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Application of Vector Immune System to Distribution Network

Reconfiguration

Simone Ferrero, Fabio Freschi, Enrico Pons and Maurizio Repetto

Abstract

Distributed energy generation facilities, often based on renewable energy sources, have changed the clas-
sical management of Distribution Networks. Optimisation tools are useful to change the grid configuration
improving its capability and exploiting an optimal flow of power within the network. There are different cri-
teria for the evaluation of the network performance like losses, voltage profile, reliability indicators etc. that
are often in contrast, requiring thus a multiobjective optimisation. Network reconfiguration by changing its
topology is a technique that leads to a combinatorial formulation. The Vector Immune System algorithm can
be adapted to deal with this issue and has been applied to the definition of the network reconfiguration with
original implementations for the generation of the first population and for the mutation operator. Results
on an industrial example are presented.

Keywords: distribution networks; multiobjective optimization; topological reconfiguration; vector im-
mune system.
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1 Introduction

Distribution Netowrks (DN) are a part of the electrical systems that, in the classic paradigm, transfer power
from the transmission grid toward the end-users. While the transmission grid is usually extended at the country
level, connects several power stations and has high voltage (HV) level to reduce the losses on the lines, DN
brings power inside a town or a rural zone and is exerted at medium voltage (MV) level. In the last few years
the increase in Distributed Generation (DG) deployment, often based on Renewable Energy Sources (RES), has
changed the management of DNs as the power flow, historically going from transmission grid to end-users, now
can be reverted and the DN can become an active component of the electrical system.

This new operating condition requires that the Distribution Network Operator (DNO), the owner and
manager of the DN, manages the grid in a new way, exploiting the new power flow configuration: for instance
balancing the local power generation and the consumption reducing the power transfer and line losses [1].

New management strategies require the simulation and the optimisation of the power flow, increasing the
research on this topic [2], in addition new coordination measures for the connection of distributed energy
resources and their control are of primary interest in research on this topic [3, 4]. DNs have a peculiar operational
scheme: they are usually weakly meshed networks operated leaving some of the branches open so that the system
has a radial topology. In this way load busbars are supplied only by one line and this helps the protection of
faults along lines. Branches left open, or tie branches as they are usually called, can be used to reconfigure
the supply system if some of the lines are out of service due to faulty conditions. Network reconfiguration,
for instance changing the open/closed status of some of the branches in the DN, can redirect the power flows,
increasing some of the DN performance indexes. The formulation is combinatorial since the degrees of freedom
of the problem are the on/off states of the switches connecting branches to the network.
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Figure 1: Distribution Network layout, main components are the connection to the transmission grid, the lines
and the busbars where power is delivered to end-user loads. a) weakly meshed topological structure; b) opening
one line belonging to the loop the structure becomes radial.

There are different DN performance indexes like the losses along the branches, the voltage profiles, the
reliability indicators and others. Network topological arrangement can be chosen in order to optimise these
indexes. As it is often found in the practice, these indicators are conflicting, that is, for example, reconfiguring
the DN for minimising losses can lower the reliability index of the system. A thorough optimisation process
should take into account all targets and thus the process requires a multi-objective procedure.

Starting from these considerations, a multiobjective stochastic combinatorial optimisation procedure the
Vector Immune System (VIS), has been adapted to the problem.

VIS had been developed starting from the family of Artificial Immune System (AIS) algorithms [10] which
had alredy been used for DN optimization [12].

In this work, however, two important improvements are made with reference to existing applications: the
initial population is not generated randomly, and a particular operator, fulfilling the peculiarity of the problem,
has been defined so that local exploration of the search space can be efficiently performed.

In the following the numerical formulation of the problem is described and then its implementation inside a
Vector Immune System [5] procedure is highlighted. Eventually, the application of the procedure to a real test
case is presented and results discussed.

2 Distribution Network operations

The typical structure of a DN is reported in Figure 1: it is a weakly meshed structure (Figure 1 a) that is
operated in radial topology. To reach the radial configuration a number of lines has to be opened, and the
number of lines to be kept open is one for each loop (Figure 1 b).

By analysing the DN structure, the following considerations can be made:

• the number of nodes or bus-bars is N assuming that the high voltage connection node, called root node,
is numbered as 0;

• the total number of branches in the DN Nb;

• the minimum number of branches to connect every node in radial configuration requires to keep N branches
closed;

• as a consequence the number of branches left open, or tie-branches, is Nt = Nb −N .

Given a DN topology, a tree can be built along its branches by means of a search algorithm. Starting from
the root node the tree branches belongs to the radial configuration while co-tree branches can be left open and
become the tie-branches. The choice of the tree along network edges is not univocal and the total number of
possible trees for a given topology can be computed by the Kirchhoff theorem [6]. Once the tree building has
been performed, a renumbering of nodes and branches can be performed. In fact, the topological analysis of a
radial DN can be studied in an efficient way if the following numbering convention is used [7]:

1. root node is added to the node list and branch list is empty;

2. branches belonging to the tree and connected to the nodes added to the node list in the previous step are
inserted into the branch list and numbered with increasing order, in this way new nodes are added as the
end point of new branches;
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Figure 2: Distribution Network numbering convention as described in the text: lines from 1÷ 7 are belonging
to the radial configuration, line 8 is a tie-branch.

3. each node belonging to the set of newly added branches gets the same number of the branch reaching it
and is added in the node list ;

4. procedure is restarted from step 2 until all nodes in the network have been added.

At the end of the procedure all branches that do not belong to the branch list, that is the co-tree branches,
becomes tie-branches and are added to the branch list with with index greater than N . An example of the
result of the previous procedure is shown in Figure 2. Since the number of closed lines in the radial solution is
N , closing a tie-branch creates a loop or a closed path along the branches. The numbering convention adopted
allows to find easily the loops formed by the closure of each single tie-branch [7]. In fact, by defining the
following matrices:

• A incidence matrix of the radial network (N ×N);

• u unit matrix (Nt ×Nt);

• k tie-branch incidence matrix (Nt ×N).

the loops formed by each tie-branch are defined by the incidence of each branch to the loop by matrix C of
dimensions (Nt ×N + Nt) = (Nt ×Nb) computed as:

C =

[
−(A ∗ kT )T

u

]T
(1)

where the operator T stands for matrix transposition.
By making reference to Figure 2, closing tie-branch 8 a loop is formed and the matrix C formed is given by:

1 2 3 4 5 6 7 8
[ ]0 −1 1 −1 1 0 1 1 1 (2)

where loop 1 is formed by all branches but 1 and 6. The orientation of the loop is set by the one of the tie-branch
and incidence of loop branches is defined as consequence.

Once the loop formed by closing one tie-branch has been defined, a radial configuration can be created again
by opening any of the branches belonging to the loop. This operation, called branch exchange [8], ensures that
the new network topology is radial and that all busbars are supplied.

Summing up the previous considerations, radial configurations can be created either by a tree searching
algorithm that works on the complete network or by branch exchange, moving from one radial configuration to
another.

The previous notation that assigns to each of the lines in the DN a status 0/1 depending on the open/closed
state of its switch, allows to define a unique code for each of the possible configurations of the network topology:
in the tree search all branches belonging to the tree will have label 1 and co-tree ones will have 0, while one
swap 0/1 will be applied in the branch exchange operation.

3 Performance indexes

Once DN topology has been defined, the two main operators, tree building and branch exchange can be used to
explore the space of DN configurations with the aim of increasing its performance indexes. There are several
quantities that can be computed but in the present analysis only three of them will be used:
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3.1 Line losses

Line losses Ploss are defined as the sum of all resistive losses on the closed DN branches (eq. 3). Line current Ij
in the j-th branch (characterized by series resistance Rj) can be calculated by a load flow computation on the
DN, taking as known the loads and generators connected to the busbars. Network reconfiguration should try
to minimise losses.

Ploss =

Nb∑
j=1

Rj · I2j (3)

The problem of network reconfiguration is typically applied to Distribution Networks, at the MV level. In
fact, as previously mentioned, these networks are weakly meshed but radially operated. On the contrary,
Low Voltage (LV) networks are usually radial and do not allow for reconfiguration. However, if HV/MV and
MV/LV transformers are included in the network model, also transformers losses can be taken into account by
the optimization algorithm, together with line losses.

3.2 Voltage deviation

Voltage deviation: due to current loading on the branches, the voltage values Vk in busbars are generally
different from the rated voltage value V nom. Due to DG, voltage deviation can be positive close to busbars
where power is injected or negative in case of power flow from root node to end-users. As in the previous case,
voltage deviations should be minimised. In our work we minimize the maximum voltage deviation observed in
the network (eq. 4):

max|V nom − {Vk}|, k = 1÷N (4)

3.3 Reliability index SAIFI

Reliability of DN is important and it can be quantified by several indexes. The main indexes that can be
used are the system average interruption duration index (SAIDI), the System Average Interruption Frequency
Index (SAIFI), the customer average interruption duration index (CAIDI), the customer average interruption
frequency index (CAIFI), the momentary average interruption frequency index (MAIFI).

In this work the system average interruption frequency index (SAIFI) has been employed, as it can be
computed easily as it depends on the network topology and does not require information on the restoration
times or on the single customers. For these reasons it was chosen to demonstrate the multiobjective optimization.

SAIFI can be computed as:

SAIFI =

∑N
j=1 pj · fj∑N

j=1 pj
(5)

where fj is the frequency of interruptions of each aggregated load, measured in interruptions per year, while pj
is the number of end-users of that aggregated load. SAIFI is therefore a weighted average of the interruption
frequency of the different loads of the DN. SAIFI is dependent on DN topology, and must be recomputed at
each topological variation. In fact, considering different failure rates for the different network components (lines,
circuit breakers, etc.), based on the network topology it is possible to calculate fj for all loads. Also SAIFI has
to be minimised to increase DN performance.

3.4 Calculation of the indexes and checking of constraints

While SAIFI index can be directly calculated based on the network topology, line losses and voltage deviations
can be computed only after a load flow has been performed. In this work, the load flows on the different DN
topologies generated through tree building and branch exchange are calculated using Matpower [9], a package
of MATLAB R© M-files for solving power flow and optimal power flow problems. Network data is firstly converted
from the internal algorithm data format into the Matpower data structure and then the Matpower runpf routine
is called to solve the power flow by Newton’s Method. As a result, bus voltages, line power flows and network
losses can be directly retrieved for the calculation of the objective functions.

After the calculation of the load flow, it is also possible to discard unfeasible network configurations, in case
the maximum allowed current loading of some lines is exceeded, or in case the maximum and minimum voltage
bounds are violated.
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4 Vector Immune System

The search for optimal configuration can be performed through the VIS algorithm [5]. VIS algorithm has been
developed starting from the family of Artificial Immune System (AIS) algorithms [10] implementing the Pareto
ranking scheme for evaluation of individual solutions [11]. The main features of AIS algorithm are:

• focus on diversity of solutions, implemented through a series of independent microevolution processes
running in parallel within the algorithm;

• use of mutation as the only operator for creation of new configurations.

The first characteristics makes AIS suitable for the solution of Vector Optimisation Problems (VOP) where
the exploration of a set of solutions on the Pareto Front instead of a single solution is required. Starting from
this consideration, VIS implements a strategy where diversity of solutions is enforced in the objective functions
space. Details on the algorithm can be found in [5].

AIS algorithms have already been applied to DN multiobjective optimization through network reconfigu-
ration, for example in [12]. Alonso et al. in their work were generating the initial population by randomly
creating a forest of radial trees, and the mutation operation was the random operation of a switch. In this work,
however, the VIS procedure is adapted to the DN topological problem by two new features, which are described
in the following sections.

4.1 Initial population

The initial population of Npop individuals is created by running the tree building function Npop times using
the Kruskal’s algorithm [6]. This algorithm looks for a tree on a weighted graph set and returns the tree that
minimises the sum of branch weights. To enforce diversity in the initial population weights on branches are
arbitrarily set creating Npop points in a Nb dimensional space according to the Latin Hypercube scheme [13].
Once weights are computed as points in the Nb dimensional space, they are assigned to the branches and then
tree building is applied ensuring diversity and exploration of the configuration space.

4.2 Mutation operator

The second point in the previous item list allows to implement the branch exchange technique to mutate locally
one configuration. In this way, mutation consists in a random alteration of a radial solution where only one 0/1
state is flipped. By performing the mutation with the branch exchange technique, the generated clones are for
sure new feasible radial network configurations: it is therefore not necessary to check the radiality constraint or
if portions of the DN are islanded.

In the proposed algorithm, a tie-branch is chosen randomly among the Nt tie-branches, and it is closed
forming a loop. Again randomly, a line belonging to the same loop is opened to complete the branch exchange
mutation.

5 Case study

The above described VIS procedure has been applied firstly to a case study proposed in the literature [14] where
a topological reconfiguration technique applied to loss minimisation is carried out. The network has N = 119
and Nb = 133 leading to Nt = 15. VIS procedure was run and the results obtained when considering only power
losses, thus taking in consideration only one extremum of the Pareto front in a losses-voltage deviation case,
were compared with the results in [14]. The minimum value of losses reported in [14] was of 1.294 MW while
the result obtained by VIS was 1.229 MW.

After the validation phase, the VIS procedure has been run on the DN of a medium size town in Northern
Italy which constitutes, by size and complexity of topological connections, a thorough test for the algorithm.
The DN is made of N = 758 buses and Nb = 781 branches, resulting in Nt = 24 tie-lines. The results obtained
by the procedure are in this case compared with those obtained by an independent optimiser running inside
the commercial network simulation software NEPLAN [15]. The topological configuration used by the DNO in
standard running conditions has also been used as comparison.

A two objectives case was run using in turn two of the three performance indexes. In the future, after an
optimization of the computation time, it will be possible to run also an optimization involving more than two
objectives. Here results are presented for two different cases: losses vs. voltage deviation and losses vs. SAIFI
index.
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Figure 3: Power losses vs. Voltage deviation run: Pareto Front and reference configurations.

2 2.5 3 3.5 4 4.5

SAIFI [interruzioni/anno]

0.295

0.3

0.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

0.345

P
er
d
it
e
[M

W
]

Configurazione di partenza in Neplan
Configurazione ottimizzata in Neplan secondo le perdite
Configurazioni trovate mediante l’algoritmo

Lo
ss

es

[interr/years]

DN configuration
NEPLAN minimum losses
VIS PAreto Front

Figure 4: Power losses vs. SAIFI run: Pareto Front and reference configurations.

For the evaluation of SAIFI, failure rates of the different network components are needed. For these tests,
all circuit breakers are considered having the same failure rate, while for the MV cables, the failure rate is
considered proportional to the cable length [16].

The control parameters for VIS were: Npop = 15, Nclones = 5, Ngen = 50, minimum percentage of new
random individual at each generation 5%, number of clonal cycles before the population is assessed for diversity
Ncsel = 5. With these parameters each optimisation run gave rise to a total number of objective function
evaluations equal to 18750. The procedure run on a Intel core 2 duo, 2.53 GHz and RAM of 4GB with a
running time of 110 minutes.

6 Discussion and perspectives

The results obtained in terms of Pareto fronts in both cases are presented in Figures 3 and 4. By the plots it
can be seen that the Pareto front is in both cases reaching values that are better than the ones obtained by
commercial software NEPLAN and than the standard configuration adopted by the DNO. Also the reliability of
the solution is good, as it can be seen by the analysis of Figure 5, where a statistical analysis of ten different
independent runs on the case losses vs SAIFI is presented. In all runs the VIS procedure was able to find
the same minimum value of losses and also the distribution of the final population does not highlight relevant
differences among the runs.

The convergence process of the procedure to the final Pareto Front is also worth commenting. As it is shown
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7 – Analisi di una rete reale con 758 nodi
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Figura 7.24. Confronto dei valori delle perdite delle configurazioni finali della
memoria di 10 diverse simulazioni
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Figura 7.25. Confronto dei valori del SAIFI delle configurazioni finali della me-
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7 – Analisi di una rete reale con 758 nodi
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In particolare il primo grafico rappresenta l’evoluzione delle perdite per 5 simu-

lazioni con l’intera popolazione iniziale generata casualmente e 5 simulazioni dove

è stata inserita nella popolazione iniziale la configurazione di partenza di Neplan.

È possibile notare come il valore minimo delle perdite sia raggiunto in entrambe le

tipologie di simulazione e inoltre si osserva che già dopo 7 generazioni i valori dei

due tipi di simulazione si allineano e presentano valori molti simili.

Il grafico di Figura 7.5 mette a confronto la popolazione finale delle 5 simulazio-

ni con inizio casuale e le 5 simulazioni con configurazione iniziale di Neplan nella

popolazione di partenza analizzate precedentemente. Anche grazie a questo grafico

è possibile vedere come indipendentemente dalla tipologia di simulazione nella po-

polazione finale si trova una configurazione caratterizzata dal valore minimo delle

perdite.
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Figure 7: Evolution on losses vs the number of generations.

in Figure 6 for a particular run of the procedure, the shape of the memory set in the objective plane is moving
toward the final front. As it can be seen after 10 generations the Pareto Front is already well approximated and
following process is able to refine part of the front.

Starting from the previous consideration, the computational time of the procedure can be further reduced
by decreasing the number of generations because, at least in the present case, the convergence on the final value
is reached earlier, as it is apparent from Figure 7. In any case, the processing times are compatible with the
comparative evaluation of different loads or DG production configurations.

As a conclusion, the VIS procedure has shown good capabilities and is promising as a tool for the optimisation
of DN.
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