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Dangerous Touch Voltages in Buildings: 

the Impact of Extraneous Conductive Parts 

in Risk Mitigation 
 

Pietro Colella*1, Enrico Pons and Riccardo Tommasini 

Dipartimento Energia, Politecnico di Torino, Torino, Italy 
 

Abstract—International (IEC) European (CENELEC) and American (NEC) Standards 

require, in each building, the connection of extraneous conductive parts (i.e. metal water 

or gas pipes) to the main grounding terminal. There are two good reasons for this: the 

voltage between extraneous conductive parts and exposed conductive parts is zeroed 

and extraneous conductive parts can contribute to the leakage of fault current into the 

ground. There is however a third advantage in the bonding connection: the entire 

structure (floors and walls of the building), together with the exposed and the 

extraneous metallic parts, forms a quasi-equipotential system, with the consequent 

strong reduction of touch voltages. Metallic pipes and reinforcement of reinforced 

concrete have a particular relevance thanks to their large widespread through buildings.  

However, in some practical cases, it is not possible to connect all extraneous conductive 

parts to the protective equipotential bonding because they are not accessible.  In the 

paper, the reduction of touch voltages in buildings, when these extraneous conductive 

parts are present but not connected to the protective equipotential bonding is quantified. 

Different building models are created and solved by the finite element method in order 

to calculate touch voltages in different scenarios. The results show that the mere 

presence of widespread metallic parts in buildings helps to reduce touch voltages, but 

not enough to ensure safety against indirect contacts. The electrical installation safety 

performance is greatly improved in reinforced concrete buildings if at least some easily 

accessible parts, like water or central heating pipes, are connected to the main 
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grounding terminal. Also in brick buildings, they provide a certain reduction of  GPR, 

maximum and mean touch voltages. 

Keywords— Equipotential bonding; extraneous conductive part; indirect contacts; 

protection against electric shock; touch voltage; reinforced concrete 

1 ACRONYMS 

AQE – Average Quality Element of a mesh 

CPE – Control Parameter Error 

ECP – Exposed Conductive Part 

EXCP – Extraneous Conductive Part 

FEM – Finite Element Method 

GEC – Grounding Electrode Conductor 

GPR – Ground Potential Rise 

MGT – Main Grounding Terminal 

NEC  – National Electric Code 

PE – Protective Conductor (IEC) or Equipment Grounding Conductor (NEC) 

SLGF - Single Line to Ground Fault 

2 INTRODUCTION 

An electric shock can be caused by a direct or by an indirect contact with energized 

parts [1]. In this paper the focus is on indirect contacts inside buildings. An indirect 

contact is defined in the International Standard IEC 60364-1 [2] [2]as “contact with 

conductive parts normally not energized, but likely to become live upon faults (e.g., 

enclosures of equipment).” The effects of electric current on persons depend mainly on 

the magnitude and duration of the current itself. Based on this, protection methods 

against indirect contacts are mainly founded on equipotentialization techniques (to 

reduce the current magnitude) and on the adoption of protective devices such as circuit 

breakers or fuses (to limit the persistence time) [3]. 

The automatic disconnection of supply in case of fault is one of these methods and it 

is based on both the principles described above. In fact, on one hand IEC 60364-4 [4] 

defines the maximum disconnection time of protective devices and, on the other hand, it 
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states that the grounding conductor, the main grounding terminal (MGT) and the 

extraneous conductive parts (EXCPs) shall be connected to the protective equipotential 

bonding. 

According to the definition of the International Electrotechnical Vocabulary IEC 

60050-826, EXCPs are “conductive parts not forming part of the electrical installation 

and liable to introduce an electric potential, generally the electric potential of a local 

earth” [5]. EXCPs are characterized by a resistance to ground, REXCP, lower than 1000 

Ω [2]. 

The EXCPs to be connected to the protective equipotential bonding are:  

• metallic pipes supplying services into the building; 

• structural metalwork if accessible in normal use; 

• metallic central heating and air-conditioning systems; 

• metallic reinforcement of constructional reinforced concrete, if reasonably 

practicable. 

The North American National Electric Code (NEC) [6] has similar requirements for 

grounding and bonding. Although the approach is quite different [7], the goals are the 

same [8]. NEC requests that metal underground water pipes, metal frames of the 

building, concrete-encased electrodes, and all the “intentional” grounding electrodes 

(ground ring; rod and pipe electrodes; plate electrodes, etc…) shall be bonded together 

to form the grounding electrode system [6]. 

In case of Single Line to Ground Fault (SLGF), the connections required by both IEC 

60364-4 [4] and NEC [6] bring two main advantages [9]–[11]: 

• all the interconnected metallic parts contribute to the leakage of the fault current, 

thus reducing the equivalent ground resistance of the earthing system; 

• the electric potential differences among all the metallic parts are reduced, producing 

a nearly equipotential condition [8]. 

Both these effects can be appreciated in  Fig.  1, which refers to a TT system. The 

resistance to earth of the EXCP, 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, is in parallel with the resistance to earth of the 

LV User ES, 𝑅𝑅𝐸𝐸𝐸𝐸, contributing to the leakage of the fault current. Moreover, the 
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Exposed Conductive Part (ECP) and the EXCP are interconnected to the MGT through 

the Protective Conductors (PEs), holding the voltage between metallic parts down. 

 

Fig.  1 – Benefit of bonding MGT, ECPs, EXPCs. The resistances RE,DSO, REXCP and RE 
are respectively the resistance to earth of the MV/LV substation ES, of the EXCP and of 
the LV user’s ES. 

In addition to this, the connections increase the electrical potential of floors and walls 

too, in a way that depends on the building properties (e.g. the building materials 

employed or the number of encased metal parts). The more this effect is noticeable, the 

more a quasi-equipotential condition can be achieved, with a reduction of touch 

voltages. In this paper, this latter effect is investigated. Even if the benefits of the wired 

equipotential bonding are well known by the international standard institutions since a 

long time [4], [12], some aspects have not been clarified yet. In literature, many 

researchers emphasize the reduction of touch voltages between an ECP and an EXCP 

due to electrical bonding (hand to hand contact); vice-versa, according to the Author’s 

knowledge, the equipotentialization effect in case of contact with only an ECP (hand to 

feet contact) has not been discussed yet. In particular, it is not clear if a wired 

connection among the metallic reinforcement of constructional reinforced concrete, 

other EXCPs, and the main grounding terminal (MGT) is strictly needed to obtain a 

consistent reduction of the touch voltage or, instead, just the presence of these metallic 

parts could be sufficient to improve electrical safety. 
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A quantitative investigation of the equipotentialization effect introduced by metal 

parts encased in buildings, to the authors’ knowledge, is not available in the scientific 

literature yet. 

In this paper, different scenarios are simulated in order to understand the contribution 

of non-connected metallic parts to the reduction of touch voltages in buildings. The 

models refer to a TT system, in which a SLGF has occurred. For each scenario, the floor 

and walls potential profile is computed, taking into account different situations defined 

by different building construction typologies (reinforced concrete or masonry), different 

wired connection configurations, different kinds of foundations and different grounding 

systems. 

For each scenario, a model is implemented and solved by the finite element method 

(FEM), that allows to simulate systems with complex geometry and electrical 

discontinuities [13]–[16] . 

Different resistivity values of building materials are also used, according to field 

measurements carried out by the authors in a previous work [17]. 

3 METHODOLOGY 

The building models are built and solved by using the FEM software COMSOL 

Multiphysics [18]. The verification and validation of the software was carried out in 

previous works [19], [20]. 

In the paragraphs below, the implemented building models and the method settings 

are discussed. Details about the touch voltage computation are also given. 

3.1 BUILDING STRUCTURE: GEOMETRY AND MATERIALS 

For the models definition, the foundation type, the presence of embedded metal pipes, 

the grounding system geometry, the choice of the soil and building materials electrical 

properties and, of course, the connection configuration among metallic parts are the 

points taken into account. The main geometrical details and material properties about 

the models implemented are presented in Table I and III respectively.  
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3.1.1 Foundation type 

Several kinds of foundation can be adopted in building design. In this paper, spread 

footing (Fig.  2-a) and mat-slab (Fig.  2-b) foundations are taken into account for their 

large diffusion in residential buildings. 

The spread footing foundation is a structural unit, which transfers and distributes load 

to the underlying soil at a pressure consistent with the requirements of the structure and 

the supporting capacity of the soil. It is generally a rectangular prism of concrete, larger 

in lateral dimensions than the column or wall it supports [21]. 

Mat-slab foundation is instead a continuous thick-slab foundation supporting an entire 

structure. It is typically used if soil conditions are poor [22]. 

 

Fig.  2 – Considered types of foundation: a) spread footing foundation; b) mat-slab 
foundation 

3.1.2 Presence of embedded metal parts: Construction Method 

Two cases are explored: brick (Fig.  3-a) and reinforced concrete (Fig.  3-b) buildings. 

Geometrical details are reported in Table I. It is important to highlight that in order to 

simplify the geometry definition and the mesh creation in the FEM software, typical 

geometrical dimensions of rods for reinforced concrete are not respected in the model: 

in real buildings they are more, smaller and closer. The adopted configuration is 

however a conservative approximation: the less the number of rods, the more difficult 

achieving a quasi-equipotential area. 

 

b)
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TABLE I 
GEOMETRIC  CHARACTERIZATION OF THE MODELS 

Part Geometrical dimensions 
[m] 

Building 
Floor surface area 10 x 7 

Room height 3 
Floor and wall thickness 0.4 

Spread footing foundation length 0.25 
Reinforced concrete  

Rod radius 0.02 
Center to center distance along x-axis 1.7 
Center to center distance along y-axis 1.2 

EXCPs  
Pipe radius 0.02 

x length (external wall y = -3.5 m) 9.7 
x length (internal wall y = 0 m) 5.0 

x length (external wall y = 3.5 m) 2.5 
y length (external wall x = -4.9 m) 6.1 

Radiator type 1 area 0.8 x 0.68 
Radiator type 2 area 0.4 x 0.68 

Earthing System  
Earth rod radius 0.02 
Earth rod length 1 

Ground ring radius 4 
 

 The iron rods, if present, are electrically connected one another in all the scenarios. 

3.1.3 Presence of embedded metal parts: Plumbing 

Metallic radiators and water pipes are considered. In all the evaluated scenarios, pipes 

are connected the ones with the others and located in the internal and external walls. 

The same non-homogeneous layout of the metallic pipes on the floor surface was 

chosen for all the scenarios (Fig.  3-c), in order to evaluate their effects on the reduction 

of touch voltages. In the model, EXCPs do not import any extraneous electrical 

potential. 

3.1.4 Grounding system 

The geometry and the position of the grounding system can influence the potential 

distribution in the building floor and walls, mainly for two reasons. First, its geometry 

impacts on its earth resistance value [2] and, consequently, on the Ground Potential Rise 

(GPR) [2]. Second, the shape of the grounding system and its position with respect to 

the building can result in different transferred potentials. 
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For this reason, a per-unit analysis that normalizes the results to the GPR, for all the 

scenarios, was carried out (as explained in the subsection 3.3) and three grounding 

system typologies were simulated: 

a. a ground ring enclosing the building; 

b. a ground rod placed in the center of the structure, reported as an example in Fig.  

3-d; 

c. a ground rod placed far from the structure. In this case, the electric potential in the 

proximity of the structure is not directly perturbed by the current field produced 

by the grounding system. 

3.1.5 Soil and building materials electrical properties 

The electrical resistivity of soil is a function of the soil constituents (particle size 

distribution, mineralogy), of the presence of voids (porosity, pore size distribution, 

connectivity), of the degree of water saturation (water content), of the electrical 

resistivity of the fluid (solute concentration) and of temperature [23], [24]. 

In the same way, the electrical resistivity of building materials also depends on the 

material properties and on the environmental conditions (e.g. concrete, being 

hygroscopic, attracts moisture [25]). When buried, a concrete block behaves like a 

semiconducting medium with a resistivity of 30-90 Ωm [25]. Instead, for a dry concrete, 

resistivity can reach up to 21 GΩm [26]. 

In a previous paper [17], the authors measured with the fall of potential method the 

volume resistivity of building materials, such as bricks and samples of concrete. Four 

different values of dc voltage (i.e. 100 V, 200 V, 300 V and 400 V), were applied to the 

same test sample for one minute. Details of the experience can be found in [17]. The test 

results for brick and concrete samples, conditioned in different ways, are reported in 

Table II.  
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TABLE II 
RESISTIVITY FOR BUILDING MATERIALS [𝑘𝑘Ω ⋅ 𝑚𝑚] IN DIFFERENT ENVIRONMENT 

CONDITIONS, MEASURED AT DIFFERENT VOLTAGES [V] 
VOLTAGE Bricks Concrete 

 Dry Moistened Wet Dry Wet 
100 11.4 6.5 0.060 3100.0 0.4 
200 7.5 4.4 0.054 1700.0 0.4 
300 5.5 3.6 0.050 1200.0 0.4 
400 4.3 2.0 0.049 800.0 0.4 

In order to quantify how this variability can modify the building potential distribution, 

two values of electrical resistivity were chosen, both for the building materials and for 

the soil, as reported in Table III. For all the materials, the value of relative electrical 

permittivity was set equals to 1, as in first approximation the polarization effects in the 

domains can be neglected.  

TABLE III 
MATERIALS PROPERTIES OF THE MODELS 

Material Electrical Conductivity 
[S/m] 

Iron 1.12 ∙ 107 

Building material 1 10-2 
Building material 2 10-3 

Soil 1 10-2 
Soil 2 10-3 

 
3.1.6 Connections configuration among rods of reinforced concrete, water pipes and 

the MGT 

All the possible connection combinations are investigated; in this way, the 

prospective touch voltage reduction due to the interconnection between the MGT and 

the encased metallic parts can be evaluated. The examined scenarios are summarized in 

Table IV. As an example, Fig.  3 shows for case 1 the elements considered in the model. 

The complete model is shown in Fig.  4: the reinforcement is drawn with blue dashed 

lines, the water pipes and radiators with green solid lines, the grounding system with a 

red dash-dot line. 

3.2 FEM METHOD SETTINGS 

As previously said, the building models are built and solved using the FEM method. 

According to the evolution of the field quantities (time periodic, 50 – 60 Hz) and to the 
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small geometrical dimensions of the models implemented, a stationary electric current 

study has been carried out. 

The FEM software solves a current conservation problem for the scalar electric 

potential V [13]–[16], [18]. 

In order to present the simulation setup, unbounded soil modelling, boundary 

conditions and mesh properties are discussed in the paragraphs below. A control 

parameter to verify the results is also defined. 

 

 

Fig.  3 – Case 1 – Model elements: a) walls; b) reinforcement of reinforced concrete; 
c) water pipes; d) grounding system 

a) b)

c) d)
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Fig.  4 - CASE 1 - Complete model 

 

TABLE IV 
EXAMINED SCENARIOS 

Factor Case N° 
 1 2 3 4 5 6 7 8 9 10 

Foundation           
Spread footing           

Mat-slab           
Method of construction           

Reinforced concrete           
Brick build           

Grounding system           
Ground ring           

Earth rode           
Far earth rode           

Soil resistivity           
Soil 1           
Soil 2           

Building resistivity           
Material 1           
Material 2           

Wired connection between reinforcement 
and MGT           

Present        - - - 
Absent        - - - 

Wired connection between pipes and 
MGT           

Present           
Absent           
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3.2.1 The soil: an unbounded domain 

The analysis involving grounding systems shows the need for including open 

boundaries of the ground. In fact, all the electric potentials relate to the reference earth, 

i.e. a part of the Earth whose electric potential is conventionally taken as zero, being 

outside the zone of influence of the earthing arrangement [27]. 

In order to model infinity correctly without increasing the size of the problem, the 

method based on spatial transformation was adopted [28]. 

This implementation maps the model coordinates from the local, finite-sized domain 

to a stretched domain. The inner boundary of this stretched domain coincides with the 

local domain, but at the exterior boundary the coordinates are scaled toward infinity 

[28]–[30]. 

3.2.2 Boundary conditions 

Ground was modelled as an unbounded domain, thanks to the COMSOL infinite 

element based on [29]. The external boundaries potential are set equal to 0 V (reference 

earth) [27]. It was also imposed that no electric current could flow through the 

remaining external boundaries of the simulated domain. 

In order to generalize the results, taking advantage of the fact that the modelled 

system is linear, the earthing systems inject into the ground a current of 1A. 

3.2.3 Mesh 

Tetrahedral elements are used in meshing the model. In COMSOL Multiphysics, the 

quality of an element is a value between 0.0 and 1.0, where 0.0 represents a degenerated 

element and 1.0 represents a completely symmetric element. For each model 

implemented, the average element quality (AEQ) is evaluated and reported in Table V. 

3.2.4 Control Parameter 

In order to assess the goodness of simulation, current is used as control parameter: the 

currents flowing into the ground should be equal to the sum of currents flowing out of 

the boundary. For each model implemented, the control parameter error (CPE) is 

evaluated by (4) and reported in Table V. 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐼𝐼𝑖𝑖𝑖𝑖−∭ ‖𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥,𝑦𝑦,𝑧𝑧) ‖ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆

𝐼𝐼𝑖𝑖𝑖𝑖
⋅ 100   (1) 

http://en.wikipedia.org/wiki/Current_(electricity)
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Where 𝐼𝐼𝑖𝑖𝑖𝑖 is the current injected by the grounding system and ‖𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥,𝑦𝑦, 𝑧𝑧)‖ is the 

normal current density (A/m2) in the point with x, y, z coordinates. S is the external 

ground surface, not considering the infinite element. The higher the CPE, the more 

unreliable the computed results. As the maximum CPE is just 0.5%, the results of the 

simulations can be considered reliable. 

TABLE V 
CONTROL PARAMETER(CPE) [%] AND AVERAGE ELEMENT QUALITY (AEQ)  

 

 Case N° 

 1 2 3 4 5 6 7 8 9 10 
AEQ 0.64 0.66 0,66 0.66 0.66 0.76 0.64 0.70 0.71 0.71 
CPE 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 

3.3 TOUCH VOLTAGE AS AN ELEMENT OF ASSESSMENT 

The international standard IEC 60479-1 [31] defines the conventional time/current 

zones of effects of current on persons. As far as the ventricular fibrillation is concerned, 

it considers as a reference the current path from left hand to both feet. For this reason, in 

order to evaluate the reduction of touch voltage due to the presence of reinforcement of 

reinforced concrete and metal pipes, for all the scenarios described above, only this 

current path is contemplated; the difference between the potential of ECPs and the 

potential of the floor is therefore to be computed. 

In this analysis, the potential of ECPs is considered equal to the GPR, because of the 

interconnection through PE conductors. 

The considered situation is a SLGF in an electric appliance, which energizes an ECP, 

as showed in Fig.  5; the connections ‘A’ and ‘B’ highlighted Fig.  5 can be present or 

not, depending on the simulated scenario. 
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Fig.  5 - Considered situation - SLGF in an electrical appliance 

The analyzed floor surface is highlighted in Fig.  6, to facilitate reading results; it 

refers to geometry model of case 1. 

As the electrical potential profile on the floor surface is not constant, the touch 

voltage 𝑈𝑈𝑇𝑇(𝑥𝑥,𝑦𝑦) depends on the coordinates x and y where the person is standing: with 

reference to the GPR it can be expressed as in (5): 

𝑈𝑈𝑇𝑇(𝑥𝑥,𝑦𝑦) = 𝐺𝐺𝐺𝐺𝐺𝐺−𝑈𝑈𝐹𝐹(𝑥𝑥,𝑦𝑦)
𝐺𝐺𝐺𝐺𝐺𝐺

⋅ 100  (2) 

where UF(𝑥𝑥,𝑦𝑦) is the potential on the floor in the point with x, y coordinates. 

 

Fig.  6 - CASE 1 – Floor surface 

4 RESULTS 

Table VI shows the GPR in volt, as well as the maximum and mean values of UT as 
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percentage of GPR, when the grounding system injects a current of 1 A. 

In the following paragraphs, the ten cases are analyzed in detail. 

TABLE VI 
GROUND POTENTIAL RISE [V] AND MAXIMUM AND MEAN VALUES OF UT 

 REFERENCED TO GPR [%] FOR AN INJECTION CURRENT OF 1 A 

Case N° 

 1 2 3 4 5 6 7 8 9 10 

GPR [V] 22.5 23.3 61.6 47.9 22.8 4.9 6.2 7.5 52.9 54.2 

𝑈𝑈𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀[%] 0.4 5.5 95.6 10.4 5.7 2.6 26.2 67.8 94.4 32.0 
𝑈𝑈𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀  [%] 0.0 4.8 95.6 8.9 4.9 2.1 20.2 34.3 90.4 11.7 

 
 

4.1 Reinforced concrete buildings with different connections to MGT, grounding 
system, building resistivity and foundation type 

In this section, reinforced concrete buildings are considered. 

Case 1 models a typical building, with reinforcement and pipes connected to the MGT 

as recommended by standards [4], [6]. It has spread footing foundations and an earth 

rod as grounding system. Soil and building materials have a resistivity of 100 Ωm. 

Case 2 differs from the previous one, as there is no wired connection between the 

reinforcement of reinforced concrete and the MGT.  

Considering this scenario as the base case, models to evaluate the impact of each 

influence parameter have been obtained, varying the building properties one by one. 

4.1.1 Case 1 – Wired connection among MGT, pipes and reinforcement 

The reinforcement of reinforced concrete and the water pipes are connected to the 

MGT. This is the configuration recommended by IEC 60364 [4] and NEC [6]. The 

difference between the maximum and mean values is 0.4% of the GPR: metal parts 

form a quasi-equipotential surface. The grounding system and the floor surface have 

about the same potential. 

IEC 60364 [4] considers 50 V as the maximum admissible touch voltage for general 

environmental conditions. As the maximum UT is less than 0.5% of the GPR and the 

GPR cannot exceed 1kV for low voltage systems, no electric shock danger is present. 



16 
 

4.1.2 Case 2 – Reinforcement disconnected 

This scenario differs from the previous case as there is no wired connection between 

the reinforcement of reinforced concrete and the MGT. Although not connected to the 

ground, metal parts constitute a quasi-equipotential surface. The difference between the 

maximum and mean touch voltage value is 0.7% of the GPR. For general environment 

conditions, when the voltage on ECPs is lower than 1 kV, no dangerous touch voltages 

are present as the maximum touch voltage is just 5.5% of the GPR. 

This result is relevant for all existing reinforced concrete buildings where the 

reinforcement is not joined to the MGT. 

4.1.3  Case 3 - Reinforcement and pipes disconnected 

In this case neither the metal pipes nor the reinforcement are connected to the 

ground. The UT profile is approximatively flat even if, in this case, the mean touch 

voltage is about 96% of the GPR. These results prove that, in order to decrease touch 

voltages, it is important to connect at least some EXCPs to the MGT. It is also essential 

that the connected EXCPs are quite widespread throughout the building. 

4.1.4 Case 4 - Building resistivity 

This model is geometrically the same as case 2. Only the resistivity of the building 

material is ten times higher (103 Ωm), in order to explore the range of values reported in 

Table II. 

Even if the touch voltage distribution is approximately flat as in case 2, the magnitude 

increases by about 50% as shown by the maximum and mean touch voltage values in 

Table VI. The GPR increases by about 50% too. 

The increase in GPR can be explained because, in this case, the grounding system is 

connected to the water pipes, which have in their surroundings a material with a higher 

resistivity [32]. 

Extending the results of this simulation to all the others scenarios, it is possible to 

infer that increasing building material resistivity, the GPR and the touch voltage 

distribution increase as well. 
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4.1.5 Case 5 - Far earth rod 

For the scenario considered, the grounding system is geometrically the same as in 

case 2. The difference lies in the relative position between the grounding system and the 

building. This time, the electric potential in the proximity of the structure is not directly 

perturbed by the current field produced by the grounding system. Both the touch voltage 

profile (approximately flat) and the results reported in Table VI show that no relevant 

differences are present between case 2 and 5. 

4.1.6 Case 6 - Ground ring 

The current field in the ground depends on the geometry of the grounding system 

adopted. Case 6 is similar to case 2, with the exception of the grounding system. A 

ground ring runs near the metal rods inside the spread footing foundation, surrounding 

the building. The touch voltage profile is approximately flat. By comparing the results 

obtained for case 2 and 6, no significant differences can be observed. 

4.1.7 Case 7 – Foundation 

It is possible to evaluate the effect of the foundation type by comparing the results 

for cases 2 (spread footing) and 7 (mat-slab). Also in this case, a wired connection is 

only present between the pipes and the MGT while the reinforcement is floating. 

It is worth noting the significant GPR reduction. This is due to the reinforced 

concrete that also drives the fault current directly into the ground. The touch voltage 

distributions of case 2 and 7 have approximately the same trend since, as in case 2, the 

reinforcement forms a quasi-equipotential surface. 

4.2 Brick buildings with different connection to MGT and soil resistivities 

In this section, brick buildings with a mat-slab foundation are considered. Note that 

the distribution of water pipes is non-homogeneous, in order to evaluate better its effect 

on the touch voltage reduction. 

4.2.1 Case 8 – Wired connection between MGT and pipes 

The foundation type and the presence of metal parts joined to the grounding system 

reduce the GPR and touch voltages. As shown in Fig.  7, where the water pipes lay 

more numerous, touch voltages are about 30% of the GPR. The exact position of the 

pipes can be easily located: there, the touch voltage is approximately zero. Where no 
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embedded metallic parts are present, touch voltage grows fast. In the top-right corner, 

just a few meters away, it is about 70% of the GPR.

4.2.2 Case 9 – No wired connection between MGT and pipes 

This case is very similar to the previous one; the difference lies in the lack of a wired 

connection between the pipes and the MGT. By comparing the results for cases 8 and 9 

(Fig.  7 and Fig.  8), it is possible to evaluate the importance of the wired connection 

among the metallic pipes and the MGT, especially in brick buildings. Without the wired 

connection, in fact, the GPR, the maximum and the mean values of touch voltages are 

increased by 605%, 882% and 1768%, respectively. The embedded metal parts, if not 

connected, do not produce any significant effect. Vice-versa, if connected and 

sufficiently widespread, they can significantly reduce both GPR and touch voltages.

 
Fig.  7 - 𝑈𝑈𝑡𝑡(𝑥𝑥,𝑦𝑦 )  −  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 8 

 
Fig.  8 - 𝑈𝑈𝑡𝑡(𝑥𝑥,𝑦𝑦 )  −  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 9

4.2.3 Case 10 – Soil resistivity 
The wider the contact surface between the structure and the ground, the more evident 

the effects of soil resistivity in altering the electrical potential distribution inside the 

building. For this reason, in order to investigate the influence of soil properties, the mat-

slab foundation is chosen. In this scenario, a sandy soil is simulated. This is the only 

difference with respect to case 8. By comparing the results for cases 8 and 10, it can be 

seen that in the latter the GPR is increased due to higher soil resistivity, but the percent 

touch voltage is decreased. In fact, a higher soil resistivity reduces the steepness of the 

potential profile (Fig.  9). 
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Fig.  9 - 𝑈𝑈𝑡𝑡(𝑥𝑥,𝑦𝑦 )  −  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 10 

5 CONCLUSION 

Different scenarios are simulated in order to evaluate the contribution of embedded 

metallic parts, not connected to the MGT, to the reduction of touch voltages in buildings. 

For each of them, with reference to the TT distribution system, a model is implemented 

and solved by the finite element method. 

According to the results of the simulations, reinforcement of constructional reinforced 

concrete and others EXCPs reduce touch voltages in all the evaluated scenarios. 

Even if the wired connections among metallic reinforcement of constructional reinforced 

concrete, other EXCPs and the MGT is recommended, the mere presence of these 

metallic parts, without intentional connections, contributes to the reduction of touch 

voltages. 

The electrical installation safety performance is greatly improved if a building is made 

of reinforced concrete and at least some easily accessible parts like water or central 

heating pipes are joined with the MGT. For old buildings, where the reinforcement of 

concrete was not connected to the equipotential bonding, it may therefore be sufficient to 

connect metallic pipes of water, sewage and heating systems. This operation is easy and 

cheap and according to the models implemented for this scenario, touch voltage is 

reduced up to 5% of the GPR. 

Also in brick buildings, if EXCPs are widespread and joined to the MGT, a significant 

reduction of  GPR, maximum and mean touch voltages can be achieved: for the particular 

scenario considered in this paper the interconnection provides a reduction  of about  86%, 

90% and 95% of the three performance parameters respectively. 

0

5

5

Y [m]

50

0

U
t [%

]

X [m]

0
-5 -5

100



20 
 

The higher soil resistivity and narrower contact surface between the structure and the 

ground, the more evident this reduction. 

For what concerns the topics discussed in this paper, geometry of the grounding system is 

only relevant for the value of the GPR. Increasing the distance between grounding system 

and building does not significantly modify the touch voltages distribution. 

IEC 60364 [4] considers supplementary protective equipotential bonding as a valid 

method to ensure the protection against indirect contacts. The results obtained and 

presented in this paper confirm the goodness of this practice. 
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