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Abstract. The ITER Central Solenoid Model Coil (CSMC) is a superconducting magnet, 

layer-wound two-in-hand using Nb3Sn cable-in-conduit conductors (CICCs) with the central 

channel typical of ITER magnets, cooled with supercritical He (SHe) at ~4.5 K and 0.5 MPa, 

operating for approximately 15 years at the National Institutes for Quantum and Radiological 

Science and Technology in Naka, Japan. The aim of this work is to give an overview of the 

issues related to the hydraulic performance of the three different CICCs used in the CSMC 

based on the extensive experimental database put together during the past 15 years. The 

measured hydraulic characteristics are compared for the different test campaigns and compared 

also to those coming from the tests of short conductor samples when available. It is shown that 

the hydraulic performance of the CSMC conductors did not change significantly in the 

sequence of test campaigns with more than 50 cycles up to 46 kA and 8 cooldown/warmup 

cycles from 300 K to 4.5 K. The capability of the correlations typically used to predict the 

friction factor of the SHe for the design and analysis of ITER-like CICCs is also shown. 

1.  Introduction 

In the field of large-scale application of superconducting magnets, it is helpful to have a clear 

understanding of the hydraulic behavior of the conductors [1], [2] with the aim of minimizing, during 

the design phase, the pressure loss along the conductor and properly sizing the cold circulator. 

Moreover, the hydraulic characteristic of the conductors plays a significant role during off-normal 

transients, such as a quench event, in determining the quench propagation speed along the conductor. 

For the ITER magnet system, the fully superconducting Central Solenoid Model Coil (CSMC) [3], see 

figure 1a, a solenoid in operation since 2000 at the National Institutes for Quantum and Radiological 

Science and Technology (former JAEA) plays a relevant role in the related R&D as it is the only 

facility worldwide allowing the test of full-length ITER conductors in a background field up to 13 T. 

Since its commissioning, more than 15 years ago, the CSMC has operated several times during the test 

campaigns of the ITER Insert Coils, tested in the bore of the CSMC in 2000, 2001, 2002, 2004, 2015 

and 2016-17, respectively. 

The CSMC is constituted by 18 two-in-hands-wound layers, cooled by supercritical helium (SHe) 

at 4.5 K and 0.6 MPa in nominal conditions. Slightly different Cable-in-Conduit Conductors (CICCs) 

were used for different layers (two different void fractions in the bundle region and, for one of the two, 

spiral versus coiled wire used for the central channel) so that three groups of hydraulically similar 

conductors can be clearly identified on the basis of the conductor geometry. Six (out of the 36) 
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conductors, representative of those three groups, are instrumented with differential pressure 

measurement and flow meters so their hydraulic characteristics can be directly measured. A very 

detailed analysis of the hydraulic characteristics of the different conductors, some of which were 

already investigated on dedicated experiments on short lengths [4], was performed just after the first 

test campaign, deriving ad-hoc correlations for the friction factors [5], but they were never rechecked 

with the same level of detail for the following campaigns. 

During the different test campaigns, the CSMC underwent 50+ full charges (up to 46 kA, resulting 

in a magnetic self-field of 13 T), 10+ fast current discharges from full power, 200+ fast discharges 

from ~10 kA current (the so-called “daily checks”), 6 quenches in layer #1A and 8 cooldowns from 

room temperature to cryogenic temperature. As some of the tested Insert Coils, having a void-fraction 

comparable to that of the CSMC conductors, showed some effects of the Lorentz forces on the 

pressure drop along the conductor [6], the aim here is to check that no permanent variation of the 

hydraulic characteristics took place in the 15-years operation of the magnet. The wide dataset is then 

used to assess the accuracy of available correlations, largely used nowadays in computing the pressure 

drop along the conductors for, e.g., the assessment of the ITER operating scenarios, as well as for the 

design of CICCs for, e.g., future DEMO tokamaks. 

 

(a)  
Figure 1. (a) Open cryostat of the CSMC facility @ National Institutes for Quantum and Radiological 
Science and Technology at Naka, Japan (courtesy of QST). (b) Cross section of the CSMC showing 
the IM and OM. The inset (c) shows one of the CICC used for the ITER CSMC (courtesy of QST). 

2.  CSMC layout 

The 18 layers of the CSMC are organized in two modules: Inner Module (IM, layers #1-10) and Outer 

Module (OM, layers #11-18), see figure 1b. Each layer consists of 15 to 17 turns (for the first four layers 

and the remaining ones, respectively). All the conductors have a central cooling channel, see figure 1c, 

and a bundle of Nb3Sn superconducting strands. The geometrical parameters relevant for the pressure 

loss calculation along the different conductors are reported in Table 1. Note that the geometry of the hole 

is the same for conductor 1A (i.e. from 1A to 4B), 9A-10B and OM (i.e. 11A-18B), while the bundle 

hydraulic diameter of conductors 5A, 7A (i.e. from 5A to 8B), 9A-10B and OM is the same. The 

conductors equipped with differential pressure taps, flow meters, inlet and outlet temperature sensors and 

pressure tap, see figure 2, for which the hydraulic characterization is thus possible, are: 

• Conductor 1A, which is fully representative of all the CICCs in the first four layers (1A-4B), 

with the central channel delimited by a flat spiral, manufactured in the US; 

• Conductors 5A and 7A, which are fully representative of the CICCs in layers 5A-8B with the 

central channel delimited by a spring, manufactured in the US; 
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• Conductors 11A, 15A and 17A, which are representative of the CICCs of the two outermost 

layers of the IM (9A-10B) and of the entire OM (11A-18B), again with the central channel 

delimited by the flat spiral, manufactured in Japan (except layer #17, manufactured in the US). 

 

Table 1. Geometrical parameters of the conductors in the two modules of the CSMC. 

 
Units 

IM OM 

 1A 5A and 7A 11A, 15A and 17A 

Number of strands [-] 1152 1080 1080 

Strand diameter [mm] 0.81 0.81 0.81 

Bundle void fraction (φ) [%] 36.3 35.8 35.8 

Strand twist pitch angle (cosθ) [-] 0.931 0.967 0.967 

Internal hole diameter (Dh) [mm] 10.0 9.0 10.0 

Spiral/spring thickness and width (h) [mm] 1.0/3.0 1.5/1.5 1.0/3.0 

Length (L) [m] 84.9 117.9 /129.1 153.6 / 176.8 / 188.9 

 

 
Figure 2. Sketch of the circuit diagram for the CSMC showing also which conductors have a flat 
spiral or a spring delimiting the central channel. 

 

Data collected during cold operation in all the campaigns so far have been analyzed to find time 

frames in which the relevant thermal-hydraulic and physical quantities are constant for at least a mean 

residence time in the coil (the velocity in the bundle, the slowest path for SHe flow, is around 0.2 m/s 

in nominal conditions and by considering the longest outermost conductor 18A, the mean residence 

time is ~1000 s). The time average of the mean inlet/outlet temperature (T), mean inlet/outlet pressure 

(p), inlet mass flow rate (dm/dt) and pressure drop (Δp) have been then calculated for all the 

instrumented conductors. The gravity head contribution has been removed from the measured value of 

pressure drop, accounting for an effective height (vertical distance between the two taps of the 

differential pressure sensor) of ~5.3 m and evaluating the SHe density at thermodynamic conditions 

averaged between inlet and outlet. 

3.  Analysis of experimental data 

The hydraulic characteristic, in terms of pressure gradient vs. total mass flow rate, is reported in 

figure 3 for the instrumented conductors for points at the nominal operating conditions of 4.5 K and 

0.6 MPa at the coil inlet. Figure 3 shows that the collected points lay on the same trend line for all the 
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experimental campaigns, with the exception of a cluster of points measured during the 2008 campaign 

in conductors 5A and 17A, possibly indicating some issues in the flow measurement in that specific 

campaign. From this picture it is possible to conclude that the overall hydraulic characteristic of the 

different conductors has remained basically the same throughout the years and the different test 

campaigns. 

 

 
Figure 3. Measured hydraulic characteristic for (a) conductor 1A, (b) conductors 5A, 7A and (c) 
conductors 11A, 15A, 17A, respectively, in the different test campaigns. 
 

To confirm the assessment of figure 3 and to look more in detail to the small differences therein, the 

data have been reduced to the pseudo-dimensionless quantities Re* and f*, directly related to the 

Reynolds number Re and friction factor f, respectively, as defined in Eqs. 1-2. The advantage of the 

pseudo-dimensionless form is that the effect of possible differences in the thermal-hydraulic conditions 

of the different points of the dataset is cancelled out. 

 𝑅𝑒∗ =
𝑑𝑚 𝑑𝑡⁄

𝜇(𝑝𝑎𝑣𝑒 , 𝑇𝑎𝑣𝑒)
 [𝑚] (1) 

 𝑓∗ =
2𝜌(𝑝𝑎𝑣𝑒 , 𝑇𝑎𝑣𝑒)

4(𝑑𝑚 𝑑𝑡⁄ )2

Δ𝑝

𝐿
 [𝑚−5] (2) 

In Eqs. 1-2, dm⁄dt is the total mass flow rate, μ(pave,Tave) and ρ(pave,Tave) are the viscosity and 

density, respectively, evaluated at mean (between inlet and outlet) pressure and temperature, while Δp 

is the pressure drop and L is the length of the conductor. 

Figure 4 shows the pseudo-dimensionless hydraulic characteristic of the different conductors 

throughout the different experimental campaigns with the data from [5] used as a reference for the 

2000 campaign and the associated error bar. The latter has been evaluated considering an error ~0.5% 

on pressure drop and ~6% on full scale (8 g/s) mass flow rate measurement, as from [7], together with 

the measurement error related to the oscillations of recorded traces. 

The experimental data set for conductor 1A has been extended including not only the CSMC 

campaigns data, but also some specific results of the analysis of a short straight sample [1], [2], [4], 

see figure 4a. The dataset has been proven to be consistent as the f*(Re*) of all the experimental points 

lays on the same trend line within the error bar. The data of the 2015 test campaign appear to be 

aligned more on a band than on a single line (true also for the other conductors), but note that re-

calibrations of the flow meters were necessary during the test campaign due to some shift induced by 

the pressure rise. 

Figure 4b highlights that the friction factor for the conductors with the spring is 60% higher than 

that of all the other conductors, as noted from the very beginning of the tests [5]. 

Figure 4c shows also that, even if OM conductors have nominally the same (bundle and hole) 

geometry, the f* is quite different for the same values of Re*. This is true in particular for the 15A 

conductor data measured in 2000, that present a much lower f* with respect to the other instrumented 

conductors of the OM. 
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Figure 4. Total friction factor f*(Re*) of conductors (a) 1A, (b) 5A, 7A and (c) 11A, 15A, 17A, 
respectively, for measurements from different test campaigns (symbols). In (a) and (c) the 
characteristic computed from available correlations for the hole and bundle regions are also reported 
(dashed lines), together with their error bar. In (b), the results of the combination of the bundle friction 
factor correlation from [1] with the correlations for the hole in Eq. 8 (dashed line), from [8] (dash-dotted 
line) and Eq. 6 and Eq. 9 from [9] (dotted line), respectively, are reported. 

 

4.  Accuracy of available correlations 

4.1.  Correlation for the bundle 

A very general correlation for the bundle region of the CICC [1] is reported in Eqs. 3-5, in which the 

bundle region is treated as a porous medium due to the twisted and compact structure of the strands. 

 

 𝑓𝑏 =
𝐷𝑏

2𝜑

2𝐾

1

𝑅𝑒𝑏
+

𝐷𝑏𝜑2

2
𝛽 (

𝐷𝑏

𝜑√𝐾
)

0.14
1

𝑅𝑒𝑏
0.14 (3) 

 𝐾 = 20.9 ∙ 10−9
𝜑3

(1 − 𝜑)2
 [𝑚2] (4) 

 𝛽 =
19.1

𝜑4.23
 [𝑚−1] (5) 

where fb is the friction factor in the bundle region, K is the permeability, Reb is the bundle Reynolds 

number computed with the bundle hydraulic diameter and all other symbols have been defined in 

Table 1. Eqs. 3-5 apply with Reb < 10
5
. 
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4.2.  Correlation for the hole 

For all the conductors, except 5A and 7A, the central channel friction factor (fh) can be computed 

according to [10] for a flat spiral with inner diameter of 10 mm and outer diameter of 12 mm. The 

friction factor is computed iteratively using Eq. 6-7 (valid for an hole Reynolds number Reh > 10
4
, 

where the characteristic length used in the Reh definition is the inner diameter of the central channel): 

 ℎ+ = (
ℎ

𝐷ℎ
) ∙ 𝑅𝑒ℎ ∙ √

𝑓ℎ

2
 (6) 

 𝑅(ℎ+) = 11.88 ∙ (ℎ+)0.039 ∙ (
𝑔

ℎ
)

−0.299

= √
2

𝑓ℎ
+ 2.5 ∙ 𝑙𝑜𝑔 (

2ℎ

𝐷ℎ
) + 3.75 (7) 

 

For conductors 5A and 7A, friction factor correlation for spring inserts in tubes [8] or helical-

coiled-wire-inserted tubes [9] are available in literature. The correlation in [8] is given in the form of 

the friction factor in a smooth pipe with a proper multiplier N (valid for Reh < 10
5
), see Eq. 8. 

 𝑓ℎ = 0.046 ∙ 𝑁 ∙ 𝑅𝑒−0.2 with 𝑁 = 2 (8) 

In [9], the friction factor is computed coupling Eq. 6 to a slightly different definition of R(h
+
), see 

Eq. 9, (valid for Reh < 10
5
): 

 𝑅(ℎ+) = 7.0 ∙ (ℎ+)0.13(tan 𝛼)−0.18 = √
2

𝑓ℎ
+ 2.5 ∙ 𝑙𝑜𝑔 (

2ℎ

𝐷ℎ
) + 3.75 (9) 

4.3.  Comparison of hydraulic characteristics resulting from correlations and measured data 

The capability of the selected correlations to reproduce the measured f*(Re*) is reported in figure 4 for 

all the conductors, while the hydraulic characteristic in dimensional form is shown in figure 5 for 

conductors 1A, 11A-15A-17A and in figure 6 for conductors 5A-7A, respectively. 

For conductor 1A (figure 4a and figure 5a), the set of correlations adopted is able to reproduce the 

hydraulic behaviour of the conductor within the uncertainties of correlations and measurements with 

an average relative error of ±15% for dm/dtot > 3 g/s. A similar picture is found for the conductors 

11A, 15A and 17A, see figure 4c and figure 5b, with an average error of ~20% for dm/dttot > 3 g/s. 

The available correlations largely underestimate the friction factor in conductors 5A and 7A, see 

figure 4b and figure 6a. Since the bundle correlation contributes to give a good agreement with the 

experimental data for all the other conductors, the problem must be hidden in the hole friction factor, 

which in fact is largely underestimated by the available correlations, see figure 6b. Note that the hole 

friction factor can be deduced from the experimental data evaluating the mass flow rate in the hole by 

difference, while the mass flow rate in the bundle is computed using the bundle friction factor 

correlation reported in Eqs. 3-5. The disagreement found here is to be attributed to the fact that the 

geometrical parameters of the spring used in 5A-8B conductors (see Table 1) are different from those 

used in [8] (thickness = 1.5 mm, gap = ~1.7 mm, pitch = ~3.3 mm) and [9] (thickness = 3 mm, 

gap = 7 mm, pitch = 10 mm) to develop the correlations. 

To close this gap and for the sake of completeness assessing the hydraulic performance also of the 

layers of the CSMC featuring the spring, we develop here a correlation for the hole of conductors 5A-

7A, based on the best fit of the experimental data in a power-law form, see Eq. 10. 

 𝑓ℎ = 𝐴 ∙ (𝑅𝑒ℎ)𝐶 (10) 

The coefficients that best-fit the experimental data are A = 5.09×10
−2

 and C = −6.31×10
−2

, returning 

an agreement with measurements within ±19%. 
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(a) (b) 
Figure 5. Hydraulic characteristic of conductors (a) 1A and (b) 11A, 15A and 17A, respectively, for 
measurements from different test campaigns. The computed characteristics from available correlations for 
the bundle and the hole, see text, are also reported (dashed line), together with their error bar. 

 

(a) (b) 
Figure 6. (a) Hydraulic characteristic and (b) friction factor fh(Reh) in central channel for conductors 5A 
(solid symbols) and 7A (open symbols), for the different test campaigns. The results of the correlations 
in Eq. 10 (dashed line), in [8] (dash-dotted line) and in [9] (dotted line), respectively, are also reported in 
(b), while in (a) they are combined with the friction factor correlation from [1] for the bundle, to return 
the hydraulic characteristic of the conductor. 

 

 
Figure 7. Ratio between bundle and total mass flow rate in different operating conditions for (a) 1A-
4B, (b) 5A-8B conductors and (c) 9A-18B conductors. 
 

4.4.  Mass flow rate repartition 

On the basis of the hydraulic characteristics computed above, it is possible to estimate the mass flow 

rate repartition between the hole and the bundle for the different conductors. The computed results 

show that the mass flow rate fraction in the bundle in the operating regime (5-15 g/s) is between 30% 

and 40% for the flat spiral conductors and around 45-50% for the spring conductors, see figure 7. The 
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higher fraction of the mass flow in the bundle of the coiled-wire conductors, if compared to the others, 

is payed at the cost of the larger pressure drop shown in figure 4. 

5.  Conclusions 

In the present work, an overview of the hydraulic characteristic of the different types of CSMC 

conductors collected from different test campaigns has been presented, showing that no significant 

change is detected in the 15-years operation of the magnet. 

Available correlations, widely used for the assessment of the ITER conductor performance, as well 

as for the design of the new generation of superconducting CICCs like those for future DEMO 

reactors, proved to be capable to reproduce the measured pressure drop with an accuracy better than 

20% for the conductors where the hole is delimited with a flat spiral as in the ITER conductors or 

foreseen for instance for some options of the EU DEMO conductors [11]. 

For the conductors with the hole delimited by the coiled wire, available correlations demonstrated 

poor capability to reproduce the experimental data, and some ad-hoc recipe is required – however, 

conductors with the spring delimiting the hole are not under consideration for future machines in view 

of their larger hydraulic impedance if compared to the flat spiral option. 

Finally, the computed results allow to estimate the mass flow rate repartition between the bundle 

and the hole, showing that the fraction of the mass flow rate in the bundle for the conductors with the 

spring is higher (45-50%) than that of the other conductors (30-40%) as expected from the larger 

impedance of the central channel in conductors 5A-8B. 
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