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Experimental and numerical simulations provide nowadays a great amount of detailed spatio-temporal data, which needs
to be properly examined to achieve a better description of the turbulence dynamics. New investigative tools are hence
continuously required to handle and properly interpret such big-data. In this context, complex network theory — by
combining graph theory and statistical physics — recently turned out to be a powerful framework to analyze complex
systems, such as turbulent flows [4],[5]. In this work, a DNS of a fully-developed turbulent channel flow [1],[3] is
investigated through the natural visibility graph (NVG) method [2]. A subset of the simulation grid domain is firstly
selected, acquiring all the available temporal data for the velocity field, (u, v, w), and for the kinetic energy, K. The
time-series of each selected grid-point is then mapped into a network by means of the NVG method. In particular, two
data values constitute a pair of linked nodes of the network if the straight line connecting the two data points lies above
the other in-between data. The degree centrality, k, quantifying the visibility of nodes, is the first metric studied. The
transitivity, Tr, and the newly introduced mean link-length, d1n, are then evaluated as indicators of the inter-visibility and
mean temporal distance among nodes, respectively. The metrics are averaged along the directions of homogeneity of the
flow (i.e., x and z), thus they only depend on the wall-normal coordinate, y+ (see Fig. 1a). The visibility-based networks
inherit the temporal structure of the corresponding time-series, as we observe the trend of the metrics is closely related to
the flow properties along y+. In this way, different temporal features of the time-series are mapped in the networks and the
metric trends (Fig. 1a) allow one to shed light on how the temporal structure of the series changes moving along y+ (see
Fig. 1b). Although intrinsically simple to be implemented, the visibility graph-based approach then offers a promising
support to the classical methods for accurate time-series analyses of inhomogeneous turbulent flows.
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Figure 1. (a) Averaged metrics (k, Tr, d1n) as function of the wall-normal coordinate, y+. The metrics are obtained from networks
built on time-series extracted from the streamwise velocity component, u(t). (b) First 2000 time instants extracted from time-series
of the streamwise velocity component at three representative y+ stations (y+ = {0.22, 25.2, 414.5}) and at fixed (x, z) coordinates.
Normalization is taken as u∗ = (u− µ)/σ, where µ and σ are the mean and standard deviation values of u(ti), respectively.
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