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Abstract. In addition to providing good tracking capability and re-

ducing fuel consumption, an Adaptive Cruise Control (ACC) system is

required to be very comfortable. Although several appealing ACC poli-

cies have been introduced so far, a few of which are currently in use,

it is still difficult in general to find an ACC policy that is able to opti-

mally combine requirements such as high safety, low fuel consumption

and satisfactory comfort level. Additionally, no systematic methods are

available for the optimization of a control policy performance. This chap-

ter addresses these problems by comparing different ACC policies and

developing an optimization method based on a multi-objective Pareto

criterion, finalized at designing policies with an all around performance.

Furthermore, the designed optimal policy is tested in view of its appli-

cation on real vehicles via simulations.

Keywords: Adaptive Cruise Control, test simulation, performance op-

timization.

1 Introduction

Driving can be defined as a set of operations aimed at controlling a motor vehicle,

where control is typically performed by a human driver. However, the human

driver behavior may tend sometimes to cause undesirable vehicle behaviors. In

modern vehicles, to avoid or prevent these kinds of behaviors, control is usually



2 Clement U. Mba, Carlo Novara

done by the human driver with the help of some Driver Assistance Systems, one

of the most important of which is the Cruise Control.

Cruise Control (CC) has the task of maintaining the vehicle speed at a desired

value. However, a drawback of CC is that it cannot vary the speed of the vehicle:

whenever a vehicle in front of the vehicle equipped with CC is traveling slower

than the latter, the driver has to step on the brakes in order to deactivate the

Cruise Control and step on the accelerator when the preceding vehicle speeds up

[2]. As a result, Cruise Control has to be reset from time to time. This drawback

is overcome by the more advanced Adaptive Cruise Control (ACC), which is

able to adjust the speed of the vehicle, depending on various factors influencing

it without manual intervention from the driver [2],[3],[4]. Some of them, like the

“stop and go”, can bring the vehicle to a stop and start it moving [3],[4].

In general, the design of an ACC begins with an ACC policy. Different ACC

policies have been proposed: Constant Time Gap (CTG), Constant Distance,

Constant acceptance, Constant Stability and Constant safety factor [1]. ACC

policies specify the desired steady state distance between two vehicles in succes-

sion. Note that ACC policies can be either autonomous [5], cooperative [6],[7] or a

combination of both [8]. Introducing and maintaining continuous inter-vehicular

communication, which is the main feature of cooperative policies causes network

effects that can undermine the performance of the ACC [7]. Moreover, main-

taining continuous inter-vehicular communication is costly [9],[11]. Thus, the

autonomous operation seems like the most preferred choice at present, and it is

the area of focus in this paper.

The performance of an ACC system is based on the particular control pol-

icy that it employs. The basic control policies are the Constant Spacing Policy

(CSP), Constant Time Gap (CTG) and Variable Time Gap (VTG). All the

other policies are usually variants of these basic policies. However, even though

all these policies are appealing from a methodological point of view, it is difficult

in general to understand which is the actual performance that can be guaranteed

on a real vehicle. Another relevant issue is that, to the best of our knowledge,
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no systematic methods can be found for the optimization of the control policy

performance.

In this perspective, the main contributions of the paper are two. First, the

control policies employed by the “standard” ACC systems are compared by

means of extensive simulations, considering different realistic road scenarios.

This kind of study is important to understand which control policies and, more

in general, which control approaches can be more effective in view of their imple-

mentation on real vehicles. Second, an optimization strategy based on a multi-

objective Pareto criterion is proposed, finalized at designing high-performance

control policies. The strategy is tested by means of extensive simulations, involv-

ing different realistic road scenarios. These simulations show that the method

allows the design of control policies able to perform significantly better with

respect to the “standard” policies, in terms of safety, fuel consumption and com-

fort.

2 Vehicle model and control policies

In this section, we introduce the vehicle and control models that will be used in

the simulations, first to compare the “standard” ACC systems, then to test our

optimal control policy design method.

The following assumptions were made:

– All vehicles are identical and move in a straight line.

– Before the maneuver of the lead vehicle, all the vehicles were moving at the

same steady state speed.

– The lead vehicle takes a finite amount of time to perform a maneuver prior

to reaching steady state speed.

The longitudinal dynamics of each vehicle (plant) can be approximated by

the following model (see [5],[12],[13]):

τ
...
p + p̈ = u (1)
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where p is the vehicle longitudinal position, u represents a “desired” longitudinal

acceleration and τ is the vehicle time constant.

The desired acceleration u is the control input, which can be used to improve

the vehicle performance in terms of safety, comfort and fuel consumption. This

task can be accomplished by a proper control policy, as shown schematically in

Fig. 1, where the block “Vehicle” is a dynamic system described by (1) and ε is

the spacing error to be defined subsequently.

Usually, the control policies should satisfy string stability requirements in

order to give a good performance. String stability is defined as stability with

respect to the spacing between vehicles. It ensures that the spacing error, defined

as the difference between the actual and desired spacing, do not get larger as it

propagates upstream in a string of Adaptive Cruise Control vehicles using the

same control law [5],[8],[11],[12],[13],[14]. The CSP policy requires inter-vehicular

communication if string stability is to be guaranteed [11],[15], while the CTG and

VTG policies overcome this limitation [9],[11],[13]. Since we are only considering

the autonomous operation, our tests are conducted only on the CTG and VTG

policies.

The CTG policy is defined by the control law

u = − (ṗ− ṗf + λε)

h
(2)

ε = p− pf + Ldes

where p and pf are the positions of a vehicle and the preceding vehicle respec-

tively, and ε is the deviation from the desired spacing, otherwise known as the

spacing error, [5],[12],[13],[17].

λ, Ldes and h are design parameters, to be chosen in order to obtain the

desired longitudinal dynamics performance. λ is a control gain, Ldes is the desired

spacing between the vehicles and h is called the time gap (it represents the time

distance between the two vehicles).

Combining the vehicle equation (1) with the control equations (2), we obtain

an Linear Time Invariant (LTI) system, with input pf and output y = ε. Note
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that, on a vehicle equipped with an ACC systems, pf is typically measured by

a radar.

The VTG has several variants [9],[12],[16],[17],[18],[19],[20], which are similar

to each other. The Nonlinear Range Policy (NRP) [16, 20] is considered here

because of its simple structure. This policy is defined by the control law

u = (1− τk

h
− τλk

h2
h2

k
)p̈+ (

τk

h2
)ṗf − ṗ (3)

where k is a design parameter, called the scaling factor [16],[20].

As for the VTG policy, combining the vehicle equation (1) with the control

equations (3), we obtain an LTI system, with input pf and output y = ε.

Fig. 1. Adaptive Cruise Control structure.

3 ACC policies comparison

The two ACC policies described in Section 2 are tested considering three different

scenarios:

Scenario 1. Constant number of vehicles traveling in a line

In this scenario, 10 vehicles are traveling in a line and the lead vehicle makes

some critical manoeuvre. Three kinds of critical manoeuvres are simulated -

Manoeuvre 1: The lead vehicle suddenly increases its speed; this manoeuvre was

obtained simulating u1 (the input of the leading vehicle) as a filtered positive

step. Manoeuvre 2: The lead vehicle suddenly increases its speed and then goes

back to the original speed; this manoeuvre was obtained simulating u1 as a

filtered positive impulse. Manoeuvre 3: The lead vehicle decelerates continuously;

this manoeuvre was obtained simulating u1 as a filtered negative ramp.
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Scenario 2. Vehicles joining and leaving the line

In this scenario, 10 vehicles are traveling in a line and one or more vehicles

join or leave the line at different times; this manoeuvre was simulated just by

suddenly increasing or decreasing the number of vehicles in the line with the gap

between the vehicles taken into consideration to prevent collision. Note that this

simulation is more challenging than a real situation, where the process of joining

or leaving the line is “more continuous”. We considered up to 5 vehicles joining

or leaving the line.

Scenario 3. Traffic flow

In this scenario, 10 vehicles are traveling in a line and one or more vehicles join

or leave the line at different times. We considered up to 5 vehicles joining or

leaving the line. As an additional complication, the line may stop at different

times due to the presence of traffic lights; The stop at the light was obtained

simulating u1 as a filtered negative ramp that, after a certain time, becomes

constant.

We considered different combinations of the values of the parameters char-

acterising the vehicle model and the control policies. In particular, the following

parameter ranges were assumed:

τ ∈ [0.5, 0.95] s

λ ∈ [0.4, 2]

h ∈ [0.1, 2] s

k ∈ [2, 15]

Ldes = 40 m.

For each manoeuvre of scenario 1 and for each parameter combination, we

performed one simulation. This simulation was long enough to reach steady-state

conditions. For each of scenarios 2 and 3 and for each parameter combination,

we performed a sufficiently long simulation, in order to capture all relevant sit-

uations that can occur in a real road scenario. In particular, the duration of the

simulated road scenarios was about 107 hours, corresponding to about 4 hours
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of Matlab run time. The simulations were done using Matlab R2014a and its

simulink environment.

To evaluate the performance of an ACC control policy, we considered the

following indexes:

– Recovery time: The recovery time of a vehicle is defined

TR = Tss − Tc

where Tc is the time at which a critical event occurs (e.g., a critical manoeu-

vre, a vehicle joining or leaving the line, or a stop at the light) and Tss is the

2% settling time (that is, the time after which the system output is always

within an interval with center at the steady-state value of the output and

amplitude 2% of this value).

– Input signal Root Mean Square value:

RMSu = ||ũ||2/
√
N (4)

where ũ is the (discrete-time) command input signal of a vehicle acquired

from the simulation, ||.||2 is the vector 2-norm and N is the length of ũ.

– Output signal Root Mean Square value:

RMSy = ||ỹ||2/
√
N (5)

where ỹ is the acquired (discrete-time) output signal of a vehicle.

– Peak input signal:

MAXu = ||ũ||∞ (6)

where ||.||∞ is the vector ∞-norm.

– Peak output signal:

MAXy = ||ỹ||∞. (7)

The recovery time measures the capability of the control policy to promptly

bring the vehicle back to its “normal” operation conditions. RMSy and MAXy

essentially measures the mean deviation of the output from the desired value

(hence, it is also an indirect measure of the recovery time). RMSu and MAXu
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are related to the energy spent by the control policy in order to obtain the

desired performance while RMSJ is related to passenger comfort in a vehicle.

Table 1. Scenario 1, Manoeuvre 1. Average performance indexes

Strategy T̄R [s] ¯RMSu
¯RMSy

CTG 33.14 12.508 1.1199

NRP 4.5 14.7154 0.1833

Table 2. Scenario 1, Manoeuvre 2. Average performance indexes

Strategy T̄R [s] ¯RMSu
¯RMSy

CTG 36.7 0.0228 0.0286

NRP 5.14 0.0820 0.0237

Table 3. Scenario 1, Manoeuvre 3. Average performance indexes

Strategy T̄R [s] ¯RMSu
¯RMSy

CTG 6.7 35.3265 1.5331

NRP 0.55 45.1805 0.0996

Tables 1-6 show the performance indexes obtained in the simulations, aver-

aged over all the vehicles composing the line, all the critical events (i.e., vehicles

joining and leaving the line and stops at the lights) and all the parameter combi-

nations. The averages are indicated with a bar. In Figures 2-6, we can observe the

performance indexes obtained in the simulations, averaged over all the vehicles

composing the line and all the critical events.

Tables 1, 2 and 3 show that the NRP generally recovers faster when subjected

to critical conditions, involving also lower values of ¯RMSy. However, the required
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Table 4. Scenario 2, Vehicles joining. Average performance indexes

Strategy ¯RMSu
¯RMSy

CTG 111.7 6.9109

NRP 115.3 5.8677

Table 5. Scenario 2, Vehicles leaving. Average performance indexes

Strategy ¯RMSu
¯RMSy

CTG 109.6 7.1459

NRP 114 6.0608

command activity, measured by ¯RMSu, is higher. Similar results are shown by

Tables 4, 5 and 6.

Given that τ ≥ 0.5 and λ = 0.4, the NRP is more flexible than the CTG, in

the sense that h can be varied from 0.1 to more than 1.8 without the spacing

errors getting larger as they propagate upstream in vehicles using NRP. When

h = 0.1, for the NRP the recovery time as well as the ¯RMSy value is “small”,

with a high value of ¯RMSu on the command input activity.

The average recovery time increases a little for vehicles using the NRP as τ

gets higher. In the case of the CTG, the average recovery time increases consid-

erably as τ gets higher. Accordingly, it can be said that higher values of τ for

each of the vehicles do not have as much influence on vehicles using the NRP as

they do on vehicles that use the CTG. This is most likely to be a result of the

high value of h that is required in the CTG when τ>0.5, to prevent the spacing

errors from getting larger as they propagate upstream.

Table 6. Scenario 3. Average performance indexes

Strategy ¯RMSu
¯RMSy

CTG 436 5.608

NRP 441.7 4.191
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The simulation results obtained from scenario 2, as shown in Figures 2 and

3, and scenario 3, as shown in Figures 4 and 5, show that the NRP has lower

¯RMSy than the CTG for the same values of h and τ . The two lines with the

same h in Figures 2 and 3 correspond to the vehicles either joining or leaving the

line. It should also be noted that similar results are obtained when τ is different

for each vehicle in the stream.

1 1.5 2 2.5 3 3.5 4 4.5 5
5.5

6

6.5
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7.5
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9

Number of vehicles joining/leaving the line

¯
R
M

S
y

h=2.0
h=1.9
h=1.8
h=2.0
h=1.9
h=1.8

Fig. 2. Scenario 2 (CTG with τ = 0.5s, λ = 0.4)

Low values of the time gap as well as low values of ¯RMSu are desirable

but these act in contrast to each other. As stated earlier, lower values of the

time gap require higher command input activity. Indeed, ¯RMSu and ¯RMSy are

two contrasting criteria. This is important for the NRP, since it can sustain

h ∈ [0.1, 2]. It is our deduction that if h remains in a “low value zone” for

instance h ∈ [0.1, 0.3] for a long time during driving, a lot of energy due to

control activity might be expended. A possible way to mitigate this could be to

design the control algorithm in such a way that the time gap does not exceed

a certain amount of time when it is in the “low value zone”. It is important

to determine the right amount of time. This amount of time could depend on

whether there are vehicles joining or leaving the stream as well as on their
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Fig. 3. Scenario 2 (NRP with τ = 0.5s, λ = 0.4, k = 4)
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Fig. 4. Scenario 3 (CTG with τ = 0.5, λ = 0.4)



12 Clement U. Mba, Carlo Novara

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
3

3.5

4

4.5

5

5.5

Number of vehicles joining/leaving the line

¯
R
M

S
y

h=2.0
h=1.9
h=1.8

Fig. 5. Scenario 3 (NRP with τ = 0.5, λ = 0.4, k = 4)

number, or on what the design objective of the car manufacturer is (i.e, energy

reduction or inter-vehicular space reduction to increase traffic output).

4 Optimization Strategy

As discussed in the previous section, in the design of an ACC system there is

a trade-off between two contrasting requirements. On the one hand, the ACC

system must provide a satisfactory performance in terms of safety and prompt

answer to external disturbances. On the other hand, the ACC system must not

require a too large command activity, which may lead to a high consumption of

fuel and/or electrical power.

To quantify the ACC performance we hereby consider the RMSy index de-

fined in (5). To quantify the command activity we consider the RMSu index

defined in (4). We would like to minimise both these coefficients but clearly this

cannot be done, since these indexes are in contrast with each other. In other

words, we are dealing with a multi-objective optimization problem.

This kind of problems can be efficiently solved considering a Pareto optimality

criterion, [21]. LetRMSy(C) andRMSu(C) be respectively the performance and
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command activity indexes of a given ACC controller C. A controller C1 is said

to dominate another controller C2 if

RMSy(C1) ≤ RMSy(C2) and RMSu(C1) < RMSu(C2)

or

RMSy(C1) < RMSy(C2) and RMSu(C1) ≤ RMSu(C2).

(8)

A controller C∗ is said Pareto optimal if it is not dominated by any other

one. In other words, no other controller exists that can be overall better than

an optimal controller. If a controller is better than an optimal one with regard

to a single objective (e.g., RMSu(C)), it is certainly worse with respect to the

other (e.g., RMSy(C)). The set of Pareto optimal controllers define a curve in

the performance index space called Pareto front (see the green line in Fig. 6).

Based on these concepts, the optimization strategy that we propose is as

follows:

– Perform a Monte Carlo simulation, consisting of NT trials.

– In each trial:

• Choose random values of the parameters h, k and λ (clearly, these values

must be reasonable from a physical point of view). Each parameter 3-

tuple defines a controller Ci, with i = 1, ..., NT .

• For the chosen parameter 3-tuple, perform NS simulations considering

realistic road scenarios.

• compute the averages ¯RMS(Ci)y and ¯RMS(Ci)u of the NS values of

RMS(Ci)y and RMS(Ci)u.

– Considering that the pairs ( ¯RMS(Ci)y, ¯RMS(Ci)u), with i = 1, ..., NT , de-

fine points in the two-dimensional performance index space, construct the

Pareto optimality front, using (8) to individuate those controllers that are

not dominated.

Note that τ and Ldes are assumed fixed but they can be included in the

optimization process without significant modifications.
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Following this strategy, a Monte Carlo simulation was performed, with NT =

4760. In each trial, random values of h, k and λ were taken from the intervals

[0.1, 2], [2, 15] and [0.4, 2], respectively (a uniform distribution was considered

for all the three parameters). The values τ = 0.5 s and Ldes = 40 m were

also assumed. For each random 3-tuple (corresponding to a randomly generated

controller), NS = 10 simulations were performed considering Scenario 3 (traffic

flow with 10 vehicles in a line and 5 vehicles randomly joining or leaving the line).

Then, the performance averages ¯RMS(Ci)y and ¯RMS(Ci)u were computed.

Finally, the Pareto optimality front was constructed.
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Tested NRP controllers
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Fig. 6. Pareto optimization

The results of this procedure are shown in Fig. 6. We can distinguish a number

of randomly generated controllers (blue dots) and the Pareto optimal controllers

(green line). These are compared with the tested NRP controllers (red dots).

The performance in terms of spacing errors of a set of “standard” vehicles and a

set of Pareto optimal vehicles is plotted in Figures 7 and 8, respectively. These

results show that an improvement of about 30% can be obtained using a Pareto

optimal controller with respect to using a “standard” controller, indicating that

the proposed optimization strategy can lead to high-performance ACC systems.
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Fig. 7. Performance of the NRP controllers (τ = 0.5s, Ldes = 40m, h = 1.3s, k =

4, λ = 0.4). The different lines correspond to the spacing errors of each NRP controlled

vehicle in the stream.
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Fig. 8. Performance of the Pareto optimal controllers (τ = 0.5s, Ldes = 40m, h =

0.9s, k = 10, λ = 1.6). The different lines correspond to the spacing errors of each

Pareto optimal vehicle in the stream.
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5 Comfort analysis

While reduced spacing errors and command inputs can help to improve the

safety and to lower the fuel consumption, the aspect of comfort is also very

important. Indeed, comfort is commonly considered a very important and vital

part of vehicle design and ergonomics. According to some studies, comfort is a

crucial requirement that passengers consider when evaluating a vehicle. Most

passengers cite discomfort as the reason for not using ACC [22]. Thus, ACCs

with a suitable amount of comfort could lead to a higher acceptance of ACCs

by the society.

Generally, the comfort of passengers in ground transport systems is deduced

from motion changes in all directions and other environmental issues [23]. An

efficient and simple way of estimating the comfort level of a vehicle is to calculate

the rate of change of acceleration of the vehicle, that is, the jerk of the vehicle

[22],[23], defined as

J =
dp̈

dt
(9)

where p̈ is the vehicle longitudinal acceleration and t refers to time. Note that

comfort and jerk act in contrast to each other. In order to achieve a satisfactory

level of comfort, the absolute value of the jerk should be as small as possible. To

measure this quantity, we use the following index:

– Jerk signal Root Mean Square value:

RMSJ = ||J̃ ||/
√
N (10)

where J̃ is the acquired (discrete-time) jerk of a vehicle.

– Peak jerk signal:

MAXJ = ||J̃ ||∞. (11)

Figures 9 and 10 show the relationship between the averages of the root mean

square values and the peak values of the jerk and spacing errors for both the

Pareto optimal vehicles and “standard” vehicles. It can be seen that the same

amount of jerk matches a lower spacing error for the Pareto optimal vehicle
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and a higher spacing error for the “standard” vehicle. When the spacing errors

in figure 9 are traced to figure 6, the required command input for the Pareto

optimal vehicle is always lower than that of the “standard” vehicle. This demon-

strates further that a Pareto optimal controller could give a better all around

performance in terms of safety, comfort and fuel consumption.
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Fig. 9. Plot of average spacing errors and jerk

6 Conclusions

In spite of the benefits that passengers stand to gain from the use of ACCs, most

passengers would rather not to use ACCs due to reliability and comfort concerns.

Indeed, autonomous ACC policies that take all the necessary factors into account

needed for the overall satisfaction of a customer are almost non-existent. This

paper addresses this issue in two steps. In the first step, a systematic simulation

procedure is developed for comparing different Adaptive Cruise Control (ACC)

policies. This is needed to develop a proper understanding of how different ACC

policies would react to different situations. In the second step, a multi-objective

optimization technique, based on a Pareto efficiency criterion is proposed and

tested. The optimal controller designed by means of this technique shows better
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Fig. 10. Plot of peak values of spacing errors and jerk

results when compared with the “standard” ACC policies in terms of safety, fuel

consumption and comfort. As a part of ongoing efforts to make ACCs more effec-

tive, future research activities will focus on extending the numerical simulations

considered in this paper to curve situations where the radar is unable to sense

the vehicle in front for a while and on developing a user-friendly performance

ACC optimization toolbox.
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