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Abstract

This study describes the design and implementation of surrogate models for aerody-
namic optimization or database generations. Two different methods are presented:
the first one follows the classical methodology: a parametric POD is applied to a set
of initial solutions or snapshots obtained with an high fidelity CFD model. With re-
spect to approaches presented in literature, in this research work no truncation of the
POD modes is performed and they are all used to construct the surrogate model. Sev-
eral applications are presented: a backward facing step case, the analysis of the flow
around a NACA 0012 airfoil and a RAE 2822 supercritical airfoil, the optimization
of an automotive external shape and a database generation of a three-dimensional
aircraft.

The second methodology presented for the construction of a surrogate model is
a novel technique in which POD is applied directly to the parameters in order to
obtain a representation of the problem in a reduced-order space. An optimization
is performed in this new space and the optimum point is then re-projected into the
original framework. The methodology is applied and tested in the minimization of
the Viermin function and the POD surrogate model shows good agreements with the
analytical solution.
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Nomenclature

(1) point with all factors at low level

+ high level

− low level

𝛼 angle of attack (AOA)

𝛽 vector of unknown model parameters

𝜙(𝑥) Proper orthogonal decomposition (POD) basis

𝑋 sampling plane

𝑥 vector of design variables

𝛿 parameter combination set used for the PODI (proper orthogonal decomposi-

tion with interpolation)

𝜖 random error with zero mean

𝜆 POD eigenvalue

𝜑 radial function

𝜎 shape parameter of a radial basis function
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𝜎2 variance

𝜃 correlation parameter

𝐴𝑖
𝑟 pseudoinverse of matrix 𝐴𝑟

𝐴𝑟 reduction matrix

𝑓 surrogate model approximation of the real function 𝑓

𝑝* minimum value of the function in the reduced dimension space

𝐴 interpolation matrix

𝑎 parameter combination with high level of factor 𝑥1

𝑎𝑏 combination of factors 𝑥1 and 𝑥2 at high level

𝑏 parameter combination with high level of factor 𝑥2

𝐵(𝑥) trend function of the Kriging model

𝑐 parameter combination with high level of factor 𝑥3

𝑐𝐷 drag coefficient

𝐶𝑗 POD coefficients

𝑐𝐿 lift coefficient

𝐶𝑂𝑉 covariance matrix

𝐷 design space

𝑒 POD eigenvector

𝐸% 𝐿2 percentage error
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𝑒% maximum relative error

𝐸𝑛 normalized root mean square error

𝑒𝑟𝑒𝑙 relative error

𝑓 function, or output of the problem

𝑓𝑣(𝑥) Viermin function

𝑔(𝑥) low order polynomial

𝑘 cardinality of the design space

𝑙 level of the grid

𝑀 number of snapshots

𝑛 number of samples

𝑝 fraction of the full factorial design

𝑝(𝑥) polynomial

𝑝* optimum value of the function f(𝑥)

𝑅 correlation matrix

𝑟 number of regressors

𝑠(𝑥) Kriging predictor

𝑉 state matrix

𝑤 radial basis function coefficient

𝑥1 factor of a design screening plane
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𝑥2 factor of a design screening plane

𝑥3 factor of a design screening plane

𝑦 output of the problem

𝑦1 width of the trunk

𝑍(𝑥) Gaussian distribution of the Kriging model

𝑧1 height of the trunk

𝑧2 height of the diffuser

V



Contents

1 Introduction 1

1.1 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Sampling of the Design Space . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Elementary Effects . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Factorial Design . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Central Composite Design . . . . . . . . . . . . . . . . . . . . 13

1.2.4 Fractional Factorial Design . . . . . . . . . . . . . . . . . . . . 14

1.2.5 Quadtree Distribution . . . . . . . . . . . . . . . . . . . . . . 19

1.2.6 Latin Hypercube Sampling . . . . . . . . . . . . . . . . . . . . 20

2 Surrogate Model 22

2.1 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Proper orthogonal decomposition . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Response Surface Methodology . . . . . . . . . . . . . . . . . 30

2.3 Proper Orthogonal Decomposition applied to the Parameter Space . . 34

2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Applications 38

3.1 Backward Facing Step . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . 39

VI



CONTENTS

3.1.2 POD reconstruction . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.3 POD reconstruction with different snapshot sets . . . . . . . . 44

3.2 NACA 0012 Surrogate Model . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Interpolation technique - preliminary phase . . . . . . . . . . . 48

3.2.2 Influence of the snapshot number . . . . . . . . . . . . . . . . 52

3.2.3 Influence of the snapshot position - Quadtree initial distribution 56

3.3 RAE 2822 Surrogate Model . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Drag Coefficient Optimization of an Automotive Shape . . . . . . . . 68

3.4.1 Problem and CFD setting . . . . . . . . . . . . . . . . . . . . 68

3.4.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 3D Aircraft Surrogate Model . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Optimization of the three-parameter Viermin function . . . . . . . . . 79

4 Conclusions 82

VII



Chapter 1

Introduction

“Simplicity is the final achievement. After one has played a vast quantity of notes

and more notes, it is simplicity that emerges as the crowning reward of art.”

These words from the polish composer Frédéric Chopin represent the tendency of

the humankind to schematize the reality and remember only the principal features of

the surrounding nature.

The topic of the present work will be the construction of surrogate models for aerody-

namic applications. A surrogate model in fact is a way to extract the main components

of a particular discretization of the reality in order to make the data storage and the

comprehension of a specific problem physics easier.

The increasing complexity of engineering systems has caused an increased com-

putational burden to simulate how a complex product will perform. In the aerospace

industry for example is possible to simulate the entire flow around a generic HSCT

(High Speed Civil Transport) configuration, the vibration and noise experienced in-

side a tilt rotor engine bay and an airplane life when subjected to repeated stressful

conditions. Moreover this simulations can be quickly modified to reflect changes and

optimization loops can be used to improve engineering design.
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1 – Introduction

However any optimization algorithm applied directly to the full model will be slow

due to the long running time that the simulations can take. Even if one would invest

all the computational budget in applying an optimization algorithm directly to the

simulations, this unlikely will be enough because rarely a single optimization result

settles any design issue.

For example, if the result is not satisfactory, parameter sweeps, plots of input-

output relationships, optimization with different starting point and constraints may

be required and all this, of course, implies more simulations. On the other hand, if the

result is satisfactory, further investigations will be necessary and again, this involves

doing more simulations. If all the available resources were exhausted solving the first

optimization problem, all these following analyses would not be possible, or at least

lead to missed deadlines.

The basic idea in the surrogate model approach is to consume the computational

budget not in a single optimization loop but in developing fast approximations to the

full-model computer codes.

The general approach of a surrogate model is the construction of a simplified

mathematical representation of the computationally expensive complete description

of the problem (i.e. in the aerodynamic case the Navier-Stokes equations). The new

model can then be used in simple or multidisciplinary design optimization, design

space exploration, reliability analysis and in every field where many simulations are

required.

Since the approximation model acts as a “model of the model”, it can be called

metamodel. A variety of surrogate models can be constructed (e.g., polynomial re-

sponse surfaces, kriging models, radial basis functions, neural networks, multivariate

adaptive regression splines), and recent reviews and comparisons can be found in [11].

In aerodynamic problems, the main way to acquire data is to reproduce the flow
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1 – Introduction

fields around the specific geometry using computational fluid dynamics (CFD) tech-

niques. These techniques use numerical methods to solve the already mentioned

Navier-Stokes equations and can be considered the high-fidelity or full model of the

problem in fact if compared with experimental methods, they are reliable. The ma-

jor drawback is that they are computationally expensive, highly memory demanding,

and time consuming. Simplified forms of the governing equations can be used but

the increasing processing speeds and memory capacities of modern computers cause

simultaneously the demand for more accurate real calculations and more complicated

designs.

Similar results can be obtained in a flexible, and cheaper way: aerodynamic design

optimization makes nowadays a great use of surrogate models in order to handle so-

phisticated geometries, simulate more realistic flight conditions, and satisfy increasing

design requirements.

Such models can be used to bridge between the different levels of sophistication

that characterize fidelity physics based simulation codes, or between predictions and

experiments. They seek to fulfill the gaps between the limited analysis runs of the

full models that can be afforded with the necessarily limited computing power.

Another important problem that arises using a direct interface between optimiza-

tion methods and high fidelity analysis codes is the occurrence of numerical noise.

High fidelity model numerical noise is principally caused by the discrete repre-

sentation of continuous governing equations and physical quantities. It can include

numerical round-off errors and can appear if the iterative convergence of calculations

is not reached. These errors can lead the optimization algorithm to wrong directions

and cause local search methods to stuck in local optima. The adoption of a surrogate

model can avoid this complication.

3



1 – Introduction

1.1 Main Features

The surrogate model approach is based on the constraint that its adoption will make

possible to save many orders of magnitude of time with respect to the primary source

while still generating an acceptable error when used away from known data points.

Two factors have to be considered therefore: significant speed increase and sufficient

accuracy. During the building of a surrogate model these requirements will be often

conflicting and the designer will have the difficult task to balance them.

The approximation model has to be as accurate as possible over the complete

domain of interest while minimizing the simulation cost. This constraint implies mul-

tiple sub-problems: together with the selection of the model type and its complexity,

where to collect the initial data and how to estimate the model quality should be

decided.

The data collection is fundamental since it is the most computationally expensive

aspect and the optimal data distribution is not known a priori.

Thought a totally fixed approach won’t be appropriate since the data itself may

well influence the directions taken, the main steps to be performed when building a

surrogate model can be summarized below:

- Sampling of the design space,

- Selection of a surrogate model form,

- Model validation.

Firstly, an initial data set is obtained by sampling the design decision space.

During this step the expensive high-fidelity analysis code is used. The initial set will

contain relating inputs and outputs and different candidate designs are generated

and analysed. The position and quantity of the training set points will be one of
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the central aspects for the accuracy of the surrogate model because the amount and

location of the initial information supplied to the surrogate will define its capability

to generate predictions at unknown points. During the data building therefore two

conflicting targets have to be taken into account: increasing the model accuracy by

incorporating as large training set as possible and decreasing the computational cost

of data generation by selecting as few training points as possible.

After this first phase of design space sampling, an appropriate surrogate form must

be selected and applied to the available data. The parameters of the model must be

estimated and the model must be assessed for accuracy. A distinction between para-

metric or nonparametric surrogate models can be made. The first class of models is

simpler and it would take less effort to be implemented. On the other hand para-

metric models are recommended when applied to cases with elaborated input-output

relations.

After the selection of the surrogate model form, an updating of the model can be

foreseen. To update the model new information can be supplied through the so called

infill points. In other words a new sampling of the parameter space will be generated

adding new points to the initial data set. The infill points can be located either in

the areas where the surrogate presents the higher prediction errors or, alternatively,

in the zones detected by the surrogate where particularly interesting combinations of

design variables can lie.

1.2 Sampling of the Design Space

Let’s consider a continuous quantity 𝑓(𝑥), function of a particular vector 𝑥 ∈ 𝐷 ⊂ R𝑘.

In the framework of surrogate model techniques and optimization in general, the

vector 𝑥 is called vector of design variables and 𝐷 is defined as the design space or

design domain.
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If we are interested in analyse 𝑓 , we can do it through discrete observations or

samples 𝑓(𝑥(𝑖)). In order to get this samples, the high fidelity model has to be used

and to keep the computational and time effort low, the observation set has to be as

sparse as possible. A sampling plan 𝑋 can be defined as 𝑋 = {𝑥(1),𝑥(2), . . . ,𝑥(𝑛)}.

The surrogate model is able to use this sample plane to build an approximation of

𝑓(𝑥), that we can call 𝑓(𝑥), which can then be used to make cheaper performance

predictions for any vector 𝑥 ∈ 𝐷.

The features of the sampling plane 𝑋 will be crucial in defining the accuracy of

the surrogate model predictions of unseen data. For example, a point concentration at

the extreme parameter values of a design space may leave a great lack of information

in the centre. In the same way, collocate points exclusively in internal portions of

the sampling plane, causing far-reaching extrapolations from the surrogate model in

the external parts of the domain, may lead to wrong global conclusions based on

irregular, local knowledge of the objective behaviour.

During the design of a sampling plane for a surrogate model implementation, one

of the principal problems of this kind of approach arises. Let’s establish that we built

a surrogate model in a one-dimensional parameter space and that we are satisfied

with its prediction accuracy level. The total number of samples used for this task is

equal to 𝑛. If the same accuracy level is needed in a 𝑘-dimensional space, with 𝑘 > 1,

the number of observations that will be necessary is equal to 𝑘𝑛. This problem is

often referred to as ’the curse of dimensionality’ and from the previous formula we

can easily see how massive is the impact of the design variable number on the amount

of required experiments.

Another important feature that has to be taken into account during the design

of a computer experiment is that the sources of error of physical and computational

experiments are different. During a physical experiment in fact, human, systematic

and random errors can be present. The systematic error is the adding of a constant
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bias to the result. The random error on the other hand is caused by unknown and

unpredictable changes in the measuring instruments or in the environmental condi-

tions.

In a computational experiment the first two error sources will still be present but

this kind of experiment is deterministic and therefore not affected by random errors.

With that in mind is clear that the screening design techniques have to be different

between physical and computed experiments. For example the concept of replication,

used in physical experiments to weaken noise in the results, is pointless in the com-

puted experiment field because replying a simulation with the same initial conditions

will lead to the exact equal results. The same way of thinking can be applied to the

concepts of blocking and randomization, used in the experimental field to contrast

random errors.

Figure 1-1: Visualization of the distribution of points in a full factorial plane
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In general, a surrogate model has a greater accuracy nearby the points belonging

to the sampling set. If a uniform level of accuracy within the design space is required,

the sampling plane will have to be characterized by a uniform location of the points.

This kind of sampling plan is called space-filling and the easiest way to achieve this

property is to use the full factorial sampling technique, visualized in fig. 1-1. In full

factorial designs, an objective function evaluation is performed at every combination

of the factor levels, were with the term factors we are referring to the design variables

of the objective function 𝑓(𝑥).

1.2.1 Elementary Effects

As we saw in the previous sections, the behaviour of the objective function 𝑓(𝑥) has to

be inspected through a computational experiment, in which a number of evaluations

are made and an a-posteriori analysis of the results is performed. Each evaluation

corresponds to a run of the high fidelity model at different input values.

Considering the ’course of dimensionality’ problem, that strongly depends on the

number of variables, in the initial phases of developing a surrogate model, an impor-

tant experimental activity is the identification of which inputs have influence on the

outputs and cannot reasonably be ignored. This process is often referred to as ’Factor

screening’ or ’Sensitivity analysis’.

If at least the first derivative of 𝑓(𝑥) with respect to each variable exists, the value

𝜕𝑖(𝑥) =
𝜕𝑓

𝜕𝑥𝑖

⃒⃒⃒⃒
𝑥

(1.1)

can be considered as an indication of the influence of 𝑥𝑖 on 𝑓(𝑥).

In particular if

- 𝜕𝑖(𝑥) is zero over all values of 𝑥, we can say that the effect of 𝑥𝑖 is negligible

8
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on 𝑓(𝑥);

- if 𝜕𝑖(𝑥) is a non-zero constant over all values of 𝑥, the effect is linear or additive;

- if 𝜕𝑖(𝑥) is a function of 𝑥𝑖, the effect is nonlinear and

- if 𝜕𝑖(𝑥) is a function of more than one 𝑥𝑗 , with 𝑗 ̸= 𝑖, the effect is involved in

interactions with other inputs.

Estimates of mean and standard deviations of these distributions can be considered to

distinguish the important inputs from the negligible ones. A general definition of an

elementary effect, that is the change in an output due solely to changes in a particular

input, can be found in [17]. Considering a regular grid, 𝑥𝑖 ∈ {0,(𝑙− 1),2/(𝑙− 1),...,1}

for 𝑖 = 1,..,𝑘, where 𝑙 is the level of the grid, the elementary effect of 𝑥𝑖 can be written

as

𝑑𝑖(𝑥) =
𝑓(𝑥1,𝑥2,...,𝑥𝑖−1,𝑥𝑖 + △,𝑥𝑖+1,...,𝑥𝑘) − 𝑓(𝑥)

△
, (1.2)

where the divisor △ is a fixed step size and a predetermined multiple of 1/(𝑙− 1). A

preliminary screening has to be foreseen to estimate the elementary effects keeping

in mind that when strong nonlinearities or interactions exist, there is the possibility

that a design of experiment reduced with respect to the number of inputs can not

generate sufficient information.

1.2.2 Factorial Design

Together with elementary effects we can define the joint effects [19] as main effects

and interactions. In order to investigate the joint effects of several variables, factorial

designs are widely used in computer experiments. The simpler factorial plane that can

be considered is the one built imposing only two levels at each variable. It is named

two-level full factorial design and indicated as 2𝑘. This design is a basic building

9
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block that can be used to create more complex planes. Let’s consider 2 variables,

𝑥1 and 𝑥2. To build the screening plane each variable will assume a high and a low

value, that will be the levels of the factorial plane. They can be associated to the

signs + and −. The high level of each factor can be indicated with lowercase letters.

In fig. 1-2, the plane is represented. The point (1) corresponds to the low level of

both factors. 𝑎 stays for the combination: factor 𝑥1 at high level and factor 𝑥2 at low

level and so on.

Figure 1-2: Graphic visualization of a 2-level full factorial plane for two factors

The main or average effect of a factor can be easily computed from this kind of

factor planes as

𝐸(𝑥1) = 𝑓𝑥+
1
− 𝑓𝑥−

1
=

𝑓(𝑎𝑏) + 𝑓(𝑎)

2
− 𝑓(𝑏) + 𝑓((1))

2
, (1.3)

where with 𝑓𝑥+
1
is indicated the average response of the output 𝑓 , when the variable

𝑥1 is at high level and with 𝑓𝑥−
1
the average response of the output when 𝑥1 is at low

level.

10
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In the same way the main effect of 𝑥2 can be expressed by

𝐸(𝑥2) = 𝑓𝑥+
2
− 𝑓𝑥−

2
=

𝑓(𝑎𝑏) + 𝑓(𝑏)

2
− 𝑓(𝑎) + 𝑓((1))

2
. (1.4)

The interaction effect IE is equal to

𝐼𝐸(𝑥1,𝑥2) =
𝑓(𝑎𝑏) + 𝑓(1)

2
− 𝑓(𝑎) + 𝑓(𝑏)

2
. (1.5)

Considering fig. 1-2 again, the main effects of the output can be computed com-

bining the sides of the square and the interaction effect corresponds to a combination

of the diagonals. The magnitude and direction of these effects can be used to un-

derstand importance and action of a factor on the output. If the main effect of 𝑥1

is positive, for example, the increasing of 𝑥1 will correspond to an increasing of the

output. On the other hand, if the main effect of a factor is small with respect to the

other effects, the corresponding factor can be neglected in the consequent analyses

and in the building of the surrogate model.

If we are considering three factors, 𝑥1, 𝑥2 and 𝑥3, the corresponding simpler full

factorial plane is the 2-level 3-factor plane, indicated as 23. This design is composed

by eight runs, listed in tab. 1.1 using the geometric notation with + and − to indicate

high and low level of a variable. The combination can be represented graphically as

a cube, as shown in fig. 1-3

To estimate the main effects of the three factors, the sides of the faces of the cube

can be combined, in a similar way to the 22 factorial plane. For example the main

effect of 𝑥1 is computed as

𝐸(𝑥1) = 𝑓𝑥+
1
− 𝑓𝑥−

1
=

𝑓(𝑎) + 𝑓(𝑎𝑏) + 𝑓(𝑎𝑏𝑐) + 𝑓(𝑎𝑐)

4
− 𝑓(𝑏) + 𝑓((1)) + 𝑓(𝑐) + 𝑓(𝑏𝑐)

4
(1.6)

11
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Figure 1-3: Graphic visualization of a 23 full factorial plane

and the interaction IE between 𝑥1 and 𝑥2

𝐼𝐸(𝑥1,𝑥2) =
𝑓(𝑎𝑏) + 𝑓(1) + 𝑓(𝑐) + 𝑓(𝑎𝑏𝑐)

4
− 𝑓(𝑎) + 𝑓(𝑏) + 𝑓(𝑏𝑐) + 𝑓(𝑎𝑐)

4
(1.7)

is expressed considering the diagonal planes. Due to this reason the use of 2𝑘 full

factorial designs for preliminary screening of the parameter space allows to perform

a minimum number of runs avoiding redundancy and to have an estimate of main

and interaction effects between the parameters. Moreover this kind of planes has the

Table 1.1: Factor combinations of a 23 full factorial plane

Run 𝑥1 𝑥2 𝑥3

1 − − −
2 + − −
3 − + −
4 + + −
5 − − +
6 + − +
7 − + +
8 + + +

12
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important property of orthogonality: the main effect of a factor can be computed

independently form the other variables and the same happens for the interactions.

A general 2𝑘 design will contain 𝑘 main effects,
(︀
𝑘
2

)︀
two-factor interactions,

(︀
𝑘
3

)︀
three-factor interactions and so on and one k-factor interaction. In total, it is possible

to estimate 2𝑘 − 1 effects.

Full factorial designs are very useful in estimating the effects of the variables, but

they are affected by the course of dimensionality. If the number of factors 𝑘 is very

high, the runs composing the design will grow exponentially. In that case an a-priori

knowledge can come to hand: the sparsity of effects principle. According to this

theory, if we are dealing with a high number of variables, only some main effects and

low-order interactions will be dominant, with negligible high-order effects.

1.2.3 Central Composite Design

Another process that can be useful to improve the accuracy of the joint-effect esti-

mations using a 2𝑘 factorial plane is the addition of the center point to the design. A

two-level factorial design, in fact, is typically adopted to build a first-order model of

the problem. In [19] the addition of replicates of the center point is recommended for

experimental designs. Even in the case of computer designs, adding the center point

(obviously avoiding replications) can provide information if some kind of curvature,

and therefore a second-order model, is more suitable for the problem. Typically the

center point is available as base condition of the simulation and there is no additional

cost in considering it in the parameter space sampling. If we are using a 22 design

for example, a comparison can be made between the average response of the four

combinations on the vertices of the square (fig. 1-2) and the response of the central

point. If this two values are similar, a first-order model can be accurate to describe

the problem. If not, a more complex model should be adopted.

13
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If the fitting of a second-order model is needed, a two-level full factorial design

cannot be adopted but we can extend this kind of design adding axial runs. In this

way a so-called central composite design is generated. In particular, 2𝑘 axial runs

should be added.

Figure 1-4: Central composite design for two factors (left) and three factors (right)

1.2.4 Fractional Factorial Design

A way to partially reduce the number of runs needed to create a sampling plane, is

the adoption of fractional factorial designs. In this way main effects and interactions

can be computed using only a fraction of the original design and certain high order

estimations will be neglected.

The easier type of fractional plane is the one-half fraction of a two-level design.

Consider for example a 23 run. The corresponding one-half fractional factorial design

is composed by 8/2 runs and indicated as 23−1. Tab. 1.2 describes the combinations

used to calculate main effects and interactions of the three factors 𝑥1, 𝑥2, 𝑥3. The

14
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Table 1.2: Factor combinations of the two 23−1 fractional factorial planes

Run 𝐼 𝐸(𝑥1) 𝐸(𝑥2) 𝐸(𝑥3) 𝐼𝐸(𝑥1,𝑥2) 𝐼𝐸(𝑥1,𝑥3) 𝐼𝐸(𝑥2,𝑥3) 𝐼𝐸(𝑥1,𝑥2,𝑥3)

a + + − − − − + +
b + − + − − + − +
c + − − + + − − +
abc + + + + + + + +

ab + + + − + − − −
ac + + − + − + − −
bc + − + + − − + −
(1) + − − − + + + −

column 𝐼 corresponds to the identity column. To obtain the interactions, the cor-

responding columns of the main effects can be multiplied. The two complementary

fractional factorial designs are shown in the top and bottom part of the table. The

first plane, composed by the first four runs, is built using all the plus-sign combi-

nations of the last column 𝐼𝐸(𝑥1,𝑥2,𝑥3). This column is called the generator. The

alternate plane, containing the last four runs, is composed by the combinations cor-

responding to a minus sign of the interaction 𝐼𝐸(𝑥1,𝑥2,𝑥3). The two complementary

designs can be observed in fig. 1-5. From this picture an important property of frac-

tional factorial designs can be clear: the runs composing these designs in fact can be

combined in order to create larger planes to estimate factor effects and interactions.

In a 23−1 design, some main effects are confused or aliased with two-factor inter-

actions. For example

𝐸(𝑥1) =
𝑓(𝑎) − 𝑓(𝑏) − 𝑓(𝑐) + 𝑓(𝑎𝑏𝑐)

2
= 𝐸(𝑥2,𝑥3), (1.8)

𝐸(𝑥2) =
−𝑓(𝑎) + 𝑓(𝑏) − 𝑓(𝑐) + 𝑓(𝑎𝑏𝑐)

2
= 𝐸(𝑥1,𝑥3) (1.9)

and so on. If main effects are aliased with two-factor interactions, the corresponding
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Figure 1-5: Fractional factorial planes 23−1

plane can be called a resolution III design. Using this design, main effects can be

estimated without alias.

In a resolution IV design, on the other hand, two-factor interactions are aliased

with each other and in a resolution V design two-factor interactions are aliased with

three-factor interactions. Of course a high resolution is preferable, keeping at the

same time a low number of runs.

An example of a resolution IV design is the 24−1 fractional factorial design. This

design is built considering four factors 𝑥1, 𝑥2, 𝑥3 and 𝑥4 and listed in tab. 1.3. A

graphical representation of a resolution V design can be found in fig. 1-6 where the

25−1
𝑉 is shown.

Another important property of fractional factorial designs is that, considering a

design of resolution 𝑟, it contains the corresponding full design in any subset of 𝑟− 1

factors and can be projected onto this subspaces as can be seen in fig. 1-7. If we are

dealing with a larger number of factors, smaller fractions of the full factorial design

can be employed. For example a one-quarter fraction of a 2𝑘 design will contain 2𝑘−2

16
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Table 1.3: 24−1
𝐼𝑉 fractional factorial design

Run 𝐸(𝑥1) 𝐸(𝑥2) 𝐸(𝑥3) 𝑥1 · 𝑥2 · 𝑥3 Treatment combination

1 − − − − (1)
2 + − − + ad
3 − + − + bd
4 + + − − ab
5 − − + + cd
6 + − + − ac
7 − + + − bc
8 + + + + abcd

Figure 1-6: 25−1
𝑉 fractional factorial design

runs. The resolution of these designs will be lower and, if the 2𝑘−1 design was built

using a single generator, now two generators should be used. A 26−2
𝐼𝑉 is presented in

tab. 1.4. In general a 2𝑘−𝑝 has 𝑝 generators and each effect has 2𝑝−1 aliases.

17



1 – Introduction

Figure 1-7: Projection of a 23−1
𝐼𝐼𝐼 fractional factorial design on three 23 full factorial designs

Table 1.4: 26−2
𝐼𝑉 fractional factorial design

Run 𝐸(𝑥1) 𝐸(𝑥2) 𝐸(𝑥3) 𝐸(𝑥4) 𝑥1 · 𝑥2 · 𝑥3 𝑥2 · 𝑥3 · 𝑥4

1 − − − − − −
2 + − − − + −
3 − + − − + +
4 + + − − − +
5 − − + − + +
6 + − + − − +
7 − + + − − −
8 + + + − + −
9 − − − + − +
10 + − − + + +
11 − + − + + −
12 + + − + − −
13 − − + + + −
14 + − + + − −
15 − + + + − +
16 + + + + + +
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1.2.5 Quadtree Distribution

In the previous sections we described factorial planes and central composite design

approach. Many sampling distributions have been proposed in literature and in this

section the quadtree distribution is briefly described.

Quadtree is a specific subdivision of 2-dimensional spaces used first in digital

imaging. It can be considered as a hierarchical data structure [3]. The subdivision is

described by the so called tree data structure that is an iterative splitting of the area

of interest. At the beginning we can consider the whole space as a cell. This cell has

four vertices at its corners. In the first iteration the single cell is divided into four

sub-cells and in the following iterations each cell can be divided again in other four

sub-cells.

(a) Start of the quadtree distribu-
tion

(b) First iteration of the quadtree
distribution

(c) Second iteration of the quadtree
distribution

Figure 1-8: Iterations of a quadtree distribution

In Fig. 1-8 the quadtree approach is visually explained. Examples of a quadtree

distribution applied to the initial sampling for the building of a surrogate model can
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be found in [8].

1.2.6 Latin Hypercube Sampling

The previous ways of sampling the parameter space adopted a uniform sampling, as

in the case of factorial planes or central composite designs, or a structured sampling,

and that is the case of quadtree distribution. The Latin hypercube sampling is still

a stratified sampling but it belongs to the class of random samplings.

We call Latin square a grid with a different value in each row and each column and

Latin hypercube an object having the same property in more than two dimensions.

Consider the case of 𝑘 variables. We want to use a number of samples equal to 𝑛.

To perform a Latin hypercube sampling the cumulative distribution function of each

variable of interest 𝑥𝑖 is divided into segments of equal probability and a value is

randomly selected in each interval as can be seen in fig. 1-9 where the cumulative dis-

tribution function CDF is shown together with the corresponding probability density

function PDF.

Figure 1-9: Division of the cumulative probability of the variable 𝑥𝑖 to perform a Latin hy-

percube sampling
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𝑛 samples are created assembling random combinations of the different values

of 𝑥𝑖. An extensive description of this type of sampling, used for uncertainty and

sensitivity analysis and compared to Monte Carlo technique can be found in [10].
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Chapter 2

Surrogate Model

Once the inputs that have a significant impact on 𝑓 are detected and the parameter

space is investigated, a proper surrogate model should be chosen. Many types of

surrogate models are available in literature.

An important class are the physically-based surrogates, built from a coarse model

of the problem. This model can be constructed using a coarse discretization or sim-

plifying the model equations for example neglecting some second-order terms. An

advantage of the adoption of physically-based surrogates is that they rely on a-priori

knowledge about the system of interest and can be subsequently improved if addi-

tional data from the high-fidelity model is available.

The second class of surrogate models can be call black-box approach: the high-

order or full model problem is not modified and the surrogate is constructed using

statistical techniques, interpolation methods or regression techniques. It is important

to underline that this is not a rigid distinction but just a classification inside a rela-

tively new research field. Among this second black-box approach we recall Kriging,

response surface methods (RSMs) and Proper Orthogonal Decomposition (POD).

The last two surrogate models are combined to construct the metamodel applied in
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the current work and will be explained together.

2.1 Kriging

Kriging is a statistic interpolation technique born in geostatistics [15]. A Kriging

model is described as

𝑓(𝑥) = 𝐵(𝑥) + 𝑍(𝑥), (2.1)

where 𝐵(𝑥) is a trend function, decided a priori, and 𝑍(𝑥) is a normally distributed

Gaussian function with zero mean and variance 𝜎2.

The covariance matrix of 𝑍(𝑥) can be expressed as

𝐶𝑂𝑉 [𝑍(𝑥𝑖),𝑍(𝑥𝑗)] = 𝜎2𝑅 (2.2)

and R is a 𝑛 × 𝑛 correlation matrix, with 𝑛 equal to the number of samples. The

form of the correlation matrix should be decided a priori and a common choice is to

use the Gaussian correlation function proposed by Sacks [23]

𝑅(𝑥𝑖,𝑥𝑗) = 𝑒
∑︀𝑛

𝑙=1 𝜃𝑙|𝑥1−𝑥2|2 , (2.3)

where 𝜃𝑙 are unknown correlation parameters. The correlation matrix 𝑅 contains

information about the weighted distance between the samples.

The trend function 𝐵(𝑥) in eq. 2.1 can be written as

𝐵(𝑥) = 𝑔(𝑥)𝑇𝛽 (2.4)

where 𝛽 = [𝛽1,𝛽2,...,𝛽𝑘]𝑇 are unknown model parameters and 𝑔(𝑥) = [𝑔1(𝑥),𝑔2(𝑥),...,𝑔𝑘(𝑥)]

contains low order polynomial, typically equal to constant functions.

23



2 – Surrogate Model

Usually the outputs of Kriging interpolation are the kriging predictor 𝑠(𝑥), a mean

expected value of the point of interest, equal to the average of all possible realizations,

and a Kriging estimation of its variance. The Kriging predictor can be written as

𝑠(𝑥) = 𝑔(𝑥)𝑇𝛽 + 𝑟(𝑥)𝑇𝑅−1(𝑓 −𝐺𝛽) (2.5)

where 𝑟 = [𝑅(𝑥,𝑥1),𝑅(𝑥,𝑥2),..,𝑅(𝑥,𝑥𝑛)]𝑇 , 𝑓 is a vector containing the values of the

function 𝑓(𝑥) in the samples, and𝐺 is a [𝑛×𝑘] matrix with components 𝐺𝑖𝑗 = 𝑔𝑗(𝑥𝑖).

The vector of model parameters 𝛽 should be estimated as

𝛽 = (𝐺𝑇𝑅−1𝐺)−1𝐺𝑇𝑅−1𝑓 . (2.6)

The variance of the Kriging predictor �̂�2 can be estimated as

�̂�2 =
1

𝑘
(𝑓 −𝐺𝛽)𝑇𝑅−1(𝑓 −𝐺𝛽). (2.7)

The model fitting is performed computing a maximum likelihood estimate for 𝜃𝑘.

Kriging method therefore is able to combine regression technique together with sta-

tistical concepts and it is able to foresee the areas in the parameter space where the

errors of the model will be higher. It is used in plenty of disciplines as electrical and

computer engineering, biology and telemetry.

2.2 Proper orthogonal decomposition

In this section the surrogate model used in the present work is described. The model

relies on the Proper Orthogonal Decomposition (POD), a statistical technique able

to extract the essential physics of some input information. The statistical analysis of

the data allows to express the flow field in terms of a set of low rank basis vectors
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and the surrogate model is obtained using this reduced set. In literature the POD ap-

pears in different equivalent forms such as Karhunen-Loève decomposition, Principal

Component Analysis (PCA) and Singular Value Decomposition(SVD) [2]. According

to POD an optimal linear basis, named POD basis, may be interpreted as a solution

of a minimization of the projection error of the original system [13].

The POD has been applied in many different fields: data compression, image

processing, dynamical systems, fluid mechanics. Its application in fluid dynamics

was first introduced by Lumley [14] for the detection of coherent structures in a

turbulent flow. In fluid dynamics, the POD is usually employed to find a basis for the

projection of the Navier-Stokes equations and to obtain a physically-based surrogate

model composed by a system of ordinary differential equations for the time dependent

POD expansion coefficients [21]. Less commonly, the POD is applied in the frequency

space [7] or in a parameter space. In this latter case, as an example, the POD can

be used to describe flow fields around modified body shapes, using the information

about the flow past few selected geometries of the body. Examples of this approach

can be found in the works of Legresley and Alonso [12], Bui-Thanh et al. [6], Mifsud

et al. [16] and Tang and Shyy [26].

The proper orthogonal decomposition technique can be seen as a mathematical

procedure able to build a basis {𝜙𝑗(𝑥)}∞𝑗=1 in order to construct a linear approximatioñ︀𝑓(𝑥) of the function 𝑓(𝑥):

̃︀𝑓(𝑥) =
𝑀∑︁
𝑗=1

𝐶𝑗𝜙𝑗(𝑥) ∼ 𝑓(𝑥), 𝑥 ∈ R𝑘. (2.8)

In this framework the basis {𝜙𝑗(𝑥)}∞𝑗=1 is indicated as POD basis and the functions

𝜙𝑗(𝑥) are called POD functions or modes. 𝑘 is the cardinality of the parameter

space and 𝐶𝑗 are the POD coefficients. Many procedures are available in literature
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to compute the POD basis. In this work we followed the method of snapshots [24].

A set of M representative samples {𝑓 𝑖(𝑥)}𝑀𝑖=1 named snapshots is considered.

The functions composing the basis {𝜙𝑗(𝑥)}∞𝑗=1 are chosen to describe the M snap-

shots {𝑓 𝑖(𝑥)}𝑀𝑖=1 in an optimal way in the energetic sense, in fact they maximize

the squared mean projection of the set {𝑓 𝑖(𝑥)}𝑀𝑖=1 on the basis itself. This can be

represented by the optimization problem

max
𝜙

⟨|(𝑓(𝑥),𝜙(𝑥))|2⟩
‖𝜙(𝑥)‖2

, (2.9)

that the POD basis has to satisfy. In Eq. (2.9) ⟨·⟩ is the average operator, (·,·)

indicates the inner product between two functions, | · | is the absolute value and ‖ · ‖

the 𝐿2 norm.

For practical applications the technique should be used in finite dimensions. In

this case the set of functions {𝑓 𝑖}𝑀𝑖=1 becomes a set of𝑀 vectors and the basis {𝜙𝑗}𝑀𝑗=1

is no longer composed by functions but by vectors. The kernel necessary to solve the

maximum problem (2.9) in finite dimensions is the correlation matrix 𝑅 of dimensions

[𝑀 ×𝑀 ]. In this work the samples {𝑓 𝑖}𝑀𝑖=1 consist of numerical solutions of a PDEs

system and the superscript 𝑖 indicates the varying boundary conditions [12]. To

compute the basis vectors is necessary to solve the eigenvalue problem

𝑅𝑒 = 𝜆𝑒, (2.10)

where with 𝑅 is indicated the correlation matrix

𝑅𝑖𝑗 =
1

𝑀
(𝑓 𝑖,𝑓 𝑗) 𝑖 = 1,...,𝑀 𝑗 = 1,...,𝑀. (2.11)

Once the eigenvalue problem is solved, 𝑀 eigenvalues {𝜆𝑖}𝑀𝑖=1 and 𝑀 eigenvectors,

each one with 𝑀 components {𝑒𝑘
𝑖 }𝑀𝑖=1,𝑘 = 1,...,𝑀 are obtained. The optimal POD
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basis can be calculated recombining the initial snapshots with the eigenvectors and

each basis vector will be constructed as

𝜙𝑗 =
𝑀∑︁
𝑖=1

𝑒𝑗
𝑖𝑓

𝑖 𝑗 = 1,...,𝑀. (2.12)

The physical meaning of the eigenvalues differs with the content of the vectors

{𝑓 𝑖}𝑀𝑖=1. Typically they represent a field variable. In the case of an incompress-

ible flow for example, these vectors can consist of the discretization of the velocity

field obtained from numerical solutions of the Navier-Stokes equations with different

boundary conditions and each eigenvalue will be equal to the double of the mean

kinetic energy captured by the corresponding POD mode [12].

The ratio ∑︀𝑡
1=1 𝜆𝑖∑︀𝑀
1=1 𝜆𝑖

, (2.13)

where t corresponds to the number of modes considered, can be used as an indicator

of the energy contained in the different modes. The general approach of the POD

technique considers this eigenvalue estimate. Typically an a priori threshold is chosen

and the modes corresponding to the eigenvalues with an amount of energy under the

threshold are neglected. With this procedure, a truncation error is introduced and

only 𝑞 modes are considered, with 𝑞 ≪ 𝑀 .

In the present work, a highly reduced number of snapshots (and therefore of

POD modes) is used and no truncation is generated, avoiding the introduction of the

corresponding error. All the POD modes are retained in the building of the POD

surrogate model because the saving of computational cost performing the truncation

was negligible.

Once the POD basis is constructed, it is possible to obtain exactly the initial

snapshots {𝑓 𝑖}𝑀𝑖=1 as the linear combination
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𝑓 𝑗 =
𝑀∑︁
𝑖=1

𝐶𝑗
𝑖𝜙

𝑖 𝑗 = 1,...,𝑀. (2.14)

The coefficients 𝐶𝑗
𝑖 can be calculated as angles between the snapshots and the POD

basis vectors:

𝐶𝑗
𝑖 = (𝑓 𝑗,𝜙𝑖) 𝑗 = 1,...,𝑀. (2.15)

In fluid dynamics usually the truncated POD basis is used to project the Navier-

Stokes equations along the optimal POD vectors and the mean operator is applied in

time. In this way the reduced order model is formed by a set of ordinary differential

equations in the unknowns 𝐶𝑗
𝑖 (𝑡).

In the present work a different approach is used: the POD is parametrized, no

projection onto a reduced order dimension space is performed, the eigenvectors are all

used to construct the POD basis and weighted with the coefficients 𝐶𝑗
𝑖 . In literature

this particular application is called POD with interpolation or PODI [25].

With the PODI approach we follow the method of snapshots.

Let’s call {𝑓 𝛿𝑖}𝑀𝑖=1 the snapshot set corresponding to the parameter combination set

{𝛿𝑖}𝑀𝑖=1. The parameter vector 𝛿 has cardinality 𝑘 and the 𝑀 snapshots are related to

𝑀 different parameter combinations. It is possible to obtain the POD basis {𝜙𝑗}𝑀𝑗=1

following the method of snapshots described previously: a correlation matrix 𝑅 should

be calculated and an eigenvalue problem of order 𝑀 has to be solved. The exact

reconstruction of each snapshot is given by the linear combination

𝑓 𝛿𝑖 =
𝑀∑︁
𝑗=1

𝐶𝛿𝑖
𝑗 𝜙

𝑗, 𝑖 = 1,...,𝑀. (2.16)

If we can assume that the coefficients 𝐶𝛿𝑖
𝑗 are the discretization of the function 𝐶𝑗(𝛿)

and if the function 𝐶𝑗(𝛿) is smooth enough with respect to 𝛿, interpolation methods
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can be used to calculate the PODI coefficients ̃︁𝐶𝑗

𝛿𝑙
for values of the parameters not

belonging to the initial snapshot set.

Once the PODI coefficients ̃︁𝐶𝑗

𝛿𝑙
are computed, it is possible to evaluate the field

variable 𝑓 𝛿𝑙
𝑢𝑛 corresponding to unknown parameter combinations 𝛿𝑙 as

𝑓 𝛿𝑙
𝑢𝑛 ∼

𝑀∑︁
𝑖=1

̃︀𝐶𝑖

𝛿𝑙
𝜙𝑖. (2.17)

Eq. (2.17) is the representation of the surrogate model built in the present work

and used for some of the following applications. The Navier-Stokes equations can

be considered as the high order model of the problem, reference or ’true’ solution.

Starting from 𝑀 numerical solutions of the Navier-Stokes equations, or snapshots,

the surrogate model can be used to evaluate the field of a generic variable of interest

(as density, temperature or the turbulent quantities) associated to specific boundary

conditions corresponding to different parameter combinations 𝛿𝑙 not belonging to the

initial snapshot set. No extrapolation procedure is allowed at the moment therefore

𝛿𝑙 has to stay in the parameter space defined by the snapshots. The use of the surro-

gate model instead of solving the system of PDEs allows to save computational time

and effort maintaining acceptable accuracy with respect to the true solution. The

accuracy is guaranteed by the fact that basis truncation is avoided and that the POD

basis vectors are optimal in the energetic sense.

The method can be outlined in three main steps:

1. Generation of the initial snapshot set: the snapshots are obtained with high-

fidelity CFD calculations. The position of the snapshots in the parameter space

as well as their number strongly influence the ROM accuracy. This is the most

computational expensive step but can be performed off-line only once.
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2. POD decomposition: the correlation matrix 𝑅 is computed and an eigenvalue

problem of order 𝑀 , equal to the snapshot number, is solved. As previously

explained, in our approach 𝑀 is small and all the POD modes are used to

construct the surrogate model. There is no particular effort in the solution of

the eigenvalue problem. Even this part can be performed one time off-line.

3. PODI reconstruction: this last step should be performed on-line for each recon-

struction. The PODI coefficients ̃︀𝐶𝑖(𝛿𝑙) are computed using different interpo-

lation techniques. For parameter spaces with dimension greater than one, the

Response Surface Method is applied, with first and second order least square

regression or Radial Basis Functions with gaussian or multiquadric bases. Once

the coefficients are calculated, the linear combination of the POD basis can be

performed in order to obtain the desired 𝑓𝑢𝑛(𝛿𝑙).

2.2.1 Response Surface Methodology

In the case of parameter spaces with dimension greater than one, the response surface

methodology is applied in order to compute the PODI coefficients ̃︀𝐶𝑖

𝛿𝑙
presented in

Sec. 2.2. This methodology allows interpolation in more than one dimension through

the generation of an analytical surface starting form a certain number of output

evaluations.

The expression

𝑦 = 𝑓(𝑥) + 𝜖 (2.18)

can be used [19] to approximate the input-output relation between 𝑥 and 𝑦. In Eq.

(2.18) 𝑦 is the dependent variable, called response of the system that we are analyzing

and from that term arises the definition response surface. In our problem the vector
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𝑦 will contain the coefficients {𝐶𝛿𝑖
𝑗 }𝑀𝑖=1 corresponding to the angles between the POD

modes and the snapshots. For each 𝑎𝑗 a different response surface has to be built,

with 𝑗 = 1,...,𝑀 ; that is we are building 𝑀 different response surfaces to approximate

the PODI coefficients corresponding to each POD mode. The vector 𝑥 contains the

independent variables or parameters of the problem. The error 𝜖 with respect to the

true solution is modeled as a random error with 0 mean.

The function 𝑓(𝑥), used to approximate 𝑦, can be composed by a certain combina-

tion of the components of the parameter vector 𝑥. The complexity of this combination

varies with the accuracy needed in the specific problem and in this work least square

regression of the first and second order is used, together with radial basis functions

considering gaussian and multiquadric basis.

Least Square regression

In the framework of response surface methodology, least square regression can be a

simple technique to estimate a best fit approximation of the PODI coefficients ̃︀𝐶𝑖

𝛿𝑙
.

The general form of a first order least square surface can be written as:

𝑦𝑖 = 𝛽0 +
𝑟∑︁

𝑗=1

𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖, 𝑖 = 1,..,𝑀 (2.19)

The quantities indicated with 𝛽𝑗 are called regressors and shall be estimate solving the

system in the least square sense. The quantity 𝑟 represents the number of regressors

and therefore the number of unknowns of the system.

In the case of a second order regression we have

𝑦𝑖 = 𝛽0 +
𝑘∑︁

𝑖=1

𝛽𝑖𝑥𝑖 +
𝑘∑︁

𝑖=1

𝛽𝑖𝑖𝑥
2
𝑖 +

𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=2

𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜖𝑖, 𝑖 = 1,..,𝑀. (2.20)
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where 𝑘 is the cardinality of the parameter space. The second order model can be

useful in the case of a strong curvature in the true input-output relation.

In order to solve the problem, equation (2.19) or (2.20) can be written in matrix

form as

𝑦 = 𝑋𝛽 + 𝜖 (2.21)

with 𝑦 ∈ R𝑀 and 𝑋 ∈ R𝑀×𝑟. The vector 𝛽 contains the 𝑟 regressors of the model

that are the unknowns of the system. 𝑀 is the number of available input-output

relations, or the number of already performed evaluations of the system state. In our

case 𝑀 is coincident with the number of snapshots.

System (2.21) can be solved through least square minimization

𝛽 = (𝑋 ′𝑋)−1𝑋 ′𝑦. (2.22)

Once the vector 𝛽 that contains the regressors of the model is found, the response

surface is defined and the PODI reconstruction coefficients ̃︀𝐶𝑖

𝛿𝑙
can be calculated

directly from (2.19) or (2.20).

Radial Basis Functions

With the radial basis function method we can avoid regression and perform a classical

interpolation, in order to build an analytical surface that is coincident with the data

in the starting points, corresponding to evaluations of the high-order model. Radial

basis functions can be considered a generalization of splines to the multivariate setting

and they are able to avoid the curse of dimensionality treating all space dimensions

in the same way.
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The general form of a response surface built with radial basis functions is

𝑦(𝑥) =
𝑀∑︁
𝑗=1

𝑤𝑗𝜑(‖𝑥− 𝑥𝑗‖2), 𝑥 ∈ R𝑘. (2.23)

As we can see from Eq. (2.23), different positions of the radial function 𝛷 = 𝜑(| · |),

with 𝜑[0,∞) → R produce the linear combination describing the response surface.

The term radial is referring to the Euclidean norm ‖·‖2. In our approach the vector

𝑦(𝑥) contains the known PODI coefficients ̃︀𝐶𝑖

𝛿𝑙
, 𝑀 is the number of snapshots and

𝑤𝑗 are unknown coefficients.

Starting from this general form many particularisations can be and have been

made [5]. In this work we tested only two different basis forms: the gaussian ba-

sis 𝜑(𝑥) = 𝑒
− 1

2𝜎2
𝑖

‖𝑥−𝑥𝑖‖22
and the multiquadric basis 𝜑(𝑥) =

√︂
1 +

‖𝑥−𝑥𝑖‖22
2𝜎2

𝑖
. In these

expressions 𝜎 is a shape parameter that determines the aspect of the radial basis

function.

The solution of the interpolation problem (2.23) leads to the system

𝐴𝑤 = 𝑦. (2.24)

The interpolation matrix A has components 𝐴𝑗𝑖 = 𝜑(‖𝑥𝑖 − 𝑥𝑗‖2), 𝑗,𝑖 = 1,...,𝑀 . To

avoid the problem of ill-conditioning a relaxation of the interpolation condition can be

foreseen [4]. In this case data points and centers of the RBF functions are no longer

coincident. The exact problem (2.23) becomes a problem of linear optimization that

can be solved in the least square sense introducing the Moore-Penrose pseudoinverse.

A more recent method to improve the conditioning of the interpolation problem is

the addition of a multi-variate polynomial 𝑝(𝑥) leading to
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𝑦(𝑥) =
𝑀∑︁
𝑗=1

𝑤𝑗𝜑(‖𝑥− 𝑥𝑗‖2) + 𝑝(𝑥), 𝑥 ∈ R𝑘. (2.25)

Problem (2.25) is underdetermined and we have to impose the orthogonality condition

[16]
𝑀∑︁
𝑗=1

𝑤𝑗𝑝(𝑥𝑗). (2.26)

2.3 Proper Orthogonal Decomposition applied to the

Parameter Space

In this section a novel approach in the construction of a surrogate model with proper

orthogonal decomposition is presented. The basic idea is to apply POD to the pa-

rameter space in order to reduce the number of parameters to deal with and perform

the optimization in a space with lower dimensions.

Figure 2-1: NACA0012 Basic idea of POD applied to the parameter space
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2.3.1 Methodology

Let’s consider the problem

𝑝* = min
𝑥

𝑓(𝑥), 𝑥 ∈ R𝑘 (2.27)

where 𝑝* is the optimum value of the function 𝑓(𝑥) and 𝑘 is the cardinality of

the parameter space. Suppose that the parameter space is discretized with 𝑛 points.

Every point can be associated to a different value of the decision variable vector. It

will exist therefore a set of vectors [𝑥1,...,𝑥𝑛].

To solve the minimization problem 2.27 several steps can be performed:

- creation of the [𝑛,𝑘 + 1] matrix 𝑉

𝑉 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥11 𝑥12 . . . 𝑥1𝑘 𝑓1(𝑥)

𝑥21 𝑥22 . . . 𝑥𝑠𝑘 𝑓2(𝑥)
...

... . . .
...

...

𝑥𝑛1 𝑥𝑛2 . . . 𝑥𝑛𝑘 𝑓𝑛(𝑥)

⎤⎥⎥⎥⎥⎥⎥⎦ (2.28)

that describes the state of the system.

- apply POD to the matrix 𝑉 :

In order to perform the decomposition, the correlation matrix between the

columns of 𝑉 should be constructed

𝑅𝑖𝑗 =
1

𝑘 + 1
(𝑉𝑖,𝑉𝑗), 𝑖 = 1,𝑘 + 1, 𝑗 = 1,..,𝑘 + 1. (2.29)

From the POD decomposition of matrix R, 𝑘+1 eigenvectors 𝑒𝑖, 𝑖 = 1, . . . ,𝑘+1

and 𝑘 + 1 corresponding eigenvalues 𝜆𝑖, 𝑖 = 1, . . . ,𝑘 + 1 are obtained.
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- computation of the reduction matrix 𝐴𝑟:

Consider the matrix

𝐴𝑟 = [𝑒1,𝑒2,...,𝑒𝑘+1]. (2.30)

The eigenvalues 𝜆𝑖 obtained from the POD decomposition can give a measure of

the energy of the system that each eigenvector 𝑒𝑖 can contain. Therefore it can

be possible to truncate the last 𝑞 eigenvectors of the matrix 𝐴𝑟 if they contain

an energy value under an a-priori defined threshold and create the matrix 𝐴𝑟

with dimensions [𝑘 + 1,𝑘 + 1 − 𝑞]

𝐴𝑟 = [𝑒1,𝑒2,...,𝑒𝑘+1−𝑞]. (2.31)

- projection of the matrix 𝑉 in a reduced dimension space using matrix 𝐴𝑟:

𝑉 = 𝑉 · 𝐴𝑟. (2.32)

The columns of the matrix 𝑉 will contain the problem discretization in a reduced

dimension space:

𝑉 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑟
11 𝑥𝑟

12 . . . 𝑥𝑟
1,𝑘−𝑞 𝑓1(𝑥

𝑟)

𝑥𝑟
21 𝑥𝑟

22 . . . 𝑥𝑟
2,𝑘−𝑞 𝑓𝑠(𝑥

𝑟)
...

... . . .
...

...

𝑥𝑟
𝑛1 𝑥𝑟

𝑛2 . . . 𝑥𝑟
𝑛,𝑘−𝑞 𝑓𝑛(𝑥𝑟)

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.33)

The optimization problem 2.27 in the reduced dimensions space will become

𝑝* = min
𝑥𝑟

𝑓(𝑥𝑟), 𝑥𝑟 ∈ R𝑘−𝑞 (2.34)
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where the superscript 𝑟 stays for reduced.

- identification of the minimum 𝑝* in the reduced-dimension space:

a black-box optimizer can be used.

- re-projection of the optimum point in the original space:

𝑚 = 𝑚𝑟 · 𝐴𝑖
𝑟 (2.35)

where 𝑚𝑟 is the [1 × 𝑘 + 1 − 𝑞] vector containing the optimum point and the

optimum value of the function 𝑓(𝑥𝑟) in the reduced-dimension space, 𝑚 is the

[1 × 𝑘 + 1] vector containing the optimum point and the optimum value of the

function in the original space and 𝐴𝑖
𝑟 is the pseudoinverse of matrix 𝐴𝑖

𝑟.
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Chapter 3

Applications

In this chapter applications of the two different surrogate model approaches previously

exposed are presented. The first example is the simpler one and regards the back-

ward facing step problem. A surrogate model using proper orthogonal decomposition

for variable geometry is constructed and the influence of the number of snapshots is

investigated. After that, surrogate models are built considering the problem of the

flow around airfoil. Two typical shapes are considered: a NACA 00112 and a RAE

2822. In the first case therefore, a subsonic two-dimensional viscid flow is considered.

Particular attention is given to the generation of the initial snapshot set. Different

snapshot numbers and different distributions are tested. In the RAE 2822 problem

on the other hand, we deal with a compressible problem and the shock wave analysis

should be considered. The consecutive two applications are three-dimensional prob-

lems: the optimization of an automotive shape using a POD surrogate model and the

construction of an aircraft surrogate model for database generation.

At the end of the chapter we find the minimization of an analytical function and

contrarily from all the other cases here the POD is applied to the parameter space.

Following this different approach the optimization is performed in a reduced-order
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space and the optimum point is then re-projected in the original space.

3.1 Backward Facing Step

Part of the work described in this chapter is published in Proper Orthogonal Decompo-

sition as Surrogate Model for Aerodynamic Optimization, V. Dolci and R. Arina, Inter-

national Journal of Aerospace Engineering, Volume 2016 (2016), Article ID 8092824,

15 pages http://dx.doi.org/10.1155/2016/8092824

3.1.1 Problem setting

This test case is set according to the experimental work of Ruck and Makiola [22]. The

Figure 3-1: Backward facing step with variable step slope

flow enters in a channel from the inlet at a prescribed velocity and then encounters

a step. The section of the channel increases causing the generation of a recirculation

bubble in the flow. The length of the recirculation bubble is strongly dependent on

length and slope of the step. A visualization of the problem setting is shown in Figure

3-1. The geometry of the problem is characterized by the Expansion Ratio (ER) that
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is the ratio between the length of the channel section (H+ℎ1) and the height of the

inlet ℎ1. In this work ER is equal to 2 with an inlet height ℎ1 = 0.1. In order to have

a fully developed channel flow before the step, the value of the length 𝐿𝑢 of the first

part of the channel has to be chosen fulfilling the inequality 𝐿𝑢 > 5𝐻, therefore in

this work 𝐿𝑢 is equal to 1. Similarly, to have a fully developed flow in the channel

behind the step, the length of the duct, measured from the step, is set to 40H.

A set of four snapshots is obtained, modifying the slope angle 𝛼 of the step.

The angle 𝛼 assumes the values of 90∘, 45∘, 30∘ and 25∘. For each snapshot a full

(a) 𝛼 = 90∘ (b) 𝛼 = 45∘

(c) 𝛼 = 30∘ (d) 𝛼 = 25∘

Figure 3-2: Backward facing step. Geometries of the four snapshots

CFD simulation is realized. The initial velocity is set equal to 2.5 m/s in all cases

with a corresponding Reynolds number, referred to the height of the step H, 𝑅𝑒𝐻 =

19800. The simulation is done with the open source software OpenFOAM using the

simpleFoam solver with a 𝑘−𝜖 turbulence model. A visualization of the four different

geometries used for the snapshot set is shown in Fig.3-2. The number of cells is about

350000.

The geometry variation is obtained through a morphing of the mesh from the base
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configuration, keeping constant the number of cells.

3.1.2 POD reconstruction

(a) POD mode 1

(b) POD mode 2

(c) POD mode 3

(d) POD mode 4

Figure 3-3: Backward facing step. POD modes for the velocity field

In Fig. 3-3 a visualization of the four POD basis vectors generated from the

decomposition of the x-component of the velocity field is shown.

41



3 – Applications

These basis vectors are the basic components of the surrogate model and are

calculated as explained in section 2.2 Then velocity and pressure fields for a geometry

characterized by a slope angle of the step of 48∘, not belonging to the initial set of

snapshots, are reconstructed using the POD surrogate model. The parameter space

is one dimensional and linear interpolation is used to compute the POD coefficients.

The POD reconstruction of the x-component of the velocity is shown in Fig.3-4, and

compared with the field obtained with a CFD calculation. The 𝐿2 percentage error,

(a) CFD simulation

(b) POD reconstruction

Figure 3-4: Backward facing step. x-component of the velocity [m/s], step slope 𝛼 = 48∘

expressed by

𝐸% = ‖x− x𝑃𝑂𝐷‖2 · 100 , (3.1)

where with x is indicated the value of the field of interest calculated with the CFD full

model and with 𝑥𝑃𝑂𝐷 the corresponding value obtained with PODI, is 5.7𝑒−4 % for

the pressure field and 8.2𝑒−3 % for the velocity field. The surrogate model therefore

is able to predict the behavior of the system for the point 𝛼 = 48∘ in the parameter

space, within an acceptable accuracy.
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Analyzing Fig.3-3 and Fig.3-4, it can be seen that the first POD mode is qualita-

tively identical to the reconstructed field. An estimate based on Eq.(2.13) indicates

that the first POD mode contains the 99.8 % of the total field energy. The fact that

the first POD mode is able to represent the most field energy is intrinsic in the POD

technique because it maximizes the mean of the norm of the squared field projection

along the POD modes. Nevertheless in this work all the POD modes were used for

the reconstruction because the saving of computational effort and time of retain fewer

modes was negligible.

In addition, selecting two sections, one placed in the fully developed channel flow

and the other in the recirculation bubble (Fig.3-5), it is possible to compare (Fig.3-

Figure 3-5: Backward facing step. Control sections

6) the velocity profile obtained with the POD reconstruction with the high-fidelity

solution.

The maximum relative error 𝑒%, calculated as

𝑒% = 𝑚𝑎𝑥

⃒⃒⃒⃒
𝑥𝑃𝑂𝐷 − 𝑥

𝑥
· 100

⃒⃒⃒⃒
, (3.2)

is 1.18 % in the recirculation bubble. Probably the maximum error takes place in this

area because is a low energy zone and the POD technique is optimal in the energetic

sense.
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(a) Section 1 (fully developed channel flow) (b) Section 2 (recirculation bubble)

Figure 3-6: Backward facing step. Velocity magnitude profiles, 𝛼 = 48∘

3.1.3 POD reconstruction with different snapshot sets

To quantify the influence of the number of snapshots on the accuracy of the surrogate

model, a further test is made. The problem setting is the same of section 3.1.1 but

now four different surrogate models are constructed and compared using 3, 6, 11 and

21 snapshots. In this case the geometry is fixed for all the snapshots, with step slope

of 90∘, and each snapshot is calculated imposing a different inlet velocity. The inlet

velocity varies in the range between 10 and 30 m/s. In table 3.1 a summary of the

four sets of snapshots used in the different reconstructions is reported.

The surrogate model is used to reconstruct pressure and velocity fields for an

initial velocity of 15.5 m/s not belonging to any of the initial sets of snapshots.

Based on estimate (2.13), it can be remarked how the energy captured by the first

mode increases with the number of snapshots composing the set. Moreover the first

mode is always able to get more than the 99.99 % of the total energy.

A comparison between the reconstruction error generated by the four surrogate

models for the pressure field is shown in Fig. 3-7. The error |𝑝− 𝑝𝑃𝑂𝐷| is calculated
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3 snapshots case 6 snapshots case
Snapshot number Initial velocity m/s Snapshot number Initial velocity m/s

1 10 1 10
2 20 2 14
3 30 3 18

4 22
5 26
6 30

11 snapshots case 21 snapshots case
Snapshot number Initial velocity m/s Snapshot number Initial velocity m/s

1 10 1 10
2 12 2 11
3 14 3 12
4 16 4 13
5 18 5 14
6 20 6 15
7 22 7 16
8 24 8 17
9 26 9 18
10 28 10 19
11 30 11 20

12 21
13 22
14 23
15 24
16 25
17 26
18 27
19 28
20 29
21 30

Table 3.1: Backward facing step. Summary table of the snapshot parameters

along the center line of the duct. As expected this difference is decreasing as the

number of snapshots increases. However in the three-snapshot case the maximum

error is already acceptable and below 2.5 𝑃𝑎. In Fig. 3-8 the variation of the recon-

struction error ‖𝑒‖∞ = 𝑚𝑎𝑥 (|𝑝− 𝑝𝑃𝑂𝐷|) of the pressure field using the four-snapshot

set can be seen. The error trend is clear and the use of 11 snapshots for the surrogate

model seems to be optimal, in terms of computational time and accuracy, compared

with the 21-snapshot case. As further confirmation, in Fig. 3-9 a comparison between

the reconstruction of the pressure field using 3 and 21 snapshots is reported. As

expected, the result with many snapshots is more precise, but in the three-snapshot

45



3 – Applications

Figure 3-7: Backward facing step. |𝑝− 𝑝𝑃𝑂𝐷| along the duct center line, for 3 (violet line),
6 (green line), 11 (yellow line) and 21 (red line) snapshots

Figure 3-8: Backward facing step. Error ||𝑒||∞ on the pressure field with respect to the
number of snapshots
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reconstruction the error is already acceptable. The POD decomposition is optimal in

the energetic sense therefore in a steady problem the first POD mode is quite always

able to get a relevant part of the field energy and a reduced number of modes and

snapshots can be used to build a surrogate model.

(a) CFD solution

(b) POD reconstruction − 21 snapshots

(c) POD reconstruction − 3 snapshots

Figure 3-9: Backward facing step. Pressure field [Pa]
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3.2 NACA 0012 Surrogate Model

Part of the work described in this chapter is published in Variational Analysis and

Aerospace Engineering - Mathematical Challenges for the Aerospace of the Future,

Frediani A., Mohammadi B, Pironneau O., Cipolla V., Springer Optimization and its

Applications 2016.

A surrogate model is constructed considering the flow around a NACA 0012 airfoil.

The model is used to evaluate unknown pressure and velocity fields corresponding to

desired parameter configurations in the two-dimensional parameter space composed

by the Mach angle of the undisturbed flow M and the angle of attack 𝛼 of the airfoil.

As previously explained the high-order model of the problem are the Navier Stokes

equations. A steady subsonic flow is considered and a grid characterized by a number

of points N equal to 260000 is used to discretize the geometry. To compute the snap-

shots the SIMPLE algorithm implemented in the open source software OpenFOAM

is used. To model the turbulence a Spalart-Allmaras equation is solved and wall

functions are used to estimate the boundary layer quantities near the wall.

In Fig. 3-10 a representation of the problem discretization can be seen and in Fig.

3-11 a zoom near the airfoil is shown.

3.2.1 Interpolation technique - preliminary phase

A first section of the construction of the surrogate model is dedicated to the choice of

the right interpolation technique for the computation of the PODI coefficients ̃︀𝐶𝑖

𝛿𝑙
.

For this purpose a snapshot set {𝑓 𝑖}𝑀𝑖=1 composed of only 4 snapshots is used. The

snapshots are placed at the four vertices of the parameter space and this configuration

corresponds to a 2-level full factorial plane.

In Fig. 3-12 a representation of the snapshot position in the parameter space can
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Figure 3-10: Problem discretization for the NACA 0012 surrogate model

Figure 3-11: Problem discretization for the NACA 0012 surrogate model - airfoil zoom

be seen. Three points are randomly chosen to test the surrogate model and decide

which interpolation technique has to be preferred for the model. The NACA 0012

surrogate model is only a preliminary application and this number can be increased
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Figure 3-12: Snapshot and PODI reconstruction positions in the parameter space

in practical cases. It is necessary to consider that higher is the reconstruction number

in this first section, higher will be the total computational cost to build the surrogate

model. A trade off between accuracy and computational resources, in terms of hard-

ware and time, shall be taken into account. If an a priori knowledge of the problem is

available, it is possible to start testing the model in portions of the parameter space

that will be more interesting or critical from the design point of view. In Fig. 3-12

the three test points can be seen in red.

Table 3.2: Snapshot and POD reconstruction positions in the parameter space

Snapshot Mach Number Alpha [∘]

1 0.05 1
2 0.25 1
3 0.05 5
4 0.25 5

PODI reconstruction Mach Number Alpha [∘]

1 0.09 2
2 0.21 1.5
3 0.14 4.4

In Table 3.2 snapshots and test points are reported. Four techniques are tested
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to compute the PODI reconstruction coefficients ̃︀𝐶𝑖

𝛿𝑙
: a least square regression of

the first order (LS), radial basis functions using gaussian basis with and without

polynomial term and using multiquadric basis considering the polynomial term. A

comparison of the results can be seen in Fig. 3-13. In this figure, only the error on

Figure 3-13: NACA0012 surrogate model. Errors for different response surfaces (x = 1: error
on the maximum value of the pressure field, x = 2: error on the minimum value
of the pressure field, x = 3 and 4: errors on maximum and minimum values of
the x component of the velocity field, x = 5 and 6: errors on maximum and
minimum values of the y component of the velocity field)

the maximum and minimum values of pressure and velocity fields associated to the

three reconstruction points 1, 2 and 3 are considered.

The error 𝑒% is calculated with respect to the CFD computation, taken as reference

or ’true’ solution and is computed as

𝑒% =
𝑥− 𝑥𝑃𝑂𝐷

𝑥
· 100 . (3.3)

The best results for the reconstruction of the pressure field are obtained using a

radial basis function with gaussian basis, no relaxation of the interpolation condition
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and a value of the shape parameter 𝜎 of 1.05. In this application a constant parameter

𝜎 is chosen for all the different radial basis functions therefore 𝜎𝑖 ≡ 𝜎,𝑖 = 1,...,𝑀 .

The behaviour of the response surfaces is different in the PODI reconstruction of the

velocity field. In this case the lower error is obtained using a multiquadric basis, with

the orthogonality condition. These interpolation methods will be used for the airfoil

surrogate models built in the following section to reconstruct pressure and velocity

fields.

3.2.2 Influence of the snapshot number

Once the best interpolation technique has been selected for the PODI coefficients, the

influence of the number of snapshots on the accuracy of the surrogate model can be

investigated. Four PODI surrogate models are tested using 4, 9, 16 and 25 snapshots

corresponding to a 2, 3, 4 and 5 level full factorial design for the two parameters

Mach and 𝛼.

Figure 3-14: NACA0012 surrogate model. Snapshot sets and reconstruction positions in the
(Mach-𝛼) plane
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With respect to the surrogate model of the previous section, the parameter ranges

are extended: the Mach number now is varying from 0.05 to 0.25 and 𝛼 is between 1∘

and 5∘. In Fig. 3-14 a visualization of the snapshot positions is shown. The surrogate

models are used to reconstruct pressure and velocity fields in seven random points in

the parameter space. The positions of the reconstructed cases in the (Mach-𝛼) plane

are summarized in Table 3.3.

Table 3.3: NACA0012 surrogate model. List of the reconstruction combinations

Reconstruction point Mach number 𝛼 [∘]

A 0.17 2.5
B 0.12 4.5
C 0.08 3.5
D 0.25 1.5
E 0.05 4.5
F 0.23 4.7
G 0.21 3.7

In this case the error 𝐸% with respect to the CFD reference solution is computed

using the 𝐿2 norm

𝐸% = ‖𝑥− 𝑥𝑃𝑂𝐷‖2 · 100 =

√︁∑︀𝑁
𝑖=1(𝑥𝑖 − 𝑥𝑃𝑂𝐷

𝑖 )2

𝑁
· 100, (3.4)

where with 𝑥 is indicated the CFD value of the field of interest in a single cell and

with 𝑥𝑃𝑂𝐷 the corresponding value obtained with PODI.

In Figs. 3-15 and 3-16, the error trends obtained with Eq. (3.4) are shown for the

pressure and velocity fields respectively. As expected the errors are decreasing with

the increasing of the snapshot number. Considering the velocity field, the error is

already under 2 % using 4 snapshots and is slowly decreasing. Therefore, depending

on the a priori threshold of the surrogate model error, the use of 25 snapshots can be

avoided and 9 or 16-snapshot sets can be used. For the pressure field higher errors are
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Figure 3-15: NACA0012 surrogate model. Errors generated by the PODI-surrogate model
for the reconstruction of the pressure field

Figure 3-16: NACA0012 surrogate model. Errors generated by the PODI-surrogate model
for the reconstruction of the velocity field

generated, but again the use of the 16-snapshot set can fulfill accuracy requirements.

In Fig. 3-17 a visualization of the velocity field is shown for the full model and for

the 25, 16 and 9-snapshot cases for point C.
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(a) PODI-surrogate model using 25
snapshots

(b) PODI-surrogate model using 16
snapshots

(c) PODI-surrogate model using 9
snapshots

(d) CFD solution

Figure 3-17: NACA0012 surrogate model. Comparison between velocity fields. 𝑀 = 0.08,
𝛼 = 3.5∘

55



3 – Applications

3.2.3 Influence of the snapshot position - Quadtree initial dis-

tribution

As previously explained, Quadtree is a specific subdivision of 2-dimensional spaces

used first in digital imaging and examples of a quadtree distribution applied to the

initial snapshot sampling for the building of a surrogate model can be found in [8].

In the present work no leave-one-out procedure is present because we are using a

reduced number of snapshots.

In the Figs. 3-18 and 3-19 a comparison between 5-level full factorial and quadtree

distribution can be made and in Figs. 3-20 the results are reported.

The quadtree distribution is able to reduce the surrogate model errors in all the

seven test points. This can be obvious for the internal points B, C, A and F, since

in the quadtree distribution the snapshots are now nearer to the reconstruction point

but is not trivial for the other points D, E and G. In this three points, with respect

to the 5-level case, the snapshots in the quadtree distribution are farther but still the

errors are decreasing.
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Figure 3-18: NACA0012 surrogate model. Snapshot and reconstruction positions in the
5-level full factorial case

Figure 3-19: NACA0012 surrogate model. Snapshot and reconstruction positions in the
quadtree case
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Figure 3-20: NACA0012 surrogate model. Comparison of the surrogate model errors on the
field reconstruction using quadtree or 5-level full factorial distribution. Pressure
(top) and velocity (bottom) fields
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Finally, in Fig. 3-21, visualizations of the reconstructed fields compared with the

CFD high order solution can be seen.

(a) Velocity field obtained with the
reduced-order model using a 5-level full
factorial distribution

(b) Velocity field obtained with the
reduced-order model using a quadtree
distribution

(c) Velocity field obtained with the CFD
full model

Figure 3-21: Velocity fields, m/s
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3.3 RAE 2822 Surrogate Model

In this section the generation of a surrogate model for a supercritical airfoil is per-

formed. The flow past a transonic wing profile is complex and highly nonlinear and

particular care must be taken in the shock wave treatment.

3.3.1 Problem Setting

The two-dimensional transonic flow field past the supercritical airfoil RAE 2822 is

analyzed. A surrogate model is built in the shape parameter space. The airfoil is

modeled using two Bézier curves [9], one for the upper surface and one for the lower

surface of the airfoil. Each Bézier curve is computed using 9 control points as can be

seen in Fig. 3-22.

The high-order simulations are performed considering a flow field characterized

by a Mach number of 0.729 and a Reynolds number of 6.5 · 106. The airfoil has an

angle of attack equal to 2.31∘. The geometry was discretized using 2500 cells. A

steady flow was considered, with a 𝑘−𝜔 EARSM (Explicit Algebraic Reynolds Stress

Model) [20] model to describe the turbulence.

Figure 3-22: RAE 2822 surrogate model. Bézier curve for the upper surface of the airfoil.
Visualization of the 9 control points
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To construct the parameter space of the surrogate model, only 5 control points are

considered. The points P0, P1, P7 and P8 are fixed to maintain a constant position

of leading and trailing edge. Points P2, P3, P4, P5, P6 instead are moved along

the y-axis, normal to the flow field. The parameters of the surrogate model are the

positive or negative variations of the point positions along the y-axis with respect

to the base configuration, within a range of ± 2 of the chord. The parameter space

is 5-dimensional and we are affected by the curse of dimensionality: if a 2-level full

factorial plane is required for a preliminary screening of the space, 25 simulations

should be performed. In order to reduce the number of initial simulations required

for the construction of the surrogate model, a 2-level fractional factorial plane 25−1 is

adopted to compute the snapshots. In this way only 16 high-order model evaluations

are required instead of 32. Fractional factorial planes are a useful instrument typically

applied in DOE (design of experiment) methodology. They allow to investigate the

response with respect to multiple parameters with a reduced number of samples [19].

In Table 3.4 the 16 parameter combinations associated to each snapshot are reported.

3.3.2 Results

In this application the POD surrogate model is used to reconstruct the conservation

variables (density 𝜌, momentum 𝜌𝑢, and total energy 𝜌𝐸) and the coordinates of the

grid points. A mesh morphing is used to build only the initial snapshots, for the

remaining reconstruction points the computational mesh is computed with the PODI

model. The reconstructed fields are associated to shape parameter combinations

not belonging to the initial set of snapshots. 4 random points, listed in Table 3.5,

are chosen to test the surrogate model. The reference solution is obtained through

CFD simulation using the Alenia solver UNS3D. With respect to this solution, the

normalized root mean square error 𝐸𝑛 is computed for each reconstructed field as
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Table 3.4: RAE 2822 surrogate model. List of the parameter combinations associated to
the snapshots

Snapshot
number

𝛥𝑃2 𝛥𝑃3 𝛥𝑃4 𝛥𝑃5 𝛥𝑃6

1 -0.2 -0.2 -0.2 -0.2 -0.2
2 0.2 -0.2 -0.2 -0.2 -0.2
3 -0.2 0.2 -0.2 -0.2 -0.2
4 0.2 0.2 -0.2 -0.2 0.2
5 -0.2 -0.2 0.2 -0.2 -0.2
6 0.2 -0.2 0.2 -0.2 0.2
7 -0.2 0.2 0.2 -0.2 0.2
8 0.2 0.2 0.2 -0.2 -0.2
9 -0.2 -0.2 -0.2 0.2 -0.2
10 0.2 -0.2 -0.2 0.2 0.2
11 -0.2 0.2 -0.2 0.2 0.2
12 0.2 0.2 -0.2 0.2 -0.2
13 0.2 0.2 -0.2 -0.2 -0.2
14 0.2 -0.2 0.2 0.2 -0.2
15 -0.2 0.2 0.2 0.2 -0.2
16 0.2 0.2 0.2 0.2 0.2

Table 3.5: RAE 2822 surrogate model. List of the 4 reconstruction points

Point
num-
ber

𝛥𝑃2 𝛥𝑃3 𝛥𝑃4 𝛥𝑃5 𝛥𝑃6

1 0.2 0 0 0 0
2 0.1 0.1 0.1 0.1 0.1
3 0.2 0.1 0.2 0.1 0.2
4 0.15 -0.1 0.15 -0.1 0.15

𝐸𝑛 =

√︀
𝑛
∑︀𝑛

𝑖=1(𝑥𝑖 − 𝑥𝑃𝑂𝐷
𝑖 )2∑︀𝑛

𝑖=1 𝑥𝑖

· 100, (3.5)

where 𝑛 is the number of grid points, x the CFD value of a cell and 𝑥𝑃𝑂𝐷 the

corresponding value obtained with the surrogate model. In Table 3.6 this error is
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listed for the 4 points.

Table 3.6: RAE 2822 surrogate model. Errors on the reconstruction of the 4 test points

Point 1 Point 2 Point 3 Point 4

Field variable 𝐸𝑛 % 𝐸𝑛 % 𝐸𝑛 % 𝐸𝑛 %

𝜌 0.4 1.2 0.5 0.6
𝜌𝑢 1.0 3.6 1.3 1.1
𝜌𝑣 5.4 23.9 8.8 6.9
𝜌𝐸 0.5 1.2 0.5 0.5

The values are high considering the transverse momentum especially for point 2.

In Figs. 3-23, 3-24, 3-25, 3-26, qualitative comparisons are reported for derived fields

of Mach and pressure.

A partial agreement with the reference solution is achieved. A relative error 𝑒𝑟𝑒𝑙

is calculated considering the computation of lift and drag coefficients 𝑐𝐿 and 𝑐𝐷:

𝑒𝑟𝑒𝑙 =
|𝑥𝐶𝐹𝐷 − 𝑥𝑃𝑂𝐷|

𝑥𝐶𝐹𝐷

· 100 (3.6)

and the results are listed in Table 3.7. If we take into account only drag and lift

coefficient reconstructions, considering for example a link of the surrogate model

to an optimization procedure, the errors 𝑒𝑟𝑒𝑙 are lower than the root mean square

computation 𝐸𝑛 and a good agreement with the CFD result is obtained.

Table 3.7: RAE 2822 surrogate model. Errors on lift and drag coefficients

𝑒𝑟𝑒𝑙 (𝑐𝐿) 𝑒𝑟𝑒𝑙 (𝑐𝐷)

Point 1 0.3 0.1
Point 2 0.2 1.5
Point 3 0.4 0.4
Point 4 1.0 2.6
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Figure 3-23: RAE 2822 surrogate model. CFD and PODI comparison for reconstruction
point 1: pressure (top) and Mach (bottom) fields
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Figure 3-24: RAE 2822 surrogate model. CFD and PODI comparison for reconstruction
point 2: pressure (top) and Mach (bottom) fields
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Figure 3-25: RAE 2822 surrogate model. CFD and PODI comparison for reconstruction
point 3: pressure (top) and Mach (bottom) fields
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Figure 3-26: RAE 2822 surrogate model. CFD and PODI comparison for reconstruction
point 4: pressure (top) and Mach (bottom) fields
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3.4 Drag Coefficient Optimization of an Automotive

Shape

3.4.1 Problem and CFD setting

The POD surrogate model is employed in an optimization loop to obtain the minimum

drag coefficient of an automotive shape. The base form is the open source DrivAer

car model from the Technical University of Munich [18]. The drag coefficient 𝑐𝐿 is

minimized acting on four shape parameters: the length 𝑥1, width 𝑦1 and height 𝑧1 of

the trunk and the height of the diffuser 𝑧2 (Fig. 3-27).

Figure 3-27: DrivAer model. Shape parameters chosen as design parameters
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The optimization problem can be formulated as

𝑐*𝐿 = min
𝑥1,𝑦1,𝑧1,𝑧2

𝐷(𝑥1,𝑦1,𝑧1,𝑧2)
1
2
𝜌∞𝑈2

∞𝐴𝑟𝑒𝑓

𝑠.𝑡. − 0.5 ≤ 𝑥1 ≤ 0.5 ,

−0.5 ≤ 𝑦1 ≤ 0.5 ,

−0.4 ≤ 𝑧1 ≤ 0.4 ,

−0.5 ≤ 𝑧2 ≤ 0.5 ,

with 𝐷 being the vehicle drag, 𝜌∞ the density and 𝑈∞ the velocity of the undisturbed

flow and 𝐴𝑟𝑒𝑓 a reference area equal to the vehicle maximum frontal area.

The geometry is discretized with 1959410 cells and the CFD simulation is per-

formed with the OpenFOAM solver simpleFoam using a 𝑘 − 𝜖 turbulence model.

𝑈∞ is 40 m/s and the Reynolds number 𝑅𝑒∞ ≈ 14 · 106. The correct deformations

corresponding to the desired values of the design variables are imposed with mesh

morphing. Therefore the cell number remains constant for each geometry and only

some point positions are modified.

3.4.2 Optimization

In this specific problem the cost function evaluations correspond to the calculations of

the drag coefficient. Pressure, velocity, turbulence kinetic energy, specific turbulence

dissipation, turbulence eddy viscosity 𝜈𝑡 and the mass flow through the cell faces 𝜙

are reconstructed. The drag coefficient is computed in a post-process phase. The se-

lection of the set of snapshots is made on the basis of the Central Composite Design

theory. The number of snapshots determines the total number of CFD calculations.
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An appropriate selection of the snapshots is extremely important because their calcu-

lations represent the most time consuming step of the entire optimization procedure.

The calculation of the POD basis is done following the method described in Section

2.2. Response surfaces are generated with a least square method of the second order

or interpolating using radial basis functions as explained in Section 2.2.1.

The optimization has to be performed in a 4-dimensional parameter space there-

fore, willing to adopt a full level factorial design, we have to construct 24 snapshots

only for the 2-level case and this number would grow exponentially increasing the

levels. Taking into account the error trends of the surrogate models built in the pre-

vious test cases, a reduced initial snapshot set can be used in this practical case. A

2-level fractional factorial design 24−1, adding the central point, is adopted instead

of a full level and the snapshot set is composed of only 9 snapshots. In Table 3.8 a

description of the design parameter combinations used to generate the snapshots is

reported.

Table 3.8: DrivAer model. 2-level fractional factorial design for the initial snapshot set

Snapshot number 𝑥1 𝑦1 𝑧1 𝑧2

1 −1 −1 −1 −1
2 −1 +1 +1 −1
3 +1 +1 −1 −1
4 +1 −1 +1 −1
5 −1 +1 −1 −1
6 −1 −1 +1 +1
7 +1 −1 −1 +1
8 +1 +1 +1 +1
9 0 0 0 0

In this table the highest and lowest values of the variables are represented with

+1 and −1 respectively. The real values of the high and low levels of the design
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parameters are determined by the optimization constraints and are ±0.5 for 𝑥1, 𝑦1

and 𝑧1 and ±0.4 for 𝑧2.

Once the snapshots are calculated, the remaining function evaluations required

by the optimization algorithm are obtained using the PODI surrogate model.

The optimization algorithm used in this application is the SOGA (Single Objec-

tive Genetic Algorithm) implemented in the JEGA library of the open source software

Dakota. SOGA is a classical single-objective genetic algorithm that performs opti-

mizations of a single cost function. Obviously the use of a genetic algorithm is not

mandatory: the PODI surrogate model can be linked to any other optimizer.

In this problem the design variables are represented in floating-point, with a ran-

dom initialization and control to avoid duplications. The number of individuals com-

posing the initial population is 50. A shuffle random crossover type is set with a

rate of 0.8. With this particular crossover the parent chromosome sequences, once

selected, are randomly shuffled and then the single-point crossover is performed. This

operation is useful to eliminate the positional bias associated with the length of each

chromosome. A random mutation rate of 0.08 is imposed. This kind of mutation cor-

responds to a random selection of an individual and a random selection of a design

variable at which is assigned a random valid value. After 7 generations, the genetic

algorithm is able to identify an optimal solution calculated using the surrogate model.

The optimal drag coefficient is 0.3013, starting from a base configuration (all param-

eters at 0 level) of 0.3111, with an improvement of the 1.8 %. The error with respect

to the CFD solution is 1.36 % for the optimal point.

The adoption of a PODI-surrogate model dramatically reduces the computing time

of the optimization: instead of ∼ 240 h without the adoption of the surrogate model,

∼ 90 h are necessary with PODI, using 2 Intel Xeon E5440 Quad core processors.

Fig. 3-28 leads to considerations on the energy associated to the POD modes. The

results have a direct analogy with the previous test cases and in particular with the
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(a) x-component of the velocity (b) First POD mode

(c) Second POD mode (d) Third POD mode (e) Ninth POD mode

Figure 3-28: DrivAer model. Comparison between the velocity field obtained from the
PODI-surrogate model and the individual POD modes

backward facing step problem. Considering for example the x-component of the veloc-

ity, the first POD mode is able to represent the greater amount (99.3 %) of the energy

and its qualitative appearance is comparable to the reconstructed field. The other

POD modes add information on the zones of the field with minimal energy, therefore

mostly on the vehicle wake. All the POD modes are used for the surrogate model

evaluation, as shown in the previous test cases, since this addition is not computa-

tionally demanding. In Figures 3-29 and 3-30 the comparisons between the velocity

and pressure coefficient fields obtained with CFD solver and PODI reconstruction are

shown.
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(a) CFD solution (b) POD reconstruction

Figure 3-29: DrivAer model. Velocity fields (magnitude m/s)
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(a) CFD solution

(b) POD reconstruction

Figure 3-30: DrivAer model. Pressure coefficient
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3.5 3D Aircraft Surrogate Model

A PODI surrogate model is built for a three-dimensional aircraft. The two-dimensional

parameter space is composed by the angle of attack 𝛼 and the sideslip angle 𝛽 of the

aircraft. In Fig. 3-31 a geometry visualization is reported.

Figure 3-31: Aircraft surrogate model. Visualization of the geometry

3.5.1 Problem Setting

A subsonic flow characterized by a Mach number of 0.25 and a Reynolds number of

4 · 106 is considered. The computational domain is composed by 106 points and can

be seen in Fig. 3-32. The Alenia UNS3D solver is used for the CFD simulations.

The PODI model is used to build a database for all the aircraft operative config-

urations therefore the parameter space is large: the angle of attack 𝛼 varies between

0 ∘ and 14 ∘, the sideslip angle 𝛽 is between 0 ∘ and 6 ∘. Taking into account the

good performances of the previous subsonic application, a quadtree distribution is

exploited to position the snapshots composing the initial high-order simulations. A

visualization of the snapshot distribution is presented in Fig. 3-33.
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Figure 3-32: Aircraft surrogate model. Visualization of the computational domain

Figure 3-33: Aircraft surrogate model. Snapshot distribution

3.5.2 Results

20 random points are chosen to test the surrogate model. Lift and drag coefficients

are computed starting from the fields of the conservation variables generated using
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the surrogate model. The results are listed in Table 3.9. The relative error 𝑒𝑟𝑒𝑙 is

computed following Eq. (3.6).

Table 3.9: Aircraft surrogate model. Results of the 20 random points

Test Point 𝛼 𝛽 𝑒𝑟𝑒𝑙 (𝑐𝐿)[%] 𝑒𝑟𝑒𝑙 (𝑐𝐷)[%]

Point 1 4.7 5.8 0.02 11.22
Point 2 3.4 0.3 0.41 11.21
Point 3 7.6 2.2 0.08 1.75
Point 4 10.1 5.2 0.03 1.80
Point 5 12.0 1.4 0.43 0.44
Point 6 3.6 5.3 0.24 9.7
Point 7 8.4 4.4 0.04 0.07
Point 8 10.9 1.4 0.14 0.53
Point 9 12.7 1.4 0.09 1.73
Point 10 1.2 4.9 5.26 7.54
Point 11 4.6 5.7 0.003 8.32
Point 12 4.0 4.2 0.12 1.40
Point 13 12.7 1.7 0.15 1.53
Point 14 8.0 1.0 0.13 0.71
Point 15 6.7 0.7 0.001 2.91
Point 16 8.6 4.9 0.09 0.36
Point 17 1.3 5.1 6.19 4.03
Point 18 12.2 3.8 0.07 0.18
Point 19 3.1 4.0 0.17 0.18
Point 20 7.1 0.5 0.09 4.32

A good agreement with the CFD solution is obtained for the lift coefficient calcu-

lation. On the other hand, the drag coefficient comparison is characterized by larger

errors. In Fig. 3-34, the points corresponding to higher errors are visualized and it

can be remarked that they belong to an ’outer area’ of the parameter space.

In the inner area underlined in Fig. 3-35 low errors with respect to the reference

solution are obtained considering both lift and drag coefficient computations. For

the application of the PODI surrogate model to database generation therefore, this

distinction between outer and inner area of the parameter space can be taken into
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Figure 3-34: Aircraft surrogate model. Large error points distribution

account and the use of the surrogate model inside the internal area is recommended.

Figure 3-35: Aircraft surrogate model. Inner area of the parameter space
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3.6 Optimization of the three-parameter Viermin func-

tion

The optimization of the three-parameter Viermin function 𝑓𝑣(𝑥) is performed follow-

ing the methodology explained in sect. 2.3. The general form of the Viermin function

can be written as

𝑓𝑣(𝑥) = 0.01
𝑘∑︁

𝑖=1

[︃(︂
𝑥1 +

1

2

)︂4

− 30𝑥2
𝑖 − 20𝑥𝑖

]︃
. (3.7)

In figure 3-36 the isosurfaces of the three-parameter Viermin function can be

visualized.

Figure 3-36: Isosurfaces of the three-parameter Viermin function

Matrix 𝑉 has been constructed using 20000 points and POD was performed. The

parameter space is three dimensional and four eigenvectors with four corresponding
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eigenvalues were obtained.

The eigenvalues are plotted in fig. 3-37 and they can be seen as a measure of the

energy of the system contained in each eigenvector

Figure 3-37: The four eigenvalues obtained from POD of matrix 𝑉 in descending order

In order to perform the minimization of the Viermin function a dimension reduc-

tion can be performed and the last eigenvector, corresponding to the less energetic

eigenvalue, can be neglected. The projection of matrix 𝑉 in a reduced-order parame-

ter space can be performed using the [𝑘+1,𝑘] = [4,3] reduction matrix 𝐴𝑟. In this way

a description of the problem in a three-dimensional space is obtained. A visualization

of the problem in the reduced-order parameter space can be seen in fig. 3-38.

The minimization is performed in the reduced-dimension parameter space using

the Matlab function min and subsequently the vector containing the optimum point

is re-projected in the original space using the pseudoinverse 𝐴𝑖
𝑟 of matrix 𝐴𝑟. The

results are reported in tab 3.10
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Figure 3-38: Viermin function in a three-dimensional parameter space

Table 3.10: Minimization of the Viermin function. Results

Real minimum POD minimum 𝑒𝑟𝑒𝑙[%]

-7.8491 -7.9254 1

Real optimum point POD optimum point e %

-4.4538 -4.4538 -4.4538 -4.6161 -4.6750 -4.5493 5

The errors are computed as

𝑒𝑟𝑒𝑙 =
|𝑝* − 𝑝*|

𝑝*
· 100 (3.8)

𝑒% = max
|𝑥* − �̃�*|

𝑥* · 100. (3.9)
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Conclusions

In this research work the surrogate model construction process is investigated. The

first two chapters introduce the problem framework and a description of same possible

distributions of the initial samples needed to build a surrogate model is performed.

In chapter two a literature review is given first and subsequently the methods used

to construct the surrogate models are described.

Two different approaches are presented and used in the present work: the first one

is more classical and a parametric POD is applied exploiting the snapshot method

without projection of the model equations in a reduced-order space. The difference

with respect to the surrogate models described in literature is that in our case the

snapshot set is very small and no truncation of the POD modes is foreseen.

In the second approach, described in sect 2.3, a POD is performed directly in the

parameter space in order to reduce the dimensions of the problem. The optimization

is performed in this new reduced parameter space and finally the optimum point is

re-projected again onto the original space.

Chapter 3 describes numerous applications of the POD surrogate models previ-

ously described. In particular approach 1 is used in the backward facing step analysis,
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to investigate the two-dimensional flow around a NACA 0012 and a RAE 2822 airfoil,

to minimize the drag coefficient of the external shape of a vehicle and to build an

aerodynamic database of a three-dimensional aircraft.

In all the applications the surrogate models showed good agreement with the

reference CFD solution. Analyses of the influence of the number and distribution of

the initial snapshots are presented together with a posteriori error evaluations.

In sec 2.3 the minimization of an analytical function is described using the second

approach of a POD reduction of the parameter space. The errors with respect to the

true solution are acceptable.

A more detailed error analysis can be performed in further studies, together with

some a priori error estimations. An automatic method to establish the optimal num-

ber and position of the initial snapshots can be foreseen and the extension of the POD

surrogate model to a higher number of parameters would be an interesting research

subject.
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