chaotic phenom-
ena such as those of turbulence.1 Indeed, in equilibrium
there is no need to deal with the microscopic dynamics
equations of motion, because the classical ensembles have
been proven by experience to accurately capture the statis-
tics for the macroscopic quantities and their fluctuations. On
the contrary, the classical ensembles do not properly de-
scribe systems which are not in equilibrium, in which finite
size effects and the persistence of space and time correla-
tions may play a crucial role. Therefore, new hypotheses
and novel approaches are required to describe these
systems; in particular, understanding the dynamics of the
microscopic constituents seems to be unavoidable to shed
light even on the properties of stationary states.

As a matter of fact, the study of the macroscopic dynamics
of dissipative particle systems, such as those of nonequilibri-
um molecular dynamics, has produced a number of results of
direct interest in nonequilibrium statistical mechanics,
including relations between transport coefficients and
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Lyapunov exponents, which are presently part of a rather sat-
isfactory theory of nonequilibrium liquids.

Twenty years ago, the first fluctuation relation for
reversible deterministic dynamics was proposed, and
remains one of the few exact and microscopic results for
nonequilibrium systems. This led to new response formu-
lae, which generalize the classical response theory to states
far from the equilibrium, and to large perturbations of
interest, e.g. in climate studies. Interestingly, various re-
sults obtained within the deterministic framework coincide
with those obtained within the stochastic framework,
which is reassuring, because in many situations the two
frameworks aim at describing the same phenomenon.

Investigations of Fourier’s law of heat conduction have
continued along these dynamical lines since the early days
of molecular dynamics and the Fermi–Pasta–Ulam
problem, and today they have gained momentum thanks
to the discovery of anomalies in the transport of matter,
energy, charge etc. at the nanometric scales, which is of
interest to bio- and nano-technology.

Dynamics and stochastics together may thus advance
our understanding of the fundamental principles which
are believed to be common to the incredibly wide spec-
trum of nonequilibrium phenomena, which ranges from
microscopic to macroscopic scales and includes hydrody-
namics and turbulence, biology, atmospheric physics,
granular matter, nanotechnology, etc.

The wealth of techniques developed to tackle the prob-
lems of nonequilibrium physics can also be considered as a
theoretical playground for many questions of foundational
nature, such as determinism, chaos and randomness, or
emergence and complexity, which find in the problem of
irreversibility one of their earliest examples.

In this paper, we provide a review of some of the
cornerstones of nonequilibrium Statistical Mechanics in
order to clarify the corresponding physical mechanisms.
This work is structured as follows.

In Section 2 we analyze the evolution of probability dis-
tributions, through the prism of Dynamical Systems theory.

In Section 3, we address the theory of linear response,
whose origin can be traced back to the pioneering work
of Kubo [2].

Section 4 focuses on the Onsager–Machlup theory,
which concerns the regime of small fluctuations around
equilibrium.

In Section 5, we review the theory of Fluctuation
Relations.

Section 6 is devoted to the analysis of the t-mixing
condition.

Section 7 presents some results concerning the use of
large deviations techniques in stochastic diffusion
processes.

Conclusions are drawn in Section 8.

2. Evolution of probability distributions

This section recalls basic notions of dynamical systems
theory, introducing our notation. Consider a dynamical sys-
tem defined by an evolution equation on a phase spaceM:

_C ¼ FðCÞ; C 2 M ð1Þ

whose trajectories for each initial condition C are given by
fStCgt2R, where St is the operator that moves C to its posi-
tion after a time t (e.g. S0C ¼ C). We will consider time
reversal invariant dynamics, i.e. dynamics obeying

IStC ¼ S�t IC; 8C 2 M ð2Þ

holds, where the linear operator I :M!M is an involu-
tion (I2 ¼identity) representing a time reversal operation2.
Furthermore, we will consider evolutions such that fStgt2R
satisfies the group property StSs ¼ Stþs. The time averages
of a phase variable / :M! R, along a trajectory starting
at C, will be denoted by:

/ðCÞ ¼ lim
t!1

1
t

Z t

0
/ SsC
� �

ds ð3Þ

If the dynamics represents a thermodynamic system, in
which C is a single microscopic phase, the time average
should not depend on this phase, and could be obtained
as a phase space average, with respect to a given probabil-
ity distribution l3:

/ðCÞ ¼
Z
M

/ðXÞdlðXÞ ¼ h/il; for l-almost every C 2M

ð4Þ

This is the case if the dynamical system ðS;M;lÞ is ergodic
(cf. Section 2.1), which is a very strong property, not
verified by most of the systems of physical interest. It
can be however safely assumed to hold very often, because
physics is often concerned with a small set of observables
and with systems made of exceedingly large numbers of
particles, c.f. [3].

Once M is endowed with a probability distribution
l0;l0ðMÞ ¼ 1 and l0ðEÞP 0 for all allowed events
E �M, the dynamics in M may be used to induce an
evolution in the space of probabilities. One may assume
that the subsets of the phase space have a certain probabil-
ity, which they carry along where the dynamics moves
them. As a consequence, the probability distribution on
M changes in time, and one may introduce a set of distri-
butions fltgt2R as follows:

ltðEÞ ¼
Z

E
dlt ¼

Z
S�t E

dl0 ¼ l0ðS
�tEÞ ð5Þ

where S�tE is the preimage of E an earlier time t. This
equation simply means that the probability of S�tE at the
initial time, is assumed to pertain to E at time t. With this
definition, probability is conserved in phase space and in
general4 it flows like a compressible fluid. Taking much care,
the evolution of the probability distributions may be used to
define an evolution of the observables, introducing

h/it ¼
Z
M

/dlt ð6Þ

2 For instance, in simple cases one may take C ¼ ðq;pÞ, and
Iðq;pÞ ¼ ðq;�pÞ.

3 Mathematically this condition is verified if the C 2 M that yield
different values for /ðCÞ constitute a set of vanishing probability. This is a
sufficient, not necessary, condition.

4 In case of Hamiltonian dynamics, probabilities flow like incompressible
fluids.
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Under certain conditions, the mean values of the phase
functions completely characterize the system, therefore
one often refers to lt as to the state of the system at time
t, which is to be distinguished from the microscopical
phase C 2 M. A probability measure l is called invariant
if lðEÞ ¼ lðS�tEÞ for all t and all measurable sets E.

At times lt has a density ft , i.e. dltðCÞ ¼ ftðCÞdC. In that
case, the evolution of lt follows from the evolution of the
normalized non-negative function ft , determined by
Eq. (5). Operating in Eq. (5) the change of coordinates
Y ¼ StX, i.e. X ¼ S�tY , in the last integral of the following
expression

ltðEÞ ¼
Z

E
ftðXÞdX ¼

Z
S�t E

f0ðXÞdX ð7Þ

and:Z
E

ftðXÞdX ¼
Z

E
f0ðYÞJ�tðYÞdY ð8Þ

where J�tðYÞ ¼ jð@S�tX=@XÞjY is the Jacobian of the transfor-
mation. As Eqs. (5)–(8) hold for all allowed subsets of M,
one can write

ftðXÞ ¼ f0ðS�tXÞJ�tðXÞ ð9Þ

For Hamiltonian dynamics, J�tðXÞ ¼ 1, hence ftðXÞ ¼
f0ðS�tXÞ. In general, for the evolution of the observables
one obtains:

h/it ¼
Z
M

/ðCÞftðCÞdC ¼
Z
M

/ðCÞf0ðS�tCÞJ�tðCÞdC ð10Þ

Introducing Y ¼ S�tC in the last integral, so that
dC ¼ JtðYÞdY , one finds:

h/it ¼
Z
M

/ðStYÞf0ðYÞJ�tðStYÞJtðYÞdY ð11Þ

Under suitable smoothness conditions for the dynamics
and M, probability is transported by the phase space
points like the mass of a fluid, whose density f obeys the
formal continuity equation:

@f
@t
¼ �rC � Ffð Þ; df

dt
¼ @f
@t
þrCf � F ¼ �frC � F

¼ �fK ð12Þ
Here K ¼ rC � F, called phase space expansion rate, is the
divergence of the vector field F onM, cf. Eq. (1). Introduc-
ing the total time derivative

d
dt
¼ @

@t
þ F � rC; ð13Þ

Eq. (12) may also be written as

d
dt

ln f ¼ �K ð14Þ

Because the global existence and uniqueness of solutions
of the equations of motion is practically assured for parti-
cle systems of physical interest,5 one may safely assume
that the solutions of the Liouville equation also exist and

can be constructed by means of formal calculations. Various
procedures are available for this purpose. For example, let us
introduce the f-Liouvillean operator L:

L ¼ �i rC � F þ F � rCð Þ; so that
@f
@t
¼ �iLf ð15Þ

and let us express @ft=@t to first order in the time incre-
ment Dt:

@ft

@t
ðCÞ ¼ �i Lftð ÞðCÞ ¼ ftþDtðCÞ � ftðCÞ

Dt
þ O Dtð Þ ð16Þ

It follows that

fDtðCÞ ¼ 1� iLDtð Þf0ðCÞ þ O Dt2� �
ð17Þ

f2DtðCÞ ¼ 1� iLDtð ÞfDtðCÞ þ O Dt2� �
¼

1� iLDtð Þ2f0ðDÞ þ O Dt2� �
ð18Þ

..

.
ð19Þ

fnDtðCÞ ¼ 1� iLDtð Þnf0ðCÞ þ nO Dt2� �
ð20Þ

Taking Dt ¼ t=n, so that D! 0 and nO Dt2
� �

! 0 as n!1,
one obtains:

ftðCÞ ¼ lim
n!1

1� itL
n

� �n

f0ðCÞ ¼
X1
n¼0

�itLð Þn

n!
f0ðCÞ

� e�itLf0ðCÞ ð21Þ

The question is now to connect Eq. (21) with Eq. (9). One
can write

Y ¼ StX ¼ St=n St=n � � � St=n Xð Þ � � �
� �� �

ð22Þ

Hence, the chain rule yields

@Y
@X

����
Xi

¼ @St=nX
@X

�����
Xn�1

0
@

1
A @St=nX

@X

�����
Xn�2

0
@

1
A � � � @St=nX

@X

�����
X0

0
@

1
A ð23Þ

where Xj ¼ Sjt=nX0, and X0 is the initial point of a trajectory.
One can expand to first order each derivative in brackets as
follows:

@ St=nX
� �
@X

������
Xj

¼ @

@X
X þ FDt þ OðDt2Þ
� �����

Xj

ð24Þ

and further

@ St=nX
� �
@X

������
Xj

¼ 1þ @F
@X

����
Xj

DtþO Dt2
� �

¼ e
@F
@XjXj

Dt
þO Dt2

� �
ð25Þ

1 being the identity matrix. Substituting Eq. (25) in Eq.
(23), and noting that the exponential operators do not
commute in general, the n!1 limit leads to a so-called
left ordered exponential, which can also be expressed as a
Dyson series:

e
R t

0
TðSsXÞds

L ¼1þ
Z t

0
dt1TðSt1 XÞþ

Z t

0
dt1

Z t1

0
dt2TðSt1 XÞTðSt2 XÞ

þ
Z t

0
dt1

Z t1

0
dt2

Z t2

0
dt3TðSt1 XÞTðSt2 XÞTðSt3 XÞþ���

where the time dependent matrix

5 Global solution means that particles do no cease to exist after a while;
Uniqueness implies that the same particles do not exist at once along
distinct trajectories. If these properties are violated, the model under
investigation must be discarded.
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TðSsXÞ ¼ @F
@X

����
SsX

ð26Þ

is the Jacobian matrix of F computed at the point SsX. Con-
sidering that the identity detðeLÞ ¼ expðTrLÞ holds for left
ordered exponentials as well, one obtains:

det e
R t

0
TðSsXÞds

L

 !
¼ exp

Z t

0
rC � F SsX

� �
ds

	 


¼
Z t

0
K SsX
� �

ds ð27Þ

Which implies that:

JtðXÞ ¼ e
R t

0
KðSuXÞdu ¼ e

R 0

�t
KðStþsXÞds ¼ 1

J�t StX
� � ¼ 1

J�t Yð Þ
ð28Þ

where we have taken u ¼ t þ s in the second integral. Eq.
(28) is obvious for compressible fluids: a fluid element
about X varies in a time t by a factor which is the inverse
of the variation of the fluid element about Y, when tracing
backwards its trajectory. Consequently J�tðStXÞJtðXÞ ¼ 1,
and Eq. (9) may be rewritten as:

ftðXÞ ¼ f0ðS�tXÞe�
R 0

�t
KðSsXÞds ð29Þ

while Eq. (11) takes the interesting form

h/it ¼
Z
M

/ � St� �
ðXÞf0ðXÞdX ¼ h/ � Sti0 ð30Þ

2.1. Ergodicity and mixing

Let l be one invariant probability distribution and / an
integrable phase function. The following statements are
equivalent:

E1. /ðCÞ ¼ h/il, except for a set of vanishing l
probability;

E2. except for a set of vanishing l probability, sEðCÞ ¼
lðEÞ, where E �M is a l-measurable set and

sEðCÞ¼ lim
t!1

1
t

Z t

0
vE SsC
� �

ds; with vE Cð Þ¼
1 if C2E

0 else

	
ð31Þ

is the mean time in E;
E3. let / be l-integrable and let / be a constant of

motion (i.e./ðStCÞ ¼ /ðCÞ for all t and all C). Then
/ðCÞ ¼ C l-almost everywhere, for a given C 2 R;

E4. the dynamical system ðS;M;lÞ is metrically inde-
composable, i.e. given the invariant set E (which
means S�tE ¼ E), either lðEÞ ¼ 0 or lðEÞ ¼ 1.

We call ergodic the dynamical systems that verify these
statements. This is a very strong property because / can be
any integrable function. Physics concerns, instead, only a
few phase variables that are physically relevant.

The following statements are equivalent too:

M1. For every pair of measurable sets D; E �M one has:

lim
t!1

l S�tD \ E
� �

¼ lðDÞlðEÞ ð32Þ

M2. for all /;w 2 L2ðM;lÞ the following holds:

lim
t!1
h / � St� �

wil ¼ h/ilhwil ð33Þ

We call mixing the dynamical systems that verify these
two statements. Mixing is an even stronger property than
ergodicity, in the sense that mixing systems are also ergo-
dic, whereas not all ergodic systems are mixing.

For dynamics, which are mixing with respect to a prob-
ability measure with density h, dl ¼ hdC say, one can
prove that an initial state characterized by a probability
density f0 eventually converges to the state of density h.
To prove that, consider the phase functions / and w, for
which one can write:

lim
t!1
hð/ � StÞ � wih ¼ lim

t!1
h/ � Stihhwih ¼ hwih

Z
dC/ðStCÞhðCÞ

¼ hwih
Z

dC/ðCÞS�thðCÞ ¼ hwihh/ih

where the superscript ⁄ denotes the distribution function
propagator for a period time t. Then, for a time dependent
probability distribution ft which vanishes at least where h
does, let us introduce Rt ¼ ft=h:Z

RtðCÞhðCÞdC ¼
Z

ftðCÞdC ¼ 1;

Z
1

RtðCÞ
ftðCÞdC

¼
Z

hðCÞdC ¼ 1 ð34Þ

for all times t, and we obtain:

h/it ¼
Z

/ðCÞftðCÞdC ¼
Z

/ðCÞRtðCÞhðCÞdC

¼ h/ � Rtih ð35Þ

We can also write, by definition:

h/it ¼
Z

/ðCÞftðCÞdC ¼
Z

/ðStCÞf0ðCÞdC

¼
Z

/ðStCÞR0ðCÞhðCÞdC ð36Þ

from which, the mixing condition produces the conver-
gence to the steady state of density h:

lim
t!1
h/it ¼

Z
/ðStCÞR0ðCÞhðCÞdC ¼ h / � St� �

R0ih

! h/ihhR0ih ¼ h/ih ð37Þ

In other words, probability densities for finite systems, if
they are both stationary and mixing, are attractors in the
space of probability densities.

However, this proof of convergence to a mixing station-
ary state is deceitfully simple. Although it is a very strong
property, in general mixing does not suffice to prove con-
vergence to a steady state, because it amounts to the decay
in time of the microscopic correlations within already sta-
tionary macroscopic states and not to the decorrelation of
the initial state from the final state.

3. Linear response

Let us address the response of a given system to exter-
nal actions. As an example, consider a system of N particles
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in contact with a thermal bath at inverse temperature b,
described by the following Hamiltonian:

HðCÞ ¼ H0ðCÞ þ kAðCÞ ð38Þ

where k is a small parameter and A perturbs the canonical
equilibrium:

f0 ¼ expð�bH0Þ
Z

dC expð�bH0Þ
�

ð39Þ

After some time, a new canonical equilibrium is estab-
lished which, to the first order in k, is given by:

f ¼ e�bH0 e�bkAR
dCe�bH0 e�bkA

¼
e�bH0 1� bkAþ Oðb2k2A2Þ

h i
R

dCe�bH0 1� bkAþ Oðb2k2A2Þ
h i ’ f0

1� kbA
1� kbhAi0

’ f0ðCÞ 1� kb AðCÞ � hAi0ð Þ½ � ð40Þ
where, h�i0 denotes averaging with respect to f0. The effect
of the perturbation on a given observable /, is then ex-
pressed by:

h/ik � h/i0 ¼
Z

dC/ðCÞ f ðCÞ � f0ðCÞ½ �

’ �kb h/Ai0 � h/i0hAi0½ � ð41Þ
which is the correlation of the observable / with the per-
turbation A, with respect to the state expressed by f0. Tak-
ing / ¼ A ¼ H0, one obtains an expression for the heat
capacity at constant volume CV , which expresses the re-
sponse of the system to temperature variations. Indeed,
defining CV as

CV ¼
@hH0i0
@T

¼ db
dT

@hH0i0
@b

¼ hH
2
0i0 � hH0i20

kBT2 ð42Þ

Eqs. (41) and (42) yield:

@hH0i
@k

����
k¼0
¼ lim

k!0

hH0ik � hH0i0
k

¼ �b hH2
0i0 � hH0i20

h i
¼ �kBT2CV ð43Þ

More in general, consider time dependent perturbations of
form �FðtÞAðCÞ:

HðC; tÞ ¼ H0ðCÞ � FðtÞAðCÞ ð44Þ

and split the corresponding evolution operator in two
parts:s

iL0f ¼ f ;H0f g; iLextðtÞf ¼ �FðtÞ f ;Af g ð45Þ

where f�g are the Poisson brackets. One has iL0f0 ¼ 0,
which means that f0 is invariant for the unperturbed
dynamics. Then, the solution of the Liouville equation

@f
@t
¼ �iðL0 þ LextðtÞÞf ð46Þ

can be expressed by:

ftðCÞ ¼ eitL0 f0ðCÞ � i
Z t

0
dt0e�iðt�t0 ÞL0Lextðt0Þft0 ðCÞ

¼ f0ðCÞ � i
Z t

0
dt0e�iðt�t0ÞL0Lextðt0Þf0ðCÞ

þ higher order in Lext

as proved by inspection. If the deviations from the unper-
turbed system are considered small, the higher orders in
Lext can be omitted. Then Eq. (41) implies:

h/it � h/i0 ’
Z

dC/ðCÞ
Z t

0
dt0e�iðt�t0 ÞL0Fðt0Þ f0;Af g ð47Þ

where

f0;Af g ¼ H0;Af g @f0

@H0
¼ bf0

dA
dt

ð48Þ

Eventually, one obtains:

h/it � h/i0 ’
Z t

0
dt0Rðt � t0ÞFðt0Þ ð49Þ

where RðtÞ is the response function:

RðtÞ ¼ bh _A / � St� �
i0 ¼ b

Z
dCf0ðCÞ

dA
dt
ðCÞeitF0 /ðCÞ ð50Þ

Once again, the macroscopic nonequilibrium behaviour of
a given system has been related solely to the correlations
of microscopic fluctuating quantities, computed with re-
spect to the relevant equilibrium ensemble. An analogous
result comes when considering the frequency dependent
formulation of linear response, cf. e.g. [4], which finds rel-
evant implications in optics and acoustics.

Eq. (49) suggests that even the linear response is in gen-
eral affected by memory effects, hence the Markovian
behaviour appears to be either very special or only approx-
imately valid. This implies, for instance, that all nonequi-
librium fluids have a viscoelastic behaviour. In practice,
however, in normal fluids this behaviour arises only
exceedingly far from equilibrium.

Recently, it has been shown that this approach applies
to the case of perturbation of non equilibrium steady
states, if they are represented by a regular probability den-
sity, as in the presence of noise, cf. Refs. [5,6].

Differently, the invariant phase space probability distri-
bution l of a dissipative system is singular and supported
on a fractal attractor. Consequently, it is not obvious any-
more that the statistical features induced by a perturbation
can be related to the unperturbed statistics. The reason is
that even very small perturbations may lead to micro-
scopic phase whose probability vanishes in the unper-
turbed state. In such a case, the information contained in
l is irrelevant.

Indeed, Ruelle [7] showed that in certain cases6 a per-
turbation dC about a microstate C and its evolution StdC
can be decomposed in two parts, ðStdCÞk and ðStdCÞ?, respec-
tively perpendicular and parallel to the fibres of the
attractor:

StdC ¼ ðStdCÞk þ ðS
tdCÞ?

The first addend can be related to the dynamics on the
attractor, while the second may not.

Later, it has been pointed out [8] that this difficulty
should not concern systems of many interacting particles.
In those cases, rather than the full phase space, one consid-
ers the much lower dimensional projections concerning

6 Concerning certain smooth, uniformly hyperbolic dynamical systems.
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the few physically relevant observables, i.e. the marginals
of singular phase space measures, on spaces of sufficiently
lower dimension, which are usually regular [9,10]. These
facts can be briefly recalled as follows. Ruelle showed that
the effect of a perturbation dFðtÞ ¼ dFkðtÞ þ dF?ðtÞ on the
response of a generic (smooth enough) observable / is
given by:

h/it � h/i0 ¼
Z t

0
Rð/Þk ðt � sÞdFkðsÞdsþ

Z t

0
Rð/Þ? ðt

� sÞdF?ðsÞds ð51Þ

where the subscript 0 denotes averaging with respect to l,
Rð/Þk may be expressed in terms of correlation functions
evaluated with respect to l, while Rð/Þ? depends on the
dynamics along the stable manifold, hence it may not.

Let us adopt the point of view of Ref. [8]. For a d-dimen-
sional dissipative dynamical system consider, for simplic-
ity, an impulsive perturbation C! Cþ dC, such that all
components of dC vanish except one, denoted by dCi. The
probability distribution l is correspondingly shifted by
dC, and turns into a non-invariant distribution l0, whose
evolution lt tends to l in the t !1 limit. For every mea-
surable set E �M;l0ðEÞ equals lðE� dCÞ,7 and ltðEÞ is
computed as explained in Section 2. Taking /ðCÞ ¼ Ci, one
obtains:

hCiit � hCii0 ¼
Z

CidltðCÞ �
Z

CidlðCÞ ð52Þ

Let us now approximate the singular l, coarse grainingM
with an �-partition made of a finite set of d-dimensional
hypercubes Kkð�Þ of side � and centers Ck. The correspond-
ing approximations of l and of lt are given by the proba-
bilities Pkð�Þ and Pt;kð�; dCÞ of the hypercubes Kkð�Þ, where:

Pkð�Þ ¼
Z

Kkð�Þ
dlðCÞ; Pt;kð�Þ ¼

Z
Kkð�Þ

dltðCÞ: ð53Þ

The coarse grained invariant density qðC; �Þ is given by:

qðC; �Þ ¼
X

k

qkðC; �Þ; with qkðC; �Þ ¼ Pkð�Þ=�d if x 2 Kkð�Þ
0 else

(
ð54Þ

If Zi is the number of one-dimensional bins of form
CðqÞi � �=2;CðqÞi þ �=2
h �

; q 2 f1;2; . . . ; Zig, in the i-th direc-
tion, marginalizing the approximate distribution yields
the quantities:

pðqÞi ð�Þ ¼
Z CðqÞ

i
þ�2

CðqÞ
i
��2

Z
qðC; �Þ

Y
j–i

dCj

( )
dCi; ð55Þ

each of which is the invariant probability that the coordi-
nate Ci of C lie in one of the Zi bins. Similarly, one gets
the marginal of the evolving approximate probability:

pðqÞi;t ð�Þ ¼
Z CðqÞ

i
þ�2

CðqÞ
i
��2

Z
qtðC; �Þ

Y
j–i

dCj

( )
dCi; ð56Þ

Dividing by �, one obtains the coarse grained marginal
probability densities qðqÞi ð�Þ and qðqÞt;i ð�Þ, as well as the �-
approximate response function:

BðqÞi ðCi; dC; t; �Þ ¼
1
�

pðqÞt;i ð�Þ � pðqÞi ð�Þ
h i

¼ qðqÞt;i ð�Þ � qðqÞi ð�Þ ð57Þ

Ref. [8] shows that the right hand side of Eq. (57) tends to a
regular function of Ci under the Zi !1; �! 0 limits. Con-
sequently, BðqÞi ðCi; dC; t; �Þ yields an expression similar to
that of standard response theory, in the sense that it de-
pends solely on the unperturbed state, although that is
supported on a fractal set. There are exceptions to this con-
clusion, most notably those discussed by Ruelle. But for
most systems of physical interest, such as systems of many
interacting particles, this is the expected result. The idea is
that the projection procedure makes unnecessary the ex-
plicit calculation of Rð/Þ? in Eq. (51), although Rð/Þ? does not
need to be negligible [11]. Therefore, apart from peculiar
situations, the response may be referred only to the unper-
turbed dynamics, as in the standard theory.

4. Onsager–Machlup: response from small deviations

The classical theory of fluctuations, developed by
Onsager and Machlup [12,13] to quantify the probability
of temporal fluctuations paths, is based on the following
assumptions:

A1. Onsager regression hypothesis: the decay of a
system from a nonequilibrium state produced by a
spontaneous fluctuation, obeys on average the
macroscopic law describing the decay from the same
state produced by a macroscopic constraint that has
been suddenly removed;

A2. the observables are Gaussian random variables
(i.e. the probability density of m values taken at m
consecutive instants of time is an m-dimensional
Gaussian);

A3. the probability density PðCÞ of the microstate C
obeys Boltzmann’s principle:

kB log PðCÞ ¼ SðCÞ þ const ð58Þ

A4. the state StC is statistically independent of the
state St0C for jt � t0j > sd; sd being the decorrelation
time;

A5. the microscopic dynamics is time reversal invariant;
A6. the vector of observables a ¼ ða1; . . . ;anÞ is chosen

so that its evolution is Markovian. This is possible
if n is neither too small nor too large in such a way
that:
– ai represents a macroscopic quantity referring to

a subsystem containing very many particles;
– ai is an algebraic sum of molecular variables, so

that by the Central Limit Theorem its fluctuations
are Gaussians centered on its average (equilib-
rium) value;

– ai must be an even function of the molecular
variables that are odd under time reversal
(microscopic time reversal invariance);

A7. the system is in local thermodynamic equilibrium;
A8. the fluxes _ai depend linearly on the thermodynamic

forces Xi:7 The set E� dC is defined by fC 2M : Cþ dC 2 Eg.
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_ai ¼
Xn

j¼1

LijXj; Xi ¼
Xn

j¼1

Rij _aj; ð59Þ

A9. the process is stationary: i.e. given the times
t1; t2; . . . ; tp and the n-dimensional vectors
að1Þ;að2Þ; . . . ;aðpÞ, the probabilities Fi;p; i ¼ 1; . . . ;n,
that each component of the observable vector is
smaller by value than the corresponding component
of the vector sequence aðkÞ at the corresponding
times tk satisfy:

Fi;p ai 6 aðkÞi ; tk; k ¼ 1; . . . ; p
� �
¼ Fi;p ai 6 aðkÞi ; tk þ s; k ¼ 1; . . . ; p

� �
ð60Þ

for all s and, analogously, the corresponding probability
densities fi;p, satisfy

fi;p ai ¼ aðkÞi ; tk; k ¼ 1; . . . ; p
� �
¼ fi;p ai ¼ aðkÞi ; tk þ s; k ¼ 1; . . . ;p

� �
ð61Þ

where

Fi;p ai6aðkÞi ;tk;k¼1; . . . ;p
� �

¼
Z að1Þ

i

�1
dað1Þi � � �

Z aðpÞ
i

�1
daðpÞi fi;p ai¼aðkÞi ;tk;k¼1; . . . ;p

� �

We thus emphasize that, unless the hypotheses listed
above are fulfilled, the use of the classical response theory
traced by Onsager and Machlup may be misleading, in par-
ticular when dealing with systems pulled out of equilib-
rium. For simplicity, let a be the vector of the deviations
from the equilibrium values. Then, the entropy S is a func-
tion of the observables a, which can be expanded about its
equilibrium value S0 as:

S ¼ S0 �
1
2

Xn

i;j¼1

sijaiaj þ higher order in a ð62Þ

There is no linear term in a because S0 is the maximum of
S. Correspondingly, the thermodynamic forces are ex-
pressed by

Xi ¼
@S
@ai
¼ �

Xn

j¼1

sijaj; i ¼ 1; . . . ; n ð63Þ

which implies

Xn

j¼1

Rij _aj þ sijaj
� 


¼ 0; i ¼ 1; . . . ;n ð64Þ

To compute the evolution of a, let us introduce the
functions

U _a; _b
� �

¼ 1
2

Xn

i;j¼1

Rij _ai
_bj; W X;Yð Þ ¼ 1

2

Xn

i;j¼1

LijXiXj ð65Þ

Which characterize the real evolution only when _a ¼ _b are
the real evolving fluxes and when X ¼ Y are the real ther-
modynamic forces, in which cases we have:
_S ¼ 2U _a; _að Þ ¼ 2W X;Xð Þ ð66Þ
The molecular chaos may be accounted for by a random
perturbation, which turns Eq. (64) into

Xn

j¼1

Rij _aj þ sijaj
� 


¼ �i; h�ii ¼ 0; i ¼ 1; . . . ;n ð67Þ

where �i is a random force which allows different paths
with different probabilities and which does no net work.

Let fi;1 að1Þi ; t1

� �
be the probability density for the ith ob-

servable to take values close to að1Þi at time t1. By assump-

tion A3, fi;1 is independent of t1. Let fi;1 aðkÞi ; tkjaðk�1Þ
i�1 ; tk�1

� �
be the conditional probability density for the ith observa-

ble to take values close to aðkÞi at time tk, given that it

was aðk�1Þ
i�1 at time tk�1. Because of the Markov property

and of A3, one has:

fi;p ai¼aðkÞi ;tk;k¼1; . . . ;p
� �

ð68Þ

¼ fi;1 aðpÞi ;tpjaðp�1Þ
i�1 ;tp�1

� �
� � � fi;1 að2Þi ;t2jað1Þi ; t1

� �
fi;1 að1Þi ;t1

� �
ð69Þ

¼ fi;1 aðpÞi ;tpjaðp�1Þ
i�1 ;tp�1

� �
� � � fi;1 að2Þi ;t2jað1Þi ; t1

� �
eSða

ð1ÞÞ=kB ð70Þ

with two constraints

ðaÞ lim
s!0

fi;1 ai; t1 þ sjað1Þi ; t1

� �
¼ Kd a� að1Þ

� �
ð71Þ

due to the fact that s! 0 is the limit in which a determin-
istically approaches að1Þ, and

ðbÞ lim
s!1

fi;1 ai; t1 þ sjað1Þi ; t1

� �
¼ eSða

ð1ÞÞ=kB ð72Þ

representing the loss of correlations between the time t1

and the time t1 þ s. Solving the Langevin equation (67),
fi;1 ai; t1 þ sjað1Þ1 ; t1

� �
can be explicitly given. Let us now

turn to the case with n ¼ 1:

R _aþ sa ¼ � ð73Þ

this process is described by:

f1 a; t þ ujað0Þ; t
� �

¼
s exp � s a�að0Þe�su=Rð Þ2

2kB 1�e�2su=Rð Þ

	 

ffiffiffiffiffiffiffi
2p
p

kB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2su=R
p ð74Þ

With this information and with Ito’s discretization conven-
tion [12], one eventually obtains:

f1 a; t þ sjað0Þ; t
� �

¼ 1
2kB

� �p sR
pds

� �p=2

	 ð75Þ
Z

dað1Þ � � �
Z

daðpÞ exp � R
4kB

Xp

k¼1

_aðkÞ þ s
R
aðkþ1Þ

h i2
ds

( )
ð76Þ

Under the p!1; ds! 0 limits, with s ¼ pds, the sum in
the exponential tends to the integral along the path:

Z tþs

t

_aðt0Þ þ s
R
aðt0Þ

h i2
dt0 ð77Þ

which must be minimized to maximize the probability.
Analogously, the n-dimensional case requires the minimi-
zation of:

Z tþs

t

Xn

i¼1

_aiðt0Þ þ
si

Ri
aiðt0Þ

� �2

dt0: ð78Þ

Here, the integrand can be expressed as
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L a; _að Þ ¼ 2U _a; _að Þ � 2 _SðaÞ þ 2W XðaÞ;XðaÞð Þ ð79Þ

and the path of minimum integral follows from the
Lagrange equation:

d
dt

@L
@ _a
� @L
@a
¼ 0; which yields Rj €aj �

s2
j

Rj
aj ¼ 0;

j ¼ 1; . . . ;n ð80Þ

These second order differential equations are equivalent to
pairs of first order equations. Indeed, their general solution

ajðtÞ ¼ Cj1e�sjt=Rj þ Cj2esjt=Rj ð81Þ

requires Cj2 ¼ 0 when the t !1 limit is considered–in
which case we have relaxation to equilibrium from a non-
equilibrium initial condition–while it requires Cj1 ¼ 0
when the previous history, beginning with an equilibrium
state at t ¼ �1, is considered. The first case is solution of
the differential equation

_aj þ
sj

Rj
aj ¼ 0 ð82Þ

and the second case corresponds to

_aj �
sj

Rj
aj ¼ 0: ð83Þ

We thus have two evolutions, which are symmetric under
time reversal: one describes the relaxation to equilibrium,
in accord with hydrodynamics; the other treats fluctua-
tions away from equilibrium, and is the first example of
the so-called adjoint hydrodynamics [14]. In the large n
limit, the most probable path becomes the only path of
positive probability and a justification of hydrodynamics
is obtained, starting from a mesoscopic description.

These results are crucially based on the Gaussian distri-
butions, hence they are restricted to small deviations, from
which the linear response about equilibrium states is
derived.

Considering large deviations, this theory has been gen-
eralized to fluctuations about nonequilibrium steady
states, which are not symmetric under time reversal [14].
For dissipative deterministic particle systems, that are time
reversal invariant, it has been shown that similar asymme-
tries may arise, when particles interact [15].

5. Fluctuation Relations: response from large deviations

In 1993, the paper [16] addressed the question of the
fluctuations of the entropy production rate in a pioneering
attempt towards a unified theory of a wide range of non-
equilibrium phenomena. In particular, a Fluctuation Relation
(FR) was there derived and tested. Obtained on purely
dynamical grounds, it constitutes one of the few general
exact results for systems almost arbitrarily far from equilib-
rium, while close to equilibrium it is consistent with the
Green–Kubo and Onsager relations. This FR reads:

Probsðr 
 AÞ
Probsðr 
 �AÞ ¼ esA ð84Þ

where A and �A are average values of the normalized
power dissipated in a long time s in a driven system,

denoted by r and Probsðr 
 �AÞ is the steady state proba-
bility of observing values close to �A.

This relation constitutes a large deviation result: for
large s, any A – hri lies many standard deviations away
from the mean. In other words, A corresponds to a large
(macroscopic) deviation from the macroscopically obser-
vable value hri.

The FR (84) was derived for the following isoenergetic
model of a 2-dimensional shearing fluid:

d
dt qi ¼ pi

m þ cyix̂
d
dt pi ¼ FiðqÞ þ cpðyÞi x̂� athpi

(
ð85Þ

where c is the shear rate in the y direction, x̂ is the unit
vector in the x-direction, and the friction term ath, called
‘‘thermostat’’, takes the form

athðCÞ ¼ �
cXN

i¼1

p2
i

XN

i¼1

pðxÞi pðyÞi ð86Þ

as prescribed by Gauss’ principle of least constraint, in or-
der to keep the internal energy fixed.

This molecular dynamics model was chosen by the
authors of [16] because its phase space expansion rate K
is proportional to ath. Hence a dynamical quantity, could
be related to the energy dissipation rate divided by

P
p2

i .
The FR is parameter-free and, being dynamical in nature,
it applies almost arbitrarily far from equilibrium as well
as to small systems.

Gallavotti and Cohen clearly identified the mathemati-
cal framework within which Ref. [16] had been developed,
introducing the following [17–20]:

Chaotic Hypothesis: A reversible many-particle system
in a stationary state can be regarded as a transitive Anosov
system for the purpose of computing its macroscopic
properties.

Anosov systems can indeed be proven to have probabil-
ity distributions of the kind assumed in [16]. The result is a
steady state FR for the fluctuations of K, which we call K-
FR and which will be described below. As the Anosov prop-
erty practically means a high degree of randomness, anal-
ogous results have been obtained first for finite state space
Markov chains and later for many other stochastic pro-
cesses [21–23]. Stochastic processes are easier to handle
than deterministic dynamics, but ambiguities affect their
observables, except for special cases. The reader is ad-
dressed to the numerous existing review papers, such as
Refs. [24,5,25]. We focus now on some specific results for
deterministic dynamics.

5.1. The Gallavotti–Cohen approach

The idea proposed by Gallavotti and Cohen is that dissi-
pative, reversible, transitive Anosov maps, S :M!M, are
idealizations of nonequilibrium particle systems [18]. That
the system evolves with discrete or continuous time was
thought to be a side issue [18]. The K-FR for Anosov maps
relies on time reversibility and on the fact that these
dynamical systems admit arbitrarily fine Markov partitions
[26]. These are subdivisions of M in cells with disjoint
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interiors and with boundaries forming invariant sets,
which in two dimensions consist of pieces of stable and
unstable manifolds. Gallavotti and Cohen further assumed
that the dynamics is transitive, i.e. that a typical trajectory
explores all regions of M, as finely as one wishes. This
structure justifies the probability (Lyapunov) weights of
Eq. (1) in Ref. [16], from which the K-FR emerges.

Let the dynamics be given by Xkþ1 ¼ SXk and introduce
the phase space expansion rate KðXÞ ¼ log JðXÞ, where J is
the Jacobian determinant of S. The dynamics is called dissi-
pative if hKi < 0, where h:i is the steady state phase space
average. Then, consider the dimensionless phase space
contraction rate es, obtained along a trajectory segment
wX;s with origin at X 2 M and duration s, defined by:

esðXÞ ¼
1

shKi
Xs=2�1

k¼�s=2

KðSkXÞ ð87Þ

Let Ju be the Jacobian determinant of S restricted to the
unstable manifold Vþ, i.e. the product of the asymptotic
separation factors of nearby points, along the directions
in which distances asymptotically grow at an exponential
rate. If the system is Anosov, the probability that
esðXÞ 2 Bp;� � ðp� �; pþ �Þ equals, in the fine Markov parti-
tions and long s limits, with the sum of weights of form

wX;s ¼
Ys=2�1

k¼�s=2

1

JuðSkXÞ
ð88Þ

of the cells containing the points X such that
esðXÞ lies in Bp;�. Then, denoting by psðBp;�Þ the corre-
sponding probability, one can write

psðesðXÞ 2 Bp;�Þ 

1

Ms

X
X:esðXÞ2Bp;�

wX;s ð89Þ

where Ms is a normalization constant. If the support of the
physical measure is M, as in the case of moderate dissipa-
tion [27], time-reversibility and dissipation guarantee that
the range of possible fluctuations includes a symmetric
interval ½�p�; p��, with p� > 0, and one can consider the
ratio

psðBp;�Þ
psðB�p;�Þ




X
X;esðXÞ2Bp;�

wX;s

X
X;esðXÞ2B�p;�

wX;s
; ð90Þ

where each X in the numerator has a counterpart in the
denominator. Denoting by I the involution which replaces
the initial condition of a given trajectory with the initial
condition of the reversed trajectory, time-reversibility
yields:

KðXÞ ¼ �KðIXÞ; wIX;s ¼ w�1
X;s and

wX;s

wIX;s
¼ e�shKip ð91Þ

if esðXÞ ¼ p. Taking small � in Bp;�, the division of each term
in the numerator of (90) by its counterpart in the denom-
inator approximately equals e�shKip, which then equals the
ratio in (90). Therefore, in the limit of small �, infinitely fine
Markov partitions and large s, one obtains the following:

Gallavotti–Cohen Theorem. Let ðM; SÞ be dissipative
and reversible and assume that the chaotic hypothesis holds.
Then, in the s!1 limit, one has

psðBp;�Þ
psðB�p;�Þ

¼ e�shKip ð92Þ

with an error in the argument of the exponential which can be
estimated to be p- and s-independent.

If K can be identified with a physical observable, the
K-FR is a parameter-free statement about the physics of
nonequilibrium systems. Unfortunately, K differs from
the dissipated power in general, [28], hence alternative
approaches have been developed.

5.2. Fluctuation Relations for the Dissipation Function

One different approach from above consists in posing a
different question in order to remain closer to the interest
of physics: if the FR has been observed to hold for the en-
ergy dissipation of a given system, which mechanisms are
responsible for that? To answer this question, various re-
sults have been achieved and others clarified. In particular:

1. transient, or ensemble, FRs have been derived;
2. classes of infinitely many identities have been obtained

to characterize equilibrium and nonequilibrum states;
3. a novel ergodic notion, known as t-mixing, has been

introduced;
4. a quite general response formula has been derived.

These developments began with a paper by Evans and
Searles [29], who proposed the first transient fluctuation
relation for the Dissipation Function X, which is formally
similar to Eq. (84). In states close to equilibrium, X can
be identified with the entropy production rate,
r ¼ JVFext=kBT , where, J is the (intensive) flux due to the
thermodynamic force Fext ;V and T are the volume and
the kinetic temperature, respectively [29,30]. This relation,
called transient X-FR, is obtained under virtually no
hypothesis, except for time reversibility; it is transient
because it concerns non-invariant ensembles of systems,
instead of the steady state. The approach stems from the
belief that the complete knowledge of the invariant
measure implied by the Chaotic Hypothesis is not required
to understand the few properties of physical interest, like
thermodynamic relations do not depend on the details of
the microscopic dynamics [31].

Let M be the phase space of the system at hand, and
Ss :M!M be a reversible evolution corresponding to
_C ¼ FðCÞ. Take a probability measure dl0ðCÞ ¼ f0ðCÞdC
onM, and let the observable O :M! be odd with re-
spect to the time reversal, i.e. OðICÞ ¼ �OðCÞ. Denote its
time averages by

Ot;tþsðCÞ �
1
s
Ot0 ;t0þsðCÞ �

1
s

Z t0þs

t0

OðSsCÞds: ð93Þ

For a density f0 that is even under time reversal
[f0ðICÞ ¼ f0ðCÞ], define the
Dissipation Function:

XðCÞ ¼ � d
dC

ln f0

����
C

� _C�KðCÞ; so that ð94Þ
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Xt;tþsðCÞ ¼
1
s

ln
f0ðStCÞ

f0ðStþsCÞ
�Kt;tþs

" #
ð95Þ

For a compact phase space, the uniform density
f0ðCÞ ¼ 1=jMj implies X ¼ K, which was the case of the
original FR. The existence of the logarithmic term in (94)
is called ergodic consistency, a condition met if f0 > 0 in
all regions visited by all trajectories StC.

For d > 0, let A�d ¼ ð�A� d;�Aþ dÞ, and let EðO 2 ða; bÞÞ
be the set of points C such thatOðCÞ 2 ða; bÞ. Then, we have
EðX0;s 2 A�d Þ ¼ ISsEðX0;s 2 Aþd Þ and:

l0ðEðX0;s 2 Aþd ÞÞ
l0ðEðX0;s 2 A�d ÞÞ

¼
R

EðX0;s2Aþd Þ
f0ðCÞdCR

EðX0;s2Aþd eltaÞ f0ðSsXÞe�K0;sðXÞdX

¼
R

EðX0;s2Aþd Þ
f0ðCÞdCR

EðX0;s2Aþd Þ
e�X0;sðXÞf0ðXÞdX

¼ he�X0;s i�1
X0;s2Aþd

where by h�iX0;s2Aþd
we mean the average computed with

respect to l0 under the condition that X0;s 2 Aþd . This
implies the
Transient X-FR:

l0ðEðX0;s 2 Aþd ÞÞ
l0ðEðX0;s 2 A�d ÞÞ

¼ e½Aþ�ðd;A;sÞ�s; ð96Þ

with j�ðd;A; sÞj 6 d, an error due to the finiteness of d.

Remark.

i. The transient X-FR refers to the non-invariant prob-
ability distribution l0. Time reversibility is basically
the only ingredient of its derivation.

ii. Its similarity with the steady state FR is misleading:
rather than expressing a statistical property of fluc-
tuations of a given system, it expresses a property
of the initial ensemble of macroscopically identical
systems.

iii. In order for X to be the energy dissipation, f0 has to
be properly chosen. For instance, in simple molecu-
lar dynamics models, X is the energy dissipation if
f0 is the equilibrium ensemble dynamics, which is
obtained when the external driving is switched off,
while the thermostats keep acting.

iv. Consequently, the transient X-FR yields a property of
the equilibrium state by means of nonequilibrium
experiments, thus complementing the FDR, which
yields non equilibrium properties from equilibrium
experiments.

The steady state X-FR requires further hypotheses. In
the first place let averaging begin at time t, i.e. consider

l0ðEðXt;tþs 2 Aþd ÞÞ
l0ðEðXt;tþs 2 A�d ÞÞ

: ð97Þ

Taking t̂ ¼ t þ sþ t, the transformation C ¼ ISt̂W inM and
some algebra yield:

l0ðEðXt;tþs 2 Aþd ÞÞ
l0ðEðXt;tþs 2 A�d ÞÞ

¼ hexp �X0;̂t

� �
i�1
Xt;tþs2Aþd

ð98Þ

¼ e½Aþ�ðd;t;A;sÞ�she�X0;t�Xtþs;2tþs i�1
Xt;tþs2Aþ

d

ð99Þ

where j�ðd; t;A; sÞj 6 d. Here, the second line follows from
the first because X0;̂t ¼ X0;t þXt;tþs þXtþs;̂t , with the cen-
tral contribution made approximately equal to A by the
condition Xt;tþs 2 Aþd . Recall that l0ðEÞ ¼ ltðS

tEÞ, where lt

is the evolved probability distribution, with density ft .
Then, taking the logarithm and dividing by s Eq. (99)
produces:

1
s

ln
ltðEðX0;s 2 Aþd ÞÞ
ltðEðX0;s 2 A�d ÞÞ

¼ Aþ �ðd; t;A; sÞ � 1
s

	 lnhe�X0;t�Xtþs;2tþs iXt;tþs2Aþd

� Aþ �ðd; t;A; sÞ
þMðA; d; t; sÞ ð100Þ

because EðX0;sÞ ¼ StEðXt;tþsÞ.
If lt tends to a steady state l1 when t !1, the exact

relation (100) changes from a statement on the ensemble
ft , to a statement on the statistics generated by a single
typical trajectory. In particular one could have the analo-
gous of the K-FR:

Steady State X-FR. For any tolerance � > 0, there is a
sufficiently small d > 0 such that

lim
s!1

1
s

ln
l1ðEðX0;s 2 Aþd ÞÞ
l1ðEðX0;s 2 A�d ÞÞ

¼ Aþ g; with g

2 ð��; �Þ ð101Þ

For this to be the case, one needs some assumption. Indeed,
MðA; d; t; sÞ could diverge with t at fixed s, making Eq. (100)
useless. If on the other hand MðA; d; t; sÞ remains bounded
by a finite MðA; d; sÞ; lims!1MðA; d; sÞ could still exceed �.

The first difficulty is simply solved by the observation
that the divergence of MðA; d; t; sÞ implies that one of the
probabilities on the left hand side of Eq. (100) vanishes,
i.e./ that A or �A are not observable in the steady state. If
no value A is observable, there are no fluctuations in the
steady state and there is no need for a steady state FR.
Therefore, let us assume that A and �A are observable. To
proceed, observe that Eqs. (94) and (95) lead to

fsðCÞ ¼ f0 S�sC
� �

e�K�s;0ðCÞ ¼ f0ðCÞeX�s;0ðCÞ ð102Þ

which implies the following relation:

he�X0;s i0 ¼ 1; for every s 2 : ð103Þ

Suppose now that the X-autocorrelation with respect to f0

decays instantaneously in time, so that one can write:

1 ¼ he�X0;s�Xs;t i0 ¼ he�X0;s i0he�Xs;t i0; ð104Þ

hence

he�Xs;t i0 ¼ 1; for all s and t ð105Þ

under the same condition, the conditional average of Eq.
(100) does not depend on the condition Xt;tþs 2 Aþd , so that:

he�X0;t � e�Xtþs;2tþs iXt;tþs2Aþd
¼ he�X0;t � e�Xtþs;2tþs i0 ¼ 1: ð106Þ
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Then, the logarithmic correction in Eq. (100) identically
vanishes for all t; s, and the steady state X-FR is verified
at all s > 0. This idealized situation does not need to be
realized, but molecular dynamics indicates that the typical
situation is similar to this [32]; for s much larger than a
characteristic time sM , one may write:

he�X0;t � e�Xtþs;2tþs iXt;tþs2Aþd

 ð107Þ


 he�X0;t�tM � e�XtþsþtM ;2tþs iXt;tþs2Aþd
ð108Þ


 he�X0;t�tM � e�XtþsþtM ;2tþs i0 ð109Þ


 he�X0;tþtM i0he�XtþsþtM ;2tþs i0 ¼ Oð1Þ; ð110Þ

with improving accuracy for growing t and s. If these sce-
narios are realized, MðA; d; sÞ vanishes as 1=s for growing s.

The assumption that Eqs. (107)–(110) hold is a kind of
mixing property which, however, refers to non-invariant
probability distributions, differently from the standard no-
tion of mixing.

Various other relations can be obtained following the
same procedure. For instance, for each odd O, any d > 0,
any t and any s the following transient FR holds:

l0ðO0;s 2 Aþd Þ
l0ðO0;s 2 A�d Þ

¼ exp �X0;sð Þ
� ��1

O0;s2Aþd
; ð111Þ

expressed a property of the initial state by means of non-
equilibrium dynamics.

6. t-Mixing and general response theory

Observing that Eq. (30), implies:

he�Xs;t i0 ¼ he�X0;t�s is ð112Þ

Eqs. (107)–(110) appear to be one special case of the fol-
lowing property:

lim
t!1
hw / � St� �

i0 � hwi0h/it
� 


¼ 0 ð113Þ

In the case that w ¼ X, Eq. (113) becomes

lim
t!1
hX / � St� �

i0 ¼ 0 ð114Þ

because X is odd and f0 is even under time reversal, hence
hXi0 ¼ 0.

If the convergence of this limit is faster than Oð1=tÞ, one
further has:Z 1

0
hX / � St� �

i0dt 2 R ð115Þ

a condition which has been called t-mixing.
To obtain the response of observables, starting from an

equilibrium state, we have:

h/it �h/i0 ¼
Z t

0

d
ds
h/isds¼

Z t

0
ds

d
ds

Z
dCfsðCÞ/ðCÞ ð116Þ

Where Eq. (102) yields:

d
ds

Z
dCfsðCÞ/ðCÞ ¼

Z
dCf0ðCÞeX�s;0ðCÞX S�sC

� �
/ðCÞ ð117Þ

Introducing the coordinate change X ¼ S�sC;C ¼ SsX, with
Jacobian determinant j@C=@Xj ¼ expðK0;sðXÞ and observing
that:

X�s;0ðSsXÞ ¼
Z 0

�s
duX SuSsX

� �
¼
Z s

0
dzXðSzXÞ

¼ X0;sðXÞ ð118Þ

so we finally obtain:

d
ds
h/ðCÞis ¼

Z
dX/ SsX

� �
XðXÞeX0;sðXÞeK0;sðXÞf0ðSsXÞ ð119Þ

¼
Z

dXXðXÞ/ SsX
� �

f0ðXÞ ¼ hX / � Ss� �
i0 ð120Þ

which is the integrand of Eq. (115). Therefore, we have the
following Response Formula:

h/it ¼ h/i0 þ
Z t

0
ds
�
X / � Ss� ��

0 ð121Þ

Moreover, if the t-mixing condition holds for /, we get

h/it�!
t!1h/i0 þ

Z 1

0
ds
�
X / � Ss� ��

0 2 R ð122Þ

and the ensemble under investigation converges to what
appears to be a steady state.

One interesting aspect of the relation between standard
mixing and t-mixing is the following. Standard mixing con-
cerns the decay of correlations among the evolving micro-
scopic phases within a given steady state, t-mixing
concerns the decay of correlations among evolving macro-
states. For this reason, the t-mixing property implies the
convergence to a steady state, whereas the mixing prop-
erty in general does not.

Mixing assumes the state to be stationary, making irrel-
evant the issue of relaxation. The derivation of conver-
gence to a microcanonical state, illustrated in Section 2.1,
is thus just a trick. That derivation is possible because
one may formally interpret the evolving transient proba-
bility densities as evolving observables as well. This way
one combines in one mathematical object two physically
very different entities: the ensemble of microscopic phases
and a macroscopic measurable observable.8 This will not be
legitimate under most circumstances. However, even in the
case of t-mixing, the convergence of the steady state has not
been proved in the sense of thermodynamics. Indeed, differ-
ent initial conditions C 2M are allowed by t-mixing to pro-
duce different time averages. The uniqueness of the time
average is currently under investigation.

7. Stochastic diffusions and large deviations

Let us now turn our attention to stochastic dynamics. In
general, the presence of noise allows one to characterize
the steady state dynamics, even in presence of dissipation,
by regular probability densities, thus overcoming the prob-
lem posed e.g. by fractal structures. Hence, one may safely
rely, in this case, on perturbative approaches in the

8 Something similar happens when the equilibrium thermodynamic
entropy of a physical object is expressed by the equilibrium average of the
logarithm of the equilibrium density, which is the Gibbs entropy.
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description of perturbations of a given (possibly dissipa-
tive) reference state. In particular, a detailed analysis of
the response formulae valid for Markovian Langevin-type
stochastic differential equations is presented in Ref. [33],
where Ruelle clarifies the conditions under which the zero
noise limit leads the various terms of the perturbation the-
ory to reproduce theie counterparts in the deterministic
dynamics, cf. Refs. [34,35]. In Ruelle’s case, this is made
possible by the stability of the SRB states under small ran-
dom perturbations [36–38].

A different approach based on the large deviations
method is presented in Refs. [39,40]. Let us focus, for sim-
plicity, on stochastic diffusion processes described by over-
damped Langevin equations, in which one disregards
inertial effects, letting forces to be proportional to veloci-
ties rather than to accelerations [41,42]. These processes
correspond to the high damping limits of the under-
damped (or inertial) stochastic dynamics. Let us start con-
sidering overdamped diffusion processes for x 2 Rn, in the
Itô sense expressed by:

_xt ¼ v � ½FðxtÞ þ Fp
t ðxtÞ� þ r � DðxtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðxtÞ

p
nt; ð123Þ

where nt denotes standard white noise and Fp
t denotes the

perturbation to the reference dynamics. The mobility v and
the diffusion constant D are strictly positive (symmetric)
n	 n-matrices, which, provided the system is in contact
with a thermostat at inverse temperature b > 0, are con-
nected by the Einstein relation v ¼ bD. The force F denotes
the drift of the reference unperturbed dynamics, and can
be expressed as:

F ¼ Fnc �rU; ð124Þ

where Fnc denotes a nonconservative force pulling the ref-
erence dynamics out of equilibrium, while U is the energy
of the system. The Fokker–Planck equation for the time
dependent density ft , related to the diffusion process de-
scribed by (123), reads

@ft

@t
ðxtÞ ¼ �r � jf ; with jf

¼ ½vðF þ Fp
t ÞftðxtÞ �

v
b
rftðxtÞ�; ð125Þ

where jf denotes the probability current [43]. Rather than
attempting a direct solution of Eq. (125), one may tackle
Eq. (123) from the point of view of large deviations theory
[39,44]. The key idea, cf. Refs. [39,46], is to determine the
perturbed probability density through its embedding in
the path-space distribution. That is, given the (random)
paths x ¼ ðxðsÞ; s 2 ½0; t�Þ, one may connect the distribution
P on paths starting from f0 and subjected to the perturba-
tion Fp

t , with the reference distribution Po pertaining to
paths starting from f0 and undergoing the reference
dynamics, via the formula:

PðxÞ ¼ e�AðxÞ PoðxÞ: ð126Þ

The relation (126) defines the action AðxÞ, which is
typically local in space–time and is, thus, similar to the
Hamiltonians or Lagrangians of equilibrium statistical
mechanics, see e.g. [47]. One can also decompose, in terms

of its time symmetric components t and its time antisym-
metric components:

A ¼ ðT � SÞ=2;

where

SðxÞ ¼ AðgxÞ � AðxÞ; T ðxÞ ¼ AðgxÞ þ AðxÞ: ð127Þ

and g is the time reversal operator:

gx ¼ ððpxÞt�s;0 6 s 6 tÞ; ð128Þ

with px equal to x except for flipping any other variable
with negative parity under time reversal. The quantity
SðxÞ, under the assumption of local detailed balance [45],
is the entropy flux triggered by the perturbation and re-
leased into the environment [39]. On the other hand, the
quantity T ðxÞ is referred to, in the literature, as dynamical
activity [41,42], as it measures the reactivity and instability
of a trajectory. Dynamical activity is thus much more con-
cerned with kinetics than with thermodynamics but it al-
lows us to explore response around equilibrium beyond
the linear regime. This shows also that the noise along
in- and outgoing trajectories is crucial for the determina-
tion of state plausibilities [48–50].

A simple calculation yields the following general
expression for the action pertaining to the process de-
scribed by Eq. (123):

AðxÞ ¼ b
2

Z t

0
ds Fp

s � vF þr � ðDFp
s Þ þ

1
2

Fp
s � vFp

s

� �

� b
2

Z t

0
dxs � Fp

s ð129Þ

where the stochastic integral with the � is in the sense of
Stratonovich. From (127) and (129), one can derive the fol-
lowing expressions for SðxÞ and T ðxÞ:

SðxÞ ¼ b
Z t

0
dxs � Fp

s and T ðxÞ ¼ T 1 þ T 2;

with

T 1 ¼ b
Z t

0
ds Fp

s � vF þr � ðDFp
s Þ

� 

and T 2

¼ b
2

Z t

0
dsFp

s � vFp
s :

If the chosen observable / is endowed with an even kine-
matical parity, the following linear response formula can
be thus established [41]:

h/it � h/i0 ’ h/ðxtÞSðxÞi0 ¼ �h/ðx0ÞSðxÞi0

¼ �
Z

dx0f0ðx0Þ/ðx0ÞhSðxÞix0
0 : ð130Þ

The expression (130) looks similar to the response formula
(121) obtained for deterministic systems, with the entropy
flux SðxÞ taking the role of the observable X defined in
Eq. (94).9 The quantity hSix0

0 , in Eq. (130), denotes the
conditional expectation of the entropy flux SðxÞ over ½0; t�

9 This is not surprising and indeed it is common. The fact is that both
derivation are very formal and general and only the evolution operators
and the observables must appear.
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given that the path started from the state x0. Its instanta-
neous flux is defined as [39,46]:

hSix0
0 ¼ b

Z t

0
hwðxsÞix0

0 ds; ð131Þ

where wðxsÞ corresponds to the instantaneous (time-
antisymmetric, random) work made by the perturbation Fp

t .

7.1. Nonequilibrium steady states

By setting Fnc – 0, in Eq. (123), one spoils the time-
reversibility of the reference dynamics. Therefore, given
enough time, the reference dynamics settles on a nonequi-
librium steady state described by an invariant density f0

(usually not known). In the steady state, one can use the
definition of the probability current given in Eq. (125), to
define the information potential I f [40,51] as:

I f ¼ �rðlog f0Þ ¼ ðb=vÞu� bF; ð132Þ

where u � jf =f0 denotes a probability velocity. From Eq.
(132), the large deviations method detailed in Ref. [35]
leads to the following general response function for non-
equilibrium overdamped diffusion processes:

Rðt � sÞ ¼ vh �r � Fp
s ðxsÞ þ I f ðxsÞ � Fp

s ðxsÞ
� 


/ðxtÞi0: ð133Þ

In particular, if the perturbation takes the (time-indepen-
dent) gradient form Fp ¼ rV , an easy calculation yields:

Rðt � sÞ ¼ bh uðxsÞ � rVðxsÞð Þ/ðxtÞi0
� bhLVðxsÞ/ðxtÞi0; ð134Þ

with L ¼ vF � r þ v=br2. Next, by using the adjoint gener-
ator10 L� ¼ L� 2u � r, one can suitably cast Eq. (134) into the
equivalent form [35]:

Rðt � sÞ ¼ �bh uðxsÞ � rVðxsÞð Þ/ðxtÞi0 þ b
d
ds

	h/ðxtÞVðxsÞi0: ð135Þ

It is worth remarking that the function uðxÞ, in (132), is un-
known in general. Nevertheless, Eq. (134) is relevant at a
formal level, because it shows that the response function
can be expressed in terms of a suitable correlation function
computed wrt reference stationary density characterizing
the nonequilibrium steady state.

One also readily notices that Eq. (135) produces the
classical Kubo formula (48) for Fnc ¼ 0 (i.e. u ¼ 0) or when
describing the response in a reference frame moving with
drift velocity u.

8. Concluding remarks

We have summarised some of the main results of
the theory of nonequilibrium systems. We emphasized
the physical questions and mechanisms lying behind the
formalism presenting the various results in their historical
order. Research has, in fact, gradually moved from the

analysis of equilibrium systems to dissipative ones, from
the regime of small fluctuations to large deviations. Along
this challenging route, we also stressed similarity and dif-
ference between the different mathematical frameworks.
In particular we noted the reassuring fact that (micro-
scopic) deterministic dynamics, discussed in Section 6, give
rise to similar linear response formulae as those of the
(mesoscopic) stochastic dynamics, reviewed in Section 7.
The resulting thermodynamic behavior of the observable
under consideration is indeed expected not to depend on
the mathematical framework used in the modelling, as
long as the different frameworks describe the same
phenomena.

We reviewed the main aspects lying behind the
Onsager–Machlup theory: we described the regime of
small fluctuations and also clarified the main mathemati-
cal prerequisites and the physical mechanism underlying
that framework. We also reviewed the theory of Fluctua-
tion Relations, through the prism of the Gallavotti–Cohen
theorem addressing the large deviations properties of the
phase space contraction rate, and of the Evans–Searles re-
sult concerning the symmetry properties of the observable
known as Dissipation Function.

Finally, we discussed the recently introduced t-mixing
condition, which concerns the decay of macroscopic corre-
lations with respect to the initial state, hence the relaxa-
tion to steady states and the response of ensembles of
physical systems.

Thus, although a comprehensive understanding of the
physics of nonequilibrium systems is still missing, we be-
lieve that a unifying framework is gradually emerging.
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ABSTRACT
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1. Introduction

Fluctuations play a fundamental role in statistical mechanics, at
least since Einstein’s work on the Brownian motion,[1] which
introduced the first fluctuation–dissipation relation. This work
was continued for decades by many authors, greatly advancing
our understanding of equilibrium and nonequilibrium phe-
nomena, and culminated with the Green and Kubo theory of
linear response.[2–7]

The terminology ‘Fluctuation Relation’ (FR), became popu-
lar after Evans et al. [8] published a paper on the steady-state
fluctuations of the entropy production rate σ in the isoenergetic
SLLOD model of a 2-dimensional shearing fluid made of N
interacting particles of equal massm:{
q̇i = pi/m + nxγ yi
ṗi = Fi − nxγ pyi − αpi

α = −γPxyV∑N
i=1 p

2
i /m

, i = 1, . . . ,N

(1)

CONTACT L. Rondoni lamberto.rondoni@polito.it

Here γ is the shear rate, nx is the unit vector along the x
direction, Fi is the force exerted by all other particles on particle
i and α is the ergostatting term, obtained from Gauss’ principle
of least constraint, in order to keep the internal energy constant.

In 1994, a relation for fluctuations of σ in transient states
was derived by Evans and Searles [9]. One year later, Gallavotti
and Cohen obtained steady-state relations for the phase space
volumes contraction rate, casting the heuristic ideas proposed
in Ref. [8] within the mathematically rigorous framework of
Anosov dynamical systems.[10]

The FRs comprise one of the few examples of an exact,
general result obtained for nonequilibrium systems to date.
The steady-state FRs describe the fluctuations of observables in
nonequilibrium systems, extending Green–Kubo and Onsager
relations to states that are far from equilibrium,[11–13] they
provide information about nanoscale systems, and are related to
the macroscopic irreversibility that emerges from time reversal
invariant (TRI) dynamics.

© 2016 Informa UK Limited, trading as Taylor & Francis Group
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1136 L. RONDONI AND A. VERDEROSA

Furthermore, while the fluctuation dissipation relations ob-
tain information about nonequilibrium properties of physical
systems by means of equilibrium experiments, the transient
FRs obtain information about equilibrium systems by means
of nonequilibrium experiments, something useful when equi-
librium cannot be hoped for.

For sake of simplicity, given the spaceM of all microscopic
phases (q1, q2, . . . , qN , p1, p2, . . . , pN )of oned-dimensional sys-
tem ofN particles, let us denote by � ∈ M ⊂ Rn and n = 2dN
one such phase, and by

�̇ = G(�), (2)

the equations of motion.1
Equation (1) not only dissipate energy through their ergostat,

they are also TRI. This means there exists one operator i acting
onM that, combinedwith the inversion of the time, leaves these
equations invariant, and such that i2� = i i� = �. Introducing
the time evolution operator, St : M → M, meaning that St�
is the point at time t along a phase space trajectory starting at
(q1 . . . pN ) = �, TRI also amounts to state that

St i� = iS−t �, for all points � ∈ M and all times t ∈ R

(3)
As schematically illustrated in Figure 1, this property allows
us to associate every phase space trajectory segment enjoying
certain properties forward in time, with a conjugate reverse
trajectory enjoying opposite properties in its forward evolu-
tion. Equation (1) are not invariant under the usual operation
i(q, p) = (q,−p); they are invariant under the following oper-
ation [14]:

i(x, y, z, px , py , pz) = (x,−y, z,−px , py ,−pz) (4)

This suffices to associate any trajectory segment with another
one having opposite properties. Thanks to dissipation and TRI
in the isoenergetic SLLOD model, Evans, Cohen and Morriss
proposed and verified the first steady-state FR, which was writ-
ten as:

μ�

μ�∗
= exp

[
Ndτα�,τ

]
(5)

where d is the dimension of space, � and �∗ are conjugate
segments of length τ that occur with probability μ� and μ�∗ in
the steady state and α�,τ is the time average of α along segment
�.2

In the case in which the system represents a macroscopic
object in local thermodynamic equilibrium, α�,τ is proportional
to the average entropy production rate along �, in which case
Equation (5) provides a justification of the second law of ther-
modynamics, within the class of NEMD models. The reason is
that the argument of the exponential contains N , which is very
large for a macroscopic object, as well as the observation time
τ which is also very large in terms of microscopic time units.
Consequently, negative dissipations, possible in a reversible
framework, have a totally negligible probability. Furthermore,
Equation (5) is parameter-free, exact, and quite general. As a
matter of fact, it extends Onsager and Green–Kubo relations
far from equilibrium.[11,13] These are some of the reasons why
Equation (5) became immediately popular.

Figure 1. (Colour online) Represent a point � = (q, p) in phase space M by a
point on a continuous line (position q) together with an arrow (momentum p).
Let the initial point of a phase space trajectory segment be represented by the
lowest point of the segment in the picture together with the arrow pointing to
the right. Suppose the dynamics at hand is TRI, with time reversal operator i such
that i(q, p) = (q,−p). Applying i to the initial � one obtains the same point at
the bottom of the segment, with arrow pointing to the left. Evolving � for a time
t, we obtain the final point of the trajectory segment, St�, which is the highest
point in the segment, with arrow pointing upward. Applying i to this point, we
turn downward the arrow of St�, obtaining iSt�. This is the same as evolving the
point i� backward for a time t: iSt� = S−t i�. The trajectory segment starting at
the point iSt� enjoys for a time t a dissipation opposite to that of the trajectory
segment of duration t starting at �. Both segments proceed forward in time; only
their initial conditions are different. Although the second of these initial conditions
has been constructed using St and i, it remains one point, �′ say, like any other
phase inM.

It was later realised that although fluctuations are not ob-
served at the macroscopic level,3 they are relevant in small
systems, such as nanodevices and bio-physical systems.

The isoenergetic SLLOD system had been chosen by the
authors of [8], because its phase space variation rate,

� = divG (6)

is proportional to α, and α is in turn proportional to the ent-
ropy production rate σ . [14–16] Then, using one expression
for the steady-state probability distribution, obtained in the
theory of Anosov systems,[17] eventually leading to Equation
(5). Later, Equation (5) inspired the Gallavotti–Cohen Chaotic
Hypothesis,[7,10,16] that was meant to justify and generalise
the approach of Ref. [8]:
Chaotic Hypothesis: A reversible N-particle system in a station-
ary state can be regarded as a transitive Anosov system, for the
calculation of its macroscopic properties.

This ambitious programme, explained at length in the liter-
ature, see e.g. the informative book [16], met some difficulties
when applied to systems of physical interest, such as those of
NEMD close to equilibrium, cf. Refs. [6,7,13,18]. Therefore,
an alternative approach based on the theory of transient FR
was developed.[18] Rather than asking which conditions are
sufficient to obtain the steady-state FR for �, one may assume
that the steady-state FR holds for the physical dissipation, be-
cause it is commonly verified, and then one may ask which
conditions are necessarily verified in such a situation.[6] In-
deed, sufficient conditions often entail unnecessary and even
misleading ingredients, that are difficult to disentangle from the
essential ones and that may overshadow the physically relevant
mechanisms. Necessary conditions reveal instead aspects that
are surely present when the phenomenon occurs, fostering our
understanding. The present paper deals with advances made
possible by this approach, whosemain ingredient is the t-mixing
condition.

D
ow

nl
oa

de
d 

by
 [

Sw
in

bu
rn

e 
U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y]

 a
t 2

2:
09

 0
6 

Ju
ly

 2
01

6 

146



MOLECULAR SIMULATION 1137

The t-mixing condition has to be contrasted with the stan-
dardnotion ofmixing, which is a stronger property of dynamical
systems than ergodicity is. These ergodic notions are typically
assumed to hold (ergodic hypothesis), but the way they are
formulated in the present mathematical literature make them
too limited in scope, and not applicable to a sufficiently wide
class of systems of physical interest. At the same time, the
standard ergodic notions are too weak and do not capture
fundamental aspects of physics such as the time scales.[19]
In Appendix 1, we briefly recall the mathematical notions of
ergodicity and mixing, within the scope of the present paper.

This paper is organised as follows. In Section 2, we introduce
the dissipation function 	(0) and we present the derivation of
the transient and steady-state fluctuations, showing that the
steady-state FRs require the new dynamical condition known
as t-mixing. In Section 3, we illustrate the notion of t-mixing
showing its relevance for a totally general and exact response
theory. In Section 4, we use t-mixing in order to cast a new light
on the problem of irreversibility emerging from TRI dynamics.
Section 5 contains our concluding remarks. Appendix 1 recalls
ergodic notions. Appendix 2 shows that the dissipation function
	(0) represents indeed the physical dissipation.

Our main result, that profits from the analysis of Ref. [19],
is that t-mixing implies irreversibility for the vast majority of
phase space evolutions, whether the dynamics are conservative
or dissipative. These kinds of arguments had been previously
developed only for Hamiltonian dynamics.

2. From transient to steady-state FR

In order to identify the minimal ingredients that lead to the
transient as well as to the steady-state FRs, it is most convenient
to work in an abstract dynamical systems framework, in which
two fundamental ingredients of NEMD models are present:
dissipation and TRI. The concrete dynamics that one should
keep in mind for simplicity are the Gaussian and Nosè–Hoover
dynamics,[14,20] in the presence of constant boundary or bulk
drivings. The equations of motion are then autonomous, and
will be concisely written as in Equation (2). In this abstract
settingwewill define the observable	(0), that should be thought
of as the dissipative flux pertaining to the concrete dynamics at
hand, cf. Appendix 2 below.

Let us denote by St� the solution at time t of Equation (2)
with initial condition �, for all times t ∈ R. Let O be a real-
valued function of phase. Performing a measurement of the
macroscopic quantity associated with the microscopic property
O, we obtain the time average of O over an interval [t, t + τ ]
during which the measurement is taken:

Ot,t+τ (�) := 1
τ
Ot,t+τ (�) := 1

τ

∫ t+τ

t
O(Ss�)ds. (7)

This quantity, with notation stressing that it is computed be-
tween the times t and t + τ , depends on the initial phase �.
Indeed, different initial phases result in different time evolu-
tions, hence in different time averages. For fixed t and τ , the
quantityOt,t+τ is just another function of phase.

Let us now endow the phase spaceM with a probability dis-
tributionμ0 of density f0, so that the probability of a phase space

volume element around� can bewritten as dμ0(�) = f0(�)d�.
The density f0 may represent, for instance, an equilibrium state
which, at some stage, is perturbed by dissipative forces. One
may then ask what is the probability that in the initial state O
takes values in the interval (a, b). By definition, this probability is
obtained integrating dμ0 over the set {� ∈ M : O(�) ∈ (a, b)},
denoted byO|(a,b), i.e. over the phases � for whichO(�) lies in
(a, b):

μ0
(
O|(a,b)

) =
∫
O|(a,b)

dμ0(�) =
∫
O|(a,b)

f0(�)d� (8)

Let (A)δ = (A − δ,A + δ). Then, the probability μ0(O0,τ |(A)δ )
that a measurement starting in the state described by f0 yields
within the time interval [0, τ ] a value close to A with tolerance
δ, is expressed by

μ0
(
O0,τ |(A)δ

) =
∫
O0,τ |(A)δ

f0(�)d�.

The probability density f0 and the phase space variation rate
� = div G can be combined to define the phase variable known
as Dissipation Function [6,21]:

	(0)(�) = −G(�) · d
d�

ln f0

∣∣∣∣
�

−�(�) (9)

This requires f0 to be ergodically consistent with the dynamics,
i.e. f0 has to be positive in all regions visited by the phase space
trajectories {St�}t∈R . Although it may look an awkward phase
variable, in the known cases	(0) is the dissipation rate, provided
f0 equals the equilibrium distribution regarding the dynamics
with the dissipative fields set to zero, cf. Appendix 2 and Refs.
[6,18]. Averaging	(0) along the trajectory starting at �, during
the time interval [t, t + τ ] yields:

	
(0)
t,t+τ (�)=

1
τ
	
(0)
t,t+τ = 1

τ
ln

f0(St�)
f0(St+τ�)

−�t,t+τ (�) (10)

2.1. Transient FR

ForourTRIdynamics, letO beoddunder time reversal,O(i�) =
−O(�), and consider the ratio of theμ0-probability thatO0,τ ∈
(− A)δ to the μ0-probability thatO0,τ ∈ (A)δ :

μ0(O0,τ |(−A)δ )

μ0(O0,τ |(A)δ )
=
∫
O0,τ |(−A)δ

f0(�)d�∫
O0,τ |(A)δ f0(�)d�

, (11)

To compute this quantity, which is reminiscent of the FR, ob-
serve that the phases in O0,τ |(−A)δ are those, and only those,
obtained from the points inO0,τ |(A)δ as follows

O0,τ |(−A)δ = iSτ O0,τ |(A)δ . (12)

Therefore, the numerator of Equation (11) can be computed in
terms ofO0,τ |(A)δ , thanks to the coordinate transformation

� = iSτX, whose Jacobian is J =
∣∣∣∣d�dX

∣∣∣∣ = e−�0,τ (X) ,

(13)
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1138 L. RONDONI AND A. VERDEROSA

where �0,τ (X) is the integral of � along the trajectory from X
to SτX. Then,

∫
O0,τ |(−A)δ

f0(�)d� =
∫
O0,τ |(A)δ

f0(iSτX) e−�0,τ (X)dX (14)

In the case that f0 is even under i, as in equilibrium states,
f0(i�) = f0(�), we eventually get:
TransientO-FR:

μ0(O0,τ |(−A)δ )

μ0(O0,τ |(A)δ )
=
∫
O0,τ |(A)δ f0(S

τX)e−�0,τ (X)dX∫
O0,τ |(A)δ f0(�)d�

:=
〈
e−	

(0)
0,τ
〉(0)
O0,τ∈(A)δ

, (15)

Here, the last equality defines the conditional phase space av-
erage of exp ( − 	

(0)
0,t ) with respect to μ0, over the set of initial

conditions such thatOr,s(�) ∈ (A)δ .[6,22]
In the case O = 	(0), which is odd under i if f0 is even, one

obtains the elegant identity:
Transient	-FR:

μ0(	
(0)
0,τ |(−A)δ )

μ0(	
(0)
0,τ |(A)δ )

=
〈
exp

(
−	(0)0,τ

)〉(0)
	
(0)
0,τ∈(A)δ

= e−[A+ε(δ,A,τ)]τ ,

(16)
where the size of the correction term obeys |ε(δ,A, τ)| ≤ δ, be-
cause the conditional average is over the phase space trajectory
segments in which the average of 	(0) lies within a distance δ
from A.

Remarkably, the time-reversal invariance of the dynamics
and of the probability density f0 is the only ingredient of this
derivation.

Note however that these transient relations are conceptually
and also practically very different from the steady-state FRof [8].
Indeed, even for very large τ Equation (16) refers to the initial
state characterised by μ0 and not to the steady-state probability
distribution which, as far as these relations are concerned, does
not even need to exist. In other words, Equations (15) and (16)
are called ‘transient’ because they use nonequilibrium dynamics
to express properties of the initial state and not of the possible
steady state. In this sense they close the circle with the fluctua-
tion dissipation relations; these relations obtain nonequilibrium
properties from equilibrium experiments, while the transient
FRs obtain equilibrium properties from nonequilibrium exper-
iments.

The transient FR differ from the steady-state FR also because
they inherently concern ensembles of objects, or repetitions of
the same experiment starting from different microscopic states
but same macroscopic state. The steady-state FR do not need
to concern ensembles, they can be verified in a single steady-
state experiment, by observing the fluctuations in time of the
observables of interest. Relations such as the Jarzynski equality
lie in the class of transient FR.[7]

Given the dynamics St , different choices of f0 are possible,
hence different dissipation functions 	 and different transient
FRs concerning different observables. For the interval (− δ, δ),

one obtains

μ0(O0,τ |(−δ,δ))
μ0(O0,τ |(−δ,δ))

= 1, hence
〈
e−	

(0)
0,τ
〉(0)
O0,τ∈(−δ,δ)

= 1, (17)

which generalise the so-called nonequilibrium partition
identity.[14] These identities have been used to test the accu-
racy of numerical simulations and to calibrate experimental
equipment.[23]

2.2. Steady-state FR

To obtain the steady-state FRs, consider time averages starting
at time t > 0, rather than at time 0, and consider the ratio

μ0(Ot,t+τ |(−A)δ )

μ0(Ot,t+τ |(A)δ )
=
∫
Ot,t+τ |(−A)δ

f0(�)d�∫
Ot,t+τ |(A)δ f0(�)d�

. (18)

The phases concerning the numerator of Equation (18) are
related to those concerning the denominator: Ot,t+τ |(−A)δ =
iS2t+τOt,t+τ |(A)δ .[18] Therefore, introducing X ∈ M so that
� = iS2t+τX, we obtain∫

Ot,t+τ |(−A)δ

f0(�)d�

=
∫
Ot,t+τ |(A)δ

f0(iS2t+τX)e−�0,2t+τ (X)dX (19)

=
∫
Ot,t+τ |(A)δ

f0(S2t+τX)e−�0,2t+τ (X)dX (20)

=
∫
Ot,t+τ |(A)δ

f0(X)e−	0,2t+τ (X)dX, (21)

thanks to the parity of f0 and to Equation (10). The crucial
difference from the case in which averaging starts at time 0,
is that the coordinate transformation that links Ot,t+τ |(−A)δ
to Ot,t+τ |(A)δ now requires a time longer than the averaging
interval. The result is

μ0(Ot,t+τ |(−A)δ )

μ0(Ot,t+τ |(A)δ )
=
〈
exp

(
−	(0)0,2t+τ

)〉(0)
Ot,t+τ∈(A)δ

(22)

where the right-hand side is the conditional average of exp
(−	(0)0,2t+τ ), over phases � for which Ot,t+τ (�) is close to A.
In the case thatO = 	(0), one obtains:

μ0(	
(0)
t,t+τ |(−A)δ )

μ0(	
(0)
t,t+τ |(A)δ )

=
〈
e−	

(0)
0,t e−	

(0)
t,t+τ e−	

(0)
t+τ ,2t+τ

〉(0)
	
(0)
t,t+τ∈(A)δ

(23)

= e−†A+ε(δ,t,A,τ)‡τ 〈e−	0,t e−	t+τ ,2t+τ 〉(0)
	
(0)
t,t+τ∈(A)δ

(24)

where the second equality follows because	(0)t,t+τ does not differ
more than the accepted tolerance δ fromA. Then, the error term
ε depends in principle on δ, t,A and τ but is smaller than δ.
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MOLECULAR SIMULATION 1139

This result is exact, for all t, τ , δ, and for any A such that
both probabilitiesμ0(	

(0)
t,t+τ |(−A)δ ) andμ0(	

(0)
t,t+τ |(A)δ ) are pos-

itive. Again, the only ingredient in this derivation is the time
reversibility of the dynamics and of f0. Moreover, Equations
(22) and (24) are transient FRs, because they refer to the initial
ensemble μ0 for all t and τ .

We may now use the conservation of probability to replace
the initial distribution μ0 of density f0, with the distribution μt
of density ft , which is produced evolving μ0 for a time t:

μt(StE) = μ0(E) i:e:
∫
StE

ft(X)dX =
∫
E
f0(X)dX (25)

These equalities can be understood as follows. Consider a set
of phases E ⊂ M; in a time t each point � of E moves to
another point, i.e. St�. Consequently, the set E turns the set StE
moreover sets preserve in phase space their probability, like fluid
volumes preserve their mass. The probability is then obtained
integrating the corresponding probability density over each set
of phases, like the mass is the integral of the density over the
relevant volume.

To compute the probability density ft , it suffices to introduce
the coordinate transformation Y = S−tX and the correspond-
ing Jacobian, in the left-hand side integral of Equation (25),
[18]: ∣∣∣∣∂Y∂X

∣∣∣∣ = e−�−t,0(X), ft(X) = f0(S−tX)e−�−t,0(X)

= f0(X)e−	0,−t (X). (26)

Observing that StOt,t+τ |(a,b) = O0,τ |(a,b), one also has:

μ0(Ot,t+τ |(A)δ ) = μt(StOt,t+τ |(A)δ ) = μt(O0,τ |(A)δ ). (27)

and we may eventually rewrite Equation (18) as:

μt(O0,τ |(−A)δ )

μt(O0,τ |(A)δ )
=
〈
exp

(
−	(0)0,2t+τ

) 〉(0)
Ot,t+τ∈(A)δ

(28)

Like Equation (18), Equation (28) is exact and holds for all
values t, τ , δ and for the appropriate values A. Furthermore,
taking	(0) in place ofO, Equation (28) implies:

μt(	
(0)
0,τ |(−A)δ )

μt(	
(0)
0,τ |(A)δ )

= e−τ†A+ε(δ,t,A,τ)‡
〈
e−	

(0)
0,t −	(0)t+τ ,2t+τ

〉(0)
	
(0)
t,t+τ∈(A)δ

(29)
Now, let us assume that the distribution μt converges to a

steady-state distribution μ∞, i.e. that the probability μt(E) of
any set of interest E in M tends to the steady-state probability
μ∞(E), as t → ∞. We may then investigate the t → ∞ limit
of Equation (29), in order to identify the conditions necessary
for the steady-state FR to hold. To do that it is convenient to
rewrite Equation (29) as follows:

1
τ
ln
μt(	

(0)
0,τ |(A)δ )

μt(	
(0)
0,τ |(−A)δ )

= A + ε(δ, t,A, τ)− 1
τ
ln C0(A, δ, t, τ),

(30)

where we have introduced C0, a kind of auto-correlation func-
tion for the observable

Qt(�) := exp
[
−
∫ t

0
	(0)(Su�)du

]
(31)

that is defined by

C0(A, δ, t, τ) :=
〈
e−	

(0)
0,t −	(0)t+τ ,2t+τ

〉(0)
	
(0)
t,t+τ∈(A)δ

=
〈
Qt
(
Qt ◦ St+τ

) 〉(0)
	
(0)
t,t+τ∈(A)δ

(32)

where the composition of Q with the time evolution for a time
t + τ means:(

Qt ◦ St+τ
)
(�) = Qt

(
St+τ�

)
= e−

∫ t
0 	

(0)(SuSt+τ �)du = e−
∫ 2t+τ
t+τ 	(0)(Su�)du

(33)

As we are going to show, C′ is the paramount quantity of
our theory. Its distinguishing feature is that it is computed
with respect to the initial probability distribution μ0, that is
a transient distribution and depends neither on t nor on τ .

To obtain an expression valid in the steady state, the t →
∞ limit has to be taken in Equation (30). To this end, let us
introduce

M0(A, δ, τ) := 1
τ

∣∣∣∣lim sup
t→∞

ln C0(A, δ, τ , t)
∣∣∣∣ , (34)

which is an upper bound for the asymptotic values (as t → ∞ at
fixed A, δ, τ ) of ln C0/τ . IfM0 diverges, one of the probabilities
on the left-hand side of Equation (30) vanishes in the t →
∞ limit, i.e. either A or −A are not observable in the steady
state. If no pair (A,−A) is observable, there are no fluctuations
in the steady state, hence the steady-state FR is of no interest.
Conversely, if the steady-state FR holds, it means that there are
observable pairs (A,−A). We may then write

A − M0(A, δ, τ)− δ ≤ 1
τ
ln
μ∞(	

(0)
0,τ |(A)δ )

μ∞(	
(0)
0,τ |(−A)δ )

≤ A + M0(A, δ, τ)+ δ (35)

If the steady-state FR holds for a value A of 	(0)0,τ , it means that,
given any δ > 0 the τ → ∞ limit of the central expression in
Equation (35) remains within [A − δ,A + δ], see e.g. Ref. [24,
p.418]. This is the case if M0(A, δ, τ) → 0 as τ → ∞, i.e. if
C0 does not grow exponentially fast with τ . Provided the initial
distribution f0 is the proper equilibrium one, we may then say
that A and −A are in the domain of the steady-state 	-FR, i.e.
of a FR for the physical dissipation.

3. t-mixing

Whatkindof condition is the convergence to zeroofM0(A, δ, τ),
when τ → ∞? Let us consider two extreme examples to under-
stand that.
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1140 L. RONDONI AND A. VERDEROSA

(a) Suppose the	(0)-autocorrelation computedwith respect
to the initial distribution decays instantaneously. Then
also the correlations between exponentials of integrals of
	(0) decay instantaneously, and the conditional average
in Equation (29) equals the unconditioned average:

〈
e−	

(0)
0,t −	(0)t+τ ,2t+τ

〉(0)
	
(0)
t,t+τ∈(A)δ

=
〈
e−	

(0)
0,t −	(0)t+τ ,2t+τ

〉(0)
(36)

moreover, this average factorises:

〈
e−	

(0)
0,t −	(0)t+τ ,2t+τ

〉(0)
=
〈
e−	

(0)
0,t
〉(0) 〈

e−	
(0)
t+τ ,2t+τ

〉(0)
(37)

Combining this result with Equation (17) with δ = ∞,
we can write

1 =
〈
e−	

(0)
0,t
〉(0)

=
〈
e−	

(0)
0,s e−	

(0)
s,t
〉(0)

=
〈
e−	

(0)
0,s
〉(0) 〈

e−	
(0)
s,t
〉(0)

,

hence
〈
e−	

(0)
s,t
〉(0) = 1 (38)

for all s and t. Then, ln C0(A, δ, τ , t) = 0 for all t and
τ and the steady-state FR holds without any limit to
be taken. As a matter of fact, an instantaneous decay
of correlations implies immediate convergence to the
steady state.

(b) Take one particle moving in empty space, under the
action of a constant force Fe and a Gaussian isokinetic
thermostat. The equations of motion are:

q̇ = p, ṗ = Fe − Fe · p
p · p p

If the initial momentum p points exactly in the direction
opposite to Fe, e.g. p(0) = −cFe, with c any positive
constant, p is a constant of the motion; analogously,
p(0) = cFe is also a constant of the motion. All other
initial conditions p(0) rapidly turn parallel to Fe keeping
their magnitude. This dynamics has one repelling point,
−cFe, and one attracting point, cFe. The attracting point
cFe is also the unique (stable) steady state; its probability
distribution is the Dirac δ-function δ(p− cFe), and obv-
iously there are no fluctuations in this state. Therefore
the steady-state FR does not hold. This is revealed in
our theory by the fact that not only the correlations with
respect to the initial distribution do not decay in the
t → ∞ limit: C actually grows exponentially fast with t,
because	(0)0,t grows linearly with t.4

The above situations, one in which correlations with respect
to f0 decay instantaneously and the other in which they di-
verge exponentially fast, are clearly peculiar. Numerical simu-
lations on NEMD systems indicate that typically C0 is bounded
for a wide range of A values,[25] therefore the steady-state
	-FR holds quite generally, with a correction of order O(1/τ),
as expected on the grounds of the many numerical as well as
experimental verifications of the steady state	-FR.

Now, the factorisation condition (37) appears to be one
instance of the following property, that we call t-mixing:

lim
t→∞

[〈
O
(
P ◦ St

)〉(0) − 〈O〉(0) 〈P ◦ St
〉(0)] = 0 (39)

In particular, takingO = 	(0), and recalling that 〈	(0)〉(0) = 0,
because	(0) is odd for even f0, Equation (39) becomes:

lim
t→∞

〈
	(0)

(
P ◦ St

)〉(0) = 0 (40)

Let us express the evolution of phase space averages as follows:

〈P〉(t) − 〈P〉(0) =
∫

P(�)
[
ft(�)− f0(�)

]
d�

=
∫ t

0

d
ds

〈P〉(s) ds

=
∫ t

0
ds

d
ds

∫
d�fs(�)P(�) (41)

Using Equation (10), the coordinate transformation � = SsX,
with Jacobian determinant |∂�/∂X| = exp (�0,s(X), and the
fact that	(0)−s,0(S

sX) = 	
(0)
0,s (X) we eventually obtain:

d
ds

〈P〉(s) =
∫

dX 	(0)(X)P
(
SsX

)
f0(X) =

〈
	(0)

(
P ◦ Ss

)〉(0)
(42)

which also implies

d
dt

〈
	(0)

〉(0)
t

∣∣∣∣
t=0

=
〈
	(0) 	(0)

〉(0)
> 0. (43)

Equation (43) requires ft to be non-TRI in the first instants
of its evolution, even if the evolution is dissipation-less, and
converges to a different equilibrium state.

Thanks to Equation (42), the response Equation (41) can be
rewritten as:

〈P〉(t) = 〈P〉(0) +
∫ t

0
ds
〈
	(0)

(
P ◦ Ss

)〉(0)
(44)

This appears to be a fully general response formula, for an
ensemble of identical systems, that start in the equilibrium state
characterised by f0 and then evolve under some perturbation
codified by the evolution operator St . If the decay of ensemble
averages (40) proceeds at a rate faster than O(1/t), Equation
(44) can be considered in the t → ∞ limit:

〈P〉∞ = 〈P〉(0) +
∫ ∞

0
ds
〈
	(0)

(
P ◦ Ss

)〉(0)
(45)

which expresses quite generally the asymptotic response of the
initial ensemble to the driving.

The property that the integral in Equation (45) exists has
recently been called ‘	t-mixing’. Because it derives from a series
of exact calculations without approximations, it is a necessary
and sufficient condition for the response of an ensemble of
systems. Equation (45) is exact, at variance with e.g. Green–
Kubo linear response formula, which is valid ‘only’ to first order
in the perturbation.
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MOLECULAR SIMULATION 1141

4. Irreversibility

In discussing the issue of irreversibility, we start fromanobvious
but important premise: we commonly understand the physical
world in terms of mathematical models. These models embody
the aspects we consider relevant for the phenomena of interest,
and necessarily neglect other aspects.[26,27] Our expectations
are thus quantitatively expressed and can be compared with
empirical data. In this respect, statistical physics has been ext-
remely successful since its very beginnings, thanks to informed
choices that allow us to neglect large fractions of information on
the enormous assemblies of interacting particles that constitute
macroscopic objects.

That understandingmay be fostered by loss of information is
not strange; think e.g. of a movie: its frames pass rapidly before
our eyes, and we are forced to neglect most of the information
contained in them. For instance, we do not ponder at all the
data regarding the pixels of each frame and the digitised sound,
although that is the total information of which the movie is
made. Nonetheless, deciding what is useful and what is to be
neglected is far from obvious; in general, only experience can
ultimately confirm or refute our assumptions. This endeavour
is therefore particularly delicate when investigating aspects of
the physical world that had not been considered before.

One should therefore bear in mind that all models are just
that: theyhave a given rangeof applicability, delimitedby certain
space and time scales, because theyhave beendevised todescribe
certain aspects of a given phenomenon and not others. This
is true also for the microscopic dynamics that can be used to
represent the atomic/molecular level of macroscopic systems,
whose irreversibility is a well-established fact. In particular, the
microscopic dynamics we commonly use have been successful
in describing countless phenomena, but they could nevertheless
be inappropriate to explain irreversibility.

As a matter of fact, almost any microscopic hypothesis
implying macroscopic irreversibility is going to be consistent
with observations, hence it is hard to experimentally select the
correct one.[28,29]Classical examples of this are the equivalence
of different formulations of quantum mechanics or of classical
mechanics, such as Newton and Hertz mechanics. One may
also recall the discussion on whether diffusion (arguably the
simplest of irreversible phenomena) require microscopic chaos,
in the sense of positive Lyapunov exponents.[30]

For these and many other reasons, irreversibility could be a
physically irrelevant or ill-posed problem. Indeed, many doubts
can be raised even about the most convincing explanations.
[31–33]

The question remains intriguing because, as far as we know,
the destiny of all whatwe see aroundus is essentially irreversible,
hence a number of explanations of irreversibility have been
proposed. In statistical physics, twomain approaches have been
developed [33]:

Our choice of strategy boils down to either assuming temporally
asymmetric boundary conditions or of adding (or changing to) time
reversal noninvariant laws of nature that make entropy increase
likely. Many approaches to this problem have thought to avoid this
dilemma, but a little analysis of any proposed third way arguably
proves this to be false.

We may conclude that the only sensible as well as safe state-
ments that can be made on irreversibility concern the models

at hand, i.e. models successful in answering certain questions,
and capable of certain predictions, but whose applicability to the
problem of irreversibility is still debatable. Among the models
that are available, we find Hamiltonian particle systems rela-
tively convincing for isolated systems, and we consider NEMD
models suitable in the case of coupling with an external envi-
ronment causing dissipation. In both cases, TRI holds.

4.1. Irreversible relaxation to equilibrium: the standard
picture

Here we recall the approach based on Hamiltonian mechanics,
meant to explain the irreversible convergence to equilibrium
of an isolated system. The common example considered in this
case is that of the expansion of a gas initially confined in one half
of a container, or of the mixing of two liquids that are initially
separated.

In this framework, irreversibility is justified by a combi-
natorial calculation, envisaged by Boltzmann and polished by
subsequent authors, that profits from the enormous number of
microscopic constituents ofmacroscopic objects. The reasoning
tells that equilibrium states are so much more numerous than
other states, that for a systemevolving spontaneously through all
kinds of states it is practically impossible to avoid equilibrium,
except for rare and exceedingly short events.

Consider a discrete system with a finite number of states.
For instance let a state be represented by a string of N symbols
X(N) = (s1, s2, . . . , sN ), each of which is drawn from a set A =
{α1,α2, . . . ,αL}. We may think of N as the number of particles,
si as the state of particle i, e.g. its velocity, and X(N) as one
microscopic phase of the system. The empirical distribution of
the symbols in a given string may be viewed as one macrostate:

ν
(
X(N)

)
= {ν1, ν2, . . . , νL}

where νj is the frequency of symbol αj in X(N). Depending
on how many particles have certain velocities, the total kinetic
energy takes a certain value. Different arrangements of particles
lead to the same macrostate ν, and we may count how many
such arrangements have same ν. Denote by

M(ν) = {X(N),ν1 ,X(N),ν2 , . . . ,X(N),νn }

the set of strings ofN symbols with same empirical distribution
ν. For instance, taking A = {a, b} and N = 3, the set of all
possible phases contains 8 strings,

M = {aaa, aab, aba, baa, abb, bab, bba, bbb} ,

the possible macrostates are 4:

ν(aaa) = {1, 0} , ν(bbb) = {0, 1}
ν(aab) = ν(aba) = ν(baa) =

{
2
3
,
1
3

}
,

ν(abb) = ν(bab) = ν(bba) =
{
1
3
,
2
3

}
,

two of which are given by a single arrangement, while the other
two are each given in three different ways. One can show that
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1142 L. RONDONI AND A. VERDEROSA

the number of different macrostates is not larger than (N +
1)L, while the number of microstates equals LN . Moreover, for
sufficiently large N , the number of strings corresponding to a
given empirical distribution ν is approximated by

W(ν) = eNH(ν), with H(ν) = −
L∑

j=1

νj ln νj

Then, largeN implies that themacrostate ν̃ corresponding to the
largest number of strings W̃ contains by far the largest fraction
of the total set of microscopic phases of M, and dynamics
jumping without constraints from string to string are bound
to spend most of their time in ν̃.5

These conclusions merely follow from countingmicroscopic
phases. The above reasoningmakes no reference to assumptions
on the microscopic dynamics or on notions from probability
theory. It simply states that it must be hard to avoid equilibrium
states.

There is now a technical gap to overcome. The dynamics of
particles occur in continuous time in a continuous space, rather
than in discrete time and discrete space. This issue is usually
overlooked, and counting of states is in this case replaced by
comparing volumes in phase space. If a certain macrostate, e.g.
a given distribution of mass, corresponds to a larger portion of
phase space than another mass distribution, the first is consid-
ered realisable inmore ways than the second. This approach has
been criticised, but it is supported by some argument,[34] and
in absence of better recipes it is commonly accepted.

Under these premises, the issue of irreversibility can be il-
lustrated as in Figure 2. The phase space M of a system of
N particles can be subdivided in regions that correspond to
different values of a certain macroscopic observable F, with a
tolerance j corresponding to the resolution of the measurement
tools. The microscopic phases evolve drawing a line in M. If
N is small, various values of F occupy large regions of M and
are observed with comparable frequency. If N is large by far
the largest portion of M is occupied by the phases which we
consider the equilibrium state. Observable fluctuations of F are
rare and evanescent. Therefore, if the system starts, thanks to the
experimentalist, in a region different from the equilibrium re-
gion, it rapidly reaches equilibrium and there it irreversibly sits.
ForN of orderO(1023), the fluctuations are so ridiculously rare
that do not occur in the estimated lifetime of our universe,[35]
cf. Figure 2. If the number of particles freely moving in a billiard
table is 2, one cannot guess which picture has been taken first,
Figure 3(a); but even for amoderately large numbers of particles
the situation is immediately clear.

This is considered by many such an exceedingly simple and
compelling argument, that they find incredible that the debate
is still going on [35,36].

These qualitative results are rigorously formalised in the
kinetic theory of rarefied gases, and go hand in hand with
Khinchin’s justificationof the ergodichypothesis.[37]Asdemon-
strated numerically by Fermi, Pasta, Tsingou and Ulam and
mathematically realised by Kolmogorov, Arnold and Moser,
generically a Hamiltonian system is not ergodic. The ergodic
hypothesis may nevertheless be adopted because physics con-
cerns a few special observables, and because it deals with sys-

tems with very large N . The fact is that the fluctuations of the
relevant observables are negligible; hence averaging these prac-
tically constant functions in time or in phase space necessarily
yield indistinguishable results.More precisely, consider rarefied
gases for which the Hamiltonian is approximately a sum of
molecular contributions H = ∑N

n=1Hn(qn, pn), and introduce
observables that can also be decomposed as sums of molecular
contributions, as appropriate in this case for e.g. pressure and
temperature:

F(�) =
N∑
n=1

Fn(qn, pn)

Then, applying the law of large numbers and considering the
microcanonical ensemble, Khinchin obtains the following the-
orem [37]:

Prob
( |F − 〈F〉|

|〈F〉| ≥ K1N−1/4
)

≤ K2N−1/4,

which states that the probability that the relative time average
of F differs more than orderO

(
N−1/4) from its microcanonical

average, vanishes as N−1/4. This is due to the fact that fluctua-
tions become negligible as N grows, because sum variables are
self-averaging.Whether the dynamics are technically ergodic or
not is by and large irrelevant; what matters is the applicability
of the law of large numbers.

There is one difficulty in this framework, if one wants to get
to the root of the irreversible behaviour of all objects in the
universe. As illustrated in Figure 2(b), a spontaneous evolution
rapidly converges to the equilibrium state both forward and
backward in time; it suffices to walk back on the line of the time
evolution to see that. In Figure 3(b), if the ordered configuration
of particles is the result of spontaneous evolution, the state
would have been disordered even in the past. From this point of
view, past and future are equivalent and no arrow of time can
be identified.

Past and future are clearly distinguishedonlywhenanonequi-
librium state has been produced by someone or by some mech-
anism acting on a given object. Indeed, the reasons outlined
above imply that a nonequilibrium state does not emerge from
a spontaneous fluctuation: the probability that a spontaneous
fluctuation results in a gas occupying half of a container or in a
footprint on the sand is so ridiculously small that such an event
is not expected to occur in a time such as the lifetime of the uni-
verse. If those phenomena have been observed, they must have
been produced by someone or something. In turn, this someone
or something do not emerge as spontaneous fluctuations; some
other part of the universe must have acted in such a way to
produce them. Eventually, in order to explain the arrow of time
one is forced to consider the universe as a whole, and to assume
that its initial state was very far from equilibrium.[38]6 Can
such a special initial condition of the universe, from which all
irreversibility derives, be justified? For different reasons, various
authors claim that no justification is needed [33,39].

4.2. Concerns about the level of description required by
the Hamiltonian picture

The theory outlined above relies on a relation between phase
space volume and probability: a small fraction of the phase space
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MOLECULAR SIMULATION 1143

(a) (b)

Figure 2. (Colour online) Standard argument for relaxation of a systemmade of many particles described by Hamiltonian dynamics, to an equilibrium state. One assumes
that the dynamics explore without constraints the phase spaceM, and that almost all the volume ofM corresponds to equilibrium. Forward and backward in time, a
phase space trajectory rapidly reaches equilibrium and stays there, apart from negligible deviations. (a) For smallN the phase space is subdivided in regions of comparable
size, in which a given observable F takes different values. Fluctuations of F are large and frequent. (b) large N, most of the phase space is occupied by phases in which F
takes its mean value. Fluctuations are rare and evanescent.

Figure 3. (Colour online) (a) For systems made of a few particles, no notion of disorder and of irreversibility make sense. Temporal sequences of spontaneously evolving
systems cannot be inferred from observations. (b) Even for moderately large numbers of particles, sufficient for a notion of disorder to make sense, one guesses right
away the correct sequence of events, under spontaneous evolution.

volume corresponds to a small probability, but as long as this
volume is positive, the phases it contains will be experienced
with given frequency. In this respect, Lebowitz’s key statement
is [35]: ‘Unless there are reasons to the contrary (such as extra
additive constants of the motion), the latter statement, a mild
form of Boltzmann’s ergodic hypothesis, seems very plausible
for all macroscopic systems’. Here, extra additive constants of
the motion represent just one kind of constraints that prevent
the free exploration of the available phase space.7 Because this
picture is convincing for Hamiltonian dynamics, Lebowitz dis-
missed as unnecessary all other kinds of dynamics, such as those
of NEMD mentioned by Hoover, Posch and Holian in a letter
to the editors of Physics Today [40], motivated by Ref. [35].

These authors maintained that in NEMD stationary states:
The nonequilibrium phase volume is completely negligible relative
to the phase volume of the corresponding Gibbs’s equilibrium en-
semble –that with the same number of particles, same energy and
same volume, but without the nonequilibrium fluxes. The negli-
gible phase volume of the nonequilibrium states results from the
multiplicity of constraints implicit in a steady state.

Lebowitz replied that [40]: ‘So while it is interesting to spec-
ulate on what the world would look like with such dynamics, I
believe it is confusing to bring them into the discussion of the
conceptual problem of macroscopic irreversibility’.

Although the Hamiltonian theory discussed above looks at
present the only one that can treat correctly at least one system
of physical interest, it appears limited in scope and prohibitive
to substantially extend beyond the rarefied gas.8 Therefore,
a different approach may prove beneficial because, as noted
above, everymodel applies to certain phenomena,within certain
space and time scales. In this respect, classical mechanics is
nothing less than amazing; the extent of its applicability in
science and technology cannot be overestimated. Nevertheless,
Laplace daring statement:

The regularity which astronomy shows us in the movements of the
comets doubtless exists also in all phenomena. The curve described
by a simplemolecule of air or vapour is regulated in amanner just as
certain as the planetary orbits; the only difference between them is
that which comes from our ignorance [41, p.6], could be excessive.

Analogously, trust in the Hamiltonian formulation of clas-
sical mechanics could have been exaggerated by the success of
quantum mechanics.

In the end, certain phenomena may be more economically
described by non-Hamiltonian models, without making direct
reference to the fundamental laws of physics.9 In particular, ‘it
is interesting to speculate on what the world would look like
with such dynamics’, because Hamiltonian models force us to
investigate such remote phenomena as the whole universe and
its initial conditions, even when we only want to describe the
most common feature of our daily life: dissipation.

Indeed, in the case of dissipative fields driving a system away
from equilibrium, the observation made by Hoover, Posch and
Holian holds independently of the dynamical model we choose.
For instance, an electric field driving a current does so because
it introduces constraints that limit the possible motions of the
electrons, and fluctuations that are very rare in equilibrium
become the average and typical value. These constraints are
not like constants of the motion; they are much more subtle
and complex. In particular, they are a reason of concern for
the Hamiltonian theory, because, preventing the free motion in
phase space, they frustrate the application of ‘counting’.

One may insist that the problem is that we should consider
the universe as a whole, and not just a part. Nevertheless, it
seems legitimate to hold that the whole universe is way too
cumbersome to handle, compared to an electric current in a
wire, observed within human space and time scales. NEMD
deals much more efficiently with that than a general theory of
the evolution of the universe could possibly do. NEMD might
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1144 L. RONDONI AND A. VERDEROSA

therefore help in clarifying some aspects of irreversibility, even
though it does not start from the fundamental forces of nature.

4.3. t-mixing and single system relaxation: irreversibility

Let us consider TRI dynamics, that may be or not be driven
by a dissipative field. We intend to identify the conditions for
relaxation to equilibrium or nonequilibrium steady states. In
principle, we are not committed to NEMD models, but these
are the ones that we trust in countless applications. As observed
above,	t-mixing, i.e. the existence of the following integral∫ ∞

0
ds
〈
	(0)

(
P ◦ Ss

)〉(0)
(46)

is necessary and sufficient for the relaxation of an ensemble
of systems to a steady state. If the initial ensemble is properly
chosen, relatively to the nonequilibrium dynamics St at hand,
	(0) is the corresponding energy dissipation, but one may also
consider different initial ensembles and correspondingly differ-
ent dissipation functions 	(0). Therefore, t-mixing avoids one
problem of ergodic theory: the fact that ergodic theory concerns
invariant states, hence that it offers limited information about
relaxation of ensembles.

Relaxation in the sense of ensembles, is the standard result
in response theory, although for one macroscopic object one
would need a theory describing the behaviour of that single
object. Ensemble results are commonly accepted under the as-
sumption that ensembles express anyway the behaviour of single
objects. In equilibrium, this view is relatively well justified by
the theory of irreversibility illustrated above, since that theory
guarantees that practically all systems, and not just an abstract
ensemble average behave in the same way.

Nonequilibrium systems are not equally well understood. In
particular, ‘almost all’ for steady-state NEMD models actually
means ‘almost none’, since such steady states attribute probabil-
ity 1 to sets of zero phase space volume. Dissipation amounts, in
this case, to constraints that make typical certain vanishing sub-
volumes of M. Indeed, exceedingly rare current fluctuation in
equilibrium become the most likely currents in the steady state:
‘counting’ does not suffice.

The t-mixing conditionmay perhaps be used in this case. For
any observableO and any integer n, let

EO,δ
n =

{
� : O(�) = lim

T→∞
1
T

∫ T

0
O(St�) dt ∈ [nδ, (n + 1)δ)

}
(47)

be the set of initial phases� ∈ M such that a measurement that
lasts very many microscopic times yields a given value within a
tolerance δ. These sets are disjoint,

EO,δ
n ∩ EO,δ

n′ = ∅, for n �= n′

and, because of the limit, they are invariant for the dynamics:

S−tEO,δ
n = EO,δ

n

i.e. trajectories starting inside one of these sets remain inside
forever; trajectories starting outside, never enter these sets. If

the limit in Equation (47) exists for all�, the sets EO,δ
n coverM:

⋃
n∈Z

EO,δ
n = M, hence μ0

(⋃
n∈Z

EO,δ
n

)
= 1 (48)

This is a relatively delicate assumption: in general, given the
dynamics St , it does not follow that O(�) exists for all �. In
general one can only prove that O(�) exists for almost all �,
meaning with the exception of a set of vanishing steady-state
probability.[42] As mentioned above, this is not the desired
situation, since almost all with respect to a steady-state
distribution could mean a set of vanishing volume inM. From
the point of view of an experimentalist preparing the system
in equilibrium, before subjecting it to dissipative forces, this is
hardly acceptable.

Nevertheless, it is rather common in systems of physical
interest that O(�) exists for almost all � in the sense of phase
space volumes. For instance, various attractors in M, each
characterised by a given time average, may together attract
almost all trajectories.

Therefore, we assume that time averages exist with prob-
ability 1 with respect to μ0. This assumption is weaker than
ergodicity, since it does not require metric transitivity, or the
uniqueness of the steady state. In particular, it is much more
general than the mixing condition, that is often invoked to
justify relaxation, in the sense of ensembles.

Let us now introduce the characteristic function χE of a set
E ⊂ M:

χE(�) =
{
1 if � ∈ E
0 if � /∈ E

Assuming that the characteristic functions χO,◦
n of the sets EO,δ

n
verify t-mixing, we have:

μ0

(
EO,δ
n

)
− μ0

(
EO,δ
n

)2 = μ0

(
EO,δ
n ∩ S−tEO,δ

n

)
− μ0

(
S−tEO,δ

n

)
μ0

(
EO,δ
n

)
−→
t→∞ 0

It follows that
μ0

(
EO,δ
n

)
= 0 or 1,

where ‘= 1’ holds for one and only one n ∈ Z.
The t-mixing property for χO,δ

n then appears to be sufficient
but also necessary for single system relaxation, with a negligible
set of exceptions. Indeed, if it holds, almost all (in the sense of
phase space volumes) time averages take the same value, with
an arbitrarily small error δ. In other words, under t-mixing, the
counting argument for the irreversible relaxation to an equilib-
rium state, extends to dissipative dynamics. As for equilibrium
we may state that not just the ensemble averages relax, but that
they do so because all single systems relax to the same state.

5. Concluding remarks

• FRs are among the few exact relations for systems arbitrar-
ily far from equilibrium. In particular, they are relevant for
small systems, which cannot verify the conditions of lo-
cal thermodynamic equilibrium. They are parameter free,
hence they constitute a strong connectionwith the systems
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of interest. Transient (ensemble) FRs are very robust, since
they require only reversibility. Moreover, they concern
properties of the initial equilibrium state, that are revealed
by nonequilibrium experiments. In this sense, they close
the circle with the fluctuation dissipation relations, that
obtain nonequilibrium properties from equilibrium ex-
periments.
If a system does not tend to a steady state with fluc-

tuations, the steady-state FRs obviously make no sense.
Nevertheless the transient FRs, concerning the initial en-
sembles, hold at arbitrarily large times. Transient FRs dif-
fer substantially from steady-state FRs. Transient FRs are
exact for all observation times τ ; steady-state relations
may only be approximately valid for finite τ , and require
the system to be in steady state. Furthermore, from an
experimental stand point, transient FRs correspond to
sampling a large number of identical objects, or of repeti-
tions of the same experiment, all starting in the same initial
macrostate. Steady-state FRs may be verified on ensem-
bles, but also following for a sufficiently long time a single
object, in its steady- state evolution. Clearly, steady-state
FRs have no relations with possible initial noninvariant
states.

• Looking for a general formulation of transient FRs for the
‘entropy production’, led to the definition of the dissipa-
tion function:

	(0) = −G · ∂� ln f (0) −�

Its ubiquity in the theory presents 	(0) as a generalised
thermodynamic potential, that is worth investigating of its
ownmerits in statistical physics and in dynamical systems
theory.

• The search for the minimal ingredients necessary for the
steady-state FR led to the identification of the t-mixing
condition [19]:

lim
t→∞

[〈(
O ◦ St

)
P
〉(0) − 〈

O ◦ St
〉(0) 〈P〉(0)

]
= 0

This decay of correlations with respect to μ0, rather than
an invariant probability distribution, constitutes a new
notion in statistical physics, that is reminiscent of the
linear response theory, but that leads to a response formula
that is totally general:

〈O〉(t) = 〈O〉(0) +
∫ t

0
ds
〈(
O ◦ Ss

)
	(0)

〉(0)
	t-mixing appears to be necessary and sufficient for en-
semble relaxation to a steady state, andmay be particularly
useful in nonthermodynamic cases.

• The above ideas about a general theory of response have
been here applied to the problem of irreversibility. In
the case of convergence to an equilibrium state, the dy-
namics commonly trusted are the Hamiltonian ones. The
result is a theory that explains irreversibility for systems
of very many particles in terms of typicality, i.e. the fact
that the microscopic phases corresponding to equilibrium
macroscopic states are so overwhelmingly more ‘numer-

ous’ than those corresponding to nonequilibrium states.
This implies that a system starting in a nonequilibrium
state whose dynamics explore the phase space without
constraints, is bound both forward and backward in time
to ‘irreversibly’ enter an equilibrium state. This argument
is qualitatively convincing and rigorous in the case of ideal
gases. To identify an arrow of time onemust then consider
the evolution of the whole universe, and postulate that it
started from a very special initial condition.

• This argument appears however criticisable from numer-
ous points of view. Moreover, it appears excessive if one
only wants to investigate irreversibility within our daily
experience. It may be more economical to refer to other
kinds of models than the Hamiltonian ones. For instance
those of NEMD have proved very effective in treating nu-
merous aspects of real systems. The objection that they do
not capture the profound nature of physical interactions,
because harmed by fictitious forces can be equally turned
against any other model of the physical world. Although
this does not warrant success in dealing with the issue of
irreversibility, it may be worthwhile to use these models to
shed a different light on irreversibility.10
We have thus found that t-mixing for sets such as EO,δ

o
turns ensemble into single system relations. Then, assum-
ing that time averages exist with μ0-probability 1, i.e. for
all initial� ∈ M, apart from a set of zero volume, we have
linked irreversibility to ‘counting’ even in the case of TRI
dissipative systems, that hadnever been considered before,
as far as we know. It remains to check more precisely the
role of the large number of particles N , which is however
implicit at least in the initial equilibrium ensemble f0.

• Usually correlation functions are computed with respect
to stationary distributions, that necessarily carry limited
information about the evolution of macroscopic states.
Differently, t-mixing represents the loss of memory of
macrostates, hence it looks then better suited to deal with
evolving systems, even in the absence of dissipation. The
systems size N must play a role in this correlation decay
with respect to the initial state, because anomalous FRs are
associated with systems of few degrees of freedom.

Notes

1. For example, the model (1) corresponds to G(�) = (q̇i = pi/m +
nxγ yi , ṗi = Fi − nxγ pyi − αpi).

2. Thanks to TRI, αi∗ ,τ , the average of α over segment i∗ equals−αi,τ ,
in agreement with (5).

3. One notable exception is afforded by gravitational wave detectors
and similar experiments.[43,44]

4. The transient FR holds even in this situation, since it expresses
the ratio between the initial probability of observing average neg-
ative values over a time τ , compared with the initial probability of
observing positive values. For an even initial f0, both probabilities
are positive, although the first rapidly decreases with τ , due to the
dissipative field. The transient FR quantifies precisely this process
at all averaging times τ .

5. Consider all arrangements of 103 × 103 black and white pixels.
The result is a dull movie:M contains 210

6
pictures, among which

the remotely regular ones constitute a very small fraction. The
overwhelming majority are grey. If pictures are shown at a rate of
25 frames a second, and the movie goes through all of them before
starting again, the period is > 10301020 years! The fraction of time in
which one does not see noisy arrangements is ridiculously small.
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1146 L. RONDONI AND A. VERDEROSA

6. Note: usually this explanation of irreversibility is referred to the
growth of the entropy of the universe, intended as a measure of
disorder. Because entropy is however a questionable concept in the
context of the violently nonequilibrium evolution of our universe,
we merely refer to the ‘numerosity’ of states. For rarefied gases,
these two notions come together in the definition of the Boltzmann
entropy.

7. Actually, even the presence of extra additive constants of themotion
would not make a difference: the reasoning can be repeated calling
phase space the intersection of the corresponding hypersurfaces.
Moreover, what matters is not the exploration of all phase space,
which would take super-astronomical times even for systems with
moderately large N , but the fact that the phase space regions cor-
responding to the range of the observables are visited. With this in
mind, the reasoning can be continued in phase space, as usually,
although imprecisely, done.

8. There are only several exceptions.[45,46]
9. After all, even the Hamiltonian description of atoms and molecules

does not do that.[26]
10. Gauss expressed a similar view when he proposed his principle of

least constraint: ‘It is always interesting and instructive to regard the
laws of nature from a new and advantageous point of view, so as to
solve this or that problem more simply or to obtain a more precise
presentation’.[47]
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Appendix 1. Ergodicity andmixing

The notion of ergodicity was originally developed to compute the macro-
scopic properties of physical systems from the dynamics of their micro-
scopic constituents, by means of suitable averaging procedures. For
instance, given Equation (2), in which the vector field G is determined
by the forces acting on the system and by the particles’ interactions, and
given the observableO, the associated macroscopic quantity is given by:

O(�) = lim
t→∞

1
t

∫ t

0
O(Ss�)ds. (A1)

This reflects the fact that macroscopic observations occur on time scales
which are long compared to the time scales of the microscopic dynamics,
and that an observation amounts to a time average of the chosen observable
O. Equation A1 suffers from various difficulties of a practical nature, as
previously discussed.[19] In any event, a system is called ergodic if

O(�) = 1
μ(M)

∫
M

O(y) dμ(y) = 〈O〉μ (A2)

for a properly chosen invariant probability measure μ on M, for all
observablesO, and for μ-almost all � ∈ M.

One checks a posteriori whether assuming ergodicity is valid or not
for the physical problem at hand, and one finds that the classical en-
sembles describe equilibrium situations very well, despite the fact that
the mathematical notion of ergodicity is violated, for instance, by the
ideal gas in a cubic box, by chains of harmonic oscillators, by blackbody
radiation, etc. The fact is that the ergodic hypothesis can be adopted for
practical purposes such as computing, in macroscopic equilibrium cases,
the averages of a small set of physically relevant quantities. Nevertheless,
the modern mathematical notion of ergodicity amounts to the following
equivalent statements:

(E1) for every integrable phase function Equation (A2) holds, except
for a set of vanishing μ probability;

(E2) except for a set of vanishing μ probability, τE(�) = μ(E), where
E ⊂ M is a μ-measurable set and

τE(�) = lim
t→∞

1
t

∫ t

0
χE
(
Ss�

)
ds; with χE

(
�
) =

{
1 if � ∈ E
0 else

(A3)
is the mean time in E;

(E3) letO be integrable and letO(St�) = O(�) for all t and all�. Then
O(�) = C μ-almost everywhere, for a given C ∈ R;

(E4) the dynamical system (S,M,μ) is metrically indecomposable, i.e.
given the invariant set E, either μ(E) = 0 or μ(E) = 1.

We immediately notice that requiring O to be any integrable function,
ergodicity is a very strong property, that is very hard to meet in systems of
physical interest. But the physics of macroscopic systems needs much less;
that’s why the ergodic hypothesis is so successful.

The following statements are equivalent too:

(M1) For every pair of measurable sets D,E ⊂ M one has:

lim
t→∞μ

(
S−tD ∩ E

) = μ(D)μ(E) (A4)

(M2) for allO,ψ ∈ L2(M,μ) the following holds:

lim
t→∞

〈(
O ◦ St

)
ψ
〉
μ

= 〈O〉μ 〈ψ〉μ (A5)

We call mixing the dynamical systems that verify these two statements.
Mixing is an even strongerproperty than ergodicity, in the sense thatmixing
systems are also ergodic, whereas not all ergodic systems are mixing. Prop-
erty (M1) means that an initial probability distribution is spread all over
the set of invariant probability 1. Property (M2) means that correlations
within the steady state (i.e. microscopic correlations) decay in time.

Appendix 2. The dissipation function

The notion of dissipation is fundamental in nonequilibrium physics. Equi-
librium processes are those taking place without dissipation; conversely,
processes with dissipation are out of equilibrium.

From a microscopic viewpoint, the entropy of isolated systems rep-
resented by Hamiltonian dynamics and by the microcanonical ensemble
equals the logarithm of the phase space volume of its state. In more general
equilibrium cases, characterised by an ensemble f , Gibbs’ formula holds:

S = −kB

∫
d�f (�) ln f (�) (B6)

and the dynamics preserves this equilibrium if it preserves f , rather than the
phase space volumes. For this reason, we may call dissipative with respect
to an ensemble those dynamics for which that ensemble is not invariant.
It follows that Hamiltonian dynamics are not dissipative with respect to
the microcanonical ensemble, because Hamiltonian dynamics preserve the
microcanonical distribution, while the Gaussian IK dynamics are usually
dissipative with respect to the microcanonical ensemble, because they do
not preserve such an ensemble in general.

This notion of dissipation does not necessarily denote real energy
dissipation; it is merely a useful mathematical concept, but it does ac-
quire physical relevance under proper conditions. Indeed, let us recall the
definition of the Dissipation Function	 Equation (9):

	(�) = −G(�) · d
d�

ln f
∣∣∣∣
�

−�(�) (B7)

which is the difference between the actual changes in phase space volume
and the changes associatedwith the ensemble, and let us consider equations
of motion �̇ = G(�) that are ‘adiabatically incompressible’, meaning that
� = 0 for the associated adiabatic equations, i.e. the equations of motion
excluding the thermostat.11 Let us assume that the initial distribution of
phases f may be generated by a single field-free (Fe = 0) thermostatted
dynamics, hence it is preserved by the equilibrium dynamics.

For Gaussian isokinetic dynamics, with kinetic energy fixed at the value
K0 = (dN − d − 1)kBT = (dN − d − 1)/β , we have:

α(�) = − (Ḣ0(�)+ J(�) · Fe)β
dN − d − 1

, �(�) = dNα(�)+ ON (1) (B8)

where adiabatic incompressibility is used to obtain the final equality, and
ON (1) is a correction of order 1 in N parts. In this case, the equilibrium
phase space distribution is expressed by

f0(�) ∼ e−βH0δ(K(�)−K0), hence
f0(�)

f0(iSτ �)
= exp

{
β

∫ τ

0
Ḣ0(�(s))ds

}
This immediately implies that the time integral of	 is proportional to the
dissipative flux

	0,τ (�) = β

∫ τ

0
Ḣ0(�(s))ds+�0,τ (�) = −(J · Fe)0,τVβ+ON (1) (B9)
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apart from corrections that are negligible when N is large.
Analogously, for Nosé–Hoover dynamics, the equilibrium phase space

distribution is the extended canonical distribution

f0(�) ∼ e−β(H0+ 1
2Qα

2), hence
f0(�)

f0(iSτ �)
= exp

{
β

∫ τ

0
(Ḣ0�(s)+ Qαα̇)ds

}
and Equation (B7) leads again to the proportionality between 	 and

the dissipative flux J. One may easily realise that the same holds in various
other cases. Recently, the expression of the dissipation in terms of the phase
space variation rate and of a total derivative has been considered by other
authors, see e.g. Ref. [16, p.38], in which the microscopic definition of
dissipation is associated with the possibility of defining in various fashions
the phase space volumes.
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