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SLICE REGULAR SEMIGROUPS

RICCARDO GHILONI AND VINCENZO RECUPERO

Abstract. In this paper we introduce the notion of slice regular right linear semigroup in a
quaternionic Banach space. It is an operatorial function which is slice regular (a noncommutative
counterpart of analyticity) and which satisfies a noncommutative semigroup law characterizing
the exponential function in an infinite dimensional noncommutative setting. We prove that a
right linear operator semigroup in a quaternionic Banach space is slice regular if and only if its
generator is spherical sectorial. This result provides a connection between the slice regularity
and the noncommutative semigroups theory, and characterizes those semigroups which can be
represented by a noncommutative Cauchy integral formula. All our results are generalized to
Banach two-sided modules having as a set of scalar any real associative *-algebra, Clifford
algebras Rn included.

1. Introduction

1.1. The problem of analytic semigroups in the noncommutative setting. A linear
operators group, or more generally a linear operators semigroup on a real or complex Banach
space X, is a mapping T : [0,∞[ −→ L (X) such that T(0) is the identity and the deterministic
law

T(t+ s) = T(t)T(s) ∀t, s > 0 (1.1)

is satisfied, L (X) being the space of bounded linear operators on X. For the general theory
of operator semigroups we refer to [21] and we recall here that, under the mild assumption
that y := T(·)x is continuous for every x ∈ X, it is well-known that there exists the derivative
y′(0) =: Ax for every x belonging to a dense subspace D(A) of X, and y solves the Cauchy
problem in y′(t) = Ay(t), y(0) = x ∈ D(A). The linear operator A : D(A) −→ X is the so-called
generator of T. If T is also continuous from [0,∞[ into L (X), then A turns out to be a bounded
operator defined on the whole X and T(t) = etA :=

∑

n≥0(tA)
n/n!, so that (1.1) reads

e(t+s)A = etAesA.

Linear operators semigroups are a crucial tool for several topics in mathematics like partial
differential equations, quantum mechanics, stochastic processes, control theory, and dynamical
networks; applications to other theoretical and applied sciences are also important, e.g. to open
quantum systems, population dynamics, Boltzmann equations (cf. [21, Chapter VI]).

The famous paper [44] of M.H. Stone “On one-parameter unitary groups in Hilbert spaces”
can be considered as the starting point of the modern theory of operator semigroups, whose
development is witnessed by the fundamental monographs [34, 18, 41, 32, 38, 45, 21] and by
their references. Motivated by quantum mechanics (cf. [40]), the paper of Stone, together with
J. von Neumann’s paper [39] “uber einen Satz von Herrn M.H. Stone”, are a crucial step for the
definition of the exponential map in infinite dimension.

G. Birkhoff and von Neumann in their celebrated paper [6] “The logic of quantum mechanics”
pointed out that quantum mechanics can be formulated not only in the nowaday classical setting
of complex Hilbert spaces, but also on Hilbert spaces whose set of scalars is H, the skew-field

2010 Mathematics Subject Classification. 47D03, 30G35, 47A60, 47A10.
Key words and phrases. Slice regular semigroups; Analytic semigroups; Functions of hypercomplex variables;

Quaternions; Functional calculus; Spectrum, resolvent.



2 RICCARDO GHILONI AND VINCENZO RECUPERO

of quaternions (cf. [43] for details). This remark originated the study of quantum mechanics
in the quaternionic framework (see, e.g., [22, 20, 35, 7, 1]), whose natural setting is a Hilbert
two-sided H-module X, and where L (X) is replaced by the set L r(X) of bounded right linear
operators acting on it (all the precise definitions will be recalled in Section 2). However, the
full development of the quaternionic formulation of quantum mechanics was prevented by the
lack of a suitable quaternionic notion of spectrum (cf. [10, 25]). A first rigorous formulation of
quaternionic quantum mechanics has been started only in 2007 when the concept of spherical
spectrum of a quaternionic operator was introduced in [9]. This new concept provides the basis
for a proper application of the spectral theory to quaternionic quantum mechanics. Indeed, it
permits to construct a noncommutative functional calculus for right linear operators on a Banach
two-sided module over H (and over a Clifford algebra as well, cf. [16, 12, 13, 10, 11, 17, 25])
and to deduce spectral representation theorems for normal operators in the quaternionic Hilbert
setting (cf. [3, 26]).

The mentioned noncommutative functional calculus strongly relies on the theory of slice regu-
lar functions, recently introduced in [24]. Slice regular functions extend to quaternions the
classical concept of holomorphic function of a complex variable. They form a class of functions
admitting a local power series expansion at every point of their domain of definition (cf. [23]),
including polynomials with quaternionic coefficients on one side.

In order to recall the notion of slice regular function let us first observe the fundamental fact
that H has a “slice complex” nature. This fact can be described as follows. If S ⊆ H is the
set of square roots of −1 and if, for each j ∈ S, we denote by Cj the Euclidean plane of H
generated by 1 and j, then H =

⋃

j∈SCj and Cj ∩ Ck = R for every j,k ∈ S with j 6= ±k.

Therefore if D is an open domain of C invariant under complex conjugation and ΩD =
⋃

j∈SDj,

where Dj := {r + s j ∈ Cj : r, s ∈ R, r + si ∈ D}, a function f : ΩD −→ H of class C1 is
called right slice regular (resp. left slice regular) if, for every j ∈ S, its restriction fj to Dj is
holomorphic with respect to the complex structures on Dj and on H defined by the right (resp.
left) multiplication by j, i.e. if ∂fj/∂r + ∂fj/∂s j = 0 (resp. ∂fj/∂r + j∂fj/∂s = 0) on Dj. This
definition is naturally extended to functions with values in any Banach two-sided H-module,
e.g. L r(X). A remarkable property of slice regular functions is a Cauchy-type integral formula
(cf. [8]). Let us consider first the left slice case. If D is bounded with a piecewise C1 boundary,
and f : ΩD −→ H is left slice regular and continuously extends on the closure of ΩD in H, then
it holds:

f(p) =
1

2π

∫

∂Dj

Cq(p) j
−1 dq f(q) ∀p ∈ ΩD, ∀j ∈ S, (1.2)

where Cq(p) denotes the (left ) noncommutative Cauchy kernel

Cq(p) := (p2 − 2Re(q)p + |q|2)−1(q − p),

the line integral in (1.2) being defined in a natural way (see (6.7)). The noncommutative Cauchy
kernel Cq is a left slice regular function, while for any fixed p the function q 7−→ Cq(p) is right
slice regular. The unusual fact that the differential dq appears on the left of f(q) depends on the
noncommutativity of H. If instead f is right slice regular the noncommutative Cauchy integral
formula reads f(p) = 1

2π

∫

∂Dj
f(q) j−1 dq Cr

q(p), where Cr

q(p) := (q − p)(p2 − 2Re(q)p + |q|2)−1.

As observed in [10, 25], the classical notions of spectrum and of resolvent operator are not
useful in order to define a noncommutative functional calculus. Cauchy integral formula (1.2)
indicates a way to define new notions of spectrum and of resolvent operator, suitable for the
noncommutative case: these notions are the spherical spectrum and the spherical resolvent ope-
rator. If A is a right linear operator on a Banach two-sided H-module X, then its spherical
resolvent set is the set of quaternions q such that the operator

∆q(A) := A2 − 2Re(q)A+ |q|2 Id
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is bijective and its inverse is bounded, where Id is the identity operator on X. Accordingly, the
spherical spectrum is the complement of the spherical resolvent set and the spherical resolvent
operator Cq(A) is defined by

Cq(A) := ∆q(A)
−1q − A∆q(A)

−1

for every q in the spherical resolvent set of A.
The noncommutative functional calculus based on the spherical resolvent operator is exploited

in [14] in order to prove the counterpart of the classical generation theorems by Hille-Yosida
and by Feller-Miyadera-Phillips for a strongly continuous right linear semigroup, i.e. a mapping
T : [0,∞[ −→ L r(X) such that T(·)x is continuous for every x ∈ X. Their statements are
analogous to the real and complex cases: the generator of A has the same formal definition
and in particular we still have that A is bounded if and only if T is uniformly continuous, i.e.
T ∈ C([0,∞[ ;L r(X)); in this case T(t) =

∑

n≥0(tA)
n/n!.

In paper [30] we show that the above-mentioned generation theorems for quaternionic right
linear semigroups can be actually reduced to the classical commutative case by means of a simple
technique, so that the functional calculus is not needed at this stage. In [30] we also introduce
the class of spherical sectorial right linear operators and we prove that such operators generate
a semigroup which can be represented by a Cauchy integral formula. Let us recall that a right
linear operator A on X is spherical sectorial with vertex ω ∈ R if its spherical resolvent set
contains a set of the form ω +Ωπ/2+δ, where

Ωπ/2+δ := {q ∈ Hr{0} : arg(q) < π/2 + δ}
for some δ ∈ ]0, π/2], with arg(q) := θ ∈ ]0, π[ if q ∈ HrR and q = reθj ∈ Cj, arg(q) := 0 if
q ∈ ]0,∞[, and arg(q) := π if q ∈ ]−∞, 0[. We prove that, if A has this property and satisfies
the estimate

‖Cq(A)‖ ≤ M

|q − ω| ∀q ∈ ω +Ωπ/2+δ (1.3)

for some M ≥ 0, then the formula

T(t) =
1

2π

∫

γj

Cq(A) j
−1etq dq ∀t > 0, (1.4)

defines a strongly continuous right linear semigroup generated by A, where j is an arbitrarily
fixed element of S and γj is a suitable path of Cj, surrounding the possibly unbounded spherical
spectrum of A (in [30] we dealt with the case ω = 0, the general case being proved in Theorem
6.9 below). As a consequence, the integral in (1.4) is independent of j and the semigroup T(t) is
analytic in time. Formula (1.4) is clearly related to the Cauchy integral formula (1.2), where the
Cauchy kernel appears on the left: indeed the functions q 7−→ Cq(p) and q 7−→ Cq(A) turn out
to be both right slice regular. We underline that the noncommutative setting prevents from the
possibility of applying the classical strategy for sectorial operators (see, e.g., [21, Proposition
4.3, p. 97]) and a different technique is needed (cf. [30]). We also point out a crucial difference
between the scalar and operatorial quaternionic cases: if in (1.2) pq = qp (i.e. when p, q belong
to the same Cj), then Cq(p) = (q − p)−1, and we find again the form of the classical Cauchy
kernel for holomorphic functions, while in the operatorial case the commutation Aq = qA is in
general false if q is not real, so that the operatorial commutative and noncommutative cases are
extremely different.

At this point there arises the problem to identify which kind of regularity characterizes the
class of semigroups generated by spherical sectorial operators, in other terms we aim to find
the class of right linear semigroups which can be represented by the noncommutative Cauchy
integral formula (1.4). A major result in classical semigroups theory states that in the classical
complex case this class is represented by the ω-exponentially bounded analytic semigroups, i.e.
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mappings z 7−→ T(z) which are holomorphic in a sector Dδ ⊆ C with limz→0 T|Dδ′
(z)x = x,

supz∈Dδ′
‖T(z)‖e−ω Re(z) < ∞ for every subsector Dδ′ , x ∈ X, and satisfying the semigroup law

T(z + w) = T(z)T(w) (1.5)

for z, w ∈ Dδ. This result strongly connects the concept of operator semigroup to the theory of
holomorphic functions (cf., e.g., [38, 45, 21]).

The present paper is devoted to study this problem in the noncommutative case.

1.2. A solution of the problem. If we first consider the simpler case of a bounded ope-
rator A ∈ L r(X), then it turns out that the proper definition for T(q) is given by T(q) =
∑

n≥0(A
n/n!)qn since it uniquely extends T(t) in a right slice regular manner (in the analogous

theory for left linear operators we would find
∑

n≥0 q
n(An/n!)). Anyway it turns out that T(p+q)

is different from T(p)T(q) even if p and q commute, and this occurs for any other “reasonable”
extensions of T(t), i.e.

∑

n≥0 q
n(An/n!),

∑

n(Aq)
n/n!,

∑

n(qA)
n/n!.

In order to understand what is the point here and to find the proper semigroup law in the
noncommutative framework, let us consider again the concept of slice regularity with values in H,
or in L r(X), or generally in a Banach two-sided H-algebra Y , i.e. the natural noncommutative
quaternionic counterpart of a Banach algebra (cf. Definition 3.5 below). One fundamental
observation is that the pointwise product of two right slice regular functions is not a right slice
regular function. The proper notion of product is instead given by the slice product, which can
be easily illustrated for polynomial functions or power series. Indeed if we consider for instance
series with coefficients in Y on the left of the indeterminate q, then it is well-known that the
proper way to perform the multiplication consists in imposing commutativity of q with the
coefficients (cf. [37]). Thus if f(q) =

∑

n anq
n and g(q) =

∑

n bnq
n, then their Cauchy product

(or convolution) is defined by

(f ∗ g)(q) :=
∑

n

(
∑

k+h=n

akbh

)

qn. (1.6)

Note that this product is different from the pointwise product of f and g. This happens even
when one of the two polynomials is constant, indeed if g(q) = b0 the pointwise product is
f(q)g(q) =

∑

n anq
nb0, while (f ∗ g)(q) =

∑

n anb0q
n. The general notion of slice product

between two right slice regular functions f and g, which is given in Definition 4.9 below and
will be denoted simply by f · g, turns out to be the natural generalization to functions of the
product (1.6) of power series. Since we are particularly interested in operator-valued functions
(e.g. T(t) =

∑

n(A
n/n!)qn if A is bounded), let us consider the case Y = L r(X) where the

product is the composition of operators. If F : ΩD −→ L r(X) and G : ΩD −→ L r(X) are two
given right slice regular operatorial functions, then the function q 7−→ F(q)G(q) is not right slice
regular in general, and the correct notion of product turns out to be the slice product F ·G, that
in the special operatorial case Y = L r(X) will be denoted by the symbol F⊙ G. For simplicity
let us consider again the case of power series: if (An) and (Bn) are two sequences in L r(X) and
if F(q) =

∑

n Anq
n and G(q) =

∑

n Bnq
n, then we have

(F ⊙ G)(q) :=
∑

n

(
∑

k+h=n

AkBh

)

qn.

We are now in position to describe the main result of our paper. We prove that if A is a spherical
sectorial operator with vertex ω satisfying (1.3), then it generates an ω-exponentially bounded
right slice regular semigroup, i.e. a mapping T : Ωδ ∪ {0} −→ L r(X) such that T|Ωδ

is right

slice regular, limq→0 T|Ωδ′
(q)x = x, supz∈Ωδ′

‖T(q)‖e−ω Re(q) < ∞ for every q ∈ Ωδ′ , δ
′ ∈ ]0, δ[ ,
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x ∈ X, and the following noncommutative right linear operator semigroup law holds

T(p + q) = T(p)⊙p T(q) ∀p, q ∈ Ωδ with pq = qp, (1.7)

where T(p) ⊙p T(q) means that we are considering the slice product with respect to p, with q
fixed. Vice versa we prove that if T is an ω-exponentially bounded right slice regular semigroup,
then its generator is spherical sectorial with vertex ω. Thus we have obtained the following
theorem.

Theorem H. Let X be a Banach two-sided H-module, let T : [0,∞[ −→ L r(X) be a strongly
continuous right linear semigroup and let A : D(A) −→ X be its right linear generator. Then
A is a spherical sectorial operator with vertex ω satisfying (1.3) if and only if T extends to an
ω-exponentially bounded right slice regular semigroup.

This theorem implies that right slice regular semigroups provide the class of semigroups which
can be represented by Cauchy integral formula (1.4), namely the infinite dimensional exponential
in a noncommutative framework.

Theorem H is a particular case of our main result, Theorem 7.1, which is valid in a very general
noncommutative setting when the set of scalars H is replaced by an arbitrary associative real
*-algebra A, including e.g. all the Clifford algebras Rn. Indeed the relevant subset of this kind
of algebras is the so-called quadratic cone QA, which enjoys the same slice complex nature of H,
i.e. QA =

⋃

j∈SA Cj, where SA := {q ∈ A : q2 = −1, qc = −q}, q 7−→ qc being the operation

of *-involution (conjugation), and Cj denotes again the Euclidean plane of A generated by 1
and j. This fact allows to employ many arguments of the quaternionic case, even if additional
difficulties may arise, due mainly to the existence of zero-divisors. A central point of this analysis
is the introduction of the general definition of a slice regular function with values in a Banach
two-sided A-module. This new notion requires the concept of vector stem function (see [27] for
the scalar case) and unifies all the different notions of slice regular function disseminated in the
literature (cf. [24, 27, 15, 2]). The passage to the vector framework introduces a difficulty which
is not present in the classical commutative complex case, since when we evaluate a right slice
regular operator-valued function q 7−→ F(q) at a vector x, we obtain that q 7−→ F(q)x is not
right slice regular anymore (cf. Example 5.5 below). This difficulty is evident in handling the
noncommutative counterpart of the Laplace transform (see Section 6.2), an important tool for
the proof of Theorem H.

We point out that our results comprise the classical ones as a particular case. Indeed, if
A = C and X is a usual complex Banach space in which zx = xz for x ∈ X and z ∈ C, then
(1.7) reduces to (1.5) and (1.4) coincides with the standard Cauchy integral formula for analytic
semigroups, because Cz(A) = (z Id− A)−1.

1.3. Structure of the paper. The next section is devoted to some preliminary notions and
properties concerning real *-algebras A. In Section 3 we recall the precise definition of Banach
two-sided A-module, we introduce the natural notion of Banach two-sided A-algebra and we
describe an important example of this kind of algebras, the one of right linear operators acting
on a Banach two-sided A-module. In Section 4 we define the general concept of slice regular
function with values in a Banach two sided A-module and we prove its main properties, while
in the following Section 5 we provide a list of relevant examples, including right power series,
noncommutative exponentials, slice compositions of operatorial functions and spherical resolvent
operators. In Section 6 we recall the definition of right linear operator semigroups and we
introduce the new class of right slice regular semigroups. The last section is devoted to prove
that right slice regular semigroups represent precisely the class of semigroups generated by a
spherical sectorial operator.
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2. Preliminaries

Let us assume that

A is a nontrivial real algebra with unit 1A, (2.1)

i.e. we are given a real vector space A 6= {0}, endowed with a bilinear product A × A −→
A : (p, q) 7−→ pq whose unit is 1A. The simplest examples are provided by the set of real
numbers R and by the complex plane C, but in general we will admit that the product in A is
noncommutative, as in the case of the skew-field H of quaternions, whose precise definition will
be recalled in Example 2.6 below. From the bilinearity of the product it follows that

r(pq) = (rp)q = p(rq) ∀r ∈ R, ∀p, q ∈ A. (2.2)

In this way we can identify the algebra of real numbers R with the subalgebra of A generated
by 1A, thus 1 = 1A and the notation rq is not ambiguous if r ∈ R and q ∈ A. Notice that

rq = qr ∀r ∈ R, ∀q ∈ A. (2.3)

We can therefore consider the following well-known generalization of the complex conjugation.

Definition 2.1. Assume that (2.1) holds. We say that a mapping A −→ A : q 7−→ qc is a
*-involution if it is R-linear and

(qc)c = q ∀q ∈ A,

(pq)c = qcpc ∀p, q ∈ A,

rc = r ∀r ∈ R.

If A is endowed with a *-involution, we also say that A is a real *-algebra.

In the remainder of the paper we will assume that A is associative and its real dimension is
finite. We will summarize this and the previous assumptions by saying that

A is a finite dimensional associative nontrivial real *-algebra with unit, (2.4)

and we will endow A with the (Euclidean) topology induced by any norm on it.

Definition 2.2. Assume that (2.4) holds. The imaginary sphere in A is defined by

SA :=
{
q ∈ A : qc = −q, q2 = −1

}
, (2.5)

and we set

Cj := {r + sj ∈ A : r, s ∈ R} , j ∈ SA,

i.e. Cj is the real vector subspace of A generated by 1 and j ∈ SA or, equivalently, the real
subalgebra of A generated by j. The quadratic cone QA is defined by

QA :=
⋃

j∈SA
Cj. (2.6)

Finally the real part Re(q) and the imaginary part Im(q) of an element q ∈ A are defined by

Re(q) := (q + qc)/2, Im(q) := (q − qc)/2, q ∈ A. (2.7)

Observe that QA is a real cone and that every q ∈ QA satisfies the real quadratic equation
q2 − 2Re(q)q + qqc = 0, which justifies the name “quadratic cone”. In general, QA is not a real
vector subspace of A (cf. Remark 2.7 below).

In general Re(q) and Im(q) are not real numbers, at variance with the customary complex
notation. If z ∈ C then we set ℜ(z) := (z + z)/2 ∈ R and ℑ(z) := (z − z)/2i ∈ R.

In the remainder of the paper, except for Section 3, we will assume that

SA 6= ∅, (2.8)
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in particular this removes from consideration the set of real numbers R. For the reader’s con-
venience, in the following proposition, we give the proof of some useful properties enjoyed by a
real *-algebra.

Proposition 2.3. Assume that (2.4) and (2.8) hold. Then

(a) For every j ∈ SA we have that 1 and j are linearly independent and

r, s ∈ R, q = r + sj =⇒ qc = r − sj, qqc = qcq = r2 + s2,

p, q ∈ Cj =⇒ pq = qp.

(b) The following properties hold:

qn ∈ QA ∀q ∈ QA, ∀n ∈ N,

q ∈ QAr{0} =⇒ ∃q−1 = (qqc)−1qc ∈ QAr{0}.
(c) We have that

Cj ∩ Ck = R ∀j,k ∈ SA, j 6= ±k. (2.9)

(d) The following set equalities hold:

SA = {q ∈ QA : q2 = −1},
QA = R ∪ {q ∈ A : Re(q) ∈ R, qqc ∈ R, qqc > Re(q)2}.

In particular if q ∈ QArR, then Im(q) Im(q)c > 0, j := Im(q)/
√

Im(q) Im(q)c ∈ SA, and

q = Re(q) +
√

Im(q) Im(q)c j ∈ Cj.
(e) QA = A if and only if A is (a real ∗-algebra) isomorphic to C or H. In this case, if

p, q ∈ A = QA, then

pq = qp ⇐⇒ ∃k ∈ SA : p, q ∈ Ck. (2.10)

Proof. (a) If r, s ∈ R, s 6= 0, and r + sj = 0, then (r/s)2 = (−j)2 = −1, a contradiction leading
to the linear independence of 1 and j. The properties of the *-involution yields, for r, s ∈ R,
(r + sj)c = r + sjc = r − sj. The formula for qqc and the equality pq = qp are easily verified.

(b) The two properties follow from an easy induction and a direct computation.
(c) If (Cj ∩ Ck)rR 6= ∅ then there are r, s ∈ R, s 6= 0, such that k = r + sj, therefore the

equality −1 = k2 = r2 − s2 + 2rsj yields r = 0 and s2 = 1. It follows that k = ±j.
(d) If q ∈ QA and q2 = −1, then there are r, s ∈ R, j ∈ SA such that q = r + sj, r = 0,

and s2 = 1. Therefore qc = −q and the characterization for SA is proved. Concerning the
second equality, from (a) it follows that, for every q ∈ QArR, we have Re(q) ∈ R, qqc ∈ R and
qqc > Re(q)2. On the other hand if q ∈ ArR satisfies these three conditions, then Im(q) 6= 0
(otherwise q = (q+q)/2 = (q+qc)/2 ∈ R) and qqc = q(q+qc)−q2 = (q+qc)q−q2 = qcq, therefore

Im(q) Im(q)c = qqc−Re(q)2 > 0, j := Im(q)/
√

Im(q) Im(q)c ∈ SA, q = Re(q)+
√

Im(q) Im(q)c j ∈
Cj and (d) is proved.

(e) By the second part of (b), if A = QA, then A is a division algebra and hence Frobenius’
theorem implies that A is isomorphic to C or H (cf. [19, § 8.2.4]). The converse implication and
(2.10) are evident if A = C and well-known if A = H (cf. Example 2.6 and Remark 2.7). �

Remark 2.4. Part (d) of Proposition 2.3 shows that definitions (2.5) and (2.6) are consistent
with the apparently different definitions given in [27]. �

Definition 2.5. Assume that (2.4) and (2.8) hold. If j ∈ SA, we define the real ∗-algebra
isomorphism φj : C −→ Cj by setting

φj(r + si) := r + sj, r, s ∈ R.
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Given a subset D of C, invariant under complex conjugation, the circular set associated to D is
the subset ΩD of QA defined by

ΩD :=
⋃

j∈SA
φj(D) = {r + sj ∈ QA : r, s ∈ R, r + si ∈ D, j ∈ SA}.

A subset of QA is said to be circular if it is equal to ΩD for some set D as above.

Observe that if D is open in C, then ΩD is a relatively open subset of QA, because the function
QA → C : q 7−→ Re(q) + i

√

Im(q) Im(q)c easily extends to a continuous function on the whole
A.

We recall that a real algebra A satisfying (2.4) is said to be Banach if it is equipped with a
(complete) norm | · | which is submultiplicative, i.e. |pq| ≤ |p||q| for every p, q ∈ A, and |1| = 1.

In what follows, we will often assume that

A is Banach with a norm | · | such that, for every j ∈ SA, |pq| = |p||q| if p, q ∈ Cj. (2.11)

Observe that (2.11) implies the compactness of SA. Indeed, by definition (2.5), SA is closed in A.
Moreover SA is contained in the compact sphere {q ∈ A : |q| = 1}, because |q|2 = |q2| = |−1| = 1
if q ∈ SA. As an immediate consequence of the compactness of SA, one obtains that QA is closed
in A. We remark that (2.11) is ensured by the following condition

A is Banach with a norm | · | such that |q|2 = qqc for every q ∈ QA. (2.12)

Notice that under assumption (2.12) φj is an isometry. It is worth also observing that (2.11)
and (2.12) are equivalent if the norm | · | is induced by a scalar product on A (cf. [19, §10.1]).

Example 2.6. A remarkable class of associative real ∗-algebras is the one of Clifford algebras (cf.
[31, 33] and [29, Section 1]). Let p, q ∈ N, let n = p+ q and let P(n) be the family of all subsets
of {1, . . . , n}, where P(0) = ∅. Identify R with the vector subspace R×{0} of R2n = R×R

2n−1

and denote by {eK}K∈P(n) the canonical basis of R2n , where e∅ := 1. For convenience, indicate

e{k} also by ek if k ∈ {1, . . . , n}. Let us define a real bilinear and associative product on R2n by
imposing that

• 1 is the neutral element;
• e2k = 1 if k ∈ {1, . . . , p} and e2k = −1 if k ∈ {p + 1, . . . , n};
• ekeh = −ehek if k, h ∈ {1, . . . , n} with k 6= h;
• eK = ek1 · · · eks if K ∈ P(n)r{∅} and K = {k1, . . . , ks} with k1 < . . . < ks.

This product on R2n defines the so-called Clifford algebra C ℓp,q of signature (p, q), which is
denoted also by Rp,q. Evidently, such an associative real algebra is not commutative if n ≥ 2.
The Clifford conjugation of Rp,q is the ∗-involution x 7−→ x which fixes eK if K has s elements
and s ≡ 0, 3 mod 4 and sends eK into −eK if s ≡ 1, 2 mod 4. Endowing Rp,q with Clifford
conjugation, we obtain a real ∗-algebra satisfying (2.4). However, such an algebra Rp,q does not
have both properties (2.8) and (2.11) if p ≥ 1:

• SR0,0 = ∅ (R0,0 = R indeed) and SR1,0 = ∅, so R0,0 and R1,0 do not verify (2.8).

• SR2,0 and SR1,1 are 2-hyperboloids in R
4 (recall that R2,0 and R1,1 are isomorphic) and

hence they are not compact. It follows that Rp,q does not admit any norm with property
(2.11) if p ≥ 2 or p = 1 and q ≥ 1, because in these cases SR2,0 ⊂ SRp,q or SR1,1 ⊂ SRp,q .

Let us consider the case p = 0 and n = q ≥ 1. For simplicity, we use the alternative
notation Rn instead of R0,n. By direct inspection, one verifies that a point x =

∑

K∈P(n) xKeK
of Rn with xK ∈ R belongs to the quadratic cone QRn of Rn if and only if it satisfies the following
polynomial equations

xK = 0 and 〈x, xeK〉 = 0 for every K ∈ P(n)r{∅} with e2K = 1,
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where 〈·, ·〉 denotes the standard scalar product on Rn = R2n . On Rn it is defined the following
submultiplicative norm, called Clifford operator norm:

|x|C ℓ := sup{|xa| ∈ R : |a| = 1},

where | · | indicates the Euclidean norm of Rn = R
2n . It turns out that:

• QRn = Rn if and only if n ∈ {1, 2}. In particular, R1 and R2 are division algebras.
• |x|C ℓ = |x| =

√
xx for every x ∈ QRn and hence | · |C ℓ = | · | if n ∈ {1, 2}. If n ≥ 3,

the Euclidean norm | · | of Rn is not submultiplicative (e.g. |(1 + e{1,2,3})
2| =

√
8 > 2 =

|1 + e{1,2,3}|2) and Rn has zero divisors (e.g (1 + e{1,2,3})(1− e{1,2,3}) = 0).

Endowing Rn (n ≥ 1) with Clifford conjugation and Clifford operator norm, we obtain a
Banach real ∗-algebra satisfying (2.8) and (2.12). In what follows we always consider Rn equipped
with such a structure of Banach real ∗-algebra. The cases n = 1 and n = 2 are very important:

• R1 coincides with C endowed with the standard conjugation, if we set e1 = i.
• R2 is called algebra of quaternions. Usually it is denoted by H and one writes i, j and k
in place of e1, e2 and e{1,2}, respectively. �

Remark 2.7. Two quaternions p, q ∈ H commute if and only if they belong to the same slice
Cj. Let p, q ∈ HrR and let j,k ∈ SH such that p ∈ Cj and q ∈ Ck. The equality pq = qp is
equivalent to jk = kj. Since jk−kj = (j−k)(j+k) and H has no zero divisors, we conclude that
p and q commute if and only if j = ±k, i.e. p and q belong to the same slice Cj. This is not true
in Rn if n ≥ 3; indeed, e3, e{1,2} ∈ SR3

, e3 6= ±e{1,2}, but e3e{1,2} = e{1,2}e3. The reader observes
that QRn is not a real vector subspace of Rn if n ≥ 3. Indeed, since e3 and e{1,2} commute,

e3 + e{1,2} does not belong to QR3
, because (e3 + e{1,2})(e3 + e{1,2} ) = 2 + 2e{1,2,3} 6∈ R. �

3. Two-sided A-algebras

3.1. Two-sided modules and algebras. Let us recall that, if A satisfies (2.4), an abelian
group (X,+) is a left A-module if it is endowed with a left scalar multiplication A×X −→ X :
(q, x) 7−→ qx such that

q(x+ y) = qx+ qy ∀x, y ∈ X, ∀q ∈ A,

(p+ q)x = px+ qx ∀x ∈ X, ∀p, q ∈ A,

1x = x ∀x ∈ X,

p(qx) = (pq)x ∀x ∈ X, ∀p, q ∈ A.

An abelian subgroup Y of X is a left A-submodule if qx ∈ Y whenever x ∈ Y and q ∈ A. If A
is a field we obtain the classical notions of (left) vector space and subspace.

The definition of right A-module is completely analogous: it is required that the abelian group
(X,+) is endowed with a right scalar multiplication X × A −→ X : (x, q) 7−→ xq such that

(x+ y)q = xq + yq ∀x, y ∈ X, ∀q ∈ A,

x(p+ q) = xp+ xq ∀x ∈ X, ∀p, q ∈ A,

x1 = x ∀x ∈ X,

(xp)q = x(pq) ∀x ∈ X, ∀p, q ∈ A.

An abelian subgroup Y of X is a right A-submodule if xq ∈ Y whenever x ∈ Y and q ∈ A.

Definition 3.1. Assume that (2.4) holds and let (X,+) be an abelian group. We say that
X is a two-sided A-module (or A-bimodule) if it is endowed with two scalar multiplications
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A × X −→ X : (q, x) 7−→ qx and X × A −→ X : (x, q) 7−→ xq such that X is both a left
A-module and a right A-module and

p(xq) = (px)q ∀x ∈ X, ∀p, q ∈ A,

rx = xr ∀x ∈ X, ∀r ∈ R. (3.1)

An abelian subgroup Y of X is a two-sided A-submodule if it is both a left and a right A-
submodule of X.

If A were simply a ring, then (2.2) and (2.3) make no sense, thus condition (3.1) should be
omitted (see, e.g., [5, Chapter 1, Section 2, p. 26-28]). In our case A is an algebra and it is
natural to require (3.1).

In [5] it is suggested a self-explanatory notation which is useful when we consider different
sets of scalars simultaneously: if X is an abelian group then

AX means that X is considered as a left A-module,

XA means that X is considered as a right A-module.

Definition 3.2. Assume (2.4) and (2.11) hold and let X be a two-sided A-module. A function
‖ · ‖ : X −→ [0,∞[ is called an A-norm on X if

‖x‖ = 0 ⇐⇒ x = 0,

‖x+ y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ X,

‖qx‖ ≤ |q| ‖x‖, ‖xq‖ ≤ |q| ‖x‖ ∀x ∈ X, ∀q ∈ A. (3.2)

Equipped with this kind of norm, X is called a normed two-sided A-module and we endow it
with the topology induced by the metric d : X ×X −→ [0,∞[ : (x, y) 7−→ ‖x − y‖. Finally, we
say that X is a Banach two-sided A-module if this metric d is complete.

Observe that if q ∈ QAr{0} and x ∈ X, then (2.11) implies that ‖xq‖ ≤ ‖x‖|q| = ‖xqq−1‖|q| ≤
‖xq‖|q−1||q| = ‖xq‖, therefore ‖xq‖ = ‖x‖|q|. A similar argument applies to ‖qx‖, therefore we
have the following result.

Lemma 3.3. Assume (2.4) and (2.11) hold, and let X be a normed two-sided A-module. Then

‖qx‖ = ‖xq‖ = |q|‖x‖ ∀x ∈ X, ∀q ∈ QA.

Remark 3.4. If X is a normed two-sided A-module whose A-norm is ‖ · ‖, then, since R ⊆ QA,
the preceding lemma implies that ‖ · ‖ is a norm on RX in the usual real sense. Therefore the
metric on X is the one induced by ‖ · ‖ as a standard norm on RX. Finally observe that X is a
Banach two-sided A-module if and only if RX is a real Banach space. �

Definition 3.5. Assume that (2.4) holds. A two-sided A-module X is called (associative) two-
sided A-algebra if it is endowed with an associative product X ×X −→ X : (x, y) 7−→ xy such
that

x(y + z) = xy + xz ∀x, y, z ∈ X,

(x+ y)z = xz + yz ∀x, y, z ∈ X,

q(xy) = (qx)y ∀x, y ∈ X, ∀q ∈ A,

(xy)q = x(yq) ∀x, y ∈ X, ∀q ∈ A.

If we also assume that (2.11) holds, then we say that X is a normed two-sided A-algebra provided
X is endowed with an A-norm ‖·‖ such that ‖xy‖ ≤ ‖x‖‖y‖ for every x, y ∈ X. If X is complete
we say that X is a Banach two-sided A-algebra. If in addition X is nontrivial and has a unit
1X such that ‖1X‖ = 1, then X is called a Banach two-sided A-algebra with unit.
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Example 3.6. Assume A satisfies (2.4) and (2.11), e.g. A = Rn. Given a nonempty set S,
the set of bounded A-valued functions on S, equipped with the pointwise operations of sum, of
product, of left and right multiplications by scalars in A, of ∗-involution f c(s) := (f(s))c and
endowed with supremum norm ‖f‖∞ := sups∈S |f(s)|, is a Banach two-sided A-algebra with
unit. In particular, this is true for each power Am. If S has a topological structure, then the
same pointwise defined operations make the set of bounded continuous A-valued functions on S
a Banach two-sided A-algebra with unit. �

Another example of Banach two-sided A-algebra with unit, which is of crucial importance in
this paper, is the one of right linear operators on a Banach two-sided A-module. We present
this example in Section 4.

3.2. Right linear operators. Let us recall the concept of right linear operators acting on a
two-sided A-module. Assume that

A satisfies (2.4) and X is a Banach two-sided A-module.

Definition 3.7. Let D(A) be a right A-submodule of X. We say that A : D(A) −→ X is right
linear if it is additive and

A(xq) = A(x)q ∀x ∈ D(A), ∀q ∈ A.

As usual, the notation Ax is often used in place of A(x). We use the symbol Endr(X) to denote
the set of right linear operators A with D(A) = X. The identity operator is right linear and is
denoted by IdX or simply by Id if no confusion may arise. Moreover, if X is a normed two-sided
A-module, then we say that A : D(A) −→ X is closed if its graph is closed in X ×X. As in the
classical theory, we set D(An) := {x ∈ D(An−1) : An−1x ∈ D(A)} for every n ∈ Nr{0}.

Let us also recall the following definition (see, e.g., [5, Chapter 1, p. 55-57]).

Definition 3.8. Let D(A) be a right A-submodule of X and let q ∈ A. If A : D(A) −→ X is a
right linear operator, then we define the mapping qA : D(A) −→ X by setting

(qA)(x) := qA(x), x ∈ D(A). (3.3)

If D(A) is also a left A-submodule of X, then we can define Aq : D(A) −→ X by setting

(Aq)(x) := A(qx), x ∈ D(A). (3.4)

The sum of operators is defined in the usual way.

It is easy to see that the operators defined in (3.3) and (3.4) are right linear.

Definition 3.9. Assume X is normed with A-norm ‖ · ‖. For every A ∈ End
r(X), we set

‖A‖ := sup
x 6=0

‖Ax‖
‖x‖ (3.5)

and we define the set
L

r(X) := {A ∈ End
r(X) : ‖A‖ < ∞}.

Observe that ‖A‖ can be equivalently defined as the operatorial norm of A as an element of
End(RX), therefore

L
r(X) = {A ∈ End(RX) : A is right linear, ‖A‖ < ∞}

= {A ∈ L (RX) : A is right linear},
where L (RX) = {A ∈ End(RX) : ‖A‖ < ∞} is the usual normed R-vector space of continuous
R-linear operators on RX. The sum of operators, the scalar multiplications (3.3) and (3.4),
the composition, and (3.5), make L r(X) a normed two-sided A-algebra with unit Id. If X is
Banach, then L r(X) is Banach. Let us recall the following lemma (cf. [30, Lemma 2.19]).
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Lemma 3.10. Let X be a normed two-sided A-module with A-norm ‖·‖. The R-vector subspace
L r(X) of L (RX) is closed with respect to the topology of pointwise convergence and hence with
respect to the uniform operator topology of L (RX).

It is also useful to consider the following complex structures on the two-sided A-module X.

Definition 3.11. Assume (2.8) holds and let j ∈ SA. We endow the abelian group (X,+) with
the complex scalar multiplication C×X −→ X defined by

zx := xφj(z), x ∈ X, z ∈ C. (3.6)

The resulting complex vector space will be denoted by Xj. If A : D(A) −→ X is a right
linear operator, then we define the complex subspace D(Aj) of Xj and the C-linear operator
Aj : D(Aj) −→ Xj by setting D(Aj) := D(A) and Aj(x) := A(x) for every x ∈ D(Aj).

Remark 3.12. (i) Fix j ∈ SA. Since Cj ⊆ QA, if X is normed with A-norm ‖ · ‖, then Lemma
3.3 ensures that ‖ · ‖ is a norm on Xj in the usual complex sense. It is immediate to verify that
(X, ‖ · ‖) is a Banach two-sided A-module if and only if (Xj, ‖ · ‖) is a complex Banach space.

(ii) Let j ∈ SA and let ‖ · ‖ be an A-norm on X. Denote by L (Xj) the C-vector space
of continuous C-linear operators defined on the whole Xj, equipped with the usual pointwise
operations of sum and scalar multiplication. We have that L r(X) ⊆ L (Xj) ⊆ L (RX), the
second inclusion being strict if X 6= {0}. If X 6= {0} and there exists q ∈ A such that jq − qj
is invertible in A (this is true if, e.g., A = H), then the operator X → X : x 7−→ xj belongs to
L (Xj)rL r(X) and the first inclusion is strict too. Furthermore, if A coincides with the real
subalgebra generated by QA (e.g. if A is equal to some Rn), then L r(X) =

⋂

i∈SA L (Xi).

(iii) There would be no need to introduce the notation Aj, the notion of mapping being a
set-theoretical one. Anyway this is convenient to shorten some statements about A considered
as a linear operator on a complex vector space. �

4. Slice functions with values in a two-sided A-module

The aim of this section is to introduce the notion of vector-valued slice regular function and
to study its properties. We assume that

A is a real algebra satisying (2.4), (2.8) and (2.11).

and that

X is a Banach two-sided A-module with A-norm ‖ · ‖.
In order to introduce the notion of X-valued slice function, we consider X as a real vector space,
i.e. RX, and we define in X ×X a structure of complex vector space by defining the standard
componentwise sum and the scalar multiplication C× (X ×X) −→ (X ×X) : (z, v) 7−→ zv:

(r + si)(x, y) := (rx− sy, ry + sx) (4.1)

for z = r + si, v = (x, y), r, s ∈ R, x, y ∈ X. Endowing X ×X with this complex vector space
structure, we obtain the so-called complexification X ⊗R C of X. The complex conjugation of
v = (x, y) ∈ X ⊗R C is defined by

v := (x,−y).

We make X⊗RC a real Banach space by defining ‖(x, y)‖ := max{‖x‖, ‖y‖} for (x, y) ∈ X⊗RC,
thus if D is a nonempty open subset of C ≃ R2, then C1(D;X ⊗R C) will denote the set of real
continuously differentiable functions from D into X ⊗R C in the sense of differential calculus in
real Banach spaces. If in addition

X is a Banach two-sided A-algebra with unit 1X ,
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the following product makes X ⊗R C a complex algebra:

(x, y)(x′, y′) := (xx′ − yy′, xy′ + yx′).

By setting 1 := (1X , 0) ∈ X ⊗R C and i := (0, 1X ) ∈ X ⊗R C, every v = (x, y) ∈ X ⊗R C

can be uniquely written in the form v = x1 + yi = x + yi, and i is called an imaginary unit :
X ⊗R C = X +Xi = {v = x+ yi : x, y ∈ X} and i2 = −1. Observe that iv = iv = vi for every
v ∈ X ⊗R C and the structure of real vector space induced by the scalar multiplication (4.1)
with s = 0 is the same of RX × RX.

Remark 4.1. Let D be a nonempty open subset of C. Using [42, Theorem 3.31, p. 79], the
vector Cauchy integral formula and standard complex analysis arguments for scalar functions,
it is easy to check that the following statements are equivalent:

(i) F ∈ C1(D;X ⊗R C) and ∂F
∂r + i∂F∂s = 0.

(ii) F is complex differentiable in D.
(iii) z 7−→ 〈L,F (z)〉 is holomorphic in D for every C-linear continuous L : X ⊗R C −→ C. �

In the remaining part of this section, D will denote a nonempty subset of C invariant under
complex conjugation.

Definition 4.2. A function F = (F1, F2) : D −→ X ⊗R C is said to be a stem function if

F (z) = F (z) ∀z ∈ D,

i.e. F1(z) = F1(z) and F2(z) = −F2(z) for every z ∈ D.
Let ΩD be the circular subset of QA associated to D and, for every j ∈ SA, let φj : C −→ Cj

be the isomorphism φj(r + si) = r + sj (cf. Definition 2.5). We say that f : ΩD −→ X is a
(X-valued) right slice function if there exists a stem function F = (F1, F2) : D −→ X⊗RC such
that

f(φj(z)) = F1(z) + F2(z)j ∀z ∈ D, ∀j ∈ SA. (4.2)

In this case, we write f = Ir(F ). In the reminder of the paper we will set fj := f ◦φj : D −→ Xj.

The right slice function f is well-defined and it is induced by a unique stem function. Indeed,
if r ∈ R, then F2(r) = 0 (being F2(z) = −F2(z)) and f(r) = F1(r) independently from the
choice of j ∈ SA. If q ∈ QArR, then it admits two representations q = φj(z) = φ−j(z) with
z ∈ DrR and j ∈ SA. However, f(q) is uniquely determined by F :

f(φj(z)) = F1(z) + F2(z)j = F1(z) + F2(z)(−j) = f(φ−j(z)).

The stem function F is in turn uniquely determined by f :

F1(z) =
1

2
(f(q) + f(qc)) , F2(z) = −1

2
(f(q)− f(qc)) j (4.3)

if z ∈ D, j ∈ SA and q = φj(z). The latter equalities imply the following representation formula
for right slice functions f :

f(r + sk) =
1

2
(f(q) + f(qc))− 1

2
(f(q)− f(qc)) jk (4.4)

if q = r + sj ∈ ΩD, r, s ∈ R and j,k ∈ SA.
We now introduce the notion of slice regularity for vector-valued mappings.

Definition 4.3. Let D ⊆ C be open and let f : ΩD −→ X be a right slice function with f =
Ir(F ). We say that f is right slice regular if F is holomorphic in D, i.e. if F ∈ C1(D;X ⊗RC)
and

∂F

∂r
+ i

∂F

∂s
= 0, (4.5)



14 RICCARDO GHILONI AND VINCENZO RECUPERO

where (r, s) denote the real coordinates in C. If F = (F1, F2), then (4.5) is equivalent to

∂F1

∂r
=

∂F2

∂s
,

∂F1

∂s
= −∂F2

∂r
. (4.6)

Definition 4.4. The notions of left slice and left slice regular functions are completely analogous
to the right ones. We say that f : ΩD −→ X is a left slice function if there exists a (unique)
stem function F = (F1, F2) : D −→ X⊗RC such that f(φj(z)) = F1(z)+ jF2(z) for every z ∈ D
and j ∈ SA. In this case, we write f = Iℓ(F ). If D is open in C and F is holomorphic in D,
then f is called left slice regular.

Example 4.5. (a) If c ∈ X, then the constant function f : ΩD −→ X : q 7−→ c is obviously
both left and right regular. In the reminder of the paper we will denote the constant functions
by its constant value: f = c.

(b) If X is a Banach two-sided A-algebra, c ∈ X, and f : ΩD −→ X is right slice regular
with f = Ir(F ), then g : ΩD −→ X : q 7−→ cf(q) is right slice regular, since g = Ir(G), where
G(z) = cF (z) is a holomorphic stem function. On the other hand, in general q 7−→ f(q)c is not
a right slice function, but it is left slice regular if f is. �

Proposition 4.6. Let D ⊆ C be open and let f : ΩD −→ X be a right slice function. Then the
following statements are equivalent.

(i) f is right slice regular.
(ii) fj := f ◦ φj : D −→ Xj is holomorphic for every j ∈ SA.
(iii) There exists j ∈ SA such that fj : D −→ Xj is holomorphic.

Proof. Assume thatf = Ir(F ) with F = (F1, F2). Since fj(z) = f(φj(z)) = F1(z) + F2(z)j,
recalling (3.6), if f satisfies (i), then it holds

∂fj
∂r

+ i
∂fj
∂s

=
∂F1

∂r
+

∂F2

∂r
j+

(
∂F1

∂s
+

∂F2

∂s
j

)

j

=
∂F1

∂r
+

∂F2

∂r
j+

∂F1

∂s
j− ∂F2

∂s

=
∂F1

∂r
− ∂F2

∂s
+

(
∂F2

∂r
+

∂F1

∂s

)

j = 0.

This proves (ii). The implication (ii) =⇒ (iii) is evident. Finally, suppose (iii) holds, i.e.
∂fj
∂r +

∂fj
∂s j = 0 for some j ∈ SA. Thanks to (4.3), we infer that

2
∂F1

∂r
(z) =

∂fj
∂r

(z) +
∂fj
∂r

(z) = −∂fj
∂s

(z)j− ∂fj
∂s

(z)j = 2
∂F2

∂s
(z)

for every z ∈ D. Similarly, we obtain also the second equality of (4.6), and (i) follows. �

Remark 4.7. If A = H and D ⊆ C is connected, then Proposition 4.6 entails that a function
f : ΩD −→ H is slice regular if and only if it is regular in the sense of [24, Definition 2.2]. �

For X-valued slice regular functions the following extension lemma holds.

Lemma 4.8. Let D ⊆ C be open and connected, and let f : ΩD −→ X be a right slice regular
function. If f(q) = 0 for all q ∈ ΩD ∩ R, then f = 0.

Proof. Since D is connected and invariant under complex conjugation, then D∩R 6= ∅. Assume
that f = Ir(F ) with F = (F1, F2). Let r ∈ D ∩ R. Since F (z) = F (z), we have F2(r) = 0.
Choose j ∈ SA. Then

0 = f(φj(r)) = F1(r) + F2(r)j = F1(r),

thus F (r) = 0 for every r ∈ D ∩ R. Hence F = 0 in D and the lemma follows from (4.2). �
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If X is also a Banach two-sided A-algebra with unit, then one can perform the pointwise
product of two right slice functions. However, it is not in general a right slice function. On
the contrary, it is immediately seen that the pointwise product of two stem functions is a stem
function. Therefore it is possible to define the following notion of slice product which generalizes
the convolution product between power series with coefficients in X.

Definition 4.9. Let X be a Banach two-sided A-algebra with unit, and let f : ΩD −→ X and
g : ΩD −→ X be two right slice functions with f = Ir(F ), g = Ir(G) and F = F1 + F2 i,
G = G1 +G2 i. The (right) slice product of f and g is the right slice function f · g := Ir(FG),
where FG is the pointwise product of F and G:

(FG)(z) :=
(
F1(z)G1(z)− F2(z)G2(z)

)
+
(
F1(z)G2(z) + F2(z)G1(z)

)
i ∀z ∈ D.

Since a real bilinear product of two holomorphic vector functions is holomorphic, we immedia-
tely get the following result.

Proposition 4.10. The slice product of two right slice regular functions is right slice regular.

Some more words are necessary concerning the notation for the slice product. If we want to
stress the role of the independent variable, the following notation is convenient:

f(q) ·q g(q) := (f · g)(q).

This is especially useful when the functions f and g depend on several variables:

f(p, q) ·q g(p, q) := (f(p, ·) · g(p, ·))(q).

Dealing with slice powers, the following notation will be also used for n ∈ N:

f(p, q)·qn := f(p, q) ·q f(p, q) ·q · · · ·q f(p, q)
︸ ︷︷ ︸

n times

,

i.e. this n-th power is the slice product with respect to q of f(p, q) with itself computed n times.

5. Examples of vector slice regular functions

In this section we consider some fundamental examples of vector-valued right slice regular
functions, which will be exploited in the remainder of the paper. Throughout the section we
assume that

A satisfies (2.4) and (2.11).

5.1. Right power series. Let (cn) be a sequence in a Banach two-sided A-module X. Consider
the series s =

∑

n≥0 cnq
n with q ∈ QA. Thanks to Proposition 2.3(b) and Lemma 3.3, we

know that ‖cnqn‖ = ‖cn‖|q|n. This equality ensures the validity of Abel theorem for s. In

other words, if R ∈ [0,+∞] is defined by 1/R := lim supn→+∞
n
√

‖cn‖ and if R > 0, then s
converges totally on compact subsets of the ball ΩR := {q ∈ QA : |q| < R}. The sum function
ΩR −→ X : q 7−→∑

n≥0 cnq
n of s, we denote again by s, is right slice regular. Indeed, if BR is the

Euclidean open ball of C centered at 0 of radius R and S1, S2 : BR −→ X are functions defined
by S1(z) :=

∑

n≥0 cnℜ(zn) andS2(z) :=
∑

n≥0 cnℑ(zn), then S = (S1, S2) is a holomorphic stem

function and s = Ir(S). We have just seen that convergent power series with left coefficients in
X are right slice regular. In general, convergent power series with right coefficients are not right
slice functions, but they are left slice regular functions.
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5.2. Noncommutative exponentials. In this subsection we introduce some noncommutative
generalizations of the complex exponential functions z 7−→ eaz, where a is a vector of a complex
Banach algebra. In what follows, we also give the definition of the “slice translation” of these
exponential mappings. First we recall that there exists a positive constant C, depending only
on A, such that

|(p+ q)·qn| ≤ C
(
(Re(p) + Re(q))2 + (| Im(p)|+ | Im(q)|)2

)n/2

for every p, q ∈ QA and for every n ∈ N (cf. [28, Inequality (3.2)]). Therefore the series in the
following formula (5.1) is convergent on the whole QA.

Definition 5.1. Let X be a Banach two-sided A-algebra, let x ∈ X and let p ∈ QA. We define
the right slice regular function expxp : QA −→ X by setting

expxp(q) :=
∑

n≥0

xn

n!
(p + q)·qn, q ∈ QA. (5.1)

For p = 0 we simply set expx := expx0, i.e.

expx(q) := expx0 =
∑

n≥0

xn

n!
qn, q ∈ QA.

We will also write ex := expx(1) =
∑

n≥0
xn

n! , i.e. the usual exponential function in RX.

Here are the properties of the “non-commutative” exponential.

Lemma 5.2. Let X be a Banach two-sided A-algebra, let x ∈ X and let p ∈ QA. Then the
following propositions hold.

(i) Let q ∈ QA with p+ q ∈ QA. If either x2 = 0 or pq = qp, then

expxp(q) = expx(p + q). (5.2)

A partial vice versa is true. If expxtp(tq) = expx(t(p + q)) for every t ∈ R, then either

x2 = 0 or pq = qp or pq − qp is a left zero divisor of A (that is, pq − qp 6= 0 and
(pq − qp)a = 0 for some a ∈ Ar{0}).

(i′) Assume xp = px. Let q ∈ QA with p+ q ∈ QA. If either x2 = 0 or pq = qp, then

expx(p+ q) = expx(p) expx(q). (5.3)

In particular this equality holds if p, q ∈ R. A partial vice versa is true. If expx(t(p+q)) =
expx(tp) expx(tq) for every t ∈ R, then either x2 = 0 or pq = qp or pq− qp is a left zero
divisor of A.

(ii) If xq = qx for some q ∈ QA, then

expx(q) = exq. (5.4)

A partial vice versa is true. If expx(tq) = extq for every t ∈ R, then either xq = qx or x
is a left zero divisor of X.

(iii) expxp is the unique right slice regular function on QA such that expxp(t) =
∑

n≥0
xn

n! (p+t)n

for every t ∈ R.
(iv) If t ∈ R then QA −→ X : q 7−→ expxq (t) is right slice regular.

Proof. Let q ∈ QA with p+ q ∈ QA. Since

expxp(q)− expx(p + q) =
x2

2
(pq − qp) +

∑

n≥3

xn

n!

(
(p+ q)·qn − (p + q)n

)
,
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if either x2 = 0 or pq = qp then (5.2) holds. Suppose that E(t) := expxtp(tq)− expx(tp+ tq) = 0
for every t ∈ R. Observe that

E(t) =
t2x2

2
(pq − qp) + t3hx(t)

for some continuous (real analytic indeed) function hx : R −→ X. Thus we have

0 = lim
R∋t→0

2E(t)t−2 = x2(pq − qp).

If x2 6= 0 and p′ := pq − qp 6= 0, then p′ must be a left zero divisor. Otherwise, being A finite
dimensional, there would exist q′ ∈ A such that p′q′ = 1 and hence x2 = (x2p′)q′ = 0, which is
a contradiction. This completes the proof of point (i).

Let us prove (i′). Suppose xp = px. Thank to this hypothesis, we have that expx(p + q) −
expx(p) expx(q) = x2y for some y ∈ X. Thus, (5.3) is satisfied if x2 = 0. If instead p commutes
with q, then

expx(p+ q)− expx(p) expx(q) =
∑

n≥2

xn

n!

n∑

k=0

(
n

k

)

pkqn−k −
∑

n≥2

n∑

k=0

xk

k!
pk

xn−k

(n− k)!
qn−k = 0.

Suppose that F(t) := expx(tp+ tq)− expx(tp) expx(tq) for every t ∈ R. We have that

F(t) =
x2

2
(qp− pq) + t3kx(t)

for some continuous function kx : R −→ X, and hence 0 = limR∋t→0 2F(t)t
−2 = x2(qp− pq). We

can now conclude as above.
The proof of point (ii) is similar. If xq = qx, then (5.4) is evident. Suppose that G(t) :=

expx(tq)− extq = 0 for every t ∈ R. Since

G(t) =
∑

n≥2

(
xnqn − (xq)n

) tn

n!
=

t2

2
x(xq − qx)q + t3ℓx(t)

for some continuous function ℓx : R −→ X, it follows that 0 = limR∋t→0 2G(t)t−2 = x(xq− qx)q
and hence 0 = x(xq − qx) if q 6= 0. Thus either xq = qx or x is a left zero divisor of X.

Point (iii) is a consequence of (i) and Lemma 4.8, while point (iv) follows from (i) and (iii),
being expxq (t) = expx(q + t) = expxt (q). �

5.3. Operatorial slice composition. Assume that

X is a Banach two-sided A-module.

The slice product deserves a particular attention when functions take on values in the set L r(X)
whose product is the composition of operators. In order to avoid any notational ambiguity we
explicitly state we consider the following product

L
r(X)× L

r(X) −→ L
r(X) : (A,B) 7−→ AB := A ◦ B,

i.e. (AB)(x) = A(Bx) for every x ∈ X, which makes L r(X) a Banach two-sided A-algebra with
unit. In this special case we will adopt a new symbol for the slice composition of operatorial
functions, i.e. the slice product of operatorial functions q 7−→ F(q), q 7−→ G(q) will be denoted
with the symbol “⊙” rather than the dot “·”. For the sake of clarity we formalize this notation
in the following definition.

Definition 5.3. Let D be a nonempty subset of C invariant under complex coniugation and let
ΩD be the circular subset of QA associated to D. Consider two right slice functions F : ΩD −→
L r(X) and G : ΩD −→ L r(X) with F = Ir(F), G = Ir(G) and F = (F1,F2), G = (G1,G2). The
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slice product of F and G will be called (right) slice composition of F and G and will be denoted
by F⊙ G : ΩD −→ L r(X). In other terms

F⊙ G := Ir(FG),
i.e.

(F ⊙ G)(φj(z)) = (F1(z) ◦ G1(z)−F2(z) ◦ G2(z)) + (F2(z) ◦ G1(z) + F1(z) ◦ G2(z))j (5.5)

for every z ∈ D and for every j ∈ SA.

Example 5.4. Let A ∈ L r(X) and let F : ΩD −→ L r(X) be a right slice function. We know
from Example 4.5(b) that the function q 7−→ AF(q) = A ◦ F(q) is a right slice function. In
general, instead, the mapping q 7−→ F(q)A is not right slice. If we consider A as a constant
function, then the slice composition F⊙ A is a right slice function. Explicitly if F = Ir(F) with
F = (F1,F2) then

(F⊙ A)(φj(z)) = F1(z)A + F2(z)A j ∀z ∈ D, ∀j ∈ SA. �

In the following remark we show that, given a right slice function F : ΩD −→ L r(X) and
x ∈ X, in general we cannot conclude that ΩD −→ X : q 7−→ F(q)x is right slice (nor left slice).

Remark 5.5. Let x ∈ X, let F : ΩD −→ L r(X) be a right slice function and let (F1,F2)
be the stem function inducing F. Define Fx : ΩD −→ X by Fx(q) := F(q)x. Therefore we
have that Fx(φj(z)) = (F1(z) + F2(z)j)x = F1(z)x + F2(z)(jx) if z ∈ D and j ∈ SA. Given
j ∈ SA, if Fx = Ir(F ) for some stem function F : D −→ X ⊗R C with F = (F1, F2), then (4.3)
implies that F1(z) = F1(z)x and F2(z) = −F2(z)(jxj). It follows immediately that Fx is right
slice if and only if, for every z ∈ D and for every j,k ∈ SA, F2(z)(kx) = −F2(z)(jxj)k or,
equivalently, F2(z)(kxk − jxj) = 0. A concrete example in which the latter equality fails is as
follows. Denote by {1, i, j, k} the standard real vector basis of H and define A := H, X as H

with its standard structure of Banach two-sided A-module (cf. Example 3.6), x := j ∈ X = H

and the function F : H −→ L r(H) by setting F(q)p := iqp for every p ∈ H = X. Observe that,
in this case, F2(z)p = iℑ(z)p and hence, if z = i ∈ C, j := j ∈ A = H and k := k ∈ A = H, then
F2(z)(kxk − jxj) = 2k 6= 0. It follows that Fx : H −→ H, Fx(q) = iqj, is not right slice. It is
immediate to easy that Fx is not left slice as well. �

5.4. Integrals. Here is a result on the slice regularity of integrals depending on a parameter.

Proposition 5.6. Let X be a Banach two-sided A-module, let I be an interval of R, let D be
a nonempty open subset of C invariant under complex conjugation and let f : I × ΩD −→ X
be a map such that f(·, q) ∈ L1(I;X) for every q ∈ ΩD and f(t, ·) is right slice regular with
f(t, ·) = Ir(F (t, ·)) for every t ∈ I. Suppose there exist j ∈ SA and gr, gs ∈ L1(I;R) such
that, if fj : I × D −→ X denotes the map fj(t, z) := f(t, φj(z)), ‖(∂fj/∂r)(t, z)‖ ≤ gr(t) and
‖(∂fj/∂s)(t, z)‖ ≤ gs(t) for every t ∈ I and for every z = r + is ∈ D. Then the function
h : ΩD −→ X defined by

h(q) :=

∫

I
f(t, q) dt, q ∈ ΩD

is right slice regular and h = Ir(H), where H(z) :=
∫

I F (t, z) dt if z ∈ D.

Proof. If F (t, ·) = (F1(t, ·), F2(t, ·)) for every t ∈ I, then representation formulas (4.3) imply
that Fm(·, z), m = 1, 2, is integrable for every z ∈ D, therefore the definition of H makes sense.
If H = (H1,H2), then Hm(z) =

∫

I Fm(t, z) dt for every z ∈ D, m = 1, 2, H is a stem function,
and

H1(z) +H2(z)j =

∫

I
(F1(t, z) + F2(t, z)j) dt =

∫

I
f(t, φj(z)) dt = h(φj(z))
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for every j ∈ SA and every z ∈ D, i.e. h = Ir(H). Using again formulas (4.3) we also infer
that there exist Gr,m, Gs,m ∈ L1(I;R), m = 1, 2, such that ‖(∂Fm/∂r)(t, z)‖ ≤ Gr,m(t) and
‖(∂Fm/∂s)(t, z)‖ ≤ Gs,m(t) for every (t, z) ∈ I × D. In this way we can perform derivatives
under the sign of integral, obtaining

∂H

∂r
(z) + i

∂H

∂s
(z) =

∫

I

(
∂F

∂r
(t, z) + i

∂F

∂s
(t, z)

)

dt = 0,

therefore H is holomorphic and we are done. �

5.5. Spherical resolvent operator. The notions of spherical spectrum and of spherical resol-
vent operator was given for the first time in [9] for quaternions and in [16] for arbitrary Clifford
algebras Rn. Here we consider the general case introduced in [30, Definition 2.26].

Assume that

A satisfies (2.4), (2.8) and (2.12), and X is a Banach two-sided A-module.

Definition 5.7. Let D(A) be a right A-submodule of X and let A : D(A) −→ X be a closed
right linear operator. Given q ∈ QA, we define the right linear operator ∆q(A) : D(A2) −→ X
by setting

∆q(A) := A2 − 2Re(q)A+ |q|2 Id.
The spherical resolvent set ρs(A) of A and the spherical spectrum σs(A) of A are the circular
subsets of QA defined as follows:

ρs(A) := {q ∈ QA : ∆q(A) is bijective, ∆q(A)
−1 ∈ L

r(X)}
and

σs(A) := QArρs(A).

For every q ∈ ρs(A), we define the operators Qq(A) ∈ L r(X) and Cq(A) ∈ L r(X) by setting

Qq(A) := ∆q(A)
−1

and
Cq(A) := Qq(A)q

c − AQq(A). (5.6)

The operator Cq(A) is called spherical resolvent operator of A at q.

Observe that the boundedness of Cq(A) follows from the closed graph theorem on L (RX) (cf.
[30, Proposition 2.28]). We also mention that a definition that has some similarities with the
spherical spectrum was given in [36] in the context of real *-algebras.

Remark 5.8. Let A = H and let X = H
2 with standard left and right multiplications by scalars

in H (cf. Example 3.6). Define A ∈ L r(H2) by setting

A

(
p
q

)

:=

(
0 i
j 0

)(
p
q

)

=

(
iq
jp

)

∀
(
p
q

)

∈ H
2.

By direct inspection, one easily verifies that λ = λ0+λ1i+λ2j+λ3k ∈ H with λ0, λ1, λ2, λ3 ∈ R

belongs to σS(A) if and only if λ2
0 =

1
2 and λ2

1 + λ2
2 + λ2

3 =
1
2 . In other words, we have

σs(A) =

(

− 1√
2
+

1√
2
SH

)

∪
(

1√
2
+

1√
2
SH

)

.

It is also immediate to see that the operator λ Id − A ∈ L r(H2) is not invertible if and only if
λ ∈ {µ, µc}, where µ := 1√

2
(i+ j). Observe that {µ, µc}∩σs(A) = ∅. This shows that in general

there is no relation between the notion of spherical spectrum and the noncommutative version of
the classical concept of spectrum. Indeed, ∆µ(A) is invertible, but µ Id−A and µc Id−A are not.
Moreover, if λ = 1√

2
(1 + i), then λ Id− A and λc Id− A are invertible, but ∆λ(A) is not.
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It is worth recalling that, in the quaternionic matricial case, the spherical spectrum coincides
with the set of right eigenvalues (cf. [25, Proposition 4.5]): λ ∈ σs(A) if and only if Ax = xλ
for some x ∈ H2r{(0, 0)}. The spherical spectrum is equal also to the set of left eigenvalues,
provided H

2 is endowed with a suitable left scalar multiplication (cf. [26, Example 7.3]). �

In our next result, given j ∈ SA, we describe the deep connection existing between the notions
of spherical resolvent set and of spherical resolvent operator of an operator A on X and the
classical complex ones of resolvent set and of resolvent operator of the operator Aj on Xj.

Theorem 5.9. Let A : D(A) −→ X be a closed right linear operator, j ∈ SA, and let ρ(Aj)
denote the resolvent set of the operator Aj : D(Aj) −→ Xj (cf. Definition 3.11). Then the
following equivalent assertions hold.

(i) Given λ ∈ C, we have that φj(λ) ∈ ρs(A) if and only if both λ and λ belong to ρ(Aj).

(ii) ρs(A) is equal to the circular subset of QA associated to ρ(Aj)∩ρ(Aj), where ρ(Aj) denotes

the set {λ ∈ C : λ ∈ ρ(Aj)}.
Furthermore, if λ ∈ ρ(Aj) ∩ ρ(Aj),

Qφj(λ)(A) = Rλ(Aj)Rλ(Aj). (5.7)

Proof. The equivalence between (i) and (ii) is evident. Let us prove (i). If λ = r + si ∈ C with
r, s ∈ R and q := φj(λ) ∈ QA, then for every x ∈ D(A2) we have

(λ IdXj
− Aj)(λ IdXj

− Aj)x = ((r + si) IdXj
− Aj)((r − si) IdXj

− Aj)x

= (A2
j − 2rAj + r2 IdXj

+ s2 IdXj
)x

= A2x− Ax(2r) + x(r2 + s2) = ∆q(A)x. (5.8)

Suppose that {λ, λ} ⊆ ρ(Aj). If y ∈ D(A), then there is x ∈ D(A) such that Ajx = λx − y,

therefore Ax ∈ D(A) since D(A) is a complex vector space. This proves that (λ Id−Aj)(D(A2)) =
D(A), which together with (5.8) implies that ∆q(A) is onto X. Moreover from (5.8) we also infer
that ∆q(A) is injective and (5.7) holds. This also implies that Qq(A) is continuous. Moreover
Qq(A) is right linear by virtue of [30, Lemma 2.16], thus q ∈ ρs(A). Suppose now that q ∈ ρs(A).

From (5.8) it follows that (λ IdXj
−Aj)(λ IdXj

−Aj)Qq(A)x = x for every x ∈ X, thus λ IdXj
−Aj

has a right inverse, which is provided by the operator

(λ IdXj
− Aj)(Qq(A))j

Let us prove that it is also a left inverse. Consider a point y in D(Aj) = D(A). Since
∆q(A)(D(A3)) = D(A) and ∆q(A)A = A∆q(A), we infer that AQq(A)y = Qq(A)Ay, indeed:
AQq(A)y = Qq(A)∆q(A)AQq(A)y = Qq(A)A∆q(A)Qq(A)y = Qq(A)Ay. It follows that

(λ IdXj
− Aj)(Qq(A))j(λ IdXj

− Aj)y = (λ IdXj
− Aj)

(
(Qq(A))j(λy)− Qq(A)Ay

)

= (λ IdXj
− Aj)(λ(Qq(A)(y))− AQq(A)y)

= |λ|2Qq(A)y − λ(AQq(A)y)− λAj(Qq(A)y) + AAQq(A)y

= (|λ|2 − 2ℜ(λ)A− A2)Qq(A)y

= (|q|2 − 2Re(q)A − A2)Qq(A)y

= ∆q(A)Qq(A)y = y.

This proves that λ ∈ ρ(Aj) and (λ IdXj
−Aj)(Qq(A))j = Rλ(Aj). Interchanging λ and λ we obtain

also that λ ∈ ρ(Aj) and we are done. �
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Remark 5.10. Let A : D(A) −→ X be a closed right linear operator and let j ∈ SA. Choose

λ ∈ ρ(Aj)∩ ρ(Aj) and define q := φj(λ) ∈ ρs(A). Since (λ IdXj
−Aj)Rλ(Aj) = IdXj

, we have that

AjRλ(Aj)− IdXj
= λRλ(Aj). In this way, thanks to (5.7), given any x ∈ X, it holds:

Cq(A)x− Rλ(Aj)x = Rλ(Aj)Rλ(Aj)(q
cx)− (AjRλ(Aj)− IdXj

)Rλ(Aj)x

= Rλ(Aj)Rλ(Aj)(q
cx)− λRλ(Aj)Rλ(Aj)x

= Rλ(Aj)Rλ(Aj)(q
cx− xqc).

It follows that

∀x ∈ X : Cq(A)x = Rλ(Aj)x ⇐⇒ qcx = xqc,

Cq(A) = Rλ(Aj) ⇐⇒ qcx = xqc ∀x ∈ X.

In particular, we have that Cr(A) = Rr(Aj) for every r ∈ R. �

Proposition 5.11. Let A : D(A) −→ X be a closed right linear operator such that ρs(A)∩R 6= ∅.
Then the mapping ρs(A) −→ L r(X) : q 7−→ Cq(A) is right slice regular.

Proof. Following the proof of Lemma 2.36 of [30], one obtains that, if λ ∈ ρs(A) ∩ R, B :=
−Cλ(A) ∈ L r(X) and Φ : QAr{λ} −→ QAr{λ} is the inversion map Φ(q) := (q − λ)−1,
then Φ(ρs(A)r{λ}) = ρs(B)r{λ} and Cq(A) = −BCΦ(q)(B)Φ(q) for every q ∈ ρs(A) \ {λ}.
Since [30, Lemma 2.31] ensures that ρs(B) is nonempty and open in QA, we infer that ρs(A) is
a nonempty open circular subset of QA. Let D be the nonempty open subset of C invariant
under complex conjugation such that ΩD = ρs(A). Fix j ∈ SA and define the stem function
F = (F1,F2) : D −→ L r(X)⊗R C as follows:

F1(z) := Qφj(z)(A)ℜ(z)− AQφj(z)(A), (5.9)

F2(z) := −Qφj(z)(A)ℑ(z). (5.10)

For every z ∈ D, we have that F(z) = F(z) and

F1(z) + F2(z)j = Qφj(z)(A)ℜ(z)− AQφj(z)(A)− Qφj(z)(A)ℑ(z)j
= Qφj(z)(A)φj(z)

c − AQφj(z)(A) = Cφj(z)(A), (5.11)

therefore q 7−→ Cq(A) is right slice. From [30, Lemma 2.32] it follows that the map D −→
(L r(X))j : z 7−→ Cφj(z)(B) is holomorphic. Since Cq(A) = −BCΦ(q)(B)Φ(q), the map z 7−→
Cφj(z)(A) is holomorphic as well. Now we can conclude by invoking Proposition 4.6. �

If ω ∈ R a straightforward computation shows that ∆q(A−ω Id) = ∆q+ω(A) for every q ∈ QA,
therefore we can relate the spherical resolvent operators of A and of A− ω Id as in the classical
case (this is not true if ω is not real).

Lemma 5.12. If ω ∈ R then ∆q(A − ω Id) = ∆q+ω(A) for every q ∈ QA and ρs(A − ω Id) =
ρs(A)−ω. Moreover Qq(A−ω Id) = Qq+ω(A) and Cq(A−ω Id) = Cq+ω(A) for every q ∈ ρs(A−ω Id).

6. Right linear operator semigroups

Throughout this section, we will assume that

A satisfies (2.4), (2.8) and (2.12), and X is a Banach two-sided A-module.
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6.1. Strongly continuous semigroups. We first recall the natural definition of right linear
operator semigroup (cf. [14] for the quaternionic case and [30] for the general case).

Definition 6.1. A mapping T : [0,∞[ −→ L r(X) is called (right linear operator) semigroup if

T(t+ s) = T(t)T(s) ∀t, s > 0,

T(0) = Id.

A semigroup T is called uniformly continuous if T ∈ C([0,∞[ ;L r(X)). A semigroup T is called
strongly continuous if T(·)x ∈ C([0,∞[ ;X) for every x ∈ X. The generator of T is the right
linear operator A : D(A) −→ X defined by

D(A) :=
{
x ∈ X : ∃ lim

h→0
(1/h)(T(h)x − x) = (d/dt)T(t)x

∣
∣
t=0

}
,

Ax := lim
h→0

1

h
(T(h)x− x), x ∈ D(A).

Remark 6.2. By Lemma 3.10, we could also say that T is a uniformly continuous (resp. strongly
continuous) semigroup in X if and only if T is L r(X)-valued and T is a uniformly continuous
(resp. strongly continuous) semigroup in RX. �

Here is the generation theorem relating generators and semigroups (cf. [14, Section 4] for the
quaternionic case and [30, Theorem 4.5] for the general case).

Theorem 6.3. The following assertions hold.

(a) Let A : D(A) −→ X be a closed right linear operator with D(A) dense in X. Suppose
that there are constants M ∈ [1,∞[ and ω ∈ R such that ]ω,∞[ ⊆ ρs(A) and

‖Cλ(A)
n‖ ≤ M

(λ− ω)n
∀n ∈ N, ∀λ > ω. (6.1)

Then A is the generator of the strongly continuous semigroup T : [0,∞[ −→ L r(X)
defined by

T(t)x = lim
n→∞

etAnx, x ∈ X, where An := nACn(A) ∈ L
r(X).

Moreover, ‖T(t)‖ ≤ Meωt for all t ≥ 0.
(b) Let T : [0,∞[ −→ L r(X) be a strongly continuous semigroup such that there are con-

stants M ∈ [1,∞[ and ω ∈ R with the following property: ‖T(t)‖ ≤ Metω for all
t ≥ 0. Then the generator A of T is closed, D(A) is dense in X, ]ω,∞[ ⊆ ρs(A) and
‖Cλ(A)

n‖ ≤ M
(λ−ω)n for all n ∈ N and for all λ > ω.

In both cases (a) and (b), we have that

Cλ(A)x =

∫ ∞

0
e−tλT(t)xdt ∀λ > ω, ∀x ∈ X.

6.2. Noncommutative Laplace transform. In the noncommutative setting a natural notion
of argument of a number is provided by the following definition (cf. [30, Definition 5.1]) that we
will use also in the complex case.

Definition 6.4. Define the argument function arg : QAr{0} −→ [0, π] on QA as follows. If
q ∈ QArR, then there exist, and are unique, j ∈ SA, ρ ∈ ]0,∞[ and θ ∈ ]0, π[ such that
q = ρeθj ∈ Cj. Thus, we define arg(q) := θ. Moreover we set: arg(q) := 0 if q ∈ ]0,∞[ and
arg(q) := π if q ∈ ]−∞, 0[.

We need to introduce the following classes of open subsets of C and of QA.
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Definition 6.5. If η ∈ ]0, π] we define

Dη := {z ∈ Cr{0} : arg(z) < η}

and the associated circular set

Ωη := ΩDη =
{
q ∈ QAr{0} : arg(q) < η

}
.

Now we prove that the spherical resolvent operator can be written as a suitable Laplace
transform. This result is stated in [14, Theorem 4.2] in the quaternionic setting and for n = 1.
Here we provide a different proof which also allows to get an integral representation for all the
integer slice powers of the resolvent operator, confirming the central role of the slice composition
defined in Definition 5.3. It is worth noting that Proposition 5.6 does not apply since the mapping
q 7−→ (T(t)e−tq)x is not right slice regular even if q 7−→ T(t)e−tq is (cf. Remark 5.5).

Theorem 6.6. Let T : [0,∞[ −→ L r(X) be a strongly continuous semigroup. Suppose there
exist M ∈ [1,∞[ and ω ∈ R such that ‖T(t)‖ ≤ Meωt for all t ≥ 0. If A is the generator of T
then ω +Ωπ/2 ⊆ ρs(A) and, for every n ∈ N, we have

(Cq(A)
⊙n

q )x =
1

(n− 1)!

∫ ∞

0
(T(t)tn−1e−tq)xdt ∀q ∈ ω +Ωπ/2, ∀x ∈ X. (6.2)

In particular

‖Cq(A)
⊙n

q ‖ ≤ M

(Re(q)− ω)n
∀q ∈ ω +Ωπ/2, ∀n ∈ N. (6.3)

Proof. Fix j ∈ SA and let Sj : [0,∞[ −→ L (Xj) be defined by Sj(t) := T(t). It follows that Sj is
a strongly continuous semigroup satisfying the estimate ‖Sj(t)‖ ≤ Meωt for every t ≥ 0 and its
generator is the operator Aj : D(Aj) −→ Xj defined by D(Aj) := D(A) and Ajx := Ax for every
x ∈ D(Aj). Therefore from the classical theory we have that ω+Dπ/2 ⊆ ρ(Aj), the resolvent set
of Aj, hence ω +Ωπ/2 ⊆ ρs(A) by virtue of Theorem 5.9.

If n ∈ N, q ∈ ω + Ωπ/2, and x ∈ X are fixed, then a standard 2ε-argument shows that t 7−→
(T(t)tn−1e−tq)x = T(t)(tn−1e−tqx) is continuous. Moreover we have that ‖T(t)(tn−1e−tqx)‖ ≤
Mtn−1et(ω−Re(q))‖x‖ for every t ≥ 0, therefore we can define the following X-valued Lebesgue
integral

Ln(q)x :=

∫ ∞

0
(T(t)tn−1e−tq)xdt, q ∈ ω +Ωπ/2, x ∈ X. (6.4)

Now we show that (6.4) defines a right slice regular function Ln : ω+Ωπ/2 −→ L r(X). From the
right linearity of T(t) and from the definition of X-valued Lebesgue integral it follows that Ln(q)

is right linear, moreover ‖Ln(q)x‖ ≤
∫∞
0 ‖T(t)tn−1e−tqx‖ dt ≤ ‖x‖M

∫∞
0 tn−1et(ω−Re(q)) dt, thus

actually Ln(q) ∈ L (RX) for every q ∈ ω + Ωπ/2. By a direct computation, it is immediate to

verify that
∫∞
0 tn−1et(ω−Re(q)) dt ≤ (n − 1)!(Re(q)− ω)−n. In particular, we have that

‖Ln(q)‖ ≤ M(n− 1)!

(Re(q)− ω)n
. (6.5)

For every fixed t ∈ ]0,∞[, let F t
n = (F t

n,1, F
t
n,2) : C −→ A ⊗R C be the stem function such that

tn−1 exp−t = Ir(F
t
n): Fn,1(z) := tn−1e−tℜ(z) cos(tℑ(z)) and Fn,2(z) := −tn−1e−tℜ(z) sin(tℑ(z)).

Thanks to (4.3) it makes sense to define Ln,k : ω +Dπ/2 −→ L r(X), k = 1, 2, by

Ln,k(z)x :=

∫ ∞

0
(T(t)F t

n,k(z))xdt, z ∈ ω +Dπ/2, x ∈ X.
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Then Ln := (Ln,1,Ln,2) is a stem function and for every j ∈ SA, z ∈ ω +Dπ/2 and x ∈ X, we
have that

(Ln,1(z) + Ln,2(z)j)x =

∫ ∞

0

(
T(t)F t

n,1(z)x+ T(t)F t
n,2(z)jx

)
dt

=

∫ ∞

0
T(t)(F t

n,1(z) + F t
n,2(z)j)xdt

=

∫ ∞

0
T(t)tn−1e−tφj(z)xdt = Ln(φj(z))x,

therefore Ln = Ir(Ln) is a right slice function.
Consider j ∈ SA and the map (Ln)j : ω+Dπ/2 −→ (L r(X))j defined by setting (Ln)j := Ln◦φj.

Let us show that (Ln)j is of class C
1. Denote by (r, s) the real coordinates in C, and by ∂r and

∂s the partial derivatives ∂/∂r and ∂/∂s, respectively. Observe that, since C −→ C : z 7−→ e−tz

is holomorphic, we have that ∂re
−tφj(z) + ∂se

−tφj(z)j = 0 for every z ∈ C. Define the mappings
Dn,j,r,Dn,j,s : ω +Dπ/2 −→ (L r(X))j by setting

Dn,j,r(z)x :=

∫ ∞

0
T(t)tn−1(∂re

−tφj(z))xdt, Dn,j,s(z)x :=

∫ ∞

0
T(t)tn−1(∂se

−tφj(z))xdt,

for all x ∈ X, z ∈ ω +Dπ/2. A 2ε-argument shows again that Dn,j,r and Dn,j,s are continuous.
Moreover, for every z ∈ ω +Dπ/2 and for every h ∈ Rr{0} such that z + h ∈ ω+Dπ/2, we find

∥
∥
∥
∥

(Ln)j(z + h)− (Ln)j(z)

h
− Dn,j,r(z)

∥
∥
∥
∥

= sup
‖x‖≤1

∥
∥
∥
∥
∥

∫ ∞

0
T(t)tn−1

(

e−tφj(z+h) − e−tφj(z)

h
− ∂re

−tφj(z)

)

xdt

∥
∥
∥
∥
∥

≤ sup
‖x‖≤1

∫ ∞

0

∥
∥
∥
∥
∥
T(t)tn−1

(

e−tφj(z+h) − e−tφj(z)

h
− ∂re

−tφj(z)

)

x

∥
∥
∥
∥
∥
dt

≤
∫ ∞

0
Mtn−1eωt

∣
∣
∣
∣
∣

e−tφj(z+h) − e−tφj(z)

h
− ∂re

−tφj(z)

∣
∣
∣
∣
∣
dt, (6.6)

where the last integral is finite because

Mtn−1eωt

∣
∣
∣
∣
∣

e−t(r+h+sj) − e−t(r+sj)

h
− ∂re

−t(r+sj)

∣
∣
∣
∣
∣

= Mtn−1eωt|e−t(r+sj)|
∣
∣
∣
∣

e−th − 1

h
+ t

∣
∣
∣
∣
≤ Mtn−1etωe−tr2t = 2Mtnet(r−ω).

Moreover the last integrand in (6.6) converges to zero as h → 0, therefore we can apply the
dominated convergence theorem, obtaining that ∂r(Ln)j = Dn,j,r. The proof that ∂s(Ln)j = Dn,j,s

is entirely analogous. It follows that (Ln)j ∈ C1(ω+Dπ/2; (L
r(X))j). Moreover, for every x ∈ X,

we have
(
∂r(Ln)j(z) + i∂s(Ln)j(z)

)
x = ∂r(Ln)j(z)x+ ∂s(Ln)j(z)(jx) = Dn,j,rx+ Dn,j,s(jx)

=

∫ ∞

0

(
T(t)tn−1(∂re

−tφj(z) + ∂se
−tφj(z)j)x

)
dt = 0.

From Proposition 4.6 we infer that Ln is right slice regular. Thanks to Proposition 5.11 the
function q 7−→ Cq(A)

⊙n
q is right slice regular as well, and from [30, Theorem 4.5] we have that

Cr(A) = Rr(A) = L1(r) for every r > ω. Furthermore, from (5.9), (5.10), (5.11) and from (5.5), it
follows that the value of Cq(A)

⊙n
q at q = r, which we denote by Cr(A)

⊙n
r , coincides with Cr(A)

n
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for every r > ω. From the classical semigroup theory applied to T : [0,∞[ −→ L (RX), we
know that (n − 1)!Rr(A)

n = Ln(r) (cf. Remark 6.2 and [21, Corollary 1.11, p. 56]). Therefore
(n− 1)!Cr(A)

⊙n
r = Ln(r) for every r > ω, thus Lemma 4.8 implies (6.2), i.e. (n− 1)!Cq(A)

⊙n
q =

Ln(q). Estimate (6.3) is now an immediate consequence of (6.5). �

6.3. Uniformly continuous semigroups. Strongly continuous semigroups are somehow the
less regular class of semigroups. At the other extreme there are the uniformly continuous semi-
groups. We have the following result.

Theorem 6.7. Let T : [0,∞[ −→ L r(X) be a strongly continuous semigroup and let A be its
generator. Then T is a uniformly continuous semigroup if and only if A ∈ L r(X). In this case
T(t) = etA for every t ≥ 0 and the mapping expA : QA −→ L r(X) defined by

expA(q) :=
∑

n≥0

An

n!
qn, q ∈ QA,

is the unique right slice regular extension of T.

Proof. The fact that A is bounded if and only if T(t) = etA for every t ≥ 0 is proved in [30,
Thereom 4.3]. The last statement follows immediately from Lemma 5.2(i′) and Lemma 4.8. �

6.4. Slice regular semigroups. While uniformly continuous semigroups admits a power series
representation by means of the exponential function, in the strongly continuous case this repre-
sentation is not possible, since the generator is not bounded. As in the classical complex case it
is possible to develop a quaternionic functional calculus (cf. [16]) that allows to represent etA via
a Cauchy integral formula if A is bounded. However the counterpart of this functional calculus
for unbounded operators (cf. [11]) does not apply to the exponential function etA, i.e. to semi-
groups. Nevertheless in [30] we show that a Cauchy integral formula representation is possible
if the generator of the semigroup is spherical sectorial, a natural quaternionic generalization of
complex sectorial operators. Now we recall the definition of spherical sectorial operator and
in the next section we are going to prove that the semigroups generated by spherical sectorial
operators are exactly those who can be extended to a right slice regular operatorial functions on
a spherical sector of A. Moreover this extension satisfies a suitable “noncommutative semigroup
law”, originating what we call the class of right slice regular semigroup. This result casts a
bridge between the theory of semigroups on Banach two-sided A-modules and the theory of slice
regular (operatorial) functions.

Definition 6.8. Let A : D(A) −→ X be a closed right linear operator, let δ ∈ ]0, π/2] and let
ω ∈ R. We say that A is a spherical δ-sectorial operator with vertex ω if

ω +Ωπ/2+δ =
{
q ∈ QAr{ω} : arg(q − ω) < π/2 + δ

}
⊆ ρs(A).

If A is a spherical δ-sectorial operator with vertex ω for some δ ∈ ]0, π/2], then we say that A
is a spherical sectorial operator with vertex ω. If in addition ω = 0, we simply say that A is a
spherical sectorial operator.

The starting point of our analysis is the next result (cf. [30, Theorem 5.6]) where we prove
that a spherical sectorial operator generates a strongly continuous semigroup represented by a
suitable noncommutative Cauchy integral formula. We state here this theorem in a form which
is slightly more general than in [30]. In order to do this, we need some preparations.

Let j ∈ SA. Recall that, given an interval I of R, a C1-path γ : I −→ Cj, a map f : γ(I) −→ X
and a function g : γ(I) −→ A, one can define the integral

∫

γ f(α) dα g(α) ∈ X (if it exists) by

setting ∫

γ
f(α) dαg(α) :=

∫

I
f(γ(t))γ′(t)g(γ(t)) d t. (6.7)



26 RICCARDO GHILONI AND VINCENZO RECUPERO

If {γℓ : Iℓ −→ Cj}nℓ=1 is a finite family of C1-paths of Cj, Γ is the formal sum
∑n

ℓ=1 γi, and f and
g are defined on

⋃n
ℓ=1 γℓ(Iℓ), then we define

∫

Γ f(α) dαg(α) :=
∑n

ℓ=1

∫

γℓ
f(α) dα g(α). If the

image of g is contained in Cj, then we write
∫

Γ f(α)g(α) dα in place of
∫

Γ f(α) dα g(α), because
γ′ℓ(t) and g(γℓ(t)) commutes for every ℓ ∈ {1, . . . , n} and for every t ∈ Iℓ. We refer the reader
to [30, Section 6] for more details concerning this kind of integrals.

Let r ∈ ]0,∞[ and let η ∈ ]0, π[. Denote by R−(j ; r;−η) : ]−∞,−r] −→ Cj, C (j ; r; η) :
[−η, η] −→ Cj and R+(j ; r; η) : ]r,∞] −→ Cj the C1-paths of Cj given by

R
−(j ; r;−η)(t) := −te−ηj ∀t ∈ ]−∞,−r] ,

C (j ; r; η)(t) := retj ∀t ∈ [−η, η],

R
+(j ; r; η)(t) := teηj ∀t ∈ [r,∞[ .

Define Γ(j ; r; η) as the following formal sum of C1-paths of Cj:

Γ(j ; r; η) := R
−(j ; r;−η) + C (j ; r; η) + R

+(j ; r; η).

The mentioned slightly more general version of [30, Theorem 5.6] reads as follows.

Theorem 6.9. Let A : D(A) −→ X be a spherical δ-sectorial operator with vertex ω. Suppose
that D(A) is dense in X and there exists K > 0 such that

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+δ.

If j ∈ SA, r ∈ ]0,∞[ and η ∈ ]π/2, π/2 + δ[, then the integral

T(t) :=
1

2π

∫

ω+Γ(j ;r;η)
Cα(A) j

−1etα dα ∀t > 0 (6.8)

is convergent in L r(X) and is independent of j, r and η. If we set T(0) := Id, then (6.8)
defines a strongly continuous semigroup T : [0,∞[ −→ L r(X) which is real analytic in ]0,∞[
and whose generator is A.

Proof. Here we show how to reduce to the case ω = 0 which is dealt with in [30, Theorem
5.6]. Define B := A − ω Id. By Lemma 5.12, we know Cq(A − ω Id) = Cq+ω(A) for ev-
ery q ∈ ρs(A − ω Id) = ρs(A) − ω. In particular we get that B is spherical sectorial and
‖Cq(B)‖ ≤ K/|q| for every q ∈ Ωπ/2+δ, thus Theorem [30, Theorem 5.6] applies and we
get that B generates the strongly continuous semigroup S : [0,∞[ −→ L r(X) defined by
S(0) = Id and S(t) := (1/2π)

∫

Γ(j ;r,η) Cα(B) j
−1eαt dα for t > 0, and real analytic in ]0,∞[,

where the integral is independent of j, r and η. Therefore, since eωt ∈ R, we obtain that
[0,∞[ −→ L r(X) : t 7−→ eωtS(t) is a strongly continuous semigroup generated by B+ ω Id = A

and we have

eωtS(t) = eωt
1

2π

∫

Γ(j ;r;η)
Cα(B) j

−1eαt dα =
1

2π

∫

ω+Γ(j ;r;η)
Cα(A) j

−1eαt dα = T(t)

for all t > 0. This completes the proof. �

In the next result we introduce a class of line integrals which extend (6.8) to suitable spherical
sectors of A and allow to infer the noncommutative semigroup law (1.7).

Lemma 6.10. Let A : D(A) −→ X be a spherical δ-sectorial operator with vertex ω such that
D(A) dense in X and there exists K > 0 with

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+δ.
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If j ∈ SA, r ∈ ]0,∞[, η ∈ ]π/2, π/2 + δ[ and p, q ∈ Ωδ, then the integral

Tp(j ; r; η, q) :=
1

2π

∫

ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα expαp (q)
)

is absolutely convergent and defines a right slice regular function Tp(j ; r; η, ·) : Ωδ −→ L r(X)
such that

∀δ′ ∈ ]0, δ[ ∃Mδ′ ∈ [1,∞[ : ‖Tp(j ; r; η, q)‖ ≤ Mδ′e
ωRe(p+q) ∀p, q ∈ Ωδ′ , (6.9)

(Mδ′ is independent of q). Moreover Tp(j ; r; η, q) does not depend on j ∈ SA, r ∈ ]0,∞[ and
η ∈ ]π/2, π/2 + δ[.

Proof. If α, p, q ∈ Cj then points (i) and (ii) of Lemma 5.2 imply that expαp (q) = expα(p+ q) =

eα(p+q) ∈ Cj. Thus, if γ : ]0, 1[ −→ Cj is a piecewise C1 reparametrization of Γ(j ; r; η), we have

∫ 1

0

∥
∥
∥Cω+γ(t)(A) j

−1γ′(t) expω+γ(t)
p (q)

∥
∥
∥ dt ≤ eωRe(p+q)

∫ 1

0

K

|γ(t)| |γ
′(t)|eRe(γ(t)(p+q)) dt,

hence the absolute convergence of Tp(j ; r; η, q) and (6.9) follow from the same argument of the
complex case (see, e.g., [21, Proposition 4.3, p. 97]). Now we assume that p = p1 + p2k ∈ Ck

and q = q1 + q2h ∈ Ch for some k,h ∈ SA, pm, qm ∈ R, m = 1, 2. Let us set pj := p1 + p1j ∈ Cj,
qj := q1 + q2j ∈ Cj, and qk := q1 + q2k ∈ Ck. Since expαp is a right slice function, we can apply
(4.4) twice and we find constants bm, cm, dm ∈ A, m = 1, 2, such that

expαp (q) = expαp (qk)b1 + expαp (q
c
k)b2

= expα(p + qk)b1 + expα(p + qck)b2

= expα(pj + qj)c1 + expα(pcj + qcj )d1 + expα(pj + qcj )c2 + expα(pcj + qj)d2,

= eα(pj+qj)c1 + eα(p
c
j
+qc

j
)d1 + eα(pj+qc

j
)c2 + eα(p

c
j
+qj)d2.

This formula allows to reduce to the previous case when p, q ∈ Cj, thus the absolute convergence
of Tp(j ; r; η, q) and estimate (6.9) are completely proved.

Fix s ∈ ]0,∞[. Let us show that Ωδ −→ L r(X) : p 7−→ Tp(j ; r; η, s) is right slice regular.
Consider the map fs : ]0, 1[ ×Ωδ −→ L r(X) defined by

fs(t, p) := Cω+γ(t)(A) j
−1γ′(t) expω+γ(t)

p (s) =
(
Cω+γ(t)(A) j

−1γ′(t)
)
◦
(
Id expω+γ(t)

p (s)
)

By Lemma 5.2(iv), the function p 7−→ exp
ω+γ(t)
p (s) is right slice regular for every t ∈ ]0, 1[. It

follows immediately that, for every t ∈ ]0, 1[, p 7−→ Id exp
ω+γ(t)
p (s) is right slice regular and

hence the same is true for fs(t, ·) (cf. Example 4.5(b)). Thanks to Proposition 5.6, we infer that
p 7−→ Tp(j ; r; η, s) is right slice regular as well. Observe that

Tt(j ; r; η; s) = T0(j ; r; η, t+ s) =
1

2π

∫

ω+Γ(j ;r;η)
Cα(A) j

−1eα(t+s) dα ∀t > 0.

Thanks to Theorem 6.9, we know that T0(j ; r; η, t + s) is independent of j, r and η. Therefore,
by Lemma 4.8, for every s ∈ ]0,∞[ and for every p ∈ Ωδ, we get that Tp(j ; r; η, s) is independent
of j, r and η. Now we fix p ∈ Ωδ. Since expαp is right slice regular for every α, proceeding as
above, we obtain that q 7−→ Tp(j ; r; η, q) is right slice regular. Furthermore, we proved that
Tp(j ; r; η, q) is independent of j, r and η when q ∈ ]0,∞[. Thus, by Lemma 4.8, we get that
Tp(j ; r; η, q) is independent of j, r and η for every p, q ∈ Ωδ. �

The previous Lemma 6.10 allows us to give the following definition.
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Definition 6.11. Let A : D(A) −→ X be a spherical δ-sectorial operator of vertex ω. Suppose
that D(A) is dense in X and there exists K > 0 such that

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+δ.

For every p ∈ Ωδ ∪ {0}, we define Tp : Ωδ −→ L r(X) by setting

Tp(q) :=
1

2π

∫

ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα expαp (q)
)
, q ∈ Ωδ,

where j ∈ SA, r ∈ ]0,∞[ and η ∈ ]π/2, π/2 + δ[ are arbitrarily chosen. Moreover we set T := T0,
i.e.

T(q) := T0(q) =
1

2π

∫

ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα expα(q)
)
, q ∈ Ωδ.

Since in general Cα(A)j 6= jCα(A) and Cα(A) exp
α(q) 6= expα(q)Cα(A), the classical semigroup

law fails for T. In the following definition we introduce a new noncommutative semigroup law.

Definition 6.12. If δ ∈ ]0, π/2], then we say that T : Ωδ ∪ {0} −→ L r(X) is a right slice
regular semigroup (of angle δ) if the restriction T|Ωδ

: Ωδ −→ L r(X) is right slice regular and

T(p+ q) = T(p)⊙p T(q) ∀p, q ∈ Ωδ with p+ q ∈ Ωδ and pq = qp,

T(0) = Id,

lim
q→0

T|Ωδ′
(q)x = x ∀δ′ ∈ ]0, δ[ , ∀x ∈ X. (6.10)

If T is a slice regular semigroup of angle δ for some δ ∈ ]0, π/2], then we say that T is a right
slice regular semigroup. Moreover we say that a right slice regular semigroup T of angle δ is
bounded if

∀δ′ ∈ ]0, δ[ ∃Mδ′ ∈ [1,∞[ : sup
q∈Ωδ′

‖T(q)‖ ≤ Mδ′ .

Lemma 6.13. If T : Ωδ ∪ {0} −→ L r(X) is a right slice regular semigroup, then its restriction
T|[0,∞[ is a strongly continuous semigroup.

Proof. Let T = (T1,T2) : Dδ −→ L r(X)⊗R C be such that T = Ir(T ). Since T is right slice we
have that T2(s) = 0 for every s > 0, thus we get, if j ∈ SA,

T(t+ s) = T(t)⊙t T(s) = (T⊙ T(s))(t) = (T⊙ T(s))(φj(t))

= T1(t)T(s) + T2(t)T(s)j = T1(t)T(s)
= (T1(t) + T2(t)j)T(s) = T(t)T(s).

The continuity of T|[0,∞[(·)x for x ∈ X follows from (6.10). �

Thanks to the latter lemma, we can give the following definition.

Definition 6.14. Give a right slice regular semigroup T : Ωδ ∪ {0} −→ L r(X), we say that an
operator A : D(A) −→ X is the generator of T if it is the generator of the strongly continuous
semigroup T|[0,∞[ . We say also that A generates T.

7. Spherical sectorial operators and slice regular semigroups

Throughout this section, we will assume that

A satisfies (2.4), (2.8) and (2.12), and X is a Banach two-sided A-module.

The main result of this paper reads as follows.

Theorem 7.1. The following assertions hold.
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(a) Let A : D(A) −→ X be a spherical δ-sectorial operator with vertex ω. Suppose that D(A)
is dense in X and there exists K > 0 such that

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+δ.

Then A generates a right slice regular semigroup T : Ωδ ∪ {0} −→ L r(X) such that

∀δ′ ∈ ]0, δ[ ∃Mδ′ ∈ [1,∞[ : ‖T(q)‖ ≤ Mδ′e
ωRe(q) ∀q ∈ Ωδ′ .

(b) Let T : Ωδ ∪ {0} −→ L r(X) be a right slice regular semigroup and let A : D(A) −→
L r(X) be its generator. Suppose there exist δ′ ∈ ]0, δ], M ∈ [1,∞[ and ω ∈ R such that

‖T(q)‖ ≤ MeωRe(q) for every q ∈ Ωδ′ . Then A is a spherical η-sectorial operator with
vertex ω for some η ∈ ]0, π/2]. Moreover, there exists K > 0 such that

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+η.

Notice that bounded right slice semigroups are exactly those generated by spherical sectorial
operators with vertex ω = 0. We will give the proof of this result in the following two subsections.

7.1. From spherical sectoriality to slice regularity. Let us show that a spherical sectorial
operator with vertex ω generates an exponentially bounded right slice regular semigroup.

Theorem 7.2. Let A : D(A) −→ X be a spherical δ-sectorial operator with vertex ω. Suppose
that D(A) is dense in X and there exists K > 0 such that

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+δ.

Let Tp : Ωδ −→ L r(X) be as in Definition 6.11. Then Tp is right slice regular for every
p ∈ Ωδ ∪ {0} and

Tp(q) = T(q)⊙q T(p) ∀p, q ∈ Ωδ.

The function T = T0 is the unique right slice regular function from Ωδ to L r(X) which
coincides with the semigroup generated by A on ]0,∞[. Moreover, it holds

T(p+ q) = T(p)⊙p T(q) = T(q)⊙q T(p) ∀p, q ∈ Ωδ with p+ q ∈ Ωδ and pq = qp,

i.e.

T(p+ q) = (T⊙ T(q))(p) = (T⊙ T(p))(q) ∀p, q ∈ Ωδ with p+ q ∈ Ωδ and pq = qp,

where in the second term T(q) is the constant function p 7−→ T(q) and in the last term T(p) is
the constant function q 7−→ T(p).

Proof. We already proved in Lemma 6.10 that Tp is a right slice regular function. Let us explicitly
write its stem function in the particular case p = 0. Given α ∈ A, we define Eα = (Eα

1 , E
α
2 ) :

Dδ −→ L r(X)⊗RC by setting Eα
1 (z) :=

∑

n≥0
αn

n! ℜ(zn) and Eα
2 (z) :=

∑

n≥0
αn

n! ℑ(zn). It follows
immediately that expα0 = expα = Ir(E

α). Then, from Proposition 5.6 and Example 4.5(b), we
obtain that T = T0 = Ir(T ), where T = (T1,T2) and

Tm(z) :=
1

2π

∫

ω+Γ(j ;r,η)

(
Cα(A) j

−1 dαEα
m(z)

)
∀z ∈ Dδ , m = 1, 2

for some fixed j ∈ SA, r ]0,∞[ and η ∈ ]π/2, π/2 + δ[. Thanks to Lemma 5.2(ii), we have

T(t) =
1

2π

∫

ω+Γ(j ;r;η)
Cα(A) j

−1eαt dα ∀t > 0,

therefore from Theorem 6.9 it follows that

T(t+ s) = T(t)T(s) = T(s)T(t) ∀t, s > 0. (7.1)
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Now for any t > 0 let us consider the mappings

Tt = T(t+ ·) : Ωδ −→ L
r(X) : p 7−→ T(t+ p)

(cf. formula (5.2)) and

Ut := T(t)T(·) : Ωδ −→ L
r(X) : p 7−→ T(t)T(p).

Clearly Ut is right slice regular (cf. Example 4.5(b)) and from (7.1) it follows that Tt(s) = Ut(s)
for every s > 0. Therefore, since Tt is right slice regular by Lemma 6.10, we obtain that Tt = Ut,
hence

T(p + t) = T(t)T(p) ∀p ∈ Ωδ, ∀t > 0.

Now we fix p and consider the slice right regular function Tp : Ωδ −→ L r(X). If p, q ∈ Ωδ with
p+ q ∈ Ωδ and pq = qp, then Lemma 5.2(i) implies that

Tp(q) =
1

2π

∫

ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα expαp (q)
)

=
1

2π

∫

ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα expα(p + q)
)
= T(p+ q), (7.2)

in particular Tp(t) = T(p+ t) for every t > 0. Thus from (7.1) we obtain

Tp(t) = T(t)T(p) ∀p ∈ Ωδ, ∀t > 0.

For every p ∈ Ωδ, define the right slice regular function Vp : Ωδ −→ L r(X) by setting

Vp := T⊙ T(p)

(according to our notation T(p) is here the constant function q 7−→ T(p)). If z ∈ Dδ and
q := φj(z), then we have

Eα
1 (z)T(p) + Eα

2 (z)T(p)j =
∑

n≥0

αn

n!
ℜ(zn)T(p) +

∑

n≥0

αn

n!
ℑ(zn)T(p)j

=
∑

n≥0

αn

n!
T(p)ℜ(zn) +

∑

n≥0

αn

n!
T(p)ℑ(zn)j

=
∑

n≥0

αn

n!
T(p)(ℜ(zn) + ℑ(zn)j) =

∑

n≥0

αn

n!
T(p)qn,

hence

(T⊙ T(p))(q) = T1(z)T(p) + T2(z)T(p)j

=
1

2π

∫

ω+Γ(j ;r;η)

(
Cα(A) j

−1 dαEα
1 (z)T(p)

)

+
1

2π

∫

ω+Γ(j ;r;η)
Cα(A) j

−1 dαEα
2 (z)T(p)j

=
1

2π

∫

ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα (Eα
1 (z)T(p) + Eα

2 (z)T(p)j)
)

=
1

2π

∫

ω+Γ(j ;r;η)

(

Cα(A) j
−1 dα

∑

n≥0

αn

n!
T(p)qn

)

.
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Therefore if t > 0 we get

(T⊙ T(p))(t) =
1

2π

∫

ω+Γ(j ;r;η)

(

Cα(A) j
−1 dα

∑

n≥0

αn

n!
T(p)tn

)

=
1

2π

∫

ω+Γ(j ;r;η)

(

Cα(A) j
−1 dα

∑

n≥0

αn

n!
tnT(p)

)

=
1

2π

∫

ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα expα(t)
)
T(p)

= T(t)T(p),

thus

Vp(t) = Tp(t) ∀t > 0.

Since Vp and Tp are both right slice regular, Lemma 4.8 yields

Tp(q) = (T⊙ T(p))(q) ∀p, q ∈ Ωδ

and, by virtue of (7.2),

T(p+ q) = (T⊙ T(p))(q) ∀p, q ∈ Ωδ with p+ q ∈ Ωδ and pq = qp.

This completes the proof. �

7.2. From slice regularity to spherical sectoriality. Our final task is proving that a right
slice regular semigroup is generated by a spherical sectorial operator. We need the following
lemma providing the estimate (7.3) for the spherical resolvent operator of the generator of a
semigroup. As in the classical case, the Laplace transform (6.2) is a crucial tool for this proof,
but in our noncommutative framework things are complicated by the fact that q 7−→ (T(t)e−tq)x
is not right slice regular even if q 7−→ T(t)e−tq is (cf. Remark 5.5).

Lemma 7.3. Let δ ∈ ]0, π/2[ and let T : Ωδ ∪ {0} −→ L r(X) be a function such that T|Ωδ
is

right slice regular and T|[0,∞[ is a strongly continuous semigroup. Suppose there exist δ′ ∈ ]0, δ],

M ∈ [1,∞[ and ω ∈ R such that ‖T(q)‖ ≤ MeωRe(q) for every q ∈ Ωδ′ . If A is the generator of
T, then ρs(A) ⊆ ω +Ωπ/2 and there exists K > 0 such that

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2. (7.3)

Proof. Thanks to Theorem 6.6, we know that ρs(A) ⊆ ω+Ωπ/2 and (7.3) is true for q ∈ ]ω,∞[.
Fix q ∈ (ω + Ωπ/2)rR. Let j ∈ SA and r, s ∈ R be such that s > 0 and q = r + sj. Define
λ ∈ Dδ by λ := r + is, thus q = φj(λ). The function Tj : Dη −→ (L r(X))j is holomorphic by
Proposition 4.6, hence T|[ε,∞[ ∈ C([ε,∞[ ;L r(X)) for every ε > 0. Using again Theorem 6.6,
we infer that

Cq(A)x =

∫ ε

0
(T(t)e−tq)xdt+

∫ ∞

ε
(T(t)e−tq)xdt

=

∫ ε

0
(T(t)e−tq)xdt+

(∫ ∞

ε
T(t)e−tq dt

)

x

=

∫ ε

0
(T(t)e−tq)xdt+

(∫ ∞

ε
e−tλTj(t) dt

)

x. (7.4)

The mapping z 7−→ e−zλTj(z) is holomorphic fromDδ into (L
r(X))j, hence a standard argument

allows us to change the path of integration in the last integral in (7.4) from [ε,∞[ into γε :
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[0,∞[ −→ C : ρ 7−→ ε+ ρeθi where θ is a fixed element of ]−δ′, 0[. Therefore we get
∫ ∞

ε
e−tλTj(t) dt =

∫

γε

e−zλTj(z) dz =

∫ ∞

0
eθie−λ(ε+ρeθi)Tj(ε+ ρeθi) dρ,

thus, if C := −M/ sin θ, then the following standard estimate can be obtained on the interval
[ε,∞[ (rather than in [0,∞[):

∥
∥
∥
∥

∫ ∞

ε
e−tλTj(t) dt

∥
∥
∥
∥
≤
∫ ∞

0
Me−ε(Re(λ)−ω)e−Re((λ−ω)ρeθi) dρ

≤
∫ ∞

0
Me−ρ((r−ω) cos θ−s sin θ) dρ

=
M

(r − ω) cos θ − s sin θ
≤ M

−s sin θ
=

C

s
=

C

| Im(q)| .

In this way, for every x ∈ X, we find

‖Cq(A)x‖ ≤
∫ ε

0
‖(T(t)e−tq)x‖ dt+ C

| Im(q)| ‖x‖

≤ M

∫ ε

0
et(ω−Re(q))‖x‖ dt+ C

| Im(q)| ‖x‖ =

(

M
1− eε(ω−Re(q))

Re(q)− ω
+

C

| Im(q)|

)

‖x‖,

hence, by the arbitrariness of ε, we obtain

‖Cq(A)‖ ≤ C

| Im(q)| . (7.5)

Collecting together (6.3) with (7.5) we find (7.3). �

Theorem 7.4. Let A : D(A) −→ X be a closed right linear operator with D(A) dense in X.
Suppose that A generates a strongly continuous semigroup T : [0,∞[ −→ L r(X) and there exist
M ∈ [1,∞[, ω ∈ R and L > 0 such that ‖T(t)‖ ≤ Meωt for all t ≥ 0, and

‖Cq(A)‖ ≤ L

| Im(q)| ∀q ∈ ω +Ωπ/2. (7.6)

Then A is a spherical δ-sectorial operator with vertex ω for some δ ∈ ]0, π/2]. Moreover, there
exists K > 0 such that

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+δ.

Proof. If B := A − ω Id, then B generates the strongly continuous semigroup S(t) = e−ωtT(t)
statisfying the estimate ‖S(t)‖ ≤ M . Therefore Ωπ/2 ⊆ ρs(B) and (7.6) yields

‖Cq(B)‖ = ‖Cq+ω(A)‖ ≤ L

| Im(q)| ∀q ∈ Ωπ/2. (7.7)

Moreover, thanks to (6.3), for every q ∈ Ωπ/2 we have ‖Cq(B)‖ ≤ M/Re(q), which together with
(7.7) yields

‖Cq(B)‖ ≤ C

|q| ∀q ∈ Ωπ/2 (7.8)

for some C > 0. Fix p ∈ Ωπ/2. By definition of spherical resolvent operator we have Cp(B) =
Qp(B)p

c−BQp(B) and Cpc(B) = Qpc(B)p−BQpc(B) = Qpc(B)p−BQp(B). Hence, subtracting the
two identities, we get Cpc(B) − Cp(B) = Qp(B)(p − pc) = Qp(B)2 Im(p). Therefore if Im(p) 6= 0
then

Qp(B) = (Cpc(B)− Cp(B))(2 Im(p))−1,
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therefore it follows that

‖Qp(B)‖ ≤ 1

2| Im(p)| (‖Cpc(B)‖ + ‖Cp(B)‖) ≤
C

| Im(p)||p| . (7.9)

Now fix x ∈ X, j ∈ SA and let µ ∈ C be such that φj(µ) = p. From (5.6) and (5.7), we infer the
following chain of equalities:

Rµ(Bj)x = (µ IdXj
− Bj)Qp(B)x

= µQp(B)x− BjQp(B)x

= (Qp(B)x)p
c − B(Qp(B)x)

= Qp(B)(xp
c) + Cp(B)x− Qp(B)(p

cx),

therefore from (7.8) and (7.9) we get

‖Rµ(Bj)x‖ ≤ ‖Qp(B)(xp
c)‖ + ‖Cp(B)x‖ + ‖Qp(B)(p

cx)‖
≤ ‖Qp(B)‖‖xpc‖ + ‖Cp(B)‖‖x‖ + ‖Qp(B)‖‖pcx‖
= ‖Qp(B)‖‖x‖|p| + ‖Cp(B)‖‖x‖ + ‖Qp(B)‖‖x‖|p|

≤
(

C|p|
| Im(p)||p| +

C

|p| +
C|p|

| Im(p)||p|

)

‖x‖ ≤ 3C

| Im(p)|‖x‖ =
3C

| Im(µ)| ‖x‖.

Hence, by the arbitrariness of p ∈ Ωπ/2 and of x ∈ X, we have proved that

‖Rµ(Bj)‖ ≤ 3C

| Im(µ)| ∀µ ∈ Dπ/2.

Therefore the classical complex theory of analytic semigroups (see, e.g., [21, Thereom 4.6])
applies to Bj and we find that there exists δj ∈ ]0, π/2] such that Dπ/2+δj ⊆ ρ(Bj), the resolvent
set of Bj. This fact allows to apply Theorem 5.9 and to deduce that B is spherical sectorial of
angle δ := supj∈SA δj, i.e. Ωπ/2+δ ⊆ ρs(B). Moreover, we have that Dπ/2+δ ⊆ ρ(Bj) for all j ∈ SA

(in other words, we can assume that δj does not depend on j ∈ SA). Now let q ∈ Ωπ/2+δ and
let λ ∈ Dπ/2+δ be such that q = φj(λ). From the classical theory we also have that there is a
constant N > 0 such that ‖Rλ(Bj)‖ ≤ N/|λ| = N/|q|, hence (5.7) yields

‖Qq(B)‖ ≤ ‖Rλ(Bj)‖‖Rλ(Bj)‖ ≤ N

|λ|2 =
N

|q|2 ,

therefore, observing that BRz(Bj) = BjRz(Bj) = zRz(Bj)− IdXj
for every z ∈ ρ(Bj), we get

‖Cq(B)‖ = ‖Qq(B)q
c − BQq(B)‖ ≤ ‖Qq(B)q

c‖ + ‖BQq(B)‖
= ‖Qq(B)q

c‖ + ‖BRλ(Bj)Rλ(Bj)‖
= ‖Qq(B)‖|qc|+ ‖(λRλ(Bj)− IdXj

)Rλ(Bj)‖
≤ ‖Qq(B)‖|qc|+ |λ|‖Rλ(Bj)Rλ(Bj)‖ + ‖Rλ(Bj)‖

≤ N |qc|
|q|2 +

N |q|
|q2| +

N

|q| =
3N

|q| .

Now we conclude by invoking the equalities ρs(A) = ω + ρs(B) and Cq(A) = Cq−ω(B). �
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Birkhäuser Verlag, Basel, xiv+394, 2008.
[34] E. Hille, R.S. Phillips, “Functional Analysis and Semigroups”, Amer. Math. Soc. Coll. Publ., vol. 31, Amer.

Math. Soc., 1957.



SLICE REGULAR SEMIGROUPS 35

[35] L. P. Horwitz, L.C. Biedenharn, Quaternionic quantum mechanics: Second quantization and gauge field,
Annals of Physics, 157 (1984), 432–488.

[36] I. Kaplansky, Normed algebras, Duke Mat. J., 16 (1949), 399–418.
[37] T.Y. Lam, “A First Course in Noncommutative Rings”, Grad. Texts in Math., Vol. 131, Springer-Verlag,

New York, 1991.
[38] A. Lunardi, “Analytic Semigroups and Optimal Regularity in Parabolic Problems”, Birkhauser-Verlag, 1995.
[39] J. von Neumann, uber einen Satz von Herrn M.H. Stone, Ann. of Math. 33 (1932), 567–573.
[40] J. von Neumann, “Mathematische Grundlagen der Quantenmechanik”, Springer-Verlag, 1932.
[41] A. Pazy, “Semigroups of Linear Operators and Applications to Partial Differential Equations”, Springer-

Verlag, New York, 1983.
[42] W. Rudin, “Functional Analysis”, McGraw-Hill, New York, 1977.
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