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Abstract

In my thesis I study the problem of predicting the evolution of the epidemic spread-
ing on networks when incomplete information, in form of a partial observation, is
available. I focus on the irreversible process described by the discrete time version
of the Susceptible-Infected-Recovered (SIR) model on networks. Because of its
intrinsic stochasticity, forecasting the SIR process is very difficult, even if the
structure of individuals contact pattern is known. In today’s interconnected and
interdependent society, infectious diseases pose the threat of a worldwide epidemic
spreading, hence governments and public health systems maintain surveillance
programs to report and control the emergence of new disease event ranging from
the seasonal influenza to the more severe HIV or Ebola. When new infection cases
are discovered in the population it is necessary to provide real-time forecasting of
the epidemic evolution. However the incompleteness of accessible data and the
intrinsic stochasticity of the contagion pose a major challenge.

The idea behind the work of my thesis is that the correct inference of the
contagion process before the detection of the disease permits to use all the available
information and, consequently, to obtain reliable predictions. I use the Belief Prop-
agation approach for the prediction of SIR epidemics when a partial observation is
available. In this case the reconstruction of the past dynamics can be efficiently
performed by this method and exploited to analyze the evolution of the disease.
Although the Belief Propagation provides exact results on trees, it turns out that
is still a good approximation on general graphs. In this cases Belief Propagation
may present convergence related issues, especially on dense networks. Moreover,
since this approach is based on a very general principle, it can be adapted to study
a wide range of issues, some of which I analyze in the thesis.
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Introduction

Throughout history the spreading of infectious diseases has been a major threat to
society, indeed one of the earliest attempt to model an epidemics (namely small-
pox) dates back to mid 18th century and it is due to Daniel Bernoulli [1, 2]. In
today’s interconnected and interdependent society, infectious diseases pose the
threat of a worldwide epidemic spreading, hence governments and public health
systems maintain surveillance programs to report and control the emergence of new
disease event ranging from the seasonal influenza to the more severe HIV or Ebola.
Alongside surveillance programs, quantitative analysis and predictive tools gain
importance to support policy-making [3]. On the one hand modeling efforts have
been made to provide plausible scenarios and to evaluate containment procedures in
the case of epidemic outbreaks [4–6]. On the other hand when new infection cases
are discovered in the population it is necessary to provide real-time forecasting of
the epidemic evolution [7–9]. However the incompleteness of accessible data and
the intrinsic stochasticity of the contagion pose a major challenge.

In this thesis we study the problem of predicting the evolution of the epidemic
spreading on networks when incomplete information, in form of a partial obser-
vation, is available. Different mathematical descriptions of contagion processes
are possible, depending on the disease to be studied. We focus on the irreversible
process (the reason will be clear later) described by the discrete time version of
the Susceptible-Infected-Recovered (SIR) model on networks, a cornerstone in the
modern mathematical modeling of infectious diseases originally formalized by W.
O. Kermack and A. G. McKendrick in 1927 [10]. The underlying network structure
approximates the strong dependencies naturally present in contagion processes, in
fact whether an individual contracts the disease or not depends on the status of the
other individuals he makes contact with. This is why social contact patterns have
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recently become subjects of several studies [11–14], but, when different temporal
and spatial scales are taken into consideration, it is necessary to assume different
approximations of the underlying contact pattern [15]. Because of its intrinsic
stochasticity, forecasting the SIR process is very difficult, even if the structure
of individuals contact pattern is known, as recently shown by Petter Holme [16–18].

In its original formulation the SIR model is a simple Markov process, neverthe-
less it becomes rapidly intractable as the number of individuals involved grows.
A well-known class of approximations yields exact results when the underlying
network is a tree [19, 20], such as the Message Passing Approach firstly proposed
by Karrer and Newman [21], and provides meaningful predictions in loopy graphs.
This approaches require as set of initial conditions, but in a realistic case they
usually cannot be provided by the empirical observations. In general the process
is only partially observed: for example, it is usually not known by whom an sick
individual was infected, nor the time of the infection.

The idea behind the work of this thesis is that the correct inference of the
contagion process before the detection of the disease permits to use all the available
information and, consequently, to obtain reliable predictions. The problem of recon-
structing the history of an epidemics has indeed gained attention recently [22–26].
Many studies tackled the problem of identifying the origin of an epidemic outbreak
(or patient zero problem), but, unfortunately, turned out to be a difficult problem to
solve. In fact, when it is formulated as a maximum likelihood estimation problem,
it corresponds to an optimization problem in the space of all possible epidemic
realizations that are compatible with the available data. However, the number of
possible epidemic realizations is exponentially large in the number of individuals,
therefore every epidemic realizations appears, for any practical inferential purpose,
a rare event. From this point of view, Shah and Zaman [25, 27, 28] proposed a
maximum likelihood estimator, called rumor centrality, in the case of a single epi-
demic source and exact on regular trees. A Bayesian approach has been proposed
by Lokhov et al. [29], that applied the Message Passing formulation by Karrer and
Newman [21] to the inference of the source by a further mean-field approximation
of the likelihood function (also called naive Bayes method ). However the problem

2
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is still open.

In the case of the irreversible dynamics, Altarelli et al. [30, 31] provided a
method to study the statistical properties of rare events and find the initial con-
ditions that give rise to a desired final configuration. They showed that a static
representation of the dynamics allows to recast the problem into the computation
of a partition function, in which the trajectories evaluated must meet the constraints
on the dynamical rules and are weighted by an additional and opportunely defined
energetic term. Then, on a network, the partition function can be computed by
the Belief Propagation approximation. Following, the core idea of this approach
has been exploited to study the dynamics of the SIR model [32] and the inference
of the patient zero [33]. The constraint on the dynamical rules must be changed
accordingly to the SIR dynamics and the energetic term weighting the trajectories
becomes an hard constraint on the epidemic realizations that must be compatible
with the observed configuration.

In this thesis, we use the Belief Propagation approach for the prediction of SIR
epidemics when a partial observation is available. In this case the reconstruction
of the past dynamics can be efficiently performed by this method and exploited
to analyze the evolution of the disease. Although the Belief Propagation provides
exact results on trees, it turns out that is still a good approximation on general
graphs. In this cases Belief Propagation may present convergence related issues,
especially on dense networks. Moreover, since this approach is based on a very
general principle, it can be adapted to study a wide range of issues, some of which
we analyze in this thesis.

• Chapter 1: we introduce the SIR model and the deterministic approximation
for homogeneously mixed population. Then we discuss different approx-
imations of the stochastic process and we show that the message passing
approach is equivalent to the pair-based approximation. Lastly, we introduce
non-Markovian epidemic models and temporal networks.

• Chapter 2: we discuss some approaches to the identification of the epidemic
source, such as the rumors centrality, the Dynamic Message Passing + Naive
Bayes and the Soft-margin estimator.

3



LIST OF TABLES

• Chapter 3: we introduce the factor graph representation for probability
distributions of variable with local dependencies, then we discuss the Belief
Propagation algorithm and the Bethe Approximation for the free-energy.

• Chapter 4: we introduce and analyze in details the Belief Propagation ap-
proach to SIR model, the corresponding factor graph representation, the
update rules for the messages and computation of the extinction time proba-
bility distribution.

• Chapter 5: we discuss the results for the prediction of SIR evolution on
different network architectures, for the computation of the extinction time
probability distribution. Lastly, we discuss the results when a real-world
network is considered.

• Chapter 6: we discuss the extension to non-Markovian models and temporal
networks.
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Chapter 1

Epidemic models

During its longstanding history, epidemic modeling has evolved spanning across
several research areas, from biology to physics. Epidemic models describe the
dynamical evolution of contagion processes within a population and compartmen-
tal models are the simplest and most common class of models concerned with
epidemics spreading. In this chapter we will provide few basic notions about
compartmental models and the deterministic approximation. Then we discuss the
individual based mean-field approximation to SIR epidemic model on network, as
well as a message passing approach. In conclusion we introduce cutting-hedge
scenarios as the epidemic modeling on temporal networks and non-Markovian
models.

1.1 Compartmental models

Compartmental models assume that the population can be divided in compartments
depending on the stage of the disease. The most common compartments are:
susceptible, i.e those who can contract the infection (denoted by S); infected,
those who contracted the infection and are contagious (denoted by I); recovered,
those who recovered from the disease (denoted by R). Depending on the specific
disease considered it is possible to add different compartments to provide a better
description. In order to study the evolution of the epidemic process as function of
time, we have to define the individual-level processes that govern the transaction
of individuals from one compartment to another. For example, let us consider the

7
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 S  I 
 λ 

 R 
 µ 

 S  I 
 λ 

 S 
 µ 

Figure 1.1: Two main examples of compartment models. In the SIR model (upper
row) individuals go from compartment susceptible to infected with probability
λ . They move from infected to recovered with a probability µ . In the SIS model
infected individuals go back to susceptible compartment with rate µ .

SIS and SIR models that are among the simplest epidemic models. The SIS model
is based on two compartments and it is defined by two transitions: transition S→ I
occurs when a susceptible individual interacts with an infected one and becomes
infected; transition I→ S occurs when an infected individual recovers and comes
back to the susceptible population. The SIS model is suitable for diseases that do
not confer immunity (or death), then the individuals can be infected over and over
again. The cycle S→ I→ S can be sustained forever and in a long time regime the
SIS can exhibit an endemic state characterized by a constant (on average) fraction
of the population infected. The SIR model is based on three compartments and two
transitions: S→ I as the SIS model; I→ R (instead of the SIS I→ S) that occurs
when an infected individual recovers from the disease and acquires permanent
immunity or is removed (e.g has died). In the SIR model the number of infected
individual tends to zero for long time. The parameter involved in the transitions
described can be estimated, for example, from clinical data and it is usual to assume
that transitions probability are constant in order to deal with simplified model (in
Section 1.7 we will introduce different assumptions).

8
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When considering epidemic spreading in a population, we face the problem of
describing the contact pattern through which the contagion occurs. Most common
approaches assume different time scales for the contagion dynamics and contacts
between individuals (in Section 1.6 we will introduce a different assumption).
When describing social contact pattern in term of networks every individual is
represented by a vertex and contacts between pairs of individuals are represented by
the edges of the graph. This description can be either a correct representation or an
approximation, depending on the system under studied. Moreover one can consider
a network whose nodes rewire on a time scale much faster than the contagion
– for example, mean-field approaches rely upon this assumption, disregarding
connections between individuals (Section 1.2). In the opposite limit, when we
assume that the contact pattern evolves on a time scale much slower than the
epidemic process, static networks provide a suitable description. In the following
sections we will focus on approximated methods for the SIR model [15, 34].

1.2 Deterministic approximation in homogeneously
mixed population

The most basic approach relies on the homogeneous mixing approximation which
assumes that individuals interacts randomly with each other within each compart-
ment [S, I,R]. This assumption is equivalent to say that the underlying contact
pattern evolves at a time scale much faster than the epidemic – it is an appropriate
approximation, for example, in case of large population or in the case of airborne
disease. In this framework we are interested in the equations governing the evolu-
tion of density of individuals in each stage of the disease i(t), s(t) and r(t) [34].
Now they represent fractions of the overall population that move from one compart-
ment to another, but we describe the microscopic foundation to the population level
approach in Section 1.3. Since the elementary transitions are qualitatively the same,
it is possible to obtain the global infected, susceptible and recovered densities by
summing over the single individual probabilities Pi

I (t) and Pi
S(t). We consider an

approximation in which each individual in I interacts uniformly with an individuals
in S with a probability proportional to i(t), i.e we consider an effective interaction
and determine the probability of infection in the same way for all individuals in the

9



1.2. DETERMINISTIC APPROXIMATION IN HOMOGENEOUSLY MIXED
POPULATION

system, then it is equivalent to a mean-field approximation. Thus instead of the
probability of infection between two individual λi j, we will use a transition rate β

to the infected compartment. The equations for the susceptible-infected-recovered
model are

di
dt

= β i(t)s(t)−µi(t)

ds
dt

=−β i(t)s(t) (1.1)

The normalization conditions results in r(t) = 1− s(t)− i(t). In the early stage of
the epidemics it is possible to assume that i(t)≪ 1 (consequently s(t)≃ 1) and in
this limit equation (1.1) can be linearized

di(t)
dt
≃ (β −µ)i(t) (1.2)

and its solution valid for early time

i(t)≃ e(β−µ)t i(0). (1.3)

In this framework the fraction of individual infected grows exponentially when

β −µ > 0→ R0 =
β

µ
> 1 (1.4)

where R0 is the reproduction number and it is defined as the average number of
secondary infections by a primary case introduced in a fully susceptible population.
This is one of the key concept of classical theoretical analysis of epidemic models
and allows to introduce the concept – important as well – of epidemic threshold. If
R0 > 1, a single infected individual generates on average more than one secondary
infection, then the process evolves causes an epidemic outbreak of finite relative
size in SIR case or an endemic state, with a finite fraction of the population infected,
in the SIS case. If R0 < 1, a single infected individual generates on average less
than one secondary infection, then the epidemic process involves only a negligible
fraction of the population, vanishing in the limit of a large population in SIR model
or leading to a steady state with all individuals susceptible in the SIS model.

10
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1.3 SIR epidemic model on networks

The SIR model [10] applies to a the wide range of diseases that provides immunity
subsequent the recovery as well as to knowledge and information diffusion [35, 36].
We introduce a discrete time version of the SIR model. In fact the most natural
approach to describe the disease spreading relies on the definition of a probability of
infection λ between two individual, the probability of recover µ and the reactions

S+ I λ→ 2I

I
µ→ R.

We already pointed out that in a realistic case each individual can get infected or
can infect by interacting with other individuals through a social contact network. In
order to introduce the discrete time SIR model on networks, let us consider a graph
G = (V,E) that represents a contact network of N = |V | individuals. The state of
a node i at time t is represented by a variable xt

i ∈ {S, I,R} and the configuration
of the population at time t is xt = (x1, . . . ,xN). The process is irreversible, so
once a node has recovered it does not get infected anymore. In a discrete time
representation an infected node i can infect each of his neighbors j ∈ ∂ i (where
∂ i is the set of neighbors of node i) with a given probability λi j, then recover with
probability µi. If we assume that λi j and µi do not depend on time, we can describe
a Markov chain by the use of the following transition probabilities

P(xt+1
i = S|xt) = I[xt

i = S] ∏
j∈∂ i

(1−λi jI[xt
j = I]) (1.5)

P(xt+1
i = I|xt) = (1−µi)I[xt

i = I]+ I[xt
i = S](1−∏

j∈∂ i
(1−λi jI[xt

j = I])) (1.6)

P(xt+1
i = R|xt) = I[xt

i = R]+µiI[xt
i = I]. (1.7)

In the case of SIR model it is possible to define the duration of the epidemic as
the time between the first infection and the last recovery, thus providing the notion
of extinction time as the time at which the epidemics dies out, i.e when no infected
nodes are present in the population [37, 16].

11
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1.4 Individual and pair based approximation

When considering a discrete time SIR model with constant infection λi j∀(i, j) ∈ E
and recovery parameters µi∀(i)∈V , equations (1.7) provide transition probabilities
for a master equation. Then we can obtain the probability that a node i is in state
X ∈ {S, I,R} through:

P(xt+1
i = X) = ∑

xt
P(xt+1

i = X |xt)P(xt). (1.8)

When the infected and susceptible state are considered the corresponding equations
are

P(xt+1
i = S) = ∑

xt
I[xt

i = S] ∏
j∈∂ i

(1−λi jI[xt
j = I])P(xt)

P(xt+1
i = I) = ∑

xt

{
(1−µi)I[xt

i = I]+ I[xt
i = S]

[
1−∏

j∈∂ i
(1−λi jI[xt

j = I])

]}
P(xt),

(1.9)

the probability for the recovered state is obtained by the normalization constraint.
In general distribution probability P(xt) shows non-trivial dependencies between
individual states and we need approximations in order to get a tractable form. In
the continuous time case the closure of equations (1.4) has been investigated by
Sharkey [20, 38, 39], as well as the validity of different approximations. The
simplest possibility is assuming that the state of a node i does not depend on the
state of any other node j (individual based approach) [40], then we can assume a
single site factorization P(xt)=∏i P(xt

i) (mean-field approximation). The resulting
equations are:

P(xt+1
i = S) = P(xt

i = S) ∏
j∈∂ i

[
1−λi jP(xt

j = I)
]

P(xt+1
i = I) = (1−µi)P(xt

i = I)+P(xt
i = S)

[
1−∏

j∈∂ i
(1−λi jP(xt

j = I))

]
P(xt+1

i = R) = P(xt
i = R)+µiP(xt

i = I). (1.10)

12
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However this assumption is a drastic simplification, in fact the pairwise statisti-
cal independence approximation P(xt

i = S,xt
j = I) = P(xt

i = S)P(xt
j = I) leads to

anomalous terms that appear when we take into consideration the equation for the
joint probability P(xt+1

i = S,xt+1
j = I), that is

P(xt+1
i = S,xt+1

j = I) = ∑
xt

P(xt+1
i = S,xt+1

j = I|xt)P(xt)≃ P(xt+1
i = S)∑

xt
P(xt+1

j = I|xt)P(xt)

= P(xt+1
i = S)∑

xt
P(xt)

{
(1−µ j)I[xt

j = I]+ I[xt
j = S]

[
1− ∏

z∈∂ j
(1−λz jI[xt

z = I])

]}
=P(xt+1

i = S)(1−µ j)P(xt
i = I)+P(xt+1

i = S)P(xt
j = S)

−P(xt+1
i = S)P(xt

j = S) ∏
z∈∂ j

(1−λz jI[xt
z = I])

=P(xt+1
i = S)(1−µ j)P(xt

i = I)+P(xt+1
i = S)P(xt

j = S)

−P(xt+1
i = S)P(xt

j = S)(1−λi jP(xt
i = I)) ∏

k∈∂ j\i
(1−λk jP(xt

k = I))

=P(xt+1
i = S)(1−µ j)P(xt

i = I)+

P(xt+1
i = S)P(xt

j = S)

[
1− ∏

k∈∂ j\i
(1−λk jP(xt

k = I))

]
+P(xt+1

i = S)P(xt
j = S)λi jP(xt

i = I) ∏
k∈∂ j\i

(1−λk jP(xt
k = I)).

(1.11)

This expression involves terms inconsistent with the master equation and the
premises of the compartmental model. For example last term in (1.11) accounts
for the probability that node i infects node j (being infected at time t) and that the
same node is susceptible at time t +1 that implies it is also susceptible at t): this is
not possible in the SIR process. Considering the correlation between the state of
node i and node j, the probability that i is susceptible and it infects j at the same
time would be zero. In order to remove this anomalous term we can consider a pair-
based approximation [19, 38], that means factorizing the probability distribution
as follows:

P(xt) =
∏(i j)∈E P(xt

i,x
t
j)

∏i∈V P(xt
i)

. (1.12)
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This factorization reproduces the exact probability distribution when the underlying
network is a tree [39]. Equations become

P(xt+1
i = S) = P(xt

i = S) ∏
j∈∂ i

[
1−λ ji

P(xt
i = S,xt

j = I)

P(xt
i = S)

]

P(xt+1
i = I) = (1−µi)P(xt

i = I)+P(xt
i = S)

[
1−∏

j∈∂ i
(1−λ ji

P(xt
i = S,xt

j = I)

P(xt
i = S)

)

]
P(xt+1

i = R) = P(xt
i = R)+µiP(xt

i = I). (1.13)

Then the equation for the joint probability P(xt
i = S,xt

j = I) is

P(xt+1
i = S,xt+1

j = I) = ∑
x

P(xt+1
j = I|xt+1

i = S,xt)P(xt+1
i = S|xt)P(xt)

=∑
x

[
(1−µ j)I[xt

j = I]+ I[xt
j = S](1− ∏

z∈∂ j
(1−λz jI[xt

z = I]))

]

× I[xt
i = S] ∏

k∈∂ i
(1−λkiI[xt

k = I])×∏(u,v)∈E P(xt
u,x

t
v)

∏u∈V P(xt
u)

=(1−µ j)P(xt
i = S,xt

j = I) ∏
k∈∂ i

[1−λki
P(xt

k = I,xt
i = S)

P(xt
i) = S

]+

+P(xt
i = S,xt

j = S)

[
1− ∏

z∈∂ j\i
(1−λz j

P(xt
z = I,xt

j = S)

P(xt
j) = S

)

]
∏

k∈∂ i\ j
[1−λkiP(xt

k = I,xt
i = S)]

=(1−µ j)P(xt
i = S,xt

j = I)(1−λ ji) ∏
k∈∂ i\ j

[1−λki
P(xt

k = I,xt
i = S)

P(xt
i) = S

]

+P(xt
i = S,xt

j = S)

[
1− ∏

z∈∂ j\i
(1−λz j

P(xt
z = I,xt

j = S)

P(xt
j) = S

)

]
∏

k∈∂ i\ j
[1−λki

P(xt
k = I,xt

i = S)
P(xt

i) = S
].

(1.14)
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For the joint probability P(xt
i = S,xt

j = S) we get:

P(xt+1
i = S,xt+1

j = S) = ∑
x

P(xt+1
j = S|xt+1

i = S,xt)P(xt+1
i = S|xt)P(xt)

=∑
x
I[xt

j = S] ∏
z∈∂ j

(1−λz jI[xt
z = I])

× I[xt
i = S] ∏

k∈∂ i
(1−λkiI[xt

k = I])×∏(u,v)∈E P(xt
u,x

t
v)

∏u∈V P(xt
u)

=P(xt
i = S,xt

j = S) ∏
z∈∂ j\i

(1−λz j
P(xt

z = I,xt
j = S)

P(xt
j) = S

) ∏
k∈∂ i\ j

[1−λki
P(xt

k = I,xt
i = S)

P(xt
i) = S

].

(1.15)

Equations (1.13), (1.14), and (1.15) are a closed set of equations in the pair-based
approximation for the time evolution of the probability distributions that describe a
discrete time SIR model with constant epidemic parameters. In Section 1.5.2 we
show that this formulation is equivalent to the Dynamic Message Passing approach
firstly proposed by Lokhov, Mézard, Ohta and Zdeborová and inspired to the
general formulation by Karrer and Newman.

1.5 Message Passing approach to SIR

The dynamics of epidemic models on networks can be formulated in terms of a
message passing algorithm known as Belief Propagation. We will discuss more
in detail Belief Propagation in Section 3, here instead we introduce the approach
proposed by B. Karrer and M. E. J. Newman [21].

Let us consider a discrete time SIR model on a network. We call s(τ) the
probability that an infected individual contacts a neighbor at after τ time steps,
in other words τ + 1 is the time needed to have a successful transmission. The
probability that an infected individual recovers after τ is r(τ). We do not assume
any explicit functional form. The probability that a node j infects without recovery
one of its neighbors i a time τ from its infection is

f ji(τ) = s(τ)(1−
τ−1

∑
g=0

r(g)) (1.16)
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This formulation elects as fundamental quantity the probability H ji(t +1) that a
node j has not infected neighboring node i until time t +1. In the simple case of a
tree this quantity has only two contributions: the probability that j is infected but
fails to transmit the disease to i before time t, i.e

1−
t

∑
τ=0

f ji(τ); (1.17)

and the probability that j contacts i in a time τ < t +1 after infection but, since it
has not been infected by its neighbors before, j does not infect i before t +1. That
is

t

∑
τ=0

f ji(τ)P(x0
i = S) ∏

k∈∂ j\i
Hk j(t− τ) (1.18)

where P(x0
i = S) is the probability that j is not infected at t = 0. Combining the

Hkj(t′)

H rj
(t ′)

Hqj(t′)

τ > t

τ ≤ t
+z

H i←j(t) = i

i

j

k

j q

r

Figure 1.2: Two contributions make up the probability that node i is not infected
by j before time t +1. The upper line represents the probability that j is infected
and fails to transmit the disease before t +1. In the lower line, j is scheduled to
transmit the disease at time τ < t +1, but it is neither infected by its neighbors r, k,
q on time (i.e before t− τ) nor it was infected at t = 0 with probability 1−PS

j (0).

two contributions we get the following message passing equation

H ji(t +1) = 1−
t

∑
τ=0

f ji(τ)

[
1−P(x0

i = S) ∏
k∈∂ j\i

Hk j(t− τ)

]
. (1.19)
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This equation gives an exact solution when the underlying network is a tree. It is
easy to get the probability that node i is in the susceptible compartment at time t

P(xt+1
i = S) = P(x0

i = S) ∏
j∈∂ i

H ji(t +1). (1.20)

Once P(xt+1
i = S) the probability that node i is infected at time t can be obtained

by

P(xt+1
i = I) = P(xt

i = S)−P(xt+1
i = S)−

[
1−P(x0

i = S)
]

r(t)

+
t

∑
τ=1

r(t− τ)
[
P(xτ

i = S)−P(xτ−1
i = S)

]
(1.21)

where the first term the contribution due to individual gone from S to I, the second
term is the probability tha i does not recover at t being infected at t = 0 and the
third term accounts for the probability that i gets infected at time τ < t + 1 and
recovers at t + 1. Finally the probability that node i is in the recovery state is
P(xt+1

i = R) = 1−P(xt+1
i = I)−P(xt+1

i = S).

This solution is exact on trees, because MP assumes that transmission processes
from different branches to one node are not correlated. If the underlying network
has loops this assumption is not true. For example (Fig. 1.3 ) in the case of a single
seed i0, a loop between i0 and a node j leads to consider two possible paths of
infection, but only one has actually transmitted the disease. The error induced by
the correlation in loopy graphs decreases when the number of sources increases
[30, 41].

However it is known that this kind of message passing method can give a good
approximation in loopy graphs as well. In particular Karrer and Newman [21]
pointed out that message passing provides a rigorous upper bound to the number
of infected individuals on loopy networks. Let us consider the subgraph containing
all the ni nodes that can possibly infect a node i at time t, i.e all the nodes that are
distant less then t from node i – where the distance is measured in terms of the sum
of contact time w ji drawn by the distribution s(w ji). The time of recovery g j is
drawn by the distribution r(g j). If w ji > g j no transmission takes place and we set
w ji = ∞. If any node in the subgraph is infected at time zero, then node i will be
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1 2

3

4

5 6

Figure 1.3: When the underlying network has a loopy structure the transmission
events to one node from its neighbors are correlated. Node 1 is the seed and two
different paths (blue and red) of infection lead to node 5 and 6. In the message
passing approach they are considered as coming from different sources but actually
only one contributes.

infected at time t. Averaging on the initial conditions P(x0
i = S) = z for all i, the

probability that i is susceptible

P(xt
i = S) = z⟨zni⟩ (1.22)

where we averaged over the ensemble of values for wi j and τi. This equation is
valid in all cases. In order to obtain the relation with the message passing equation
(1.19) we consider the number ni j of nodes that are distant less than t from i, but
restricted that j is the penultimate node in the path. Paths passing through i are
forbidden, as well (they are not allowed epidemic spreading patterns). In this way
a node k included in paths related to different j is counted more than once, thus it
leads to the inequality: ni ≤ ∑ j∈∂ i ni j. When the underlying network is a tree no
over counting is possible, so it becomes an exact equality. Then

P(xt
i = S) = z⟨zni⟩ ≥ z⟨z∑ j∈∂ i ni j⟩= z⟨∏

j∈∂ i
zni j⟩. (1.23)
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In the original formulation next steps use the Chebyshev integral inequality for
non-negative functions fi(x1, . . . ,xk) monotone in every argument. That says

⟨
n

∏
i=0

fi(x1, . . . ,xk)⟩ ≥
n

∏
i=0
⟨ fi(x1, . . . ,xk)⟩. (1.24)

In our formulation we use a straightforward discrete counterpart fo the Chebyshev
integral inequality, also called Chebyshev sum inequality. Then equation (1.23)
becomes

P(xt
i = S)≥ z ∏

j∈∂ i
⟨zni j⟩. (1.25)

The quantity H ji(t) = ⟨zni j⟩ is the probability that at time t the infection has not
reached node i through its connection with j. H ji(t) plays the same role than
the quantity defined on a tree in (1.19) and it is calculated by the sum of two
contributions. When we have to consider the probability that j doesn’t get the
infection on time to transmit it to i, we have to consider a cavity configuration, i.e
the network as if node i and its outgoing edges are removed. This is required on
a loopy network in order to exclude from the calculation the infection paths of j
going through i itself. The cavity probability that j doesn’t get the infection before
time t ′ = t− τ is

PC(S j(t ′))≥ z ∏
k∈∂ j\i

⟨zn jk⟩= z ∏
k∈∂ j\i

H j←k(t ′), (1.26)

where the inequality holds because the cavity configuration does not take into
account paths of infection passing through i as a middle node, instead of the term
on the right. Combining all the contributions we get

H ji(t)≥ 1−
t

∑
τ=0

f (τ)

[
1−P(x0

j = S) ∏
k∈∂ j\i

Hk j(t− τ)

]
. (1.27)

This expression in the form of inequality is not suitable to calculate properties of
epidemics. Karrer and Newman [21] showed that if one solves (1.27) with the
equality, then a rigorous lower bound for the probability of being susceptible is
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achieved
P(xt

i = S)≥ z ∏
j∈∂ i

H ji(t), (1.28)

and as a consequence also an upper bound for the probability PI
i (t) of being in-

fected.

1.5.1 Equivalence to the Dynamic Message Passing formula-
tion

In the following we will introduce the Dynamic Message Passing formulation for
the SIR model proposed by Lokhov, Mézard, Ohta and Zdeborová [29, 42] that
presents a set of closed equations to get probabilities at time t given the ones at
time t − 1 and we will show that it is equivalent to the more general approach
by Karrer and Newman when it is assumed that the epidemic parameters do not
depend on time. The quantity involved in the DMP formulation are: the probability
θ ji(t) that no infection signal passed from j to i until time t; the probability φ ji(t)
that j is infect at time t and the infection has not been transmitted to i up to t. The
set of recursion rules is

θ
ji(t +1) = θ

ji(t)−λ jiφ
ji(t), (1.29)

φ
ji(t) =(1−λ ji)(1−µ j)φ

ji(t−1),

−
[
P ji

S (t)−P ji
S (t−1)

]
(1.30)

P ji
S (t +1) = P(x0

i = S) ∏
j∈∂k\i

θ
k j(t +1). (1.31)

The last equation involves the quantity P ji
S (t +1) that is the probability that node k

is in state S when i is fixed in the state S. The update rules start from a set of initial
condition that in the case of an epidemic process at time t = 0 are

θ
ji(0) = 1 (1.32)

φ
ji(0) = δq j(0),I (1.33)
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The probability that a node i is in a given state at time t are

P(xt+1
i = S) = P(x0

i = S) ∏
j∈∂ i

θ
ji(t +1). (1.34)

P(xt+1
i = R) = P(xt

i = R)+µiP(xt
i = I), (1.35)

P(xt+1
i = I) = 1−P(xt+1

i = S)−P(xt+1
i = R). (1.36)

In order to show the equivalence between equations (1.31) and equation (1.19),
we reformulate equation (1.29) to get a relation in which θ ji(t +1) is expressed
in function of θ ji(t). Firstly, we use the expression for φ ji(t) and φ ji(t−1) from
Eq.(1.29) into Eq.(1.30) and we get

θ ji(t)−θ ji(t +1)
λ ji

=

(1−λ ji)(1−µi)

λ ji

(
θ

ji(t−1)−θ
ji(t)
)
−P ji

S (t)+P ji
S (t−1)

(1.37)

and reordering the terms

θ
ji(t)− (1−λ ji)(1−µi)θ

ji(t−1)−λ jiP
ji

S (t−1) =

θ
ji(t +1)− (1−λ ji)(1−µ j)θ

ji(t)−λi jP
ji

S (t). (1.38)

Since in this equation the two terms are equal except that they are evaluated at
different time steps, it means that they must be equal to a constant C ji. Then we
can solve the equation

θ
ji(t +1)− (1−λ ji)(1−µ j)θ

ji(t)−λ jiP
ji

S (t) =C ji, (1.39)

with the boundary condition θ ji(0) = 1 given by definition of this quantity (at time
t = 0 no infection signal has been transmitted). In order to evaluate the constant
C ji we consider the case in which all nodes are initially susceptible, i.e Pi

S(0) = 1;
in this case both Pi j

S (t) = 1 and θ ji(t) = 1 are valid at any time t, and the above
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equation reduces to

1− (1−λ ji)(1−µ j)−λ ji =C ji =⇒ C ji = (1−λ ji)µ j.

Using this result in (1.39) we find that the cavity quantities θ ji(t) have to satisfy
the dynamic equation

θ
ji(t +1) = (1−λ ji)

[
µ j +(1−µ j)θ

ji(t)
]
+λ jiPi

S(0) ∏
k∈∂ j\i

θ
k j(t). (1.40)

From this equation it is possible to recover the discrete time message passing
equation (1.19) by Karrer and Newman when infection and recovery delays follow
geometric distributions. If we write the terms in the right hand side depending on
θ ji(t) as functions of the θ ji(t−1) we get

θ
ji(t +1) = (1−λ ji)µi +(1−λ ji)(1−µ j)θ

ji(t)+λ jiP
ji

S (t)

= (1−λ ji)µ j +(1−λ ji)(1−µ j)
[
(1−λ ji)µ j +(1−λ ji)(1−µ j)θ

ji(t−1)+λ jiP
ji

S (t−1)
]

+λi jP
i j
S (t)

= (1−λ ji)µi +(1−λ ji)
2(1−µ j)µ j +(1−λ ji)

2(1−µ j)
2
θ

ji(t−1)

+λ ji(1−λ ji)(1−µ j)P
ji

S (t−1)+λ jiP
ji

S (t),

(1.41)

we can repeat the procedure for θ ji(t−2) and continue t−2 times until we reach
θ ji(0) = 1, therefore the resulting expression is

θ
ji(t +1) =µi(1−λi j)

t

∑
s=0

(1−λi j)
s(1−µi)

s +(1−λi j)
t+1(1−µi)

t+1

+λi j

t

∑
s=0

(1−λi j)
s(1−µi)

sPi
S(0) ∏

k∈∂ i\ j
θ

ki(t− s). (1.42)

We can observe that the term

λi j

t

∑
s=0

(1−λi j)
s(1−µi)

sPi
S(0) ∏

k∈∂ i\ j
θ

ki(t− s)
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is the second term in the Karrer-Newman’s equation (1.19) when the delays follow
geometric distributions. Now we can if we recall the definition in (1.16) f ji(s) =
λ ji(1−λ ji)

s(1− µ j)
s, we get the exact expression for the first term of equation

(1.19). Let us consider the first two terms

µi(1−λi j)
t

∑
s=0

(1−λi j)
s(1−µi)

s +(1−λi j)
t+1(1−µi)

t+1

= µi(1−λi j)

[
1− (1−λi j)

t+1(1−µi)
t+1

1− (1−λi j)(1−µi)

]
+(1−λi j)

t+1(1−µi)
t+1

=
(
λi j +µi(1−λi j)

)[1− (1−λi j)
t+1(1−µi)

t+1

1− (1−λi j)(1−µi)

]
+(1−λi j)

t+1(1−µi)
t+1−λi j

[
1− (1−λi j)

t+1(1−µi)
t+1

1− (1−λi j)(1−µi)

]
= 1− (1−λi j)

t+1(1−µi)
t+1 +(1−λi j)

t+1(1−µi)
t+1−λi j

[
1− (1−λi j)

t+1(1−µi)
t+1

1− (1−λi j)(1−µi)

]
= 1−λi j

[
1− (1−λi j)

t+1(1−µi)
t+1

1− (1−λi j)(1−µi)

]
.

The result is

θ
ji(t +1) =1−λi j

[
1− (1−λi j)

t+1(1−µi)
t+1

1− (1−λi j)(1−µi)

]
+

+λi j

t

∑
s=0

(1−λi j)
s(1−µi)

sPi
S(0) ∏

k∈∂ i\ j
θ

ki(t− s). (1.43)

, we recover the first term in the equation by Karrer and Newman:

1−
t

∑
s=0

f ji(s) = 1−λ ji
1− (1−λ ji)

t+1(1−µ j)
t+1

1− (1−λ ji)(1−µ j)
. (1.44)

Finally we get

θ
ji(t +1) = 1−

t

∑
s=0

f ji(s)+
t

∑
s=0

f ji(s)Pi
S(0) ∏

k∈∂ i\ j
θ

k j(t− s), (1.45)
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that is the same expression of equation (1.19). To complete the equivalence we
show that (1.19) can naturally be written in the form (1.40), in fact

H ji(t +1) =1−λ ji +
t

∑
τ=1

λ ji(1−λ ji)
s(1−µ j)

s +λ jiP
j

S (0) ∏
k∈∂ j\i

Hk j(t)

+
t

∑
τ=1

λ ji(1−λ ji)
s(1−µ j)

sP j
S (0) ∏

k∈∂ j\i
Hk j(t− τ)

= 1−λ ji +
t−1

∑
τ=0

(1−λ ji)
s+1(1−µ j)

s+1 +λ jiP
j

S (0) ∏
k∈∂ j\i

Hk j(t)

+
t

∑
τ=0

λ (1−λ ji)
s+1(1−µ j)

s+1P j
S (0) ∏

k∈∂ j\i
Hk j(t− τ)

= 1−λ ji +(1−λ ji)(1−µ j)
t−1

∑
τ=0

(1−λ ji)
s+1(1−µ j)

s+1 +λ jiP
j

S (0) ∏
k∈∂ j\i

Hk j(t)

+(1−λ ji)(1−µ j)
t

∑
τ=0

λ ji(1−λ ji)
s(1−µi)

sP j
S (0) ∏

k∈∂ j\i
Hk j(t− τ−1)

1−λ ji− (1−λ ji)(1−µ j)+(1−λ ji)(1−µ j)H ji(t)+λ jiP
j

S (0) ∏
k∈∂ j\i

Hk j(t)

(1−λ ji)
[
µ j +(1−µ j)H ji(t)

]
+λ jiP

j
S (0) ∏

k∈∂ j\i
Hk j(t).

1.5.2 Equivalence to the pair-based approximation

In Section 1.4 we introduced a pair-based approximation that leads to a set of
closed equation for the time evolution of the probabilities of the states of the
individuals. Here we show that the pair-based approximation can be recovered
from the Dynamic Message Passing approach. We use the formalism by Lokhov,
Mézard, Ohta and Zdeborová to express the relevant quantities in equations (1.13)
in function of cavity marginals. Then the marginal probability that node i is
susceptible at time t is:

P(xt
i = S) = P(x0

i = S) ∏
j∈∂ i

θ
ji(t). (1.46)
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The joint probability P(xt
i = S,xt

j = S) is

P(xt
i = S,xt

j = S) = P(x0
i = S)P(x0

j = S) ∏
k∈∂ i\ j

θ
ki(t) ∏

l∈∂ j\i
θ

l j(t), (1.47)

which follows from the fact that both i and j cannot infect each other. For the joint
probability P(xt

i = S,xt
j = I) we must consider the probability that i has never get

the disease multiplied by the probability that j is infected at time t but it has not
transmitted the infection to i, that is

P(xt
i = S,xt

j = I) = P(x0
i = S)

[
∏

k∈∂ i\ j
θ

ki(t)

]
φ

ji(t) (1.48)

= P(x0
i = S) ∏

k∈∂ i\ j
θ

ki(t)

[
θ

ji(t)− 1−λ ji

λ ji
µ j
(
1−θ

ji(t)
)
−P(x0

j = S) ∏
h∈∂ j\i

θ
h j(t)

]
,

(1.49)

where the last expression is obtained using (1.40) in equation (1.29). Now we can
derive equations (1.13) starting from the Dynamic Message Passing formalism.
The probability that a node i is susceptible at time t is

P(xt+1
i = S) =P(x0

i = S) ∏
k∈∂ i

θ
ki(t +1) = P(x0

i = S) ∏
k∈∂ i

[
θ

ki(t)−λkiφ
ki(t)

]
= P(x0

i = S) ∏
k∈∂ i

θ
ki(t)

[
1− λkiφ

ki(t)
θ ki(t)

]
, (1.50)

where we use (1.49) obtaining

P(xt+1
i = S) =P(x0

i = S) ∏
k∈∂ i

θ
ki(t)

[
1− λkiP(xt

i = S,xt
k = I)

θ ki(t)P(x0
i = S)

[
∏v∈∂ i\k θ vi(t)

]]

= P(xt
i = S) ∏

k∈∂ i

[
1− λkiP(xt

i = S,xt
k = I)

P(xt
i = S)

]
, (1.51)

that is the same expression found in (1.13) for the probability that a node is
susceptible at time t + 1. The probability that a node is infected is given by
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equation (1.21) (where we used a constant probability of recovery)

P(xt+1
i = I) = (1−µi)P(xt

i = I)+P(xt
i = S)−P(xt+1

i = S)

= (1−µi)P(xt
i = I)+P(xt

i = S)

[
1−∏

k∈∂ i

(
1− λkiP(xt

i = S,xt
k = I)

P(xt
i = S)

)]
.

(1.52)

Then the equation that describes the evolution of the probability that a node i is in
the recovered state is

P(xt+1
i = R) = P(xt

i = R)+µiP(xt
i = I). (1.53)

26



CHAPTER 1. EPIDEMIC MODELS

Now we need the time evolution for the joint probability P(xt
i = S,xt

k = I) present
in (1.52) and it is given by

P(xt+1
i = S,xt+1

j = I) = P(x0
i = S)

[
∏

k∈∂ i\ j
θ

ki(t +1)

]
φ

ji(t +1)

=P(x0
i = S) ∏

k∈∂ i\ j

[
θ

ki(t)−λkiφ
ki(t)

]
×

×
[
(1−λ ji)(1−µ j)φ

ji(t)−P(x0
j = S) ∏

h∈∂ j\i
θ

h j(t +1)+P(x0
j = S) ∏

v∈∂ j\i
θ

v j(t)

]

=P(x0
i = S) ∏

k∈∂ i\ j
θ

ki(t)
[

1−λki
P(xt

i = S,xt
k = I)

P(xt
i = S)

]
(1−λ ji)(1−µ j)φ

ji(t)

−P(x0
i = S) ∏

k∈∂ i\ j
θ

ki(t)
[

1−λki
P(xt

i = S,xt
k = I)

P(xt
i = S)

]
P(x0

j = S) ∏
h∈∂ j\i

θ
h j(t +1)

+P(x0
j = S) ∏

v∈∂ j\i
θ

v j(t)P(x0
i = S) ∏

k∈∂ i\ j
θ

ki(t)
[

1−λki
P(xt

i = S,xt
k = I)

P(xt
i = S)

]
=(1−λ ji)(1−µ j)P(xt

i = S,xt
j = I) ∏

k∈∂ i\ j

[
1−λki

P(xt
i = S,xt

k = I)
P(xt

i = S)

]
−P(xt

i = S,xt
j = S) ∏

k∈∂ i\ j
θ

ki(t)
[

1−λki
P(xt

i = S,xt
k = I)

P(xt
i = S)

]
×

× ∏
h∈∂ j\i

θ
h j(t)

[
1−λh j

P(xt
j = S,xt

h = I)

P(xt
j = S)

]

+P(xt
i = S,xt

j = S) ∏
k∈∂ i\ j

θ
ki(t)

[
1−λki

P(xt
i = S,xt

k = I)
P(xt

i = S)

]
=(1−λ ji)(1−µ j)P(xt

i = S,xt
j = I) ∏

k∈∂ i\ j

[
1−λki

P(xt
i = S,xt

k = I)
P(xt

i = S)

]

+P(xt
i = S,xt

j = S)

[
1− ∏

h∈∂ j\i
θ

h j(t)

[
1−λh j

P(xt
j = S,xt

h = I)

P(xt
j = S)

]]
×

× ∏
k∈∂ i\ j

θ
ki(t)

[
1−λki

P(xt
i = S,xt

k = I)
P(xt

i = S)

]
. (1.54)
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Then we write the expression for the time evolution of the joint probability P(xt
i =

S,xt
j = S), that is given by

P(xt+1
i = S,xt+1

j = S) = P(x0
i = S)

[
∏

k∈∂ i\ j
θ

ki(t +1)

]
P(x0

j = S)

[
∏

h∈∂ j\i
θ

h j(t +1)

]
= P(x0

i = S) ∏
k∈∂ i\ j

[
θ

ki(t)−λkiφ
ki(t)

]
×P(x0

j = S) ∏
h∈∂ j\i

[
θ

hi(t)−λhiφ
hi(t)

]
, (1.55)

using the expression (1.49) and reordering the terms

P(xt+1
i = S,xt+1

j = S) = P(x0
i = S) ∏

k∈∂ i\ j
θ

ki(t)

[
1−λki

P(xt
i = S,xt

k = I)
∏v∈∂ i\k θ vi(t)θ ki(t)

]

×P(x0
j = S) ∏

h∈∂ j\i
θ

hi(t)

[
1−λhi

P(xt
j = S,xt

h = I)

∏u∈∂ j\h θ u j(t)θ h j(t)

]

= P(xt
i = S,xt

j = S) ∏
k∈∂ i\ j

[
1−λki

P(xt
i = S,xt

k = I)
P(xt

i = S)

]
∏

h∈∂ j\i

[
1−λhi

P(xt
i = S,xt

h = I)
P(xt

j = S)

]
.

(1.56)

We expressed the probability distribution evolution over time in term of cavity
messages. Then, by the use of their evolution equations, we have recovered
equations (1.13), (1.14) and (1.15) obtained by considering the master equation of
the process in a pair-based approximation. Thus we proved that the two approaches
are indeed two equivalent way to arrange the terms that contribute to the probability
distributions.

1.5.3 Towards a new representation

In the message passing formalisms that we presented, each message is function
of a single cavity time variable ti j, i.e the time ti j at which i get infected when j
is fixed in the susceptible state. They correctly deal with the direct problem of
the epidemic spreading: given the initial conditions they allows to evaluate the
marginal probability of being susceptible, infected or recovery for every node.
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When considering an inverse problem, such as the patient zero identification, these
approaches need further approximations, such as a mean-field approximation (see
Section 2), that may lead to errors in the inference of the source. Instead, it
is possible to tackle inverse problems by a different approach. We compute a
partition function in which we trace over the cavity infection times ti j, on which
constraints are imposed by the dynamics of the process Φ and by the final observed
configuration. However the two constraints depend both on ti j and t ji, that means
that the forward dynamics as well as the backward propagation of the information
has to be taken into account. Therefore, we need a representation of the messages
m ji(t ji,g j, ti j,gi) that depends both on the cavity infection time ti j and t ji. The
constraint on the dynamics will be a function of ti j and of the infection time of the
nodes in ∂ i\ j and it will be enforced on every edge of the network:

∏
(i, j)∈E

Ψi j(ti j,{tki,ski}k∈∂ i\ j) = ∏
(i, j)∈E

δ

[
ti j = min

k∈∂ i\ j
{tki + ski}

]
. (1.57)

When the constraint on the dynamics Φ is considered, the partition function is

Z ∝ ∑
{gi}i∈N

∑
{ti j,si j}(i, j)∈E

∏
i∈N

ri(gi) ∏
(i, j)∈E

ω(si j|g j)δ

[
ti j = min

ℓ∈∂ i\ j
{tℓ′i + sℓ′i}

]
. (1.58)

The Belief Propagation equation for the messages is:

mi j(ti j,gi, t ji,g j)∝ ∑
{tki,gk,ski}k∈∂ i\ j

ri(gi) ∏
k∈∂ i\ j

ω(ski|gk) ∏
ℓ∈∂ i

δ

[
tiℓ = min

ℓ′∈∂ i\ℓ
{tℓ′i + sℓ′i}

]
∏

k∈∂ i\ j
mki(tki,gk, tik,gi),

(1.59)
where ω(ski|gk) is the probability distribution of the infection delay ski conditioned
on the recovery delay gk.

However, the computation of quantities involving this term becomes infeasible
as the nodes degree increases. Therefore, we will introduce a computationally
tractable representation in which the constraint Ψi j depending on the cavity in-
fection time is replaced by a function on the total infection time ti and on the
neighbors infection time {tk}k∈∂ i\ j: this function is evaluated on each node rather
than on each edge. Moreover, the new representation allows to conveniently treat

29



1.6. EPIDEMIC PROCESSES IN TEMPORAL NETWORKS

1

2

3

4

5 t=0

1

2

3

4

5 t=1

1

2

3

4

5 t=2

Figure 1.4: Temporal network: a set of nodes that at every time step is connected
by a different set of edges. Considering the set of edges occurred before a given
time, one gets a static projection of the network.

the constraint on the final observed configuration. We will present this approach in
Chapter 4.

1.6 Epidemic processes in temporal networks

An intermediate scenario exists, in fact in many realistic cases contacts and the
epidemics evolve on a comparable time scale. Thus we define a temporal network
[43, 44] as a set of nodes that at every instant are connected by a different set of
edges. A contact sequence is the collection of the edges existing at every time step
taken under consideration. We can recover a static projection of the network until
time T by aggregating the contact sequence for t < T , thus obtaining a network
containing every edge existed before T . A more informative representation can be
achieved by assigning a weight to every edge between nodes i and j proportional
to the total amount of time they have been in contact. On a temporal networks the
time ordering of connections affects epidemic processes. In fact an infected node
can propagate the disease only through edges existing during its infectious period
and the propagation into the population must follow paths respecting the time
ordering. In most cases the consequence is an epidemic size smaller than in static
networks. Data about dynamical human contacts can be collected in many ways.
For example, socio-technological networks can provide large datasets that cover
a large time interval (as sexual encounters websites [45]). Instead networks of
wireless sensors [11, 12] correspond to high resolution data about spatial proximity
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between individuals, but they involve smaller populations and, often, confined
space.

1.7 Non Markovian epidemic model

In the framework of epidemic modeling it is usually assumed that the spread of a
disease can be described as a discrete time Markov process, i.e that the probability
per unit of time of infection or recovery has a constant value. The time that an
individual spends in the infected state, as well as the time to successfully transmit
infection, has an exponential probability distribution. Since the rate of infection
and recovery do not depend on the history of individuals, it is possible to describe
the epidemics as a Markov process with no memory and take advantage of an
(possibly) increased mathematical tractability [46]. However empirical evidence
leads to consider different epidemic models that often cannot be described as a
Markov process (or, in continuous time, by a Poisson process). For example, in
the case of HIV the distribution of infective periods is poorly approximated by an
exponential function [47]. For the smallpox the residence period in the various
stages of the disease is rather approximated by a gamma distribution [48, 49]

f (t,α,β ) =
β αtα−1e−β t

Γ(α)
. (1.60)

A SIR model with a fixed length for the infective period well approximates an
outbreak of measles [50]. Conversely in the case of the virus Ebola epidemiologists
often assume the infective period distributed following a Weibull distribution [51]

g(t,k,b) = bktk−1e−btk
. (1.61)

In general few analytical results are available for non-Markovian epidemic models
[15], because the infection process does not depend only on the infected (or not)
neighbors of a node but also on their history. It is worth noting that the message
passing approach to SIR by Karrer and Newman [21] (described in Section 1.5)
assumes generic probability distribution for the infection and recovery time, then it
can be used to study non-Markovian epidemic models.
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Chapter 2

Source inference for SIR on
networks

In this chapter we introduce different methods to infer the origin of an epidemic
process given an observation of the system. They are based on three different
approaches: rumor centrality exploits the topological properties of spreading
patterns on networks; the Soft-Margin estimator is based on extensive Monte Carlo
simulations; the Dynamic Message Passing – Naive Bayes computes exact marginal
probability on trees and relies on mean-field approximation to infer the source.
Nevertheless the inverse problem of finding the origin of a stochastic process such
as an SIR epidemic is not trivial and these methods have drawbacks that will be
discussed in this chapter.

2.1 Rumor Centrality

In order to propose a maximum likelihood estimator for the epidemic source D.
Shah and T. Zaman [25, 27, 28] began from the heuristic assumption that the
source of an epidemic spreading is the center of a network composed by the nodes
reached by the disease. Then one can define an infection path as a sequence of
infected nodes ordered according to the constraints set by the underlying contact
network and by the epidemic process. The problem of finding the patient-zero
is set as follows. Given a graph G(V,E), a subgraph GN(V,E) composed of the
nodes reached by the epidemic is provided. Assuming that the a priori probability

32



CHAPTER 2. SOURCE INFERENCE FOR SIR ON NETWORKS

of being the origin i0 is the same for each node i, the Maximum-Likelihood (ML)
estimator is

ĩ0 = argmax
i∈GN

P(GN |i0 = i), (2.1)

where P(GN |i0 = i) is the likelihood of an infection graph GN(V,E) given a
candidate source i. It can be calculated by the sum of the probability of every
permitted infection sequence σ ∈ GN originated from i

P(GN |i0 = i) = ∑
σ∈GN

P(σ |i0 = i) (2.2)

In general the probability of each permitted infection sequence is different, but in
the case of regular tree they are all equal due to the constant degree of the nodes
and the memoryless Markovian nature of the spreading. Therefore P(GN |i0 = i)
is proportional to the number of permitted infection sequence originated in i and
resulting in GN . It is possible to define the notion of rumor centrality R(i,T )
[25, 27, 28] as the number of infection paths that begin with node i and result in
a regular tree T . Thus the problem can be recast in the computation of the rumor
centrality [25]

ĩ0 = argmax
i∈GN

P(GN |i0 = i) = argmax
i∈GN

R(i,GN). (2.3)

In general this quantity involves an exponential number of terms, but on regular tree
it can be computed in linear time as follows. We call T k

i the subtree that belongs to
GN with k as source rooted in i and |T k

i | the number of its nodes. The reasoning put
forward clarifies how we can count the number of infection paths in GN given the
epidemic origin i0. The contagion first spreads to the origin’s neighbors, then to
the subtrees T i0

k rooted in each k ∈ ∂ i0. The size of GN (i.e the number of infected
individuals) is N and sets the number of node in the infection sequences whose
first element is i0. From the remaining N− 1 we choose |T i0

k1
| elements for the

first neighbor k1 ∈ ∂ i0 and they can be ordered in R(k1,T
i0

k1
) ways. Then from the

remaining N−1−|T i0
k1
| elements we choose |T i0

k2
| that can be ordered in R(k2,T

i0
k2
)

ways. It is worth noting that the ordering is constrained only for nodes in the same
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2.1. RUMOR CENTRALITY

subtree, since the spreading in each branch is independent. Then we obtain

R(i0,GN) =

(
N−1
|T i0

k1
|

)(N−1−|T i0
k1
|

|T i0
k2
|

)
. . .

(N−1−∑
|∂ i0|−1
i=1 |T i0

ki
|

T i0
k|∂ i0|

)
∏

k∈∂ i0

R(k,T i0
k )

= (N−1)! ∏
k∈∂ i0

R(k,T i0
k )

|T i0
k |!

(2.4)

By expanding this calculation in terms of subtrees T i0
l rooted at nearest neighbor

children l of k ∈ ∂ i0 we get

R(i0,GN) =(N−1)! ∏
k∈∂ i0

R(k,T i0
k )

|T i0
k |!

=

= (N−1)! ∏
k∈∂ i0

(|T i0
k |−1)!

|T i0
k |!

∏
l∈∂k

R(l,T i0
l )

|T i0
l |!

=

= (N−1)! ∏
k∈∂ i0

1

|T i0
k |

∏
l∈∂k

R(l,T i0
l )

|T i0
l |!

. (2.5)

This procedure is repeated until the leaves of GN are reached [25] and exploiting
the fact that the tree rooted in i0 has |T i0

i0 |= N we get

R(i0,GN) = N! ∏
i∈GN

1

|T i0
i |

. (2.6)

The rumor center is found by computing R(i0,GN) for every node in GN in order
to find its likelihood to be the origin of the epidemic. However to compute
this quantity we need the size |T i0

i | of every subtree rooted in every node i for
every source candidate i0, that means N2 subtrees. Shah and Zaman proposed an
algorithm to calculate rumor centrality for every node with O(N) computations
[25] that we present in the following. As a first step consider two neighboring
nodes i and j, all their subtrees have the same size except for the ones rooted in j
and i respectively, i.e T i

j and T j
i . Between this two subtrees the following relation

is valid for the size
T i

j = N−T j
i . (2.7)
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If one inserts this expression in equation (2.6) then finds an equivalent relation
between the rumor centralities of two neighboring nodes i and j

R(i,GN) = N! ∏
k∈GN

1
|T i

k |
= N! ∏

k∈GN\ j

1
|T i

k |
1
|T i

j |

= R( j,GN)|T j
i |

1
|T i

j |
= R( j,GN)

|T j
i |

N−|T j
i |
. (2.8)

In this scheme the rumor centrality R(i0,GN) of a source candidate i0 is obtained
by multiplying the cumulative products of its children subtrees size. The latter
quantity is computed starting at the leaves (where the subtree size is one) and
recursively transmitting upward the information about cumulative products and
size of the subtree to parents nodes. Once we obtain the rumor centrality for i0,
we can calculate the rumor centrality for each node starting from k ∈ ∂ i0 using
equation (2.8).

Shah and Zaman [25, 27, 28] showed that on a regular tree with degree d > 2
the probability of a correct detection of the source is always greater than zero.
Instead in the case of a line (a regular tree with d = 2) this probability scales
with time t as O(t1/2). This calculation is exact on regular trees, but it is not on
general trees. In fact if the node degrees vary then the infection sequences are not
equally probable. In this case it is only possible to have P(i0 = i|GN) ∝ R(i,GN).
In the case of general graphs a simplified approximated approach based on heuristic
assumptions is possible. The basic assumption is that given a source i0 the epidemic
spreads on a breadth first search tree. So we can use this trees T i0

b f s instead of the
general graph GN and find the source using the modified maximum likelihood
estimator

ĩ0 = argmax
i∈GN

R(i,Tb f s(i)). (2.9)

2.2 Soft-Margin Estimator

The problem of the identification of the patient zero can be addressed by the
use of Monte Carlo methods. Let us consider the case in which we observe the
configuration xt

∗ of a realization of the SIR model at time t, we can represent
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2.2. SOFT-MARGIN ESTIMATOR

this configuration by the graph GN(V,E) of the infected and recovery nodes at
time t (equivalent to the nodes that got infected until time t). Given an observed
realization GN∗ an immediate approach to compute P(x0

i = I|GN) is a direct Monte
Carlo approach. We can simulate a large number n of realizations of the process for
each potential source i (i.e. that has to be among the nodes that has been infected
before t). From the number Mi of simulations that provide a configuration at time t
coincident with GN , we compute the posterior probability

P(x0
i = I|GN) =

Mi

∑ j M j
. (2.10)

However the number of possible configurations xt and GN is exponential with the
size of the network because it is based on the sampling of rare events (a realization
at time t), thus the direct Monte Carlo method becomes computationally demanding
for large networks. An approximate probability distribution P(x0

i = I|GN) can be
computed by using the Soft-Margin estimator [24]. This is a generalization of
the direct Monte Carlo method that weights the simulated realizations on the
basis of their similarity to the observed one GN . The similarity between a generic
realization Gi

N with source node i and the real one GN is measured by computing
the Jaccard similarity function

φ(GN ,Gi
N) =

|GN ∩Gi
N |

|GN ∪Gi
N |
. (2.11)

This function takes value in [0,1] and increases with the size of the infected
subpopulation shared between the realizations GN and Gi

N . The Gaussian weight
function is

wa(φ(GN ,Gi
N)) = exp

(−(φ(GN ,Gi
N)−1)2

a2

)
. (2.12)

By simulating M realizations Gil
N with l ∈ (1, . . . ,M) it is possible to compute the

likelihood of GN given that the source is i (see [24])

P(GN |x0
i = I) =

1
M

M

∑
l=1

exp
(−(φ(GN ,Gil

N)−1)2

a2

)
. (2.13)
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If we assume that the prior probability P(x0
i = I) to be the origin of the epidemic

is the same for every node, then by the use of the Bayes’ theorem the posterior
probability for a node to be the source is

P(x0
i = I|GN) =

P(GN |x0
i = I)

∑ j P(GN |x0
j = I)

. (2.14)

This approximation computes the posterior probability accepting contributions
from realizations that do not yield the observed configuration xt

∗, but they are within
a certain distance from xt

∗. A larger value for the standard deviation a will produce
a poorer approximation, instead when a→ 0 the direct Monte Carlo method is
recovered.

2.3 Dynamic Message Passing – Naive Bayes

In their work Lokhov, Mézard, Ohta and Zdeborová [29] proposed to infer the
origin of the epidemic by a mean-field approximation of the conditional probability
P(xTobs |i0) of finding the observed configuration given the epidemic source, that
leads to the following factorized form for the conditional probability

P(xTobs |i0) = ∏
k/x

Tobs
k =S

Pk
S (Tobs, i0) ∏

l/x
Tobs
l =I

Pl
S(Tobs, i0) ∏

m/x
Tobs
m =R

Pm
S (Tobs, i0).

(2.15)
Then by the use of Bayes’ theorem it is possible to find the probability that a
node i is the source given the observation P(i0 = i|xTobs) ∝ P(xTobs |i0 = i). For
each candidate to be the origin an energy function E(i) = − log(P(xTobs |i0)) is
defined and the most probable seed is the node with the lowest energy. In order
to compute marginal probabilities that a node i is in each of the three states
given an epidemic origin i0 they used the Dynamic Message Passing algorithm
[29, 42] described in Section 1.5. The mean-field approximation underlying
equation (2.15) leads to significant inaccuracies even in the case of a tree, when the
message passing gives the exact value for the marginals. In fact, the factorization
over single nodes disregards the information that the observed state xTobs gives
about correlations. A clarifying example is given by Fig. 2.1 [32]. Given the
observed configuration where node 5 and leaves 6-10 are in the susceptible state,
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1 2 3 4 5

6

7

8

9
10

Figure 2.1: This example shows a typical situation in which even if DMP gives
exact marginal probabilities the mean-field approximation introduces errors in the
inference of the source. Red: node infected; Black: node recovered; White: node
susceptible.

the probability that the leaves have not been infected is one. In fact the states of
these nodes are correlated, thus if node 5 is susceptible it forces leaves 6-10 to
be the same because the infection cannot reach the leaves. Nevertheless in the
mean-field approximation (2.15) the leaves 6-10 contributes to the energy function,
because their marginals PS(Tobs, i0) to be susceptible is not identically one. In fact
disregarding their correlations with the state of node 5 the resultant probability
that the leaves get infected is not zero and it is larger as the candidate seed i0 is
closer to the leaves. Therefore minimizing the mean-field free-energy the inferred
seed will be positioned at larger distance from the leaves than the real one. As a
consequence if the number of leaves is large enough their contributes dominate the
energy function leading to a most probable seed as far as possible from them.
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Chapter 3

Belief Propagation

In this chapter we first introduce the factor graph representation for dependencies
among random variables. Then we introduce the Belief Propagation, a message
passing algorithm that can be used to compute exact marginal probabilities on trees.
We will finally show that the Belief Propagation equations fixed points can be cast
into the Bethe free energy stationary points.

3.1 Factor Graph Representation

When dealing with random variables with mutual interaction, we can express their
dependencies in a factorized form, i.e as product over terms depending only on
subsets of variables. In these cases, the factor graph language is a powerful tool
in order to represent graphically the structure of dependencies among random
variables and we speak of graphical models. Let us consider a set [N] of N
variables (x1, . . . ,xN) taking values in a set χ , we assume that their joint probability
distribution reads

P(x) =
1
Z

M

∏
a=1

Fa(x∂a), (3.1)

where x≡ {x1, . . . ,xN}, x∂a ≡ {xi | i ∈ ∂a} and ∂a⊆ [N]. The set of indexes ∂a,
with a ∈ [M] , has size ka ≡ |∂a|. The compatibility functions Fa : χka →R are non
negative and Z is a positive normalization constant. The factor graph representation
of a probability distribution is made up of a bipartite graph composed of factor
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3.1. FACTOR GRAPH REPRESENTATION

nodes and variable nodes [52]: each of the M functions Fa in 3.1 is represented
by a factor node and each of the N variable xi of the problem is represented by
a variable node. An edge links a factor node a and a variable node i if Fa(x∂a)

depends on xi.

x1 
Fc

x2 
Fa

x3 

Fb

Fd
x4 

x5 

Figure 3.1: A factor graph. Circles correspond to variables xi ∈ (x1,x2,x3,x4,x5).
Black squares correspond to functions encoding dependencies among variables
Fa(x2,x3),Fb(x3,x4),Fc(x1,x2,x4,x5),Fd(x3).

A probability distribution written in the factorized form (3.1) respects a condi-
tional independence assumption – also called global Markov property [52]:

Proposition 1. Consider three disjoint subset of variable nodes A,B,S⊆ [N] and
denote by xA,xB and xS the corresponding set of variables. The variables xA,xB

are said conditionally independent given S if

P(xA,xB|xS) = P(xA|xS)P(xB|xS) . (3.2)

In the factor graph language the conditional independence sets a notion of
locality: in fact if the variables sets A and B are conditionally independent given S,
it means that there is no path on the factor graph joining a node in A to a node in B
without passing through S. The inverse relation between factor graph representation
and conditional independence is encoded in the Hammersley-Clifford Theorem:

40



CHAPTER 3. BELIEF PROPAGATION

Theorem 1 (Hammersley-Clifford). Let P be a strictly positive probability dis-
tribution over the variables x = (x1 . . .xN) ∈ χN that satisfies the global Markov
property. Then P can be written in the factorized form (3.1) with respect to a factor
graph F.

It is worth noting that we do not need conditions on the form of functions
Fa(x∂a) other than the respect of mutual dependencies between variables, so they
are not defined in a unique way. It simply leads to different factorized expressions
for the joint probability and different factor graphs. It is always possible to choose
a convenient form for the factor nodes in order to get a factorized representation as
in (3.1). The only assumption behind the factorized form in (3.1) is the notion of
locality that comes with the global Markov property.

Example: the Ising chain. As a simple, but explicative, example of factor graph
representation for a probability distribution, we consider the ferromagnetic one
dimensional Ising model. The variables are Ising spins (x1, . . . ,xN) = x, with
xi ∈ {+1,−1}. Their joint probability distribution take the form

Pβ (x) =
1
Z

e−βE(x), E (x) =−
N−1

∑
i=1

xixi+1−B
N

∑
i=1

xi (3.3)

The global Markov property is satisfied. In the factor graph the variable nodes
represent the Ising spins x. There are two types of factor nodes. Nodes correspond-
ing to the N−1 pairwise interactions Fa(xi,xi+1) = e−βxixi+1 are connected to two
neighboring variables nodes. Nodes corresponding to the N magnetic field terms
φa(xi) = e−βBxi are connected to a unique variable node. Thus

P(x1, . . . ,xN) =
N

∏
a=1

Fa(xi,xi+1)φa(xi) (3.4)

3.2 The Belief Propagation equations

The general problem of computing marginals of a graphical model can take a time
exponential in the number of variables. However when the underlying factor graph
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xi+1 xi Fi, i+1 xi+1 Fi, i+1 Fi, i+1 xi+1

Fi

  

Fi+1

  

Fi+1

  

Fi+1

  

Figure 3.2: Factor graph for an Ising chain. Circles correspond to the Ising
spins xi ∈ {+1,−1}. Black squares correspond to the pairwise interaction terms
Fa(xi,xi+1) = e−xixi+1 . Grey squares correspond to the magnetic field terms
φa(xi) = e−Bxi .

is a tree the problem becomes computationally tractable by the use of message-
passing algorithms. They operate on messages associated with edges of a factor
graph, messages are updated recursively through computations at the vertices of the
factor graph. The algorithm design relies on the fact that the probability distribution
can be factorized in terms of local functions, i.e factors. Belief Propagation is a
message passing algorithm that encodes the update rules yielding exact marginals
on trees. The BP equations (as well as the name "Belief Propagation") were in-
troduced in computer science by Pearl [53]. In this section we simply present the
algorithm.

Consider the problem of computing marginals of a graphical model with N vari-
ables (x1, . . . ,xN) taking value in a finite set χ . We are given a set x = (x1, . . . ,xN)

of random variables with a joint probability distribution

M (x) =
1
Z ∏

a
Fa (x∂a) , (3.5)

where x∂a ≡ {xi|i ∈ ∂a} is the set of variables involved in the constraint a. Given
the factor graph representing (3.5), functions called messages are associated with
every directed edge on the factor graph and they take values in the space of
single-variable probability distributions. For each edge (i,a) two messages are
defined: mi→Fa and pFa→i (xi). The fixed-point Belief Propagation (BP) equations
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for messages are (fig. 3.3):

pFa→i (xi) =
1

Zai
∑

{x j: j∈∂a\i}
Fa
(
{xi}i∈∂a

)
∏

j∈∂a\i
m j→Fa

(
x j
)

(3.6)

mi→Fa (xi) =
1

Zia
∏

b∈∂ i\a
pFb→i (xi). (3.7)

It is possible to solve the BP equations by iteration. It is necessary to define
messages m(t)

i→Fa
(xi) and p(t)Fa→i (xi) at the t-th iteration, as functions of the r.h.s. of

the Eqs. (3.6)- (3.7) with messages at time t-1, then iterate the computation until
a fixed point is found. Then, the fixed point messages are m(t)

i→Fa
(xi) = mi→Fa (xi)

and p(t)Fa→i (xi) = pFa→i (xi).

xj ψa
 ← 

ψa

 ↓ 

xk 

ψa

 ↓ 

xj 

xj 
 → ψb

 → 

ψd

 ↓ 

 ↓ 

Figure 3.3: Left: the local portion of the factor graph involved in the computation
of m j→Fa

(
x j
)
. This message is a function of the incoming messages pFa→ j

(
x j
)

with b ̸= a. Right: the portion of the factor graph involved in the computation of
pFb→ j

(
x j
)

as a function of messages mk→Fa (xk) with k ̸= j.
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At the fixed point they provide an approximate value for the marginal probabil-
ity of the variables [52]

mi (xi) =
1
Zi

∏
b∈∂ i

pFb→i (xi) (3.8)

The marginal probability computed by BP is exact on tree-graphical models.

Theorem 2. BP is exact on trees. Consider a tree graphical model in which the
maximum distance between any two variables nodes is t∗. Then

1. Irrespective of the initial condition, BP update equations (3.6-3.7) converge
after at most t∗ iterations. That means:

t > t∗, m(t)
i→Fa

(xi) = mi→Fa (xi) , p(t)Fa→i (xi) = pFa→i (xi) ∀(ia)

2. the fixed point messages provide the exact marginals µ (xi): for any variable
node i and t > t∗,

m(t)
i (xi) =

1
Zi

∏
b∈∂ i

p(t−1)
Fb→i (xi) = mi (xi) . (3.9)

A formal proof is sketched in [52]. We will see that the correspondence with
the Bethe Approximation gives an explanation to this result. However it was found
that BP can be pretty effective on loopy graph, too. The local (in the factor graph
definition) nature of BP suggests that it can occur on graphs that are locally tree.
In fact when computing equations (3.6)-(3.7) on trees messages incoming from
each branch are independent. Therefore we can assume that BP is still a good
approximation when correlations between variables tend to zero and this is true in
the large size limit on graphs that are locally trees.

The Belief Propagation equations was also found in the spin glass community of
physicists using an approach called cavity method [54, 55]. The simplest example
of cavity method dates back to the work of H. Bethe on Ising ferromagnet [56].
This technique is based on the construction of a new graph (the cavity graph)
equivalent to the original, but where a node has been removed. For each neighbors
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of the removed one a marginal probability is computed by summing out variables
of the branch it belongs. In this way an effective cavity fields is obtained and is then
applied along with the interaction between to the removed node and its neighbor.

3.3 The Bethe Approximation

We begin presenting a variational approach to the computation of the free-energy
of a system, then we will introduce the Bethe approximation. Let us consider
a system of N variables xi. The state of the system is x = (x1, . . . ,xN) and each
state has an energy E(x). In statistical mechanics the Boltzmann’s law gives the
probability of a state

P(x) =
1

Z(T )
e−βE(x) (3.10)

where Z(T ) is a normalization constant known as partition function

Z(T ) = ∑
x

e−βE(x), (3.11)

where the sum is over all possible states x ∈ χN of the system.

Now we want to address an opposite situation. Given the joint probability
distribution M (x) = 1

Z ∏a Fa (x∂a) we can use the Boltzmann’s law as a postulate
to define an energy function for the system

E(x) = Z− log(M (x)) =−∑
a

log(Fa (x∂a)), (3.12)

where we set β = 1. In fact, the inverse temperature β has no physical meaning in
this context, it simply sets the scale for the units in which the energy is measured
and can be set arbitrarily. If one (or more) factor Fa (x∂a) is equal to zero for some
configuration of x∂a, then the overall probability of states M (x) which contain
the forbidden configuration x∂a is zero. The corresponding energy is infinite.
Deterministic functions are an important class of factors that have forbidden
configuration. From the partition function Z the Helmholtz free energy is defined
as

fH =− lnZ (3.13)
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where we used β = 1 as explained before. Computing the partition function Z is
often infeasible, especially for systems with a large number of variables (or parti-
cles), because one have to trace over all the possible configurations. Nevertheless,
since the free-energy allows computation of measurable system observables, a
great effort has been devoted to its approximations. Following [57] in order to
approximate fH one can use a variational approach introducing a trial probability
distribution b(x), such that 0≤ b(x)≤ 1, and a variational free energy

f (b) =U (b)−H (b) (3.14)

where the variational average energy is

U (b) = ∑
x

b(x)E (x) (3.15)

and the variational entropy

H (b) =−∑
x

b(x) ln(b(x)). (3.16)

The variational free-energy is actually the Gibbs free-energy fG =U−T S in which
we set T = 1. It follows that

f (b) = fH +D(b||M) (3.17)

where

D(b||M) = ∑
x

b(x) ln
(

b(x)
M (x)

)
(3.18)

is the Kullback-Leibler divergence between b(x) and M (x). Since D(b||M) is
always nonnegative and is zero if and only if b(x) = M (x), then f (b)≥ fH , where
the equality stands when b(x) = M (x). Therefore minimizing the variational
free-energy f (b) with respect to b(x) leads to computing the exact value of fH

and M (x). In other words, minimizing the Gibbs free-energy with respect to the
trial probability distribution gives an upper bound to the Helmholtz free-energy. If
we constraint the beliefs to be b(x) = e−E(x)/Z, we obtain the original expression
for the Helmholtz free-energy, that is hard to compute. On the contrary, we can

46



CHAPTER 3. BELIEF PROPAGATION

xj 

Fb

xk 

Fa
xj 

Fd

xj 

xj 

Figure 3.4: Each region in RL contains one factor (for example Fa or Fb) and all its
neighboring nodes (respectively blue and red ones). Each region in RS contains a
single variable node. In the example node xk belongs to both the Fa and Fb regions
and to the single variable region in RS.

minimize f (b) by constraining the beliefs to be a factorized probability distribution

bMF(x) =
N

∏
i=1

bi(xi) (3.19)

that leads to the mean-field approximation.

R. Kikuchi introduced a different class of approximations to the variational
free energy [58]. In a Kikuchi approximation (cluster variational method) the
approximate free-energy is a function of trial probability distributions bS (xS)

over a set S of variable nodes of the factor graph. Kikuchi recognized that the
Bethe approximation method for magnets [56] is the simplest example of cluster
variational method. We leave the original formulation out and in the following
section we refers to the formulation by Jonathan S. Yedidia [57].
In the Bethe approximation, we take a set of region R of the factor graph of two
types (see Fig. 3.4). A set of regions RL such that each of the M regions in RL

contains one factor node and all its neighboring variables nodes. A set RS such
that each of the N regions in RS contains a single variable nodes. The Bethe free
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energy is fBethe =UBethe−HBethe where the Bethe average energy is

UBethe =−
M

∑
a=1

∑
x∂a

ba (x∂a) ln(Fa (x∂a)) (3.20)

and the Bethe entropy is

HBethe =−
M

∑
a=1

∑
x∂a

ba (x∂a) ln(ba (x∂a))+
N

∑
i=1

(di−1)∑
xi

bi (xi) ln(bi (xi)) (3.21)

the factor di−1 is the counting number which ensures that each node of the factor
graph is counted exactly once when regions in RL and in RS overlap. Moreover,
since we require that the beliefs are marginals, we enforce the normalization
constraint

∑
xi

bi (xi) = ∑
x∂a

ba (x∂a) = 1, (3.22)

the consistency constraint

∑
x∂a\xi

ba (x∂a) = bi (xi) (3.23)

and the inequality constraints

0≤bi (xi)≤ 1

0≤ba (x∂a)≤ 1. (3.24)

The Bethe approximation for the variational free-energy is also obtained inserting
in (3.14) a trial function that considers a two-term factorization

bBethe(x) =
∏

M
a=1 b(x∂a)

∏
N
i=1(bi(xi))di−1

(3.25)

where in the case of trees b(x∂a) = bi j(xi,x j). When the underlying factor graph
is a tree the true probability distribution factorizes exactly as (3.25), thus the
approximation turns into an exact result.

48



CHAPTER 3. BELIEF PROPAGATION

3.4 Correspondence between BP and Bethe Approx-
imation

The connection between Belief Propagation and the Bethe Approximation was
firstly pointed out by Kabashima and Saad [59, 60], then investigated in a general
formulation by Yedidia, Freeman and Weiss [61, 57]. Following the latter, it is
possible to show that the stationary points of the Bethe free energy correspond to
the Belief Propagation fixed points with positive beliefs. In order to recover all
the constrained stationary points, we can use the Lagrangian formalism. We use
Lagrange multipliers γa and γi for the normalization constraint (3.22), λai (xi) for
the marginalization constraint (3.23). The conditions on the Lagrangian station-
ary points are obtained by imposing the complementary slackness condition, i.e.
enforcing that either the inequality constraints are satisfied with the equality, or
the Lagrange multipliers must be equal to zero [57]. As a consequence, we can
ignore the Lagrange multipliers for the inequality constraint (3.24), because we are
interested in stationary points where the constraint is satisfied with the inequality.
The Lagrangian has the form

L = fBethe +∑
a

γa

[
∑
xa

ba (x∂a)−1

]
+∑

i
γi

[
∑
xi

bi (xi)−1

]

+∑
i

∑
a∈∂ i

∑
xi

λai (xi)

[
bi (xi)− ∑

x∂a\xi

ba (x∂a)

]
. (3.26)

The sum over i is over variable nodes with degree di > 2. In fact the free-energy
contributions of single variable nodes connected to only one factor node have
already taken into account in the region RL . Then they have counting number
ci = di−1 equal to zero and we do not need to take them into account for the Bethe
free-energy. Setting the derivatives of the Lagrangian with respect to the beliefs
equal to zero we find an expression for Lagrange multipliers as function of the
beliefs, then inverting this expression we get the beliefs at the stationary points

b̂a (x∂a) = Fa (za)exp

[
γa−1+ ∑

i∈∂a
λai (xi)

]
(3.27)
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and

b̂i (xi) = exp

[
1

di−1

(
1− γi + ∑

a∈∂ i
λai (xi)

)]
(3.28)

If we make the identification (see [57])

λai = ln pi→a (xi) = ln ∏
b∈∂ i\a

mb→i (xi) , (3.29)

we find the standard fixed-point equations of Belief Propagation (3.6)-(3.7). We can
recover the lagrangian stationary point (3.27)-(3.28) inverting (3.29) with respect
to mb→i (xi), then replacing messages in the BP equation. It is worth to underline
that this results are obtained by the minimization of the Bethe free-energy and not
the actual Gibbs free-energy (3.14). In fact fBethe is an approximation of fG and it
is the exact fG only on trees [57]. Therefore it is not guaranteed that we find an
upper bound for the Helmholtz free energy fH .

3.4.1 The Bethe free-energy as a function of BP messages

If we express the trial functions bi(xi) and ba (x∂a), that are local marginal, in
function of the messages (aside from a normalization factor)

ba (x∂a) ∝ Fa
(
{xi}i∈∂a

)
∏

j∈∂a\i
m(t)

j→Fa

(
x j
)

(3.30)

bi(xi) ∝ ∏
b∈∂ i\a

p(t)Fb→i (xi), (3.31)

we can write the Bethe free energy and eqs. (3.20)-(3.21) as (see also [52])

− f = ∑
a

fa +∑
i

fi−∑
(ia)

f(ia) (3.32)
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in which the local contributions can be expressed as function of the Belief Propa-
gation messages

fa = log

(
∑

{xi:i∈∂a}
Fa({xi}i∈∂a) ∏

i∈∂a
mi→a(xi)

)
(3.33)

fi = log

(
∑
xi

∏
b∈∂ i

pFb→i(xi)

)
(3.34)

f(ia) = log

(
∑
xi

mi→a(xi)pFb→i(xi)

)
. (3.35)

This form for the Bethe free-energy is useful to computational purposes.
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Chapter 4

SIR Prediction via Bayesian
approach

In this chapter we introduce a Bayesian approach to epidemic processes on net-
works that relies on the Belief Propagation approximation. This approach provides
marginal probabilities for the state of the nodes at any time [32]. Therefore it can
be used to predict epidemic evolution as well as to infer the patient zero. Unlike the
methods described in Chapter 2, this approach relies only on the Belief Propagation
approximation. On a tree, it takes into account the correlations between pairs of
nodes, provides exact marginal probabilities and allows for an exact inference of the
source [33]. It can be easily adapted to cope with incomplete or noisy observation,
time-varying network structures and epidemic parameters. By the computation of
a free-energy the probability of transmission/recovery and the extinction time can
also be inferred.

4.1 Bayesian Approach

The idea behind the Bayesian approach is to use evidences to modify some initial
assumption and improve predictions. Let x be a random vector defined by the out-
comes of some experiment, the values taken by its elements are called observations.
Let x be dependent on a set of unknown parameters collected in the vector θ . We
call prior the probability distribution P(θ) for the realizations of the parameters
vector (we assume that parameters take value in an admissible parameter space
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θ ⊂ Θ). The probability distribution, called likelihood, of vector x is the condi-
tional probability distribution P(x|θ) given the realization θ of the parameters
vector. The probability P(θ |x) of a realization of θ given the observation x is
called the posterior. The two quantities are related by the Bayes’ Theorem,

P(θ |x) = P(x|θ)P(θ)

P(x)
. (4.1)

In the following we will show how the problem of predicting a SIR epidemic
process given an observation can be tackled using a Bayesian approach. The
posterior probability of a configuration xt at time t given an observation xTobs at
time Tobs can be written as

P
(
xt |xTobs

)
=

P
(
xt ,xTobs

)
P(xTobs)

∝ ∑
x0

P
(
xt ,xTobs |x0)P

(
x0) , (4.2)

where in the last expression we neglected the a priori probability P
(
xTobs

)
of

the observed state because in our analysis it is only a normalization constant,
and P

(
x0) is the prior on the initial conditions. In order to obtain the posterior

probability P
(
xt |xTobs

)
it is required to compute the joint probability distribution

P
(
xt ,xTobs |x0) of the states at the observation time Tobs and at some later time t

given the initial condition x0, for all possible initial conditions. In principle, this
quantity could be evaluated experimentally, by taking into account all possible
realizations compatible with the constraints imposed by the SIR dynamics and
the observation and discarding the others. However, the number of possible
epidemic trajectories of length t grows as 3tN , making this brute-force approach
computationally unfeasible even for small systems and very early observations.

4.2 The Belief Propagation approximation

Although the sum on the right-hand side of Eq. (4.2) still runs over a possibly huge
number (exponentially large in N) of configurations, the posterior P

(
xt |xTobs

)
can

be efficiently computed by the use of the Belief Propagation technique [32, 33]. It
is necessary to address the joint probability distribution P

(
xt ,xTobs |x0) by using

a probabilistic graphical model defined by the static representation presented in
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Section 4.2.1 and then write down a factorized form for the posterior (4.2).

When the underlying contact network is a tree, the factor graph on which the
graphical model is defined can be also reduced to a tree, and the joint probability
distribution can be computed exactly by solving a set of local fixed-point equations
known as Belief Propagation (BP) equations. On more general graphs, the BP
equations can be considered as an algorithm that provides a good approximation of
the real probability distribution [52], see Sections 1.5 and 3.

4.2.1 Factor graph for the SIR model

We aim to introduce a factor graph representation of (4.2) in order to use the BP
approximation, therefore we address the posterior probability to get an expression
factorized over the single node variables. Since the SIR model is an irreversible
process every realization of the trajectory (x0, . . . ,xt) is in one-to-one correspon-
dence with a static configuration of individual infection times t = {ti}i∈V and
recovery times g = {gi}i∈V . Given the initial configuration x0, for each node i ∈V ,
a recovery delay gi is randomly drawn according to the geometric distribution

Gi (gi) = µi (1−µi)
gi (4.3)

and the infection transmission delays si j from node i to node j are generated from
the conditional distribution

ω
(
si j|gi

)
=

λi j(1−λi j)
si j si j ≤ gi

∑s>gi λi j(1−λi j)
s si j = ∞.

(4.4)

Infection times are then given by the deterministic equation

ti = min
j∈∂ i

(t j + s ji)+1. (4.5)

In the static representation of the epidemic dynamics, we can express the posterior
probability of a configuration xt at time t given an observation xTobs at time Tobs,
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by the Bayes’ Theorem, as

P
(

xt |xTobs
)

∝ ∑
x0

P
(
xt ,xTobs |x0)P(x0)

= ∑
t,g,x0

P
(
xt |t,g

)
P
(
xTobs|t,g

)
P
(
t,g|x0)P

(
x0) . (4.6)

P(xt |t,g) and P
(
xTobs |t,g

)
are deterministic functions of the set (t,g), indeed they

connect configurations in term of (t,g) in the static representation to configurations
xt and xTobs given in terms of epidemic states of the nodes. P

(
x0) is the prior prob-

ability for the initial configuration. P
(
t,g|x0) is the joint probability distribution

of infection and recovery times conditioned on the initial configuration x0. Since it
needs special attention we will explicitly analyze this term last.

For each node with can write the deterministic function ζ
Tobs
i (gi, ti,x

Tobs
i ) =

P(xTobs
i |ti,gi). The ζi gives one if the infection and recovery time (gi, ti) are com-

patible to the observed state given by variable xTobs
i otherwise it gives zero

ζ
Tobs
i
(
ti,gi,xt

i
)
= I
[
xTobs

i = S,Tobs < ti
]
+

+ I
[
xTobs

i = I, ti ≤ Tobs ≤ (ti +gi)
]
+ I
[
xTobs

i = R,Tobs > ti +gi

]
.

(4.7)

This function depends on a single node variables, by consider all nodes we get the
factorized form

P
(
xTobs |t,g

)
= ∏

i
ζ

Tobs
i
(
ti,gi,xt

i
)
. (4.8)

The same is valid for P(xt |t,g) = ∏i ζ t
i (ti,gi,xt

i). The function ζ t
i (ti,gi,xt

i) ensures
that we take into account only values of (ti,gi) compatible with the final desired
state xt

i when we compute the posterior probability. Omitting this term we get the
probability P(t,g|xTobs), i.e we get a posterior for any pairs (ti,gi) for every node i.

The prior probability on the initial configuration is also factorized over each
node P

(
x0)= ∏i γi(x0

i ) with

γi(x0
i ) = γiI[x0

i = I]+ (1− γi)I[x0
i = S] (4.9)
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where γ is the probability that each node is infected in the initial configuration. We
finally consider to the joint probability distribution of infection and recovery times
t,g conditioned on the initial configuration. Making explicit the dependence on the
transmission delays si j, we write

P
(
t,g|x0)=P

(
t|x0,g

)
P(g) =

= ∑
{si j}

P(s|g)P(t|x0,g,s)P(g). (4.10)

The description of the static representation in Section 1.3 provides the required
probability distributions. In fact, the conditional probability of a configuration of
transmission delays s is given by the product of the truncated geometric distribution
ωi j, defined by equation (4.4), over all pairs of nodes (i, j)

P(s|g) = ∏
i, j

ωi j
(
si j|gi

)
. (4.11)

Since the recovery delays depend only on single node recovery probabilities µi,
the probability distribution for the recovery delays g is factorized over the nodes,
each one characterized by the geometric distribution, i.e. (4.3)

P(g) = ∏
i

Gi (gi) . (4.12)

Equation (4.5) gives the time ti at which node i gets infected and it can be cast in a
function φi such that

φi
(
ti,{tk,ski}k∈∂ i

)
= δ (ti,I[x0

i ̸= I](min
k∈∂ i

(tk + ski)+1)), (4.13)

where I[x0
i ̸= I] imposes the value ti = 0 if node i is infected in the initial configura-

tion. The probability of finding a configuration for t given the initial configuration
x0, the recovery delays g and the transmission delays s is

P(t|x0,g,s) = ∏
i

φi
(
ti,{tk,ski}k∈∂ i

)
. (4.14)
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kj

i

(a)

ti

tj

φi

tk

φj φk

(b)

Figure 4.1: (a): original graph with nodes (i, j,k). (b): the factor graph representa-
tion. Even in simple cases it shows a loopy structure.

In conclusion the posterior probability (4.6) is given by

P
(

xt |xTobs
)

∝ ∑
t,g,x0

P
(
xt |t,g

)
P
(
xTobs |t,g

)
P
(
t,g|x0)P

(
x0)

= ∑
t,g,s,x0

∏
i, j

ωi j ∏
i

φiζ
Tobs
i ζ

t
i Giγi. (4.15)

The posterior probability is the product of local terms that can be represented by
using a factor graph. Nonetheless with this definition the corresponding factor
graph has a loopy structure that can decrease the accuracy of the Belief Propagation
approximation even in the case of trees. We can verify the existence of such loopy
structure focusing on the dynamical constraint (4.5). In fact, the infection time
of each node i, given by φi

(
ti,{tk,ski}k∈∂ i

)
, depends on the infection times of its

neighboring node k ∈ ∂ i and vice versa. This is true for every pairs of nodes (i,k)
connected by an edge.
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4.2.2 Disentangled factor graph representation

In order to guarantee, at least, that the stationary points of BP give the exact values
for the marginal probability (Theorem n.2 in Section 3.2) when the underlying
network is a tree, we require a factor graph representation that maintains the
topological properties of the original graph of contacts between nodes. We meet
this requirement by using the approach proposed in [32] (see also [31, 30]). The
representation can be disentagled by grouping pairs of infection times

(
ti, t j
)

in the
same variable node associated to the edge (i, j) ∈ E. Then a factor node enforcing
the dynamical constraint (4.13) is associated with the nodes of the original graph.
For each edge of the original graph from node i to node j we introduce a copy t( j)

i

of the infection time ti that is forced to take the common value ti by the constraint

∏k∈∂ i δ (t(k)i , ti). The function (4.13) for a node i depends on infection times t j and

t
(j)
i , t

(i)
j t

(k)
j , t

(j)
k

φi φj φk

Figure 4.2: The factor graph representation for the graph in fig. 4.1(a) when pairs
of variables (ti, t j) are grouped together.

transmission delays s ji for j ∈ ∂ i only through their sum, thus it is convenient to
introduce the variable t ji = t j + s ji, i.e the time at which the neighboring node j
transmits the infection i. It is also convenient to group the recovery time gi with the
infection time ti. For each edge emerging from the node i we introduce the copies
g( j)

i of the recovery time gi and the identity constraint ∏k∈∂ i δ (g(k)i ,gi), then we
can define the triplet (t( j)

i , t ji,g
( j)
i ) as a new variable node.

The new function enforcing the dynamical constraint for each node i becomes

ψi = δ (ti,I[x0
i ̸= I](min

j∈∂ i
(t ji +1))) ∏

j∈∂ i
δ (t( j)

i , ti)δ (g
( j)
i ,gi) =

= φi(ti,
{

t ji
}

j∈∂ i) ∏
j∈∂ i

δ (t( j)
i , ti)δ (g

( j)
i ,gi). (4.16)
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For each edge between a pair of nodes (i, j) a function φi j is defined

φi j = ωi j(ti j− t( j)
i |g

( j)
i )ω ji(t ji− t(i)j |g

(i)
j ), (4.17)

accounting for the interaction between the pair of nodes. Then we can write the
posterior distribution (4.15) in the new "disentangled" representation as

P
(
xt |xTobs

)
∝ ∑

t,g,s,x0

P
(
xt |t,g

)
P
(
xTobs |t,g

)
P
(
t,g|x0)P

(
x0)

= ∑
t,g,s,x0

Q(g, t,
{

ti j
}
,x0) (4.18)

where
Q(g, t,

{
ti j
}
,x0) =

1
Z ∏

i< j
φi j ∏

i
ψiζ

Tobs
i ζ

t
i Giγi. (4.19)

Fig. 4.3 shows the factor graph for the distribution (4.19).

x
Tobs
j

x
Tobs
i

xtj

xti

ζ tj

ζ ti
t
(j)
i , tji, g

(j)
i

t
(i)
j , tij, g

(i)
j

φij

(ti, gi)ψi

(tj, gj)ψj

ζ
Tobs
j γjGj

ζ
Tobs
i γiGi

Figure 4.3: The factor graph representation for the graphical model associated to
the distribution (4.18).

.
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4.2.3 Unknown initial time

In most realistic cases, the observation of one (or more) infected individuals cannot
provide information about the initial time nor the age of the epidemic process.
Given an upper bound ∆T for the uncertainty on the epidemic age, we can consider
the dynamical process to start from the all-susceptibles configuration and let the
nodes have a probability of spontaneous infection at arbitrary time before the
observation. In our factor graph representation it is equivalent to adding a fictitious
neighbor to every node whose activation depends only on a prior probability

ε(g′′i , t
′′
i , ti) = δ (t ′′i ,∞)(1−ρ)+(1−δ (t ′′i ,∞))ρ. (4.20)

t ′′i and g′′i are the copies of the variables ti and gi for the edge to the fictitious node.
This edge is connected to the factor ψi, that has to be modified accordingly adding
the identity constraints δ (t ′′i , ti) and δ (g′′i ,gi). The fictitious node provides the
prior probability that node i gets spontaneously infected at any time step, then it is
equivalent to take the transmission delay between the fictitious node and i equal
to zero. Thus, the contact time is exactly ti. Considering the process running on a
time interval T +∆T , we can find the probability that a node i is the origin of the
epidemic. Fig.4.4 shows the corresponding factor graph.

4.2.4 BP updates for the SIR model

In order to get Belief Propagation approximation of the probability distribution
(4.6) we look for the stationary points of the BP equations (3.6) - (3.7) and (3.8). In
this case factors Fa(za) are the ones presented in the SIR factor graph representation
in Sec. 4.2.1 and 4.2.2 – i.e ψi,φi j,ζ

t
i ,Gi,ζ

Tobs
i ,γi and variables nodes zi are the

couples (ti,gi) and triplets (t( j)
i , t ji,g

( j)
i ). In general equations (3.7) and (3.8) can

be computed efficiently. Instead in (3.6)

p(t)Fa→i (zi) =
1

Zai
∑

{z j: j∈∂a\i}
Fa
(
{zi}i∈∂a

)
∏

j∈∂a\i
m(t)

j→Fa

(
z j
)
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ψi

Gi
ti, gi

ζTobs

i

ζ ti

t′′i , g
′′
i , tiεi

xTobs

xti

Figure 4.4: The factor graph representation for the graphical model associated to
the distribution (4.18) with unknown initial time.

.

the sum over {zi∈∂a} need a time which is exponential in the number of participat-
ing variables. The messages for the factor ζ t are

mζ t
i→xt

i

(
xt

i
)

∝ ∑
ti,gi

ζ
t
i (ti,gi,xt

i)mi→ζ t
i
(ti,gi) (4.21)

and
mζ t

i→i
(
xt

i
)

∝ ∑
xt

i

ζ
t
i (ti,gi,xt

i)mxt
i→ζ t

i
(xt

i). (4.22)

It is the same for factor nodes ζ
Tobs
i where the variable xTobs

i has a value that is
the evidence fixed by the observation. Gi and γi do not need any update because
they are connected by a single edge to the variable node (ti,gi), so their outgoing
messages have a fixed value given by the definition of the factor. The outgoing
messages from variable node (ti,gi) is

mi→ψi (ti,gi) ∝ ∑
ti,gi

Gi(gi)γi(ti,gi)mζ t
i→i(ti,gi)m

ζ
Tobs
i →i

(ti,gi). (4.23)

In the following we provide efficient forms for the update equations concerning
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factor nodes ψi and φi j [32, 33]. The update rule for messages coming from factors
ψi and going to a variable node (t( j)

i , t ji,g
( j)
i ) is

pψi→ j(t
( j)
i , t ji,g

( j)
i ) ∝ ∑

gi,ti
∑{

t(k)i ,tki,g
(k)
i

}mi→ψi(ti,gi)×

× ∏
k∈∂ i\ j

mk→ψi(t
(k)
i , tki,g

(k)
i )ψi

(
ti,gi,

{
(t(k)i , tki,g

(k)
i )
}

k∈∂ i

)
∝ ∑

gi,ti
∑{

t(k)i ,tki,g
(k)
i

}mi→ψi(ti,gi)×

× ∏
k∈∂ i\ j

mk→ψi(t
(k)
i , tki,g

(k)
i )×

×
[

δ (ti,0)+δ (ti,(1+min
k∈∂ i
{tki}))

]
∏
k∈∂ i

δ (t(k)i , ti)δ (g(k)i ,gi)

∝mi→ψi(t
( j)
i ,g j

i )∑
tki

∏
k∈∂ i\ j

mk→ψi(t
( j)
i , tki,g

( j)
i )×

×
[

δ (t( j)
i ,0)+δ (t( j)

i ,(1+min
k∈∂ i
{tki}))

]
. (4.24)

In order to reduce the computational complexity we exploit that

δ (ti,(1+min
j∈∂ i

{
t ji
}
)) = ∏

j∈∂ i
I(ti ≤ t ji +1)−∏

j∈∂ i
I(ti < t ji +1) (4.25)

and substituting it into the factor ψi we get

pψi→ j(t
( j)
i , t ji,g

( j)
i ) ∝ δ (t( j)

i ,0)mi→ψi(0,g
( j)
i ) ∏

k∈∂ i\ j
∑
tki

mk→ψi(0, tki,g
( j)
i )

+mi→ψi(t
( j)
i ,g( j)

i )I(t( j)
i ≤ t ji +1) ∏

k∈∂ i\ j
∑

tki≥t( j)
i −1

mk→ψi(t
( j)
i , tki,g

( j)
i )

−mi→ψi(t
( j)
i ,g( j)

i )I(t( j)
i < t ji +1) ∏

k∈∂ i\ j
∑

tki>t( j)
i −1

mk→ψi(t
( j)
i , tki,g

( j)
i ).

(4.26)

Now it is possible to use a simpler representation for messages that reduces the
operations per update to O(T G) where T and G are the maximum infection time
and maximum recovery delay. In fact all the information needed resides in the
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relative timing between the infection time t( j)
i for node i and the transmission

time t ji at which neighbor j transmits the infection to i. In order to simplify the
representation we introduce the variable σi j = 1+ sign(t ji− (t( j)

i −1)). Then in
the σ -representation Eq.(4.26) becomes

p
ψi→i( j)(t

( j)
i ,σ ji,g

( j)
i ) ∝ δ (t( j)

i ,0)mi→ψi(0,g
( j)
i ) ∏

k∈∂ i\ j
∑
σki

mk→ψi(0,σki,g
( j)
i )

+mi→ψi(t
( j)
i ,g( j)

i )I(σ ji = 1,2) ∏
k∈∂ i\ j

∑
σki=1,2

mk→ψi(t
( j)
i ,σki,g

( j)
i )

−mi→ψi(t
( j)
i ,g( j)

i )I(σ ji = 2) ∏
k∈∂ i\ j

mk→ψi(t
( j)
i ,2,g( j)

i ).

(4.27)

The update rule for messages going to the variable node (ti,gi) is

pψi→i(ti,gi) ∝ ∑{
t(k)i ,tki,g

(k)
i

}mi→ψi(ti,gi) ∏
k∈∂ i\ j

mk→ψi(t
(k)
i , tki,g

(k)
i )×

×ψi

(
ti,gi,

{
(t(k)i , tki,g

(k)
i )
}

k∈∂ i

)
∝δ (ti,0) ∏

k∈∂ i\ j
∑
σki

mk→ψi(0,σki,gi)

+ ∏
k∈∂ i\ j

∑
σki=1,2

mk→ψi(ti,σki,gi)

− ∏
k∈∂ i\ j

mk→ψi(ti,2,gi). (4.28)

We use the σ -representation to show the update equation for φi j nodes

pφi j→ j(t j,σi j,g j) ∝ ∑
ti,σ ji,gi

Ω(ti, t j,σi j,σ ji,gi,g j)pi→φi j(ti,σ ji,gi). (4.29)
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The function Ω accounts for the probability that a configuration of variables (t,σ ,g)
for nodes i and j is realized given the infection rate λ :

Ω(ti, t j,σi j,σ ji,gi,g j)=



χ(ti, t j,σi j,gi) : ti < t j,σ ji = 2,σi j ̸= 2

χ(ti, t j,σi j,gi)+(1−λ )gi+1 : ti < t j,σ ji = 2,σi j = 2

χ(t j, ti,σ ji,g j) : t j < ti,σi j = 2,σ ji ̸= 2

χ(t j, ti,σ ji,g j)+(1−λ )g j+1 : t j < ti,σi j = 2,σ ji = 2

1 : ti = t j,σi j = σ ji = 2

0 : otherwise
(4.30)

where

χ(t1, t2,σ ,g) =
t1+g

∑
t=t1

δ (σ(t2, t),σ)λ (1−λ )t−t1. (4.31)

The first and third row represent the probability that node i ( j respectively) transmits
an infection signal to j (i) before its infection time t j(ti). In this case infection is
possible, but it is worth noting that the target node may have been already infected,
this event is taken into account by factor ψ . The second and fourth row represent
the probability that node i ( j respectively) transmits an infection signal to j (i)
after the time of infection t j(ti). The symmetry between rows 1-2 and 3-4 can be
exploited for a more efficient computation of the update. When one loops over
variable (t j,σi j,g j) to compute the output message pφi j→ j(t j,σi j,g j), one can loop
on variables (ti,σ ji,gi) of the input message pi→φi j(ti,σ ji,gi) just by switching
indices.

4.3 Temporal networks

In Section 1.6 we introduced temporal networks, that are realistic representations
of evolving contact patterns. In the framework already presented we can deal with
temporal networks assuming that the transmission probability λi j depends on time.
We call Ti j the set of time steps in {0, . . . ,T} at which nodes i and j make contact.
Then the transmission probability takes value λi j when an edge (i, j) exists and
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zero otherwise:

λ
t
i j =

λi j if t ∈ Ti j

0 otherwise.
(4.32)

Then the delay probabilities in equation (4.4) and the factor φi j in (4.17) are
consequently modified with

ωi j(si j|gi) =

λ t
i j ∏

t−1
s=0(1−λ s

i j) if si j ≤ gi

∏s>gi(1−λ s
i j) if si j = ∞.

(4.33)

The rest of the formalism remains the same.

4.4 The patient-zero problem via Belief Propagation

The approach proposed naturally allows for the inference of the source of an epi-
demics [33]. Unlike the naive Bayes methods described in Chapter 2, the Bayesian
framework proposed does not introduce further approximations in addition to those
due to the Belief propagation technique. On trees, the method coherently exploits
information on correlations between the state of neighboring nodes to infer the
epidemic origin and avoids misleads due to the mean-field approximation. An
example is provided by the case described in Figure 2.1 (Section 2.3), in which dis-
regarding correlations between nodes leads to an incorrect inference of the source.
Recalling equation (4.6) we now want to infer x0 given the observed configuration
xTobs , then it becomes

P
(
x0|xTobs

)
∝ P(xTobs |x0)P(x0) ∝ ∑

t,g
P
(
xTobs |t,g

)
P
(
t,g|x0)P(x0),

where the terms involved in the expression are the same already presented in the
previous sections. In fact, the Belief Propagation approach provides distribution
probabilities for all pairs of (ti,gi) in the selected range. The single site posterior
marginal is

P(x0
i = I|xTobs) = ∑

gi,ti
ζ

t
i (ti,gi,x0

i = I)mi→ζ t (ti,gi). (4.34)
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The patient-zero problem has been studied in the case of different observation
models, such as the one in which the observed state is partially unknown (noisy ob-
servation) or the case in which the observation is erroneous (confused observation)
[33].

4.5 Extinction Time

The characterization of the extinction time distribution of an observed outbreak on
given network structures is a major issue in epidemic studies [16]. This quantity
cannot be directly computed from the knowledge of the local marginals, because
it depends on the global evolution of the epidemic process. On the contrary a
crucial point of the BP algorithm is that it is very convenient for computing local
quantities, such as marginal probability distributions for the single variables or
pair-correlations.

Conveniently the posterior probability distribution P
(
Text |xTobs

)
that the discrete-

time epidemic process dies out at time Text when it is conditioned on the observation
of the configuration xTobs can be expressed as the difference between two terms
involving the free energies of the related graphical models when the epidemics are
constrained to vanish before time Text and Text−1, respectively:

P
(
Text |xTobs

)
= P

(
text < Text |xTobs

)
−P

(
text < Text−1|xTobs

)
. (4.35)

In the static representation, the cumulative distribution in the right hand side of
(4.35) can be written using the Bayes’ theorem as follows

P
(
text < Text |xT

obs
)
= ∑

t,g
P(text < Text |t,g)P

(
t,g|xTobs

)
∝ ∑

t,g
P(text < Text |t,g)P

(
xTobs |t,g

)
P(t,g)

= ∑
t,g,x0

P(text < Text |t,g)P
(
xTobs |t,g

)
P
(
t,g|x0)P

(
x0) .

(4.36)
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The trace in Eq. (4.36) can be computed from the free-energy of the related graphi-
cal model in the Bethe approximation. The posterior probability P

(
text < Text |xT

obs

)
of the extinction time can be written as

P
(
text < Text |xT

obs
)

∝ ∑
t,g,x0

Q
(
xTobs,Text , t,g,x0)= Z

(
Text ,xTobs

)
. (4.37)

The terms in equation (4.36) and in the latter expression are the same as in (4.6),
with the exception of P(text < Text |t,g) term factorized over the nodes

P(text < Text |t,g) = ∏
i
I [(ti +gi)< Text ]. (4.38)

This term constrains the calculation to epidemics that vanish before Text : we give
null probability to every single site configuration with ti+gi larger than Text (except
for ti = Tin f that describes susceptible nodes). We call the corresponding factor
χText (ti,gi). The logarithm of the partition function is the free energy of the model,
hence

− f
(
Text ,xT

obs
)
= logZ

(
Text ,xT

obs
)
= logP

(
text < Text |xT

obs
)
. (4.39)

Given a value of the external parameters Text and the observation xT
obs it is possible

to compute the free energy of the graphical model. In the factor graph representa-
tion, the Bethe free-energy of the graphical model can be expressed as function of
the Belief Propagation messages as described in (3.32). The contributions relating
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to the factor nodes are

∑
a

fa =∑
i∈V

log

 ∑
ti,gi,x

Tobs
i

ζ
Tobs
i (ti,gi,x

Tobs
i )mi→ζ

Tobs (ti,gi)mxi→ζ
Tobs (xi)


+ log

[
∑
ti,gi

χ
Text (ti,gi)mi→χText (ti,gi)

]
+ log

[
∑
ti,gi

G (gi)mi→G (ti,gi)

]

+ log

[
∑
ti,gi

γ(ti,gi)mi→γ(ti,gi)

]

+ log

∑
gi,ti

∑
{t(k)i ,tki,g

(k)
i }

ψi(ti,gi,{t(k)i , tki,g
(k)
i }k∈∂ i)mi→ψi(ti,gi) ∏

k∈∂ i
mk→ψi(t

(k)
i , tki,g

(k)
i )


+ ∑

(i, j)∈E:i< j
log

 ∑
{t( j)

i ,t ji,g
( j)
i }

∑
{t(i)j ,ti j,g

(i)
j }

φi j({t( j)
i , t ji,g

( j)
i },{t

(i)
j , ti j,g

(i)
j })

×mi→φi j(t
( j)
i , t ji,g

( j)
i )m j→φi j(t

(i)
j , ti j,g

(i)
j )
]
. (4.40)

Contributions from the variable nodes are

∑
i

fi = ∑
i∈V

{
log

[
∑
ti,gi

mψi→i(ti,gi)mχText→i(ti,gi)mG→i(ti,gi)m
ζ

Tobs
i →i

(ti,gi)mγ→i(ti,gi)

]

+ ∑
j∈∂ i

log

 ∑
{t( j)

i ,t ji,g
( j)
i }

mφi j→i(t
( j)
i , t ji,g

( j)
i )mψi→i(t

( j)
i , t ji,g

( j)
i )

 . (4.41)
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Finally the contributions (to be subtracted) from edges connecting variable and
factor nodes

∑
(ia)

f(ia) = ∑
i∈V

{
log

[
∑
ti,gi

m
ζ

Tobs
i →i

(ti,gi)mi→ζ
Tobs (ti,gi)

]

+ log

[
∑
ti,gi

m
ζ

Tobs
i →xi

(ti,gi,x
Tobs
i )mxi→ζ

Tobs (ti,gi,x
Tobs
i )

]

+ log

[
∑
ti,gi

mi→χText (ti,gi)mχText→i(ti,gi)

]

+ log

[
∑
ti,gi

mi→γ(ti,gi)mγ→i(ti,gi)

]

+ log

[
∑
ti,gi

mi→G (ti,gi)mG→i(ti,gi)

]
+ log

[
∑
gi,ti

mi→ψi(ti,gi)mψi→i(ti,gi)

]

+ ∑
k∈∂ i

log

 ∑
{t(k)i ,tki,g

(k)
i }

mψi→k(t
(k)
i , tki,g

(k)
i )mk→ψi(t

(k)
i , tki,g

(k)
i )


+ ∑

j∈∂ i
log

 ∑
{t( j)

i ,t ji,g
( j)
i }

mi→ψi(t
( j)
i , t ji,g

( j)
i )mψi→i(t

( j)
i , t ji,g

( j)
i )


+ ∑

j∈∂ i
log

 ∑
{t( j)

i ,t ji,g
( j)
i }

mφi j→i(t
( j)
i , t ji,g

( j)
i )mi→φi j(t

( j)
i , t ji,g

( j)
i )

 (4.42)

4.6 Non-Markovian models

In Section 1.7 we pointed out that realistic epidemic models often have parameters
changing in time and in this case they cannot be represented as Markov processes.
The Belief Propagation approach proposed does not make any preliminary assump-
tion on the recovery and transmission delays, therefore it can be adapted to time
varying epidemic parameters. In most cases it is assumed that the infection proba-
bility between two individuals changes depending on the time after the infection:
λi j(t− ti). In this case only the term for the transmission delays (4.4) is affected.
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Thus

ω
(
si j|gi

)
=

λi j(si j)∏
si j
r=0(1−λi j(r))r si j ≤ gi

∑s>gi λi j(s)∏
s
r=0(1−λi j(r))r si j = ∞.

(4.43)

As a consequence we must change consequently the update rules in Section 4.2.4,
by adapting equation (4.31) as follows:

χ(t1, t2,σ ,g) =
t1+g

∑
t=t1

δ (σ(t2, t),σ)λ (t− t1)
t−t1

∏
r=0

(1−λ (r))r. (4.44)

Another case is represented by a SIR model in which the recovery delay is
fixed with value G. The distribution is changed as

G (gi) =

0 if gi < G

1 if gi = G.
(4.45)

In this case the model can be reduced to an susceptible-infected model, where
the marginal probability of being recovered at time t is obtained by the marginal
probability of being infected at time t −G: P(xt

i = R) = P(xt−G
i = I). In this

case the messages m(ti,gi) can be casted in m(ti) and m(t( j)
i , t ji,g

( j)
i ) becomes

m(t( j)
i , t ji). Then it is not necessary to consider the trace over variable gi in the

update rules in 4.2.4. The compatibility factor for the observation becomes:

ζ
Tobs
i
(
ti,xt

i
)
=I
[
xTobs

i = S,Tobs < ti
]
+ I
[
xTobs

i = I, ti ≤ Tobs ≤ (ti +G)
]

+ I
[
xTobs

i = R,Tobs > ti +G
]
. (4.46)
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Chapter 5

Predicting epidemic evolution from
partial observations

In this chapter we show the results obtained by using the Belief Propagation ap-
proach introduced in Chapter 4. We address the realistic situation in which the
epidemic forecast is performed at some time after the initial infection event, when
a number of infected cases is discovered in the population, and the information
available involves only a fraction of the total population [62]. In this case the
intrinsic stochasticity of the process makes difficult to predict the evolution of the
epidemics. In order to focus only on the effects of partial observation, we assume
that the structure of the contact network is completely known.

In other words, we assume that at time Tobs the state xTobs
i is made available for

a set of nodes i ∈Vobs ⊂V and no information about the state is supplied for the
nodes not in Vobs. For a given value of the infection parameters and a given initial
condition x0 = {x0

i }i∈V a huge number of different realizations of the stochastic
process exists, although some of these outcomes are more likely to occur than
others. We aim to provide probability distributions for these outcomes. We will
focus on the probability marginals (Section 5.3) for the states of individual nodes
P(xt

i) at any time and on the probability distribution for time at which the epidemic
process dies out (i.e extinction time) P(Text = t) (Section 5.4).
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5.1 Sampling methods

Since the SIR stochastic process is Markovian, when all nodes in the network are
observed (Vobs =V , complete observation), it is possible to estimate the probability
of the future states xt for t > Tobs performing a direct sampling of a large number
of epidemic realizations. It is necessary to generate a large number Ms of virtual
realizations of the Markov chain from the same initial conditions (a complete
observation at Tobs), then one can compute the probability of an event from its
relative frequency of occurrence. In particular the individual probability marginal
P(xt

i = X |xTobs) can be estimated from the experimental average

P̂(xt
i = X |xTobs) =

1
Ms

Ms

∑
ℓ=1

I
[
xt

i,ℓ = X
]

(5.1)

where xt
i,ℓ is the value of the variable i at time t in the ℓ-th realization of the

stochastic process from the same initial conditions. The probability distributions
(5.1) converge to the correct value with a standard deviation that decreases as
∝ 1/
√

Ms. In the case of an incomplete observation Vobs ⊂V we do not know the
configuration of states xTobs , thus the uncertainty about the future evolution of an
epidemic state is much larger. For example, Fig. 5.1 shows five different evolutions
of the epidemic process after the same partial observation. In order to apply the
direct sampling method to the realistic case of a partial observation we first need a
way to complete the missing information about the configuration xTobs . We consider
two simple ways to choose the states of unobserved nodes at Tobs:

• random sampling: given the incomplete observation of the system, the states
of unobserved nodes at time Tobs are drawn randomly, independently and
uniformly with the same probability 1/q where q is the number of possible
states (for the SIR q = 3).

• density sampling: given the incomplete observation of the system, the frac-
tion of observed nodes in each state X ∈ {S, I,R} at time Tobs is used as an
empirical probability to assign, independently and uniformly at random, the
state of the unobserved nodes. The method can be generalized to include
dependence on node attributes, such as the degree, by assigning to the unob-
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served nodes a state with a probability computed from the knowledge of the
states of observed nodes with the same attributes.

In both cases once we get a set of initial condition we use the direct sampling
to find the probability distributions P(xt

i). It is worth remarking that unlike the
case of complete information, the estimators obtained from these methods through
direct sampling have non-zero bias.

Observation Time = 2 Time = 3 Time = 4 Time = 5

Figure 5.1: Each line represents a different realization for the SIR epidemic process
given the (same) incomplete observation of the initial condition. Configurations in
the leftmost column represent the observed state of the system, the other columns
represent the time evolution of the epidemic process in that specific realization.
Nodes colors: Green = Susceptible, Red = Infected, Black = Recovered, White =
Unobserved.

We call similarity sampling an approximate sampling method to estimate
P
(
xt |xTobs

)
inspired by the Soft-Margin algorithm [24] that we introduced in Sec-

tion 2.2 and that was used to infer the epidemic origin. The similarity sampling
method consists in evaluating P

(
xt ,xTobs |x0) by computing the frequency of occur-

rence of each configuration over a large number of epidemic realizations. Each
realization contributes to the posterior probability on the basis of the similarity
to the observed states at Tobs. Every node in the set of infected and removed
nodes at the time of observation Tobs is used as single seed for a given number of
realizations. We include unobserved nodes if they have at least one not susceptible
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neighbor (otherwise they cannot be the seed for sure). In case of unknown initial
time we assume to know that the epidemics started within a ∆T0 of time steps, i.e
computing marginal probabilities we consider realizations with origin in a range
[−∆T0,∆T0]. The similarity between a generic realization x̂ and the real one x is
measured by computing the Jaccard similarity function described in Section 2.2.
Then the individual marginal probability computed by similarity sampling reads:

P̂(x̂t
i = X |xTobs) ∝

Ms

∑
ℓ=1

I
[
x̂t

i,ℓ = X
]

e−(φ(x̂,x)−1)2/a2
. (5.2)

According to the Soft-Margin estimator method, we use a convergence crite-
rion to set the number Ms of realizations: the maximum of the differences be-
tween individual marginals after Ms and Ms/2 realizations is smaller than 0.1, i.e
max(|PMs(xi)−PMs

2
(xi)|)< 0.1. Then, we choose the smallest value of a at which

the convergence criterion is met. The accuracy of such a method usually relies
on fine-tuning of the parameters and requires a very high computational power.
Therefore, in all cases we initially set a = 0.125. If the convergence criterion is not
met for Ms ≤ 8×105, then we use a = 0.5, that guarantees convergence for any
instance. We must stress that this criterion is evaluated for the marginal probability
to be in each of the three states at each time and for each node, then a large number
of conditions must be satisfied and convergence is harder to achieve. Instead, in the
case of Soft-Margin estimator the criterion applies only on the marginal probability
of a single node to be infected at time zero.

5.2 Computational Cost

The similarity sampling computational cost is O(n×Ms× N̄T
I × k̄×T ). It is propor-

tional to the time T over which we predict the epidemics process and the average
number of infected node N̄T

I up to time T , the number of potential sources in the
observation n, the number of virtual realizations Ms and the average degree k̄.

In the case of the Belief Propagation approach, the computational cost is
O(N × k̄× T ×G), where N is the number of nodes and G is the maximum
recovery delay. This computational cost is fixed when BP converges, although the
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convergence is only guaranteed on trees. On the contrary, Similarity Sampling
computational cost depends on the number of virtual realizations of the process to
meet the convergence criterion, which is not known a priori.

5.3 Epidemic Size and individual classification

In order to validate the proposed technique, we compute, for every node i, the
marginal probabilities P(xt

i = X |xTobs) with X ∈ {S, I,R} and compare with the
methods proposed in the previous section. In order to quantify the performances of
a prediction method a relevant measure is the correct classification of the epidemic
stage for each individual, in particular the problem of discriminating whether an
node has been reached by the disease at a time t ′ ≤ t. This can be achieved by the
use of a Receiver Operating Characteristic (ROC) curve [32, 33]. We build the
ROC curve in the following way. Firstly we rank the nodes in decreasing order of
magnitude of the probabilities P(xt

i = I|xTobs) + P(xt
i = R|xTobs). Given the ordered

list of nodes and starting from the origin of the axes, we move upward by one unit
whenever a node is correctly classified as already infected at time t (true positive)
or rightward in case it is not (false positive). The area under the ROC curve (AUC)
expresses the probability that a randomly chosen node infected before time t is
ranked higher in terms of the corresponding probability marginal than a randomly
chosen susceptible one. When the ranking is equal to the real one, the area under
the ROC is 1, whereas a completely random ordering gives an area equal to 0.5.
The area under the ROC curve gives indication of the fraction of the correctly
classified nodes, but it does not have a clean dependence on the actual values of the
marginal probabilities. The latter ones have instead a direct effect on the size of the
epidemic outbreak, i.e. the number of nodes reached by the infection. Unlike the
extinction time, the average epidemic size at time t can be expressed as function of
the local marginals as [63]

size(t) =
1
N ∑

i

[
P
(
xt

i = I|xTobs
)
+P

(
xt

i = R|xTobs
)]
. (5.3)

In the following paragraphs we show the results obtained relatively to the quan-
tity of interest. We studied the classification problem and the average size prediction
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when the underlying network is either Random Regular graph or Barabási-Albert
random graph.

Random Regular Graphs. In Fig.5.2 a set of results is displayed for random
regular graphs of size N = 1000 nodes and degree k = 4, the information provided
is an observation of a randomly chosen fraction of 10% of the nodes at Tobs = 3.
We set the error on the initial time ∆T0 = 1. Fig.5.2 displays (a) the average values
of AUC and (b) the average epidemic size as function of the time steps t > Tobs

for the different prediction methods: random sampling (green), density sampling
(blue), similarity sampling (magenta) and Belief Propagation (red). Results for
the direct sampling with complete observation (black) are plotted as a reference,
since they represent an upper bound for the quality of the prediction. The average
values are computed on Mo = 103 independent realizations of the epidemic process,
each one providing an observation at the same time Tobs. For each observation, the
direct sampling algorithms are performed on Ms = 2.5 ·105 realizations of virtual
epidemic processes. As already noticed the similarity sampling method seldom
converges in a number of realizations Ms = 8 ·105 when a = 0.125, therefore most
of the results are obtained using a = 0.5.
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Figure 5.2: a) Area under the ROC curve as function of the time t > Tobs = 3 on a
random regular graph of N = 1000 nodes and average degree k = 4. The average
is computed over Mo = 103 epidemic realizations (with homogeneous parameters
λ = 0.7, µ = 0.5); the vertical bars represent the standard error of the mean. The
prediction is obtained after the observation at Tobs of a 10%-fraction of the nodes
chosen randomly (random observation). b) Predicted average epidemic size on
random regular graphs (N = 1000, k = 4, λi j = 0.7, µi = 0.5) as function of time for
a random observation of 10% of the nodes at Tobs = 3. The inference methods used
are direct sampling with complete observation (black), random sampling (green),
density sampling (blue), similarity sampling (magenta) and belief propagation
(red).

In a stochastic process as the SIR model it is not possible to predict exactly
the state of the nodes, rather a distribution probability can only be provided. This
leads to possible errors in the classification of the nodes (AUC values smaller
than 1), even in the case of direct sampling with complete observation. In fact,
the corresponding AUC values decrease after the observation time and recover
only at late times since the epidemics dies out and almost all nodes are either
in R or S states. We can interpret the average values of the area under the ROC
as a proxy for the epidemic predictability, in the case of a complete observation
(best-case scenario) the behavior observed is compatible with the effects due to
epidemic heterogeneity reported in [64]. The process becomes more difficult to
predict at intermediate time, when a large fraction of the population have non-zero
probability to be in each of the three epidemic states. The Belief Propagation

79



5.3. EPIDEMIC SIZE AND INDIVIDUAL CLASSIFICATION

technique with partial observation gives values of averaged AUC that are closer
to those from complete observation than the other methods ( Fig.5.2a ). BP and
similarity sampling perform largely better in the first stage after the observation,
corresponding to the exponential outbreak phase [15]. In particular, similarity
sampling gives an AUC value similar to BP at the time of observation, but a lower
AUC value in the subsequent time steps.

In Fig. 5.2b results for the average epidemic size are displayed. The density
sampling strongly overestimates the average epidemic size with respect to results
from complete observation; this is probably an effect of the homogeneous deploy-
ment over the graph of infected nodes used to complete the information on the
configuration at Tobs, that leads to the prediction of a larger epidemic spreading.
In other words density sampling disregards existing correlations between the 90%
of the nodes, taking in consideration realizations possibly not compatible with
the observation. This scheme could lead to the overestimation of the probability
of being infected – in a similar way to mean field approximations. In similarity
sampling the overestimation of the epidemic size is likely due to two concurrent
causes: the procedure itself because takes into consideration the Ms virtual epi-
demic realizations even if they do not match the actual observation with a Gaussian
weight; and to the approximation on the initial time. Belief Propagation also
slightly overestimates the epidemic size, but we think this is essentially due to
the fact that in most of the instances the algorithm does not properly converge to
the correct marginals. Moreover the underlying graph is loopy and it leads to an
overestimation of the infection probability (see Section 1.5).

The heat-plots in Fig.5.3 display the same set of data arranged as function
of the number of observed nodes that were infected before the observation time
(on the horizontal axes), respectively for density sampling, similarity sampling
and belief propagation. Results for direct sampling with complete observation
are presented as a reference. In the case of the average AUC (Fig.5.3), BP per-
forms better than both density sampling and similarity sampling in all regimes,
in particular the performance is very good in the first steps after the observation,
almost independently of the actual number of infected and recovered nodes in the
observation. For all methods the results slightly improve when a larger number of
nodes reached by the epidemics is observed at Tobs. For the average epidemic size,
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Fig. 5.3b shows that the early-stage prediction by density sampling is negatively
affected by the observation of a larger number of infected and recovered nodes.
The opposite occurs, though to a lesser extent, for BP: when few infected nodes are
observed BP overestimates the epidemic size, the worst prediction by BP giving
an average size about 20% larger than that obtained from complete observation.
The deviation observed by similarity sampling is also more evident when a lower
number of infected and recovered nodes is observed, but the overestimation is more
homogeneously distributed. Interestingly, the poor performance at large times is
localized on realizations in which only a few of the observed nodes already got
infected at Tobs. This may be due to the fact that the observation does not provide
enough information to make more precise predictions.
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Figure 5.3: a) The heatplots represent the average AUC as function of time and of
the number of observed nodes that were infected before Tobs, computed by density
sampling, similarity sampling, belief propagation. b) The average epidemic size
predicted by density sampling, similarity sampling and belief propagation is also
shown as function of the number of infected and recovered nodes in the observation.
As a reference, in both panels, we plot results obtained, for the same realizations of
the SIR process, by direct sampling with complete observation. The horizontal axis
refers to the number of infected or recovered nodes present in the 10% observation
(also in the case of complete observation).

Barabási-Albert random graph. In the case of heterogeneous graphs, such as
those obtained with the Barabási-Albert (BA) growing network model, in addiction
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to the random observation, it is possible to define other interesting observation
schemes for the same density of observed nodes:

• degree-based observation: nodes are observed in descending order of their
degree;

• local observation: a connected cluster of observed nodes is generated from a
randomly chosen infected node.

We investigated the effect of different observation schemes on random sampling,
density sampling, similarity sampling and BP.

The results for the average AUC, obtained with observation of 30% of the nodes
at Tobs = 3, are reported in Figs. 5.4-5.5. In the case of complete observation, direct
sampling produces monotonically decreasing AUC values for increasing times.
The reason is that in finite size networks the parameters chosen give a non-zero
probability of finding susceptible nodes in the last stage of the epidemic evolution.
Therefore, it is possible to make a wrong prediction and the AUC remains consid-
erably below one. For random observation, Fig.5.4a shows that Belief Propagation
always gives larger AUC values than the other sampling methods, especially in
the first stage of the epidemics, i.e. during the exponential outbreak. The same
behavior is found plotting the results as function of the actual number of observed
nodes (see heat-plots in Fig.5.5a) that were already infected/recovered at the time
of observation; in particular, the performances of BP are better when this number
is small.
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Figure 5.4: Area under the ROC curve as function of the time t > Tobs = 3 on a
Barabási-Albert random graph of N = 1000 nodes and average degree ⟨k⟩ ≈ 4 (with
homogeneous epidemic parameters λ = 0.5, µ = 0.6), in the case of observation
of a 30%-fraction of (a) nodes chosen at random uniformly and independently, (b)
nodes forming a connected subgraph, (c) the most connected nodes. The average
is computed over M = 201 epidemic realizations. The inference methods used
are direct sampling with complete observation (black), random sampling (green),
density sampling (blue), similarity sampling (magenta) and belief propagation
(red).
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Figure 5.5: The heatplots represent the average AUC as function of time and of the
number of observed nodes that were infected before Tobs = 3, computed by density
sampling, similarity sampling, belief propagation, on a Barabási-Albert random
graph of N = 1000 nodes and average degree ⟨k⟩≈ 4 with homogeneous parameters
λ = 0.5, µ = 0.6. As a reference, we also plot results obtained, for the same
realizations of the SIR process, by direct sampling with complete observation. The
prediction is obtained after the observation at Tobs of a 30%-fraction of (a) nodes
chosen at random uniformly and independently, (b) nodes forming a connected
subgraph, (c) the most connected nodes. The horizontal axis refers to the number
of infected or recovered nodes present in the 30% observation (also in the case of
complete observation).

When the observation is provided for a 30%-fraction of nodes forming a con-
nected subgraph the overall results (Fig. 5.4b-5.5b) are similar to those with random
observation, even though density sampling and BP perform slightly better in the
time steps immediately after the observation, while similarity sampling is slightly
worse in the same regime. It turns out that a degree-based observation is particu-
larly convenient for heterogeneous networks. In fact, we found that the average
values of the ROC area increase in the first stage of the epidemics for all prediction
methods (Fig.5.4c). In particular, the difference between values obtained by BP and
those from direct sampling with complete observation is less than 2%. The results
for the AUC in function of the number of infected/recovered nodes observed (see
the heat-plots in Fig.5.5c) are qualitatively similar to those from the other observa-
tion schemes. However we notice slightly better prediction performances at early
times, when the number of infected/recovered nodes in the observation is small.
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Since the information provided involves a connected subgraph generated from an
infected node, the case in which few nodes are detected as infected/recovered likely
corresponds to smaller epidemics whose initial evolution is more predictable.

Results on the prediction of the average epidemic size are reported in Fig. 5.6
and Fig.5.7. Random sampling strongly overestimates the size in all regimes and
observation schemes, then we omit the relative results. With a random observation
scheme (see Fig. 5.6a), density sampling and BP provide very accurate prediction
along the whole dynamics, while similarity sampling provides strong overestimate
of the size value at early time and underestimate at late times. Density sampling and
BP provide a lower accuracy when a small number of infected and recovered nodes
is observed (Fig.5.7a). When the number of nodes reached by the infection at Tobs

is larger, BP performs better than density sampling (4.5% of the nodes larger than
the direct sampling with complete observation). Similarity sampling provides a
bad estimation at late times. The heat-plot in Fig.5.7a suggests that it is mostly due
to a very strong underestimation of the average size, when the observation contains
only few infected/recovered nodes. On the contrary, at early times, overestimate
of the average size occurs when a large number of infected/recovered nodes is
observed. The cause may be the following: similarity sampling actually does not
fix the information provided by the observation, but uses it to assign a Gaussian
weight whose expected value is the observed configuration. Then, if the observation
contains few infected node, similarity sampling assigns weights with respect to an
expected configuration that contains less infected/recovered nodes than the actual
epidemic process.
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Figure 5.6: Predicted average epidemic size as function of the time t > Tobs = 3 on a
Barabási-Albert random graph of N = 1000 nodes and average degree ⟨k⟩ ≈ 4 (with
homogeneous epidemic parameters λ = 0.5, µ = 0.6), in the case of observation
of a 30%-fraction of (a) nodes chosen at random uniformly and independently, (b)
nodes forming a connected subgraph, (c) the most connected nodes. The average
is computed over M = 201 epidemic realizations. The inference methods used
are direct sampling with complete observation (black), density sampling (blue),
similarity sampling (magenta) and belief propagation (red).
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Figure 5.7: The heatplots represent the average epidemic size as function of
time and of the number of observed nodes that were infected before Tobs = 3,
computed by density sampling, similarity sampling, belief propagation, on a
Barabási-Albert random graph of N = 1000 nodes and average degree ⟨k⟩ ≈ 4
with homogeneous parameters λ = 0.5, µ = 0.6. As a reference, we also plot
results obtained, for the same realizations of the SIR process, by direct sampling
with complete observation. The prediction is obtained after the observation at Tobs
of a 30%-fraction of (a) nodes chosen at random uniformly and independently,
(b) nodes forming a connected subgraph, (c) the most connected nodes. The
horizontal axis refers to the number of infected or recovered nodes present in the
30% observation (also in the case of complete observation).
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In Fig.5.6b we show the prediction of the average epidemic size when the
partial observation is performed considering a connected subgraph of 30% of the
nodes. In this case all methods overestimate the epidemic size, with BP performing
considerably better than the others. The poor performances of density sampling
are expected because it completely neglects the topological information in the
observation. For example, if infected nodes are surrounded by susceptible ones,
the probability of infection for unobserved nodes is lower, but this is not taken into
account in the density sampling approach. BP performs instead poorly when there
are very few infected nodes in the observed area. This is expected, because in such
a situation this method is not able to correctly reconstruct missing information.
Finally, similarity sampling gives good results for small and intermediate time
steps but again it strongly deviates at large times, mostly because of observations
with few infected/recovered nodes (see Fig.5.7b).

In the case of the degree-based observation, BP predicts very accurately the
epidemic size (we already noticed BP good performances for AUC), see Fig.5.6c.
The difference between the average epidemic size predicted by Belief Propagation
and the one obtained by direct sampling with complete observation is less than
2% of the nodes in the network. Instead, density sampling overestimates the
average epidemic size, especially in the first epidemic outbreak and for a large
number of infected and recovered nodes in the observation (see Fig.5.7c). Density
sampling does not make use of the connectivity knowledge, which is a valuable
information: an observed highly connected node is more likely to be infected,
ignoring this fact leads to assign the same infection probability of the hubs to every
node in the network, leading to larger predicted epidemic sizes. In this respect,
one could expect that better results could be obtained simply by introducing a
degree-dependence in the infection probability inferred from the observation;
nevertheless, preliminary results show no significant improvement in the quality of
the prediction.

5.3.1 A case study of real contact network

We consider a real network dataset of the sexual encounters of internet-mediated
prostitution previously studied by Luis E. C. Rocha, Fredrik Liljeros and Petter
Holme [45, 65], that was obtained analyzing a Brazilian web community exchang-
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ing information between male sex buyers. The original dataset is in the form of a
bipartite temporal network, in which an edge between a “sex buyer” A and “sex
seller” B is drawn if A posted a comment in a thread about B. The dataset covers
the period September 2002 to October 2008 (2,232 days) and 50,185 contacts are
recorded between 6,642 sex sellers and 10,106 sex buyers. In our analysis, we
do not consider separate classes of vertices and we focus on a sample network
comprising a time window between day 1000 and day 1100. The resulting net-
work (SC) has N = 1293 nodes, E = 1571 edges, average degree ⟨k⟩ ≈ 2.4 and
maximum degree kmax = 55.

We study the AUC and the prediction for the average epidemic size on a
static projection of the sexual contact network when the observation takes place
at times Tobs = 4,8 as representatives of early and later time observation. In both
cases, density sampling and random sampling make unreliable predictions of the
classification of individual states of the nodes (see Fig.5.8a-5.8c). For Tobs = 4, BP
gives good results only in the time steps immediately after the observation, then
the performances rapidly deteriorate. BP results slightly improve increasing the
observation time. Nevertheless BP is better than other methods. For the average
epidemic size, Fig. 5.8b shows that similarity sampling gives the best prediction
at Tobs = 4 (though underestimating the epidemic size), whereas BP performs as
bad as density sampling (and random sampling even worse). BP results improve
considerably for Tobs = 8 while similarity sampling turns out to overestimate the
epidemic size at time steps close to the observation (Fig. 5.8d).
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Figure 5.8: Average area under the ROC curve (a,c) and average epidemic size
(b,d) as function to the time t ≥ Tobs for SIR dynamics (λ = 0.5, µ = 0.4) on the
SC network. Results are obtained with random sampling (green), density sampling
(blue), similarity sampling (magenta) and Belief Propagation (red) from a random
observation of 30% of the nodes at Tobs = 4 (a,b) and Tobs = 8 (c,d). In all plots
direct sampling from a complete observation is shown for comparison (black).

As we noticed in Section 5.3 this results can be strongly influenced by the
number of infected and recovered nodes in the observation. In Fig. 5.9 we repeat
all measurements considering observations at Tobs = 4 containing a number of
infected and recovered nodes equal to NI+R ≥ 6 (corresponding to the 46% of all
instances), and at Tobs = 8 with NI+R≥ 18 (75% of all instances). BP performances
improve considerably at Tobs = 4, outperforming all other methods in the case of
Tobs = 8. These results can be better understood if we consider that the network
is characterized by a well connected core surrounded by many low degree nodes.
When few infected nodes are observed, they typically are low-degree ones and
the epidemic process spreads slowly at early time. In this situation similarity
sampling is facilitated because the trajectories leading to the observed states are
a small set. Therefore, the observation provides a good expected configuration
for the Gaussian weights and smaller biases are introduced (see Section 5.3). On
the contrary, it is less accurate when many infected nodes are observed or the
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observation occurs at later times. However, results can likely be improved by an
higher computational power and algorithmic optimization. Belief propagation is
more likely to overestimate the nodes probability of being infected when the size
of epidemics is small at the time of observation. In fact, in this case the effect of
the existence of short loops in the network is more important and BP is more likely
to overestimate [30]. It is worth noting that we provide to similarity sampling the
information about the initial time t = 0±∆T0 of the epidemic spreading, on the
contrary, we do not provide such an information to BP.
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Figure 5.9: Average area under the ROC curve (a,c) and average epidemic size
(b,d) as function to the time t ≥ Tobs for SIR dynamics (λ = 0.5, µ = 0.4) on
the SC network. Results are obtained with random sampling (green), density
sampling (blue), similarity sampling (magenta) and Belief Propagation (red) from
a random observation of 30% of the nodes at Tobs = 4 (a,b) and Tobs = 8 (c,d). For
Tobs = 8, only instances with a number of observed infected and recovered nodes
NI+R > 18 is considered (75% of instances). For Tobs = 4, only instances with
observed infected and recovered nodes NI+R > 6 is considered (46% of instances).
In all plots direct sampling from a complete observation is shown for comparison
(black).

In order to keep memory of information about the time evolution of the contact
pattern between individuals we also consider a weighted static projections (see
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Section 1.6) of the sexual contact network (WSC). We assign a weight wi j to every
existing edge i j that corresponds to the number of contacts between node i and
node j during the period under consideration. Then, we define the probability that
node i infects node j as λi j = 1−(1−λ )wi j . By doing so, individuals sharing more
contacts during the time interval under consideration have a larger probability of
infecting each other. Fig.5.10 shows results for the average AUC and the average
epidemic size. Belief Propagation provides higher values for the AUC than all other
methods at all times, even though AUC decreases with time much faster compared
to direct sampling with complete observation. At the time steps immediately after
the observation, BP also provided the best prediction of the average epidemic size,
while at late times similarity sampling works better.
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Figure 5.10: Average area under the ROC curve (a) and average epidemic size (b)
as function to the time t ≥ Tobs for SIR dynamics (λ = 0.5, µ = 0.4) on the WSC
network. Results are obtained with random sampling (green), density sampling
(blue), similarity sampling (magenta) and Belief Propagation (red) from a random
observation of 30% of the nodes at Tobs = 8. Direct sampling from a complete
observation is shown for comparison (black).

5.4 Extinction Time probability distribution

The results that we show here concern the probability distribution for the extinction
time when a (possibly partial) observation is provided. Even in the case of complete
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observation, the results are highly non-trivial, in particular on networks with
peculiar topological structure. In Fig. 5.11 we show extinction time distributions
Pext(t) = P

(
t = Text |xTobs

)
given different observed configuration. The underlying

networks are regular trees (a) and regular random graphs (b). In the case of trees
the probability distribution is highly variable: depending on the observation, the
width and the maximum value of the distribution can change significantly. This
effect is mostly due to the peculiar topology of trees. This can be explained
focusing on Figs. 5.11c-5.11e. They show the configuration of three different
realizations at the time of observation Tobs. In terms of the number of infected
node and their average degree, the snapshots in panels (c) and (e) are similar, but
their extinction time probability distributions are rather different (for example, they
have the maximum respectively at Tpeak = 16 and Tpeak = 23). On the contrary,
panels (c) and (d) show very different realizations at Tobs. Nevertheless, they
have similar extinction time probability distributions (Tpeak = 23 and Tpeak = 21).
This effect is related to the positions where infected and recovered nodes are
observed at Tobs: the configuration in Fig.5.11e does not allow the disease to
access the root of the tree, because a recovered individual interposes. Thus, for
t > Tobs, the epidemics can spread only on the already infected branches and the
diffusion to other regions of the graph is blocked. Conversely, in Figs.5.11c-5.11d
the epidemics can spread throughout the graph and the distribution reaches the
maximum at larger times. The heterogeneity of the extinction time distribution is
peculiar of trees and graphs with topological bottlenecks, while random graphs, or
graphs with small-world properties in general, are characterized by very similar
distributions for different realizations of the epidemic process (with same epidemic
parameters and observation).

92



CHAPTER 5. PREDICTING FROM PARTIAL OBSERVATIONS

5 10 15 20 25 30 35

t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
ex
t(
t)

5 10 15 20 25

t

Tree RRG

a) b)

c) d) e)

Figure 5.11: Extinction time distributions for different complete observations: a)
on trees with branching ratio k = 3 and N = 1092 (epidemic parameters λ = 0.7,
µ = 0.5 and observation time Tobs = 5); b) random regular graphs of degree 4 and
N = 1000 nodes ( λ = 0.7, µ = 0.5 and Tobs = 4). (c)-(e): similar realizations
of the epidemic process at Tobs on a tree graph corresponding to rather different
predicted extinction time distributions with maximum value respectively at T = 21
(c), T = 23 (d), and T = 16 (e). Nodes color: Green= Susceptible, Red= Infected,
Black= Recovered.

The results for the extinction time probability distribution given a partial obser-
vations are displayed in Fig. 5.12. We first considered the case of regular trees of
branching ratio equal to 4 (average degree ⟨k⟩ ≈ 2). We already noticed that trees
provide strong variability of the extinction time distribution. The observation is
made by sampling randomly the state of 10% of the nodes at Tobs = 5. Fig 5.12a
displays the average difference between the extinction time distribution probability
predicted using direct sampling with complete observation and that obtained using
Belief Propagation (red), density sampling (blue), and similarity sampling (ma-
genta). All methods present two regions of higher discrepancy with respect to the
prediction with complete observation. The heat-plots in Fig.5.13b show that this
is usually due to an underestimation of the probability of extinction in the early
stage of propagation and to an overestimation of the probability of extinction at
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large times. For example, let us consider a configuration similar to Fig.5.11c. If
we do not observe the roots (that is in a recovered state), the computed extinction
time probability distribution must take into account the probability that the disease
diffuses throughout the network, then it underestimates the distribution with re-
spect to the complete observation. Nevertheless, BP is usually able to qualitatively
identify the most probable extinction time even when the other methods instead
assign a higher probability to the disease vanishing at larger times. In fact, we know
that BP overcomes the lack of information by taking into account correlations in
the dynamics. Heat-plots show that the two-peak discrepancy is especially due
to observations with few infected and recovered nodes, while the discrepancies
between the distributions move mostly at intermediate times when this number is
increased. BP performs better than the other methods at every time step, although
it presents the same qualitative weaknesses. Interestingly, the similarity sampling
method overestimates the probability for the epidemics to die out at early time step.
The cause is intrinsic of the method: given the partial observation, the expected
configuration in the Gaussian weight is set with a number of infected node smaller
than the actual one. Then, it is more probable the epidemics with a high weight
dies out shortly after Tobs. Thus, it leads to an overestimation of the extinction
probability at early time steps.
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Figure 5.12: Absolute value of the difference between the extinction time dis-
tribution Pext(t) computed from direct sampling with complete information and
those calculated with density sampling (blue), BP (red) and similarity sampling
(magenta). a) On trees of N = 1092 nodes, with branching ratio 3 (⟨k⟩ ≈ 2) and
with uniform epidemic parameters λ = 0.7, µ = 0.5. The partial observation is
performed sampling uniformly the state of 10% of the nodes at Tobs = 5 and aver-
aging over Mo = 210 such realizations. b) On random regular graphs of N = 1000
nodes and degree k = 4 with uniform epidemic parameters λ = 0.7, µ = 0.5. The
partial observation is performed sampling uniformly the state of 30% of the nodes
at Tobs = 4 and averaging over Mo = 150 such realizations.

Fig. 5.12b displays the results for the average difference from the distribution
provided by direct sampling with complete observation, in the case of random
regular graphs of degree k = 4 with partial observation of the 30% of the nodes
at Tobs = 4. Although all prediction methods under study are able to reproduce
the existence of a unique peak, there are remarkable quantitative differences with
the results from direct sampling with complete observation. The BP algorithm
provides the best performances, in particular for observations with a large number
of infected and recovered nodes. When this number is low, instead, BP gives a
larger average difference with respect to density sampling. This effect is mostly
due to the non-convergence of the BP algorithm in some instances of the epidemic
process, leading to an overestimation of the probability of long extinction times. At
the time steps close to the peak, the similarity sampling gives the largest average
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difference. Fig. 5.13b shows that the main contribution to the average difference
comes when low number of infected and recovered nodes are observed.
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Figure 5.13: Absolute value of the difference between the extinction time probabil-
ity distribution Pext(t) computed from direct sampling with complete information
and those calculated with density sampling, BP and similarity sampling as a func-
tion of the number of infected and recovered nodes in the observed subset of nodes.
a) On trees of N = 1092 nodes, with branching ratio 3 (⟨k⟩ ≈ 2) and with uni-
form epidemic parameters λ = 0.7, µ = 0.5. The partial observation is performed
sampling uniformly the state of 10% of the nodes at Tobs = 5 and averaging over
Mo = 210 such realizations. b) On random regular graphs of N = 1000 nodes and
degree k = 4 and with uniform epidemic parameters λ = 0.7, µ = 0.5. The partial
observation is performed sampling uniformly the state of 30% of the nodes at
Tobs = 4 and averaging over Mo = 150 such realizations.
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Chapter 6

Generalization to Temporal
Networks and Non-Markovian
Models

When studying epidemic processes it is common to assume approximations to
get models easier to deal with. In Sections 1.6 and 1.7 we introduced tzemporal
networks and non-markovian epidemic models, that are two approximated attempts
to catch two different features of realistic contagion processes. In Sections 4.3
and 4.6 we showed that the Belief Propagation approach can easily be adapted to
study epidemic processes on time-varying network structures and non-Markovian
epidemic models. In this chapter we will study the problem of predicting the
epidemic evolution given incomplete information in these two cases. We will show
some preliminary results.

6.1 Temporal Networks

We consider a real world network based on the contact patterns occurred in a high
school in Marseille, France, collected by the means of the RFID (Radio-frequency
identification) technology [66] and firstly studied by R. Mastrandrea, J. Fournet and
A. Barrat [14]. The dataset records the face-to-face contacts (in the range of 1-1.5
meters) between individuals with a temporal resolution of 20 seconds occurred
during the week of December 2-6, 2013. We take into account data collected
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6.1. TEMPORAL NETWORKS

during the day in which the largest number of contacts has been recorded. We
obtain a discrete time network (from here out called HN) by partitioning the time
line into subintervals of length ∆ (time-steps) and aggregating all contacts falling in
the interval [t∆,(t +1)∆]. To keep memory of the number of contacts between any
pair of individuals (i, j) recorded during a time step, we compute a time dependent
probability of infection pi j = 1− (1−λ )ci j , where ci j is the number of contacts in
the t-th time step [11, 32, 33].
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Figure 6.1: Average area under the ROC curve (a) and average epidemic size
(b) as function to the time t ≥ Tobs for SIR dynamics (λ = 0.6, µ = 0.02) on
the HN. Results are obtained with random sampling (green), density sampling
(blue), similarity sampling (magenta) and Belief Propagation (red) from a random
observation of 30% of the nodes at Tobs = 15. Direct sampling from a complete
observation is shown for comparison (black). The average is computed on M = 50
epidemic realizations.

We modify the Belief Propagation approach as explained in Section 4.3 and we
use as comparison the direct Monte Carlo sampling methods described in Section
5.1. We partitioned the time interval in T = 25 time steps, we set the infection
parameter λ = 0.6, the probability of recovery at each time step µ = 0.02 and the
observation at Tobs = 15. In Fig. 6.1b displays the average size predicted by the four
methods. BP and the density sampling overestimate the average size, especially at
late time. On the contrary, similarity sampling underestimates the average epidemic
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size. It is worth noting that the structure of the temporal network under study slows
down the spread of the disease. It is expected because causal relations must be taken
into account. In fact, individuals spread the disease only through contacts occurred
after their infection. Fig. 6.1a displays the AUC obtained by the four methods. The
Monte Carlo sampling with complete observation perfectly classifies the state of
the nodes until late time, when the AUC decreases. On the contrary, density and
random sampling give the worst prediction and the AUC slowly increases only at
late time. BP and similarity sampling provide good predictions at any time step
and the AUC slowly decreases with time. Interestingly, the AUC obtained for the
BP method drops at time step t = 21 in our partition of the total time interval. In
Fig. 6.2, we show the number of contacts for each time step in our partition and it
comes out that t = 21 is the time step with the largest number of contacts. Further
investigation are necessary, however the drop in the BP accuracy is possibly due to
the high number of contacts occurred at t = 21.
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Figure 6.2: Number of contacts per time step in the High School network with a
partition composed of T = 25 time steps.

6.2 Non-Markovian SIR model: fixed recovery de-
lay

The assumption of a constant probability of recovering is not a good approximation
for all diseases. For example, it is known that individuals infected by measles
take a fixed time interval to recover. We modify the Belief Propagation approach
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6.2. NON-MARKOVIAN SIR MODEL: FIXED RECOVERY DELAY

to study a discrete time SIR model in which the recovery occurs after a fixed
number of time steps for each individual. As a comparison, we study the results
of the direct Monte Carlo sampling methods described in Section 5.1. Since the
model is not Markovian, providing only the states of the observed nodes is not a
sufficient information for the direct sampling methods. In order to have a best-case
benchmark, the Monte Carlo sampling is provided with a complete observation of
the configuration at Tobs and is also provided with the time of infection of every
node. On the contrary, in the density sampling and random sampling method only
the states of the observed nodes are known; the time of their infection is unknown
and it is randomly drawn from the interval [Tobs−G,Tobs].

Fig. 6.3 displays the results for a SIR model in which we set the recovery at
G = 10 time steps after the infection (the infection probability is λ = 0.2).

10 11 12 13 14 15 16 17 18 19
0.7

0.8

0.9

1.0

av
e

AU
C

Compl
BP

Rand
Dens

Simil

10 11 12 13 14 15 16 17 18 19

time

0.0

0.2

0.4

0.6

0.8

1.0

av
e

si
ze

Complete
BP
Density
Similarity

a)

b)

Figure 6.3: Average area under the ROC curve (a) and average epidemic size
(b) as function to the time t ≥ Tobs for SIR dynamics (λ = 0.2, the recovery
occurs after G = 10 time steps) on a BA network. Results are obtained with
random sampling (green), density sampling (blue), similarity sampling (magenta)
and Belief Propagation (red) from a random observation of 30% of the nodes at
Tobs = 10. Direct sampling from a complete observation is shown for comparison
(black). The average is computed on M = 50 epidemic realizations.

In Fig. 6.3a results for the AUC are displayed. The AUC has a large value
shortly after the observation and becomes smaller at later time. The pattern is

100
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similar to the Markovian case studied in Section 5.3 on BA networks. The AUC
provided by BP is the largest at any time, instead similarity sampling gives the worst
prediction. The average size predicted by BP, random, and density sampling (Fig.
6.3b) is consistent at any time with the one predicted with the complete observation.
Instead similarity sampling largely overestimates the average size at any time. We
already pointed out in Section 5.3 that similarity sampling assumes as a typical
configuration the observed one and samples realizations assigning a Gaussian
weight consequently. This assumption leads to inaccurate predictions because the
actual realization is just one of a huge number of possible configurations, that
may be rather different because of intrinsic heterogeneity of epidemic processes.
Selecting one of them as a reference point is like promoting a rare event to be
considered as a typical one. This effect is expected to be larger when the observation
is provided at intermediate time, because at this stage of the epidemic evolution
there is an exponential number of possible configurations. Although the method
can be improved by fine-tuning of the parameters, the cause of the inaccuracy is
intrinsic.

6.3 Non-Markovian SIR: non-infective period

In some realistic cases, a symptomatic individual becomes able to infect some
time after his infection. We consider a SIR model in which an infected individual
shows the symptoms of the disease, but is not able to spread the infection for
a fixed amount of time L. We provided the direct Monte Carlo sampling with
the same information as in the previous section. For both the density sampling
method and the random sampling method, the infection times of the nodes that
are infected in the observation are drawn independently and uniformly at random
in the interval [Tobs−L,Tobs]. Fig. 6.4 displays results for the described SIR in
which we set L = 1 and epidemic parameters λ = 0.6, µ = 0.3 on BA networks
and Tobs = 5. Shortly after the observation, BP gives values of the AUC (Fig. 6.4a)
similar to the ones provided by the direct Monte Carlo with complete observation.
Predictions become less accurate at later times, remaining in line with the other
methods. Similarity sampling also provides good predictions. The AUC computed
by the density sampling improves with time, instead random sampling provides
unreliable prediction at any time. Fig. 6.4b displays the results for prediction of

101



the average size. However, it is worth noting that the non-infective period leads
to a slower spread, thus only few infected individuals are observed at Tobs. BP
overestimates the epidemic size at any time step, especially at late time. Although
we observed similar results on BA networks in Section 5.3 and it is known that a
loopy network structure leads to overestimation on the marginal probability that a
node is infected, further investigations are required.
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Figure 6.4: Average area under the ROC curve (a) and average epidemic size (b)
as function to the time t ≥ Tobs for SIR dynamics (λ = 0.6, µ = .3 and a node
start infecting L = 1 time steps after the infection) on a BA network. Results
are obtained with random sampling (green), density sampling (blue), similarity
sampling (magenta) and Belief Propagation (red) from a random observation of
30% of the nodes at Tobs = 5. Direct sampling from a complete observation is
shown for comparison (black). The average is computed on M = 50 epidemic
realizations.



Conclusions

The prediction of the epidemic evolution in contact networks, from unknown ini-
tial conditions and partial observations, is an important issue of great interest for
health-care organizations and policy makers. Even in the case of an irreversible
stochastic processas the Susceptible-Infected-Recovered model, that gives a sim-
ple mathematical description for disease that cause permanent immunization or
death (such as the Ebola virus, Measles or Smallpox), the computational prob-
lem associated with epidemic forecast from partial information is highly non-trivial.

In this thesis we tackled the problem by defining an accurate and efficient
method to compute the marginal probability of the state of a node at any time. We
presented a technique based on the Belief Propagation approximation, that is exact
on trees and usually a good approximation on general graphs. This technique is
based on the computation of a partition function in which the variables are temporal
trajectories, on which constraints are imposed by the epidemic dynamical rule
and by the observation data. The idea behind the method is that it is possible to
compensate for the missing information by taking advantage of the reconstruction
of the causal relations built during the dynamic evolution that preceded the obser-
vation time.

The results presented in this thesis show that Belief Propagation is in general
accurate in the classification of the states of individuals and in the prediction of
the average epidemic size even from a very partial information. The comparisons
with simulations provided with complete information show that BP is actually able
to compensate incomplete data by the inference of causality relations before the
time in which the observation is performed. In fact, this is especially verified in the
early time following the observation. Instead, at late times, the epidemic process



itself is progressively less predictable, even in the case of complete information.
Moreover, we showed that the BP approach can be also exploited to evaluate
some global quantities, such as the distribution of extinction times, for which it
provided a pretty good characterization in most cases under study. We found that,
in loopy graphs, BP reliability improves as the number of infected individuals
discovered increases. This is expected, because, in this cases, the BP approxima-
tion becomes more reliable. Although Belief Propagation turned out to be a good
approximation on loopy graphs, we faced convergence related issues, especially on
dense networks. Still, the BP algorithm seemed to provide reasonably good results
even in several cases in which a strict convergence of the equations was not reached.

The BP approach to the SIR model that was presented in this thesis is based
on a very general principle, therefore it can be easily generalized to the study
of several other inference problems with irreversible epidemic processes. We
showed how the method can be extended to spreading on temporal networks and
non-Markovian epidemic models. In addition, it can provide predictions on the
disease evolution and the inference of the epidemic parameters at the same time.
However, in realistic conditions, even if a disease is spreading within a population,
surveillance programs may perform several observations without detecting any
infected individual. As a consequence, whenever some cases are discovered, it is
important to provide reliable estimations of the actual size of the outbreak. This
discovery-incidence problem is another typical inference problem that can be
tackled with the methods presented here [67, 68]. Another important issue is the
generalization of the BP approach to the meta-population framework. Exploiting
the knowledge of the statistical properties of the first outbreak time, i.e. the time at
which an infected individual arriving into a susceptible population from an infected
one first generates an outbreak [7, 69, 70], it is possible to work out an effective
model connecting the original continuous-time microscopic outbreak, inside each
population, to a discrete time macroscopic spreading process among different
populations. The resulting effective model should be sufficiently simplified to
allow for a direct analysis by means of BP technique.
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Appendix A

Networks

A network is any system that can be represented as a graph G(V,E), whose elements
are represented as N nodes in V and their relations or interactions are represented
by the edges in E, i.e pairs of nodes. In the following we focus on undirected graphs
whose edges are not ordered pairs, i.e (i, j) = ( j, i). The topological structure of a
network is encoded in the adjacency matrix A =

{
ai j
}

, a N×N matrix defined as

ai j =

1 if (i, j) ∈ E

0 if (i, j) /∈ E
(A.1)

Each node i that has k neighbors is said to have degree k = ∑ j∈∂ i ai j. A graph
is characterized by the degree distribution P(k) defined as the probability that a
randomly chosen vertex has degree k. Then the average degree is

⟨k⟩= ∑
k

kP(k). (A.2)

A graph is called connected if any node i can be reached by any other node j. A
loop is a closed path (i.e starting and ending in the same node) in which all nodes
and edges are distinct. A tree is a graph in which any pair of nodes is connected
by exactly one path, i.e it has no closed paths. Barabási-Albert graphs [71] are
characterized by the following degree distribution

P(k) = 2m2k−3, (A.3)



where m = ⟨k⟩. A BA network can be described as the long time limit result of the
evolution of an initial network described by to rules: at each time step a new vertex
with m new edges is added and the new edges are connected to the old nodes with
a probability proportional to their degree. They are an example of the wider class
of power-law degree distributions P(k)≃ k−γ . In this class of network the nodes
degree has large fluctuations: a large fraction of nodes have a small degree value
and a small fraction of nodes (called hubs) has a very large degree, sometimes
several orders of magnitude larger then the average value.
In a random regular graph every node has a fixed degree d [72]. They can be
obtained, for example, by the configuration model [73, 74]: given the degree
of each node (all of them have the same degree d in random regular graph), a
corresponding number of stubs is attached to each node, then two randomly chosen
stubs from two nodes are connected in order to form an edge. Once all the stubs
are connected a graph with the desired degree sequence is obtained.
A weighted network [75] is characterized by the topological structure as well as by
the intensity of the interactions that is encoded in a matrix ωi j specifying the weight
of the edge connecting i and j. The weight may assume any value representing the
intensity of the interaction between the nodes.
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