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Abstract—Arrays of photovoltaic (PV) modules, mounted on
metallic structures, always create stray capacitances between
active conductors and ground. Thus, leakage currents flowing
in these ground capacitances are formed. If the number of PV
modules array is high, these currents can reach some amperes.
Noticeable leakage currents can cause several problems related to
the proper operation of electrical installation and appliances and
to the safety of people. In this work, the problem of the ground
currents in PV arrays is firstly studied from a theoretical point of
view. Suitable equivalent circuits are presented. Then, the set-up
and the results of a field measurement for the estimation of the
leakage currents in an operating PV power plant are reported.

Index Terms—Photovoltaic systems, field measurement, ground
capacitance, leakage current.

I. INTRODUCTION

In the last decades, grid connected photovoltaic (PV)

systems have become increasingly important in distributed

power generation. Together with governmental incentives, key

elements for this success have been PV systems efficiency

improvement and their installation cost reduction, which have

been possible thanks also to an innovative interconnection

scheme: if in the past most PV systems were interconnected

to the grid trough a low-frequency transformer, nowadays a

transformerless solution is recommended.

In the latter case, in fact, the transformer cost is avoided

and the PV generation system is characterized by a higher

efficiency, a smaller size and weight [1].

Unfortunately, some negative aspects are associated to this

interconnection method, because the galvanic isolation be-

tween the PV system and the grid, that was guaranteed by

the transformer, is no more ensured. An AC leakage current

can now flow through inverter, ground and stray capacitances

CS formed by the PV module electrically active layers and

the surrounding metallic structures. In particular, positive and

negative terminals with respect to the aluminum frame of

PV modules determine charge accumulation. The higher the

capacitances, the higher the leakage current, which is then

function of several parameters, such as the module surfaces,

the distance between the active parts and metallic structures,

and the nature of the insulation material [1], [2].

The effects of the leakage current are several; for example,

it can increase the inverter losses and cause electromagnetic

interference [3], [4]. Its suppression or limitation is particularly

important in environments with an explosive atmosphere,

where fires and explosions could be triggered.

In order to detect and remove dangerous leakage currents,

The International Standard IEC 62109-2:2011 requires the

installation of a Residual Current Device (RCD) or a Residual

Current Monitoring Unit (RCMU), which can be embedded

or be external to the inverter [3], [5]. If the leakage current is

remarkable, the RCD tripping threshold can be easily reached,

with the consequent disconnection of the PV power plant and,

then, economical losses.

Based upon these safety and economical reasons, it is clear

that the reduction of the leakage currents is an important objec-

tive. According to this, several techniques have been proposed

in literature [3], [6]; basically, they can be categorized in

three different groups: modulation solutions [7], [8], topology

solutions [8]–[10] and filter solutions [11].

Furthermore, the comparison and analysis of transformerless

grid connected PV inverter topologies and control strategies

have been carried out in many manuscripts [12], [13].

The main goal of this work is to evaluate the leakage

current that flows to ground in a real PV grid-connected power

system. In the following sections, the circuital model of the

grid-connected PV system is introduced (section II); then,

the structure of the system under test is described and the

measurement results are presented (section III). Finally, the

main conclusions of the work are reported (section IV).

II. LEAKAGE CURRENT IN A GRID CONNECTED PV

SYSTEM: CIRCUITAL MODEL

In order to understand how a ground current can be gener-

ated, a circuital scheme of a three phase transformerless PV

power plant is reported in Fig. 1. In the following paragraphs,

each block is shortly described.

A. PV Module

The cross-section of a typical PV module is depicted in

Fig. 2 [14]. The PV cells are kept in place by a transparent

encapsulant material (usually ethyl vinyl acetate, EVA); on the

front side they are protected by a transparent layer: low iron-

content tempered glass is the most common choice as it is

low cost, strong, stable and highly transparent; on the back,

except in bi-facial modules, a thin polymer sheet, normally



Fig. 1. Circuital scheme of a PV transformerless power plant and current path through the stray capacitances.
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Fig. 2. Cross-section of a typical PV module.

Tedlar, is used. An important structural element, that allows

anchoring the PV modules, is the frame, usually in aluminum.

As shown, the proximity of insulating and conductive layers

in the PV module forms stray capacitances between positive

and negative terminals with respect to the aluminum frame.

In the “PV Array block” (Fig. 1), the stray capacitances

are represented and indicated as CS . In the considered circuit,

the metallic framework is connected to ground through the

bonding conductor characterized by the impedance ZB . It is

important to specify that this interconnection is not always

implemented.

B. DC/AC Power Converter

In order to describe the problem of the ground leakage

current, a standard inverter topology was chosen. In the

considered inverter (Fig. 1), the DC link is formed by the two

capacitors C. This configuration provides the medium point

M of the DC bus.

Moreover, on the AC side, the neutral point N can be

derived. According to the design of the inverter, the points

N and M can be interconnected to ground or floating, they

can be connected together or not. These choices influence the

value of the ground current.

L1, L2, L3 are the output coupling inductances for the

control of the current injected into the grid. They have an

effect similar to that of the stator winding inductances of a

synchronous generator.

C. EMI Filter

The Electromagnetic Compatibility (EMC) is one of the

aspects to be reckoned in the DC/AC converters. In general,

EMC means the ability of an electrical device to function

correctly in the electromagnetic environment in which it is

inserted, without causing or being subject to interferences with

the electric and magnetic fields, due to voltage and current

variations which arise within the device.

EMC aims to examine both the conditions under which

the electrical devices retain their functionality in presence of

external disturbances (in particular of electromagnetic nature)

and the level of emitted interferences which may affect other

devices operating in the same environment.



Electromagnetic interferences can appear in the form of

voltage component and current component of common mode

(CM), asymmetric, and differential mode (DM), symmetric.

In the DM, the current component flows in the power lines

(including the neutral line), while the voltage component is

measured between the phase conductors. On the contrary, in

the CM the current component flows between the phase and

neutral conductors to the ground. The circuit for the CM

component is closed by the parasitic capacitances between the

ground and the circuit.

The EMC problems, both CM and DM, can be solved with

the use of EMI (Electromagnetic Interference) filters able to

reduce natural or technical interferences. Generally, in grid-

connected PV systems two EMI filters can be used: one

in input to block (or limit) the high frequency components

coming from the PWM inverter and one in output to limit the

EMI produced by the electric power system itself.

Generally, it is necessary to arrange filters which are trans-

parent to the AC voltage at 50Hz and allow a reduction of the

interference level, in order to meet the requirements imposed

by IEC Standards. According to this, an EMI filter can be

considered a low-pass filter.

In Fig. 1, the components of a typical EMI filter are depicted

[7]:

• Cdm are the differential mode capacitors;

• Lcm are the common mode inductors;

• Ccm are the common mode capacitors.

D. AC Grid

In this work, only PV power plants installed in TN-S

systems are considered.

In the “AC Grid” block in Fig. 1, the portion of the

distribution system between the secondary windings of the

transformer and the switchboard of the inverter is modeled.

In particular:

• ZF1, ZF2, ZF3 are the impedances of the phase conduc-

tors;

• ZN is the impedance of the neutral conductor;

• ZPE is the impedance of the protective conductor (PE);

• V1N , V2N , V3N are the voltages imposed by the trans-

former with reference to its neutral point;

• RE is the resistance to earth of the grounding system

[15].

E. Path of the Ground Current through the Stray Capacitances

The ground currents can be generated by the grid voltage

sources and the PWM inverter. In this work, the PWM inverter

components from triangular carrier are not of interest because

they produce negligible harmonic components in the ground

current.

In Fig. 1, the red dashed line represents one of the possible

paths of the leakage current through the stray capacitances.

In particular, starting from the neutral point of the trans-

former, the current flows through the cables of the phase 1, the

freewheeling diode, the PV stray capacitances and it returns to

the generator through the bonding and protective conductors.

In this circuit, the voltage that sustains the leakage current is

V1N , while the dominant impedance is Z =
1

ωCS
.

Similar paths can be defined for each of the other voltage

sources in the electrical circuit and for each of the freewheel-

ing diodes of the inverter.

III. EXPERIMENTAL MEASUREMENT

A measurement campaign has been organized in order to

gain experimental evidence of the ground leakage current in

a practical case. In the following paragraphs, the PV power

plant where the measurements have been carried out, the

experimental set-up and the measurement results are briefly

described.

A. The PV power plant

The grid-connected PV system, located at latitude 45.065°

North (Piedmont region), has a total power rating Ppeak =
600.372 kWp at Standard Test Conditions (STC), i.e. global

irradiance GSTC = 1 kW/m2, cell temperature TSTC =
25°C and standard spectrum AM 1.5.

Due to design requirements, the realization of the PV plant

has been divided into 2 parts with approximately half of the

Ppeak each: the first one was installed in 2015; the second one

has been completed in 2016.

The PV system is equipped with mono-crystalline silicon

modules of 327 Wp each, tilted at 26° with South orientation.

The PV arrays of each part feed 14 three-phase inverters with

high efficiency (transformerless type) of 20 kV A or 25 kV A.

The modules are installed on a portion of the roof, by

means of an aluminum framework, Fig. 3. All the surrounding

metallic structures of the PV modules are interconnected

to ground through mainly two paths: first, through several

bonding and protective conductors, as visible in Fig. 3; second,

through the roof on which the aluminum framework is bolted,

that is metallic with the exception of the exterior surface. The

low impedance of these paths was verified with continuity

tests.

B. Experimental setup

In order to measure the waveform of ground currents

during the operation of a PV system in grid connection, it

is advisable to use an appropriate automatic data acquisition

system (ADAS). It consists of:

• current/voltage probes;

• signal conditioning circuit;

• Sample/Hold (S/H) with multiplexer stage;

• Analogue-Digital Converter (ADC).

Voltage probes permit to extend the voltage ranges from a

few volts in DC to ±1000 V in both DC and AC. On the other

hand, a Hall-effect current probe permits to convert signals up

to ±2000 A in both DC and AC into low-range voltage signals

of ±1 V .

The signal conditioning circuit, thanks to divider and am-

plifier ratios, modifies the input signal into an output signal as

close as possible to the proper range of the ADC.



Fig. 3. PV modules, aluminum frameworks and bonding conductors.

The main specifications of the ADC, usually a successive

approximation converter, are: the maximum sampling rate in

MSa/s and the related frequency range; the number of bits

which determines the resolution (16 bits are enough). Taking

into account the previous items, the ADAS capabilities can

be expressed in terms of measurement uncertainties on AC

voltage and AC current within a frequency range.

If the case study of the ground currents is considered,

relative uncertainties are normally within ±0.1% for voltage

and ±1% for current in a three-phase PV system in grid

connection without interface transformer. The frequency range

should include the PWM harmonic content of the inverter and

thus 20 kHz could be an acceptable superior limit.

C. Measurement results and discussion

In order to have both a general and a particular point of

view of the phenomenon, two ground leakage currents were

measured: ISI , the leakage of a single inverter for which the

conductors were easily accessible, and ITC , the total leakage

of all the inverters connected to the same switchboard (14 in

our test case). Both currents have been measured as the sum

of currents flowing in the three phase conductors and in the

neutral conductor, by clamping all four conductors at the same

time with the current probe (Fig. 4). With this connection of

the current clamps, leakage currents have been measured like

a RCD would do. They have not been measured by clamping

directly the PE, as this would lead to erroneous readings:

multiple re-closure paths for the leakage currents can, in fact,

be present in the circuit.

In addition to currents measurements, in order to have a

phase reference, the amplitude and the phase of voltages V1N ,

V2N and V3N were also measured.

Two periods of the single inverter and of the total ground

leakage currents are presented in Fig. 5 as an example.

The registered waveforms were then processed to obtain the

equivalent phasor representation. In particular, the measured
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Fig. 4. Single inverter and total ground leakage current measurement.
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Fig. 5. Single inverter and total current waveforms.

signals were decomposed using the FFT (Fast Fourier Trans-

form). The frequency domain representation of the considered

currents is reported in Fig. 6. With reference to the ITC , the

50 Hz component has clearly the largest RMS value. On the

contrary, for the ISI , the DC and 50 Hz components are

comparable, probably due to a non-perfect reset to zero of

the current probe. However, in this analysis, only the 50 Hz

component was considered.

For a better comprehension of the phenomenon, in addition

to the measured currents and voltages, the zero-sequence

voltage E0 was computed [16]:

E0 =
V1N + V2N + V3N

3
(1)

This voltage can be considered the feeding source of the

current flowing through the ground.

The RMS value of the current ISI , which flows through

one single inverter, is 0.18 A. The RMS value of the current

ITC , which is the vectorial sum of the currents leaked through

all the inverters, is 2.76 A. This means, as the number of

inverters is 14, that the leakage currents of all the inverters are
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approximately in phase. This leakage current is not negligible:

in this case study there are no problems, however, if the PV

arrays are installed in higher risk environments, such as where

combustible dusts or gases can be present, particular attention

should be paid to this problem in order to avoid risk of fire or

explosion [17]. Moreover, in order to avoid the disconnection

of the PV power plant, the tripping threshold of the RCD

should be higher than the measured leakage current, with a

consequent reduction of the safety against electric shocks. In

this PV plant, the RCD protecting the single inverter was not

triggered, as it had a rated residual current of 300 mA; on the

contrary, in the MV/LV substation RCDs were not present, as

permitted in TN systems.

A polar representation of the currents and voltages phasors

is reported in Fig. 7.

It can be noticed that both the currents ITC and ISI lead the

voltage E0 by 73° and 134°, respectively. This is due to the

characteristics of the electrical circuit described in paragraph

II-E, where the stray capacitances CS play a key role.

IV. CONCLUSION

In this paper, the problem of ground leakage currents in ar-

rays of photovoltaic modules, due to PV stray capacitances, is

presented with experimental results. It can cause several issues,

such as an increment of the inverter losses, electromagnetic

disturbances and a reduction of safety. In fact, in environments

where an explosive atmosphere can be present, it can cause

fire or explosions. In addition, it forces electrical designers to

increase the tripping threshold of residual current devices to

avoid the disconnection of the PV plant, thus increasing the

risk of electric shock. The suppression of the leakage current

is, therefore, an important objective to be pursued.
In order to quantify the magnitude of this current, field mea-

surements on a real PV system were carried out. The currents

flowing through each and every inverters of a multi-inverter

PV system were measured with current clamps connected to

an automatic data acquisition system. The measurement results

show that the total leakage current reached nearly 3 A.
Looking at the schematic presented in this paper, one could

think to disconnect the metallic frame of PV modules from

the PE in order to reduce the leakage current. For class II

PV modules, this could be possible, as the metallic frame is

not an exposed conductive part. However, the disconnection

would not necessarily lead to a significant reduction in leakage

current: for example in the PV plant where the measurements

were performed, the aluminum frames were in good electrical

contact with the metallic roof due to the mounting structure.
The reduction of leakage current should thus be obtained

through proper design of the inverter topology and control. It

should also be a parameter highlighted by the manufacturers

in the data sheets.
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