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Abstract—In deeply scaled CMOS technologies, device aging
causes transistor performance parameters to degrade over time.
While reliable models to accurately assess these degradations are
available for devices and circuits, the extension to these models
for estimating the aging of microprocessor cores is not trivial
and there is no well accepted model in the literature.
This work proposes a methodology for deriving an NBTI-induced
aging model for embedded cores. Since aging can only be
determined on a netlist, we use an empirical approach based
on characterizing the model using a set of open synthesizable
embedded cores, which allows us to establish a link between
the aging at the transistor level and the aging from the core
perspective in terms of maximum frequency degradation.
Using this approach, we were able to (1) prove the independence
of the aging on the workloads which run by the cores, and (2)
calculate upper and lower bounds for the “aging factor” that can
be used for a generic embedded processor.
Results show that our method yields very good accuracy in
predicting the frequency degradation of cores due to NBTI aging
effect, and can be used with confidence when the netlist of the
cores is not available.

I. INTRODUCTION

Aging of CMOS devices has been one of the latest undesired
side-effects of technology scaling. Among the many different
aging phenomena, negative bias temperature instability (NBTI)
has emerged as one of the most crucial factors in shortening
the lifetime of devices [1]. A large bulk of research has
addressed the issue of NBTI-induced aging from the modeling
and optimization perspectives; they have been generally fo-
cused on logic blocks and SRAM structures because accurate
characterization of NBTI aging requires the availability of the
circuit netlist in order to extract critical paths and the signal
probabilities of the relative cells. These information are easily
available for logic circuits during the synthesis phase, and are
implicit for SRAM structures, whose topology is well-defined.
Extending this analysis to processor cores, however, is a quite
different matter. In the typical design scenario, cores are in
fact regarded as black-box, third-party IPs whose netlists are
obviously not available. As a consequence, the state of the
art in the modeling of the aging of a core is limited to very
simple approximations based on the power states of the core:
the core will age according to some constant aging factor
when active, and it will not age (or recover) when idle. Aging
and recovery are estimated assuming a baseline aging model,
which can be either analytical (taken from physics, as in [2]–
[6]) or empirical (derived by fitting data as in [7]). While some

differences exist among the various approaches ( [2]– [7]), this
state-based aging model is the underlying common paradigm.
One problem with these approaches is that the assumption of a
constant “aging factor” is not motivated nor validated. In fact,
as [3] states, “there is no publicly-available validated informa-
tion on expected service life and aging rates of processors”.
Therefore, previous works provide little or no hint on how
this factor can be computed, and how a factor applicable to
one core can be applied to a different one. Furthermore, the
underlying models used in these works refer to the model for
a single logic gate; however, in order to fully characterize the
aging rate of a core, a more complex model should be used.
The limitations of these works are a consequence of the fact
that an accurate characterization of the value dependency of
NBTI is only possible through an accurate logic simulation of
the netlist. The true NBTI aging of the critical path depends on
the signal probabilities of the gates it contains; without these
information only coarse approximations are feasible.
In this work, we determine such aging factor by using an
empirical analysis on a set of open, synthesizable cores for
which a gate-level netlist can be obtained. We target embedded
processor cores with typical RISC architectures, for which we
can have a better degree of confidence about the generality
of the presented results. Our ultimate objective is in fact to
derive an aging factor that is as much general as possible and
applicable to a generic core, in particular when its netlist is
not available.
The core netlists are used to obtain detailed aging data by
running a set of application kernels as data for characterization
and using a logic simulator augmented with transistor aging
models [8]; aging data are then used to fit an underlying
aging macromodel. Statistical correctness of the evaluation is
guaranteed by using different datasets for the characterization
and different cores for the validation.
The following are the main results that we obtained from our
analysis:

1) We show that aging of the core is independent of
the workload. Quite surprisingly, the impact of different
applications and different datasets have negligible impact
on the aging of the embedded core. As further elaborated
in the paper, this is mainly due to the characteristics of
the critical paths that determine the maximum frequency
of the core; in practice, different executed instructions
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and data do not alter significantly the probability values
on the critical paths.

2) A direct consequence of the workload independence is
that, for a given core, it is possible to define a fixed
aging factor, to be interpreted as an equivalent signal
probability to be used in a traditional transistor-level
aging model. This is the most relevant result of our work.

3) Since in general any core will have its own aging factor
because of differences in the architecture or different
synthesis constraints, deriving a single, “universal” aging
factor good for any embedded core is generally not
feasible. However, the characterization on different ar-
chitectures and with different synthesis constraints allows
to yield lower and upper bounds for the aging factor.
They can be used with a high degree of confidence for any
embedded core having comparable complexity to those
used in our characterization. Notice that these bounds
are not related to different workloads but just to different
architectures and different synthesis constraints.

4) Based on these outcomes, we propose a practical NBTI
aging macromodel for a core that is a generalization
of the traditional transistor-level one, where aging is
expressed as a degradation of the maximum working
frequency Fmax and the best- and worst-case aging
scenarios can be inferred based on the aging factor range.

Our validation is simulation-based, and is done on one of the
synthesizable cores that was not used for the characterization.
In this way we were able to compare the actual aging on the
netlist with the bounds provided by the aging factor range
applied to the macromodel. The comparison shows extremely
good accuracy, with a maximum error of 2.88%.
The manuscript is organized as follows: in Section II we
describe the background on NBTI and works related to
our contribution. Section III presents the methodology used
for characterization and to derive the proposed NBTI aging
model; the reference embedded cores platforms are illustrated
in Section IV. In section V we present the results of the
model characterization phase, while Section VI shows our
derived model and its relative validation by comparison of
estimated and simulated results. Finally, Section VII discusses
a few perspectives and possible enhancements to the proposed
model.

II. BACKGROUND

A. Background

Among the many different device aging mechanisms, NBTI is
regarded as the most critical one. It causes a gradual increase
in threshold voltage (Vt) and occurs when a pMOS transistor
is negatively biased, that is, when Vgs = −Vdd, corresponding
to a logic “0” being applied to the gate of a pMOS transistor
(the stress state); the increase of Vt absolute value causes
then a degradation of the delay of the device. Conversely,
when a logic “1” is applied to the pMOS gate, NBTI stress is
partially removed (the recovery state), resulting in a decrease
Vt absolute value.

A compact and general model of NBTI-induced Vt drift for a
transistor can be written as follows:

∆Vt = α · f(Vdd, Vt, T,R) · g(t). (1)

The model has three main factors:
1) A term α denotes the aging factor which depends on (i)

the actual stress/recovery pattern (i.e., time spent with
the two logic values at the inputs) and is also affected by
the activity (i.e., the time spent in active model) of the
device.

2) A term including all technological and environmental
parameters (f()): the degradation by NBTI depends on
operational parameters, supply voltage Vdd, threshold
voltage Vt, temperature T , and all the device parameters,
lumped here for compactness into set R, comprising
for instance oxide geometrical and electrical parameters,
activation energy, device size, and load. For the precise
mathematical expression of f() the reader is referred to
classical NBTI overview paper [1].

3) A function g(t) modeling the dependence over time of
the drift. The shape of the function depends on the
physical mechanism adopted to explain the NBTI effect
[14]. Examples are the reaction-diffusion (R-D) model,
for which g(t) = tn, [9] indicates the values of n in the
R-D model. Or the hole trapping (HT) one, for which
g(t) = 1−etn , [10] shows that the reported time exponent
n from previous works has a wide spread from 0.1 to
0.3; it also observes that n is around 0.2 can yield 90%
accuracy NBTI aging under real use conditions. The work
of [11] presents a thorough comparative analysis of the
two models at the gate-level, and shows both models
match well to obtain the NBTI degradation signature as a
function of the gate type, drive strength, input frequency,
and the duty factor. While in terms of non-periodicity,
instant degradation vs. long term degradation, CPU time
and memory usage, the two models show the different
performance on these aspects. For example, the Atomistic
trap based model can target the degradation simulation as
fast as ns stress time, but cannot target the longer stress
simulation; on the other hand, R-D model simplifies the
BTI interpretation as a slow mechanism in order to speed-
up the long-term stress simulation. The authors of [12]
also give a review of R-D model and charge trapping
model. Moreover, we refer the reader to [13] for the latest
charge-trapping NBTI model. In this work we adopt the
R-D model for our analysis since the technology library
we used already includes the Vt drift information for a
R-D model, and specifically g(t) = t1/4 based on the
technology library provided by STMicroelectronics.

For a given combination of environmental conditions, tech-
nological values, and g(t), it is the value of α determines
the actual Vt drift. Thanks to some mathematical properties
of NBTI aging mentioned in [15], it can be shown that it is
possible to use signal probabilities instead of actual signal
values for the evaluation of the effective stress. It is worth
remarking that the model of Equation 1 technically applies to
an individual transistor and, with minor adaptation, to a logic
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gate. The translation of the Vt drift on a more macroscopic
performance metric such as circuit delay or processor max-
imum frequency still requires the availability of a netlist to
determine the actual critical paths.

B. Previous Work

In the last few years, many studies have addressed NBTI aging
from the design and EDA perspective, focusing on modeling
first and then on various aging mitigation strategies. In this
section we will focus our review on aging models that can be
applied to processors; for a more in-depth overview of NBTI
modeling solutions for generic logic circuits and memories we
refer the reader to [14]–[17].
The work of [2] presents a NBTI-aware processor (Penelope)
in which several aging mitigation strategies are proposed.
For evaluation of these strategies, the authors do not use a
true aging model but rather use a NBTI efficiency metric that
combines the nominal delay, the TDP (Thermal Design Power)
limit, and the NBTI guard-band of the processor. The latter is
obtained by choosing the maximum guard-band required by
any block, assuming that all paths of the different blocks have
been adjusted to fit the cycle time to save power. In some
sense this work relies a “static” NBTI model, where aging is
not truly evaluated but statically defined in terms of a guard-
band for each sub-block.
The authors of [3] also adopt a sort of “a priori” model. They
assume target processor lifetime of 7 years, and evaluate two
different aging rates, called Low Wear-out and High Wear-
out life. They increase the delay of the critical paths by 10%
and by 25%, respectively, in 7 years. They use an explorative
approach also for other parameters related to NBTI aging,
namely the average fraction of stress time of pMOS transistors,
and the average ratio of pMOS to nMOS transistors in critical
paths. Since the authors do not assume availability of the
processor netlist, the critical paths are statistically estimated
by using inverter chains for pipeline stages, while for memory
stages they are estimated based on their circuit-level structure.
The authors of [4] present an analysis of workload-dependent
aging effects in a large microprocessor. The authors propose
a cell-level timing degradation model that is progressively
extended to the path-level, block-level, and processor-level.
They claim that while the timing degradation for different
blocks (block-level) in the processor can vary significantly,
however, such degradation of the whole processor (processor-
level) roughly independent of the applications that are running
on it, which is based on the assumption that active-state at all
times (without considering power-state of processor). They use
an architectural simulator that relies on an instance-level aging
model but do not propose a true processor-level applicable as
is. Furthermore, because they only refer one processor (and
do not specify which one) the generality of results cannot be
demonstrated.
The work of [5] aims at balancing workload in multicores
using an aging-related metric. The aging model for a core
relies on a traditional gate-level model for a critical path; the
authors provide no insight on (i) how the critical path(s) of the
processor is detected, and (ii) how the percentage of stress on

these critical paths is computed. The resulting model, although
approximate, works well because the objective is mainly to
determine whether the load of a processor should be increased
or decreased.
Another aging model was proposed in [6], they adopt the
model of Equation 1 as a reference and extend it at the core
level; A is assumed to be available either by direct charac-
terization on the core or by using specific aging monitors
(e.g., [18]–[20]). For the first option, they also suggest an
approach similar to ours, based on the collection of statistics
about delay and core activity at different operating conditions
(i.e., Vdd, T) running benchmarks with different activity levels
(i.e.,CPU bound and memory bound). A relationship between
delay and core activity can be finally established for example
using regression analysis. However, the paper does not specify
further details about its implementation nor results.

III. METHODOLOGY

Figure 1 pictorially shows the three steps of our methodology,
which are detailed in the following subsections.
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Figure 1. The three phases of the proposed methodology.

A. Model Design

The first step consists of the adaptation of the general
transistor-level model of Equation 1 to the context of an entire
processors core. Since Equation 1 expresses a drift in threshold
voltage and technically refers to a single gate, our first task in
order to model the aging of a processor is to devise a macro-
model that (i) tracks a quantity related to the system-level
performance of a embedded core, and (ii) uses a “core-level”
activity factor (as opposed as a gate-level one).
The first objective can be met by modeling the degradation
of maximum operating frequency of the core instead of that
of the Vt degradation. This is done by transposing the Vt
drift of equation 1 into a delay degradation using a classical
alpha-power law [21], whose inverse determines the maximum
operating frequency. Notice that this is possible since our
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methodology relies on the availability of a core netlist, thus it
is possible to accurately extract the critical path by simulation
and compute the maximum frequency.
The second requirement implies that we should use an aging
factor A that is some function of the workload W. From the
core perspective the workload is a mix of applications, whereas
at the gate-level this will translate into some signal probability
pattern in the circuit. This “core-level” activity factor will
therefore represent a mapping of the core workload onto signal
probability values. Equation 2 shows the expression of the
proposed core-level NBTI aging model.

F̂ (t) =
F aged
max

Fnom
max

= A(W,K(Vdd, Vt, T,R)) · g(t) (2)

where F̂ is the normalized maximum operating frequency; F̂
is 1 (F aged

max ≡ Fnom
max ) at time 0 and will progressively decrease

over time.
• The function describing the evolution vs. time is a generic
g(t) that has to be empirically derived from simulated
data. As a matter of fact, Equation 2 expresses the drift of
frequency (and therefore delay), not of threshold voltage
as in Equation 1. As such, the dependency will have a
similar shape but not necessarily described by the same
tn function.

• The model has two main differences with respect to the
one of Equation 1. The term K(Vdd, Vt, T,R), which con-
ceptually maps to f() in Equation 1, is incorporated into
A because the model is empirical; what will be derived
during the characterization is a factor that correlates F̂
with the g(t) term. In a single characterization run (for
a given netlist and the relative synthesis constraints), the
terms represented by K can be considered constant and
are therefore included in the activity factor are A.

The derivation of the actual model is carried out in the two
other phases of the methodology.

B. Model Characterization

The second step is the most articulated one and concerns the
empirical characterization of the model template obtained in
the first phase by running simulations on the netlists of a
set of synthesizable cores. In particular, this step empirically
determines the value of the aging factor A().
Figure 2 shows the flow of the characterization phase in terms
of tools, files, and formats.
Initially, the core is synthesized using Synopsys Design Com-
piler. The post-synthesis netlist is then simulated using a set
of testbenches using Mentor’s Modelsim. The testbenches are
obtained by cross-compiling the source code of the test appli-
cations into executable codes through tool-chain correspond to
the specific core. Modelsim pre-loads these executable codes
to the processor memory, then read SDF file from previous
step to perform a full timing simulation. Finally, Modelsim
dumps the signal change profile of each node in the netlist
by generating VCD (value change dump) files correspond to
each run, from which we generated SAIF (switching activity
interchange format) files to get static probability of each node
from VCD files.
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Figure 2. Flow of the Aging Factor Characterization Step.

This information is used by the Vintage tool [8], a plug-
in of Synopsys PrimeTime for calculating the NBTI-induced
aging. Vintage uses aging-characterized libraries to calculate
gate-by-gate aging on a critical path. Since most conventional
design kits do not provide designers with aging library that
account for time-dependent variations, Vintage implements a
SPICE-based flow for the analysis of the aging of CMOS
library cells to achieve such aging library. The limitation in
our experiments is the aging library is based on only one
temperature since it based on the standard library provided, we
only have 25 degree and 125 degree standard library provided
by STMicroelectronics. In order to avoid aggressive results,
we only chose 25 degree temperature NBTI-aware library in
our experiment. Characterizing temperature dependence will
be considered in our future work. [8] indicates the detailed pro-
cess of characterization of NBTI-aware library; it implements
a SPICE-based flow for the analysis of the aging of CMOS
library cells. Depending on the statistics of the input signals of
a cell, the simulations compute the aging of the pMOS based
on HSPICE built-in aging models in the technology library
and technology parameters provided by the library provider,
then the stress information is integrated into the pMOS device
parameters and the delay degradation of the cell is measured
and stored in a dedicated LUT, ultimately the NBTI-aware
library is derived.
NBTI-aware static timing analysis conducted by Vintage con-
sists of two phases. First, the extraction of the stress in the
netlist is carried out, which takes the output of probabilistic
simulation of the design from Modelsim as one input, others
inputs are the aging-aware library obtained from characteriza-
tion describes above and the circuit description that is post-
synthesis netlist in our methodology. In this step, the statistics
of each signals of the design are annotated, and for each cell
the corresponding delay degradation is computed using the
aging models of the cells contained in the library. The second
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phase is the actual static timing analysis on the annotated
netlist. However, the objective of STA in here is not only the
calculation of the critical path and the critical cells, because
our target is the delay from an aging point of view, and the
aging is value dependent, such analysis must identify a larger
set of paths and cells since the paths that can become critical
due to aging, the method in Vintage to solve such issue is
calculating the Potentially Critical Paths(PCPs) [15], which
those paths whose delay is within a given percentage from the
nominal critical path. It is noticed that Vintage encompasses
the analysis of the idleness periods of the circuits and the
extraction of the sleep signal temporal distribution(e.g. busy
or free), but we assume the core always in the active state
in our experiments which is an aggressive assumption lead
us get the aggressive aging degradation of the design. Finally,
Vintage carries out the NBTI-aware static timing analysis with
each SAIF file related to the different testbenches to derive
the timing degradation of the critical path(s), from which the
corresponding F aged

max is obtained. Since the model of Equation
2 keeps the aging factor A encapsulates the physical term K,
and K is fixed in each run (an instance of a workload and
a given dataset) according to the physical and environmental
parameters limited by the standard library provided by the
manufacture, A is directly obtained by the measured F aged

max in
different time points.
The process depicted in Figure 2 is executed for different
synthesis options (e.g., high/nominal/low effort) and applied to
different synthesizable core RTL descriptions in order to use a
larger characterization sample. Each run will obviously yield a
different A(W), which could impair the possibility of deriving
an activity factor A that is as much general as possible.
However, as the results will show, the characterization runs
do exhibit an important feature, i.e., the rough independence
of A from the workload, that will allow to derive a value of
A that can be used with a good degree of generality.

C. Model Fitting

The last step concerns the translation of the A(W) derived in
the previous phase into a true model of F̂ (t) over time. Thanks
to some specific peculiarities of the critical paths in the cores
that are shown in the following, it is possible to determine
an equivalent aging factor A that applies to the entire core
(details for this phase are provided in Section V ). However, in
order to account for different synthesis constraints, rather than
a single aging factor this phase yields a range [Amin,Amax].
This representing an upper and lower bound of the frequency
degradation usable for any core. Therefore this step is simply
an empirical fitting of the model of Equation 2 using the
values of A and the measured F aged

max at each timing point,
we use curving fitting function in Matlab derive our NBTI
aging model in our proposed methodology. It will derive thus
the function g(t) illustrate the aging maximum frequency
evolution with time goes on, allowing to obtained a model
of F̂ (t) over time usable for any embedded core without the
knowledge of the netlist or even of the internals.

IV. EXPERIMENTAL SETUP

A. Reference Cores Platform

For our characterization we selected four widely used open-
source embedded cores, with a synthesizable RTL HDL
description and a full tool-chain for cross-compilation of
applications sources. We chose these four cores as our target
platforms because they have relatively general RISC-based
architectures which cover most of traditional embedded cores;
in this way, we can have a good degree of confidence about
the generality of our methodology and results. The rest of the
section lists the basic information of these four cores.

• The Plasma 3 CPU [23] is a synthesizable 32-bit RISC
microprocessor implemented in VHDL, which executes
all MIPS-I user mode instructions except unaligned load
and store operations. The main memory communicates
with the core and contains both instruction and data.
It features an interrupt controller, UART, SRAM or
DDR SDRAM controller, and Ethernet controller. Our
version is implemented with three stage pipelines and an
additional stage for memory reads and writes.

• The OR1200 [24] is a synthesizable 32-bit RISC CPU
core with Harvard micro-architecture implemented in the
Verilog HDL. It is maintained by developers at Open-
Cores.org. OR1200 is intended for embedded, portable
and networking applications. The implementation fea-
tures a power management unit, debug unit, tick timer,
programmable interrupt controller, central processing
unit, and memory management hardware. Our version is
implemented with four-stage integer pipeline.

• The OR10N core [25] is a synthesizable 32-bit RISC
processor with four pipeline stages. It is the improved
version of OR1200 developed by ETH Zurich, it is
redesigned the micro-architecture from scratch to achieve
high IPC values, but maintained the four stage pipeline,
the designers also balance the pipeline stages, which
allows the core can run at a higher frequency and
lower voltage for better energy efficiency. OR10N core
processes 67% more instructions per second than the
OR1200. Our version is implemented with its four-stage
integer pipeline, the core is attached to an instruction
RAM and a data RAM. The instruction memory interface
is implemented such that the instruction RAM can be
replaced with a cache, the data memory interface grants
incoming requests in the same cycle.

• The RI5CY core [26] is a synthesizable 32-bit RISC-
V processor core with four stages developed by ETH
Zurich and University of Bologna. The ISA of RI5CY
was extended to support multiple additional instructions
including hardware loops, post-increment load and store
instructions and additional ALU instructions that are
not part of the standard RISC-V ISA. Our version is
implement with its four-stage pipeline, it is attached to an
instruction RAM and a data RAM through the instruction
interface and data interface. The instruction interface
connects the prefetch buffer, the data interface receives
data from execution stage and sends data to write back
stage.
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V. EXPERIMENTAL MODEL CHARACTERIZATION

The model characterization phase of Figure 1 is the most
important of the methodology; this section will describe the
results obtained by running the flow of Figure 2 to our set of
test cores.

A. Choice of the Cores for the Characterization

One important issue is to select which cores to use for the
characterization and which one(s) to leave out and use for
the validation. In order to make the most appropriate choice,
we use the results of the synthesis process on the cores so
as to avoid too evident correlations in the set used for the
characterization.
We synthesized these four cores listed in Section IV on an
industrial 45nm standard cell library by STMicroelectronics
using a supply voltage of 1.1V and a temperature of 25◦. Ta-
ble I lists the synthesis results of each core under two different
timing constraints. The reason for this is that different timing
constraints may yield different critical paths and arrangements
of the gates in the path, resulting in different aging factors. As
noted in [4] and [22], the worst aging factor strongly depends
on what kind of gates exist in the path and how these gates
are arranged in the path.

Synthesis Report
Core Frequency (MHz) Tot. Gates # Gates CP

Plasma 354.58 16.2k 81
161.06 15.3k 82

OR1200 346.01 41.7k 66
132.67 37.3k 91

OR10N 352.88 38.9k 62
153.73 36.6k 92

RI5CY 352.47 40.3k 47
137.99 38.4k 118

Table I
SYNTHESIS RESULTS OF EACH CORE WITH DIFFERENT TIMING

CONSTRAINTS.

The two timing constraints chosen were 3 and 10 ns, cor-
responding to high and low frequency bounds. These values
are selected arbitrarily suggested by common sense, but any
two frequency bounds (or even more values) could be used;
the objective is essentially that of generating different post-
synthesis netlist to determine the sensitivity to frequency
options by the aging factor. For each core, the table reports
two rows with (i) the frequencies resulting from the two timing
constraints (top row 3 ns, bottom row 10 ns), (ii) the number
of total gates in the post-synthesis netlist, and (iii) the number
of gates in the critical path.
As an example, the synthesis for OR10N with 3 ns constraint
(fifth line in Table I) yields the following values; the critical
path occurs within the execution stage of the core, and specif-
ically from signal id stage i/alu operator ex o reg[2] and
ends with signal id stage i/alu operand b ex o reg[31];
it includes 62 gates, resulting into a critical delay of 2.83ns,
which corresponds to a nominal frequency fmax,nom =
352.88 MHz. The synthesis with the 10 ns constraint yields a

longer critical path and a reduced number of gates of netlist
decrease. The critical path occurs within the instruction de-
code stage, from signal if stage i/instr rdata id reg[2] to
signal id stage i/alu operand b ex o reg[31] (92 gates),
leading to a critical delay of 6.505 ns, corresponding to a
frequency fmax,nom = 153.73 MHz.
We then used the information in the table to determine the
three cores used for characterization and the one left out and
used for validation. The table shows that the Plasma core
is less complex than the others cores, so we included it in
the characterization set. Then, since OR10N is an improved
version of OR1200, we chose to include OR1200 and OR10N
for the characterization in order to avoid using one core for
characterization that was too similar to one used for validation.
Therefore, we left RI5CY for the validation of our results.

B. Workload Definition and Analysis

In terms of workloads for the characterization, we chose a
set of application kernels that exercise in different ways the
various components of the core and induce diverse static
probabilities of signals in the core. We used different sets for
each core because of their complexity. Plasma for instance
is relative simple than other two, and supports only the
compilation of code of moderate size. Table II lists the set
of applications used as input testbenches for the three netlists;

Application Plasma OR1200 OR10N
Bubble Sort • • •
Heap Sort • • •
Quick Sort • • •

Hello World • • •
Count Number •

Calculate Pi •
Matrix Mul16 •
Matrix Mul32 • •

FFT • • •
RGB convert • • •

Gauss-2D filter • •
Non separable 2D filter • •

Table II
APPLICATION LIST WE TESTED IN OUR EXPERIMENT

the bullet in each entry indicates if the application is used for
a given core.
We ran these selected applications on these three cores to
derived the frequency degradation profile over a 10-year
interval according to our methodology as shown in Figure
2. Figures 3–5 show the aging frequency degradation curves
for Plasma, OR1200, and OR10N, respectively, and using
the 10ns constraint (low frequency). It is immediately visible
from the plots that the difference among the curves is almost
negligible. For Plasma, the maximum difference of aging
frequency among two applications is 1.45 MHz (about 0.90%),
for OR1200 is 1.57 MHz (about 1.18%), and for OR10N is
1.21 MHz (about 0.79%). The overall degradation over 10
years is approximately 25% for Plasma and OR1200, and 15%
for OR10N. We omit the aging degradation results of the three
cores under 3ns constraint (high frequency) because they are
very similar to the results under 10ns constraint.
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Figure 3. Aging Degradation of Plasma for the Test Applications.
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Figure 4. Aging Degradation of OR1200 for the Test Applications.
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Figure 5. Aging Degradation of OR10N for the Test Applications.

The results of Figures 3–5 refer to a single dataset for
each application. In order to further exercise diverse signal
probability values, we artificially design multiple datasets for
the applications with the objective of achieving as much
different as possible static probabilities in the netlist. This has
been achieved by defining for each application a 0-dominated
(90% of the bits are randomly set at ’0’ in the data) and a
1-dominated (90% of the bits at ’1’) datasets. For applications
that are strongly data-dependent such as the sorting ones, we
further used different initial datasets (sorted, random, inverse
sorted) so that the corresponding algorithms will result in
different numbers of executed instructions.

Figures 6–8 show a sample of the results by running Bubble-
Sort and Matrix Mul32 with the 0- and 1-dominated datasets,
and the sorted/random/inverse sorted datasets for QuickSort
and HeapSort programs.
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Figure 6. Aging Degradation of Plasma with Different Input Datasets.

Years
0 1 2 3 4 5 6 7 8 9 10

N
o

rm
al

iz
ed

 F
re

q
u

en
cy

0.5

0.6

0.7

0.8

0.9

1
Bubble Sort Aging Degradation

1-Dominated
0-Dominated

Years
0 1 2 3 4 5 6 7 8 9 10

N
o

rm
al

iz
ed

 F
re

q
u

en
cy

0.5

0.6

0.7

0.8

0.9

1
Matrix Mul32 Aging Degradation

1-Dominated
0-Dominated

Years
0 1 2 3 4 5 6 7 8 9 10

N
o

rm
al

iz
ed

 F
re

q
u

en
cy

0.5

0.6

0.7

0.8

0.9

1
Quick Sort Aging Degradation

Inverse
Random
Sorted

Years
0 1 2 3 4 5 6 7 8 9 10

N
o

rm
al

iz
ed

 F
re

q
u

en
cy

0.5

0.6

0.7

0.8

0.9

1
Heap Sort Aging Degradation

Inverse
Random
Sorted

Figure 7. Aging Degradation of OR1200 with Different Input Datasets.
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Figure 8. Aging Degradation of OR10N with Different Input Datasets.

The difference in the aging within each set of bars is barely
distinguishable; the max difference of bars in Plasma core
is 0.89 MHz (about 0.5%), in OR1200 core is 0.73 MHz
(about 0.6%) and in OR10N is 0.96 MHz (about 0.6%). Such
difference is even smaller than the difference resulting by
different applications; therefore, data values seem to affect the
aging in a negligible way for all the three cores.
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C. Forcing Input Probabilities

The previous experiments have shown the aging frequency
of the cores is weakly affected by (i) the applications run
by the cores and (ii) the data used by these programs. The
largest deviation of aging frequency degradation among all
the experiments we have run is only about 1.18%.
The above data seems to suggest that aging degradation is
independent of the workload in terms of executed instructions
and input datasets. However, this observation could be affected
by the limited sample used or by a poor choice of the applica-
tion mix, which might possibly exercise only a limited range
of signal probabilities in the netlists. Therefore, to further
verify this claim, we forced a number of combinations of
static probability values at the inputs of the pipeline stage that
contains the critical path. The signal probabilities in the netlist
are then determined by propagating the input probabilities,
and the NBTI degradation for each gate in the critical path is
then computed with the NBTI-aware library according to the
annotated signal probabilities annotated.
An exhaustive simulation of all probability values is clearly
unfeasible. Even assuming a coarse grain quantization of
the probabilities (e.g., in steps of 0.1), the number of com-
binations is prohibitive. If the target pipeline stage has n
inputs, and D is the number of probability values (e.g.,
11 for a step of 0.1, from 0 to 1), that exhaustive enu-
meration would be 11n. Considering the the target cores
are 32-bit cores, n is at least 64, i.e., the size of two
registers, but is in general much larger. For example, in
the Plasma core the inputs of the critical pipeline stage
are a bus[32], b bus[32], alu func[4], branch func[3],
c source[3], imm[16], mult func[4], rd index[6] and
shift func[2], for a total of n=102 bits [27].
We therefore sampled the space by applying a small subset of
N = 60 distinct probability patterns; notice that each simula-
tion and aging extraction run takes approximately 45 minutes.
In order to increase the meaningfulness of the sample we have
applied random probabilities to the input selectively, in order
to avoid exploring probability patterns that are unlikely to
occur:

• Inputs relative to vectors carrying data values are assigned
as follows:

– Since very large integers are seldom used in pro-
grams, we roughly assume that the 12 MSBs of
data are unused. Assuming then that positive and
negative values are equally probable, bits from 20 to
31 are fixed at 0.5 probability. Due to sign extension
(data are represented in 2’s complement), all unused
bits will be either 0 (positive values) or 1 (negative
values);

– Bits from 0 to 19 are sampled randomly using
discretized probability values from 0.0 to 0.99 in
steps of 0.1.

Notice that this two-region model of data is widely used
in power macromodeling of arithmetic operators, and is
known as the dual-bit type model [27].

• Inputs relative to vectors carrying addresses are con-
sidered as fully random. Notice that in principle we

could restrict further the space since in the pipeline stage
containing the critical path addresses are dataa addresses
which are likely to be limited in one specific portion of
the address space (i.e., some bits could be fixed at 0 or
1 probability).

• Inputs relative to control bits are considered as fully
random.

Although the sampling is partial, it explores values in a more
randomized way than what can be obtained by running an
application mix with multiple datasets. This strategy shares
some similarity with classical approaches used to generate
power macromodels for RTL power estimation [28], [29].

Core Timing Min Aging Max Aging ∆
Constraints 10yrs 10yrs [%]

Plasma 354.58 MHz 265.59 MHz 269.81 MHz 1.2%
161.06 MHz 121.27 MHz 118.68 MHz 1.6%

OR1200 346.01 MHz 240.85 MHz 244.68 MHz 1.1%
132.67 MHz 97.23MHz 100.12 MHz 2.2%

OR10N 352.88 MHz 238.62 MHz 241.91 MHz 0.9%
153.73 MHz 129.89 MHz 131.97 MHz 1.4%

Table III
AGING RANGES WHEN FORCING PROBABILITIES OF THE PIPELINE STAGE

INPUTS.

Results are reported in Table III, which reports the worst- and
best-case aging after 10 years. Since the curves tend to diverge
as the time horizon increases the point at 10 years represents
the largest difference between best and worst cases. We ran the
experiment for the three cores and for both timing constraints
(high and low frequency). Results are even more surprising,
since the simulations confirm the previous results, showing
that different static input probabilities (at the inputs of the
critical pipeline stage) affect only marginally the frequency
degradation of the cores.
The largest difference among all points is 1.6% for Plasma,
2.2% for OR1200 and 1.4% for OR10N within different timing
constraint situations. The ranges are a bit larger than those
resulting from real applications; however, the difference is
quite limited. Although a sample of very large space, this
further strengthens the claim that the results from running
application are not particularly “fortunate” cases for aging,
but they are consistent with a larger exploration of the possible
input values.

D. Removing the Dependency of Workload

The results shown in the previous section empirically demon-
strate one fundamental outcome of the characterization phase:
since aging is not affected by the input static probability
values, it is possible to drop the dependency of the workload W
from A in Equation 2. This allows using, for a given instance
of the flow of Figure 2, i.e. a core netlist with its synthesis
constraint, a constant aging factor A, regardless of what
application is executed. While this is exactly the assumption
adopted by most of the previous works, this feature was
assumed without a motivated evidence and no clear indication
was given about the actual value of this constant aging factor.
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So far, we have empirically shown that the use of this constant
factor is justified. However, this property alone does not
provide a hint on which value of A should be used. What
is needed is in fact an “equivalent” fixed aging factor that can
be applied to all the critical gates and that can be characterized
once and for all.
In order to obtain this, we artificially set different static
probability values to all signals in the core netlist. Notice that
these values are not logically feasible and can only be forced
by writing a corresponding VCD file. Specifically we forced
all static probability values of all signals in the core netlist
by varying them between 0.0 and 0.99 in steps of 0.1. For
each configuration we ran the usual flow to derive the aging
curves; this was repeated for each characterization point (core
and synthesis constraint). Figure 9 conceptually depicts the
two extremes of the range (all signal assigned to 0’s or to
1’s), which determine the worst and best case for aging.
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Figure 9. Artificially Setting Signal Probability Values in the Netlist.

The gate-wise assignment of probabilities finally results in
different aging profiles for different probabilities. Figure 10
reports the frequency degradation over time for the vari-
ous probability values assigned to the internal signals, for
the three cores and for the two frequency values. As we
described in the model characterization section, we do not
only consider the critical path of the fresh core, but also
set the guardband to catch the critical path evolved from
those potentially critical paths. We mark the time point when
the critical path changes as time advance in Figure 10. We
do not mark all of them since there are too many of them
(For instance, we do not mark first year aging frequency
points because the critical path always changes during the first
year). For instance of OR10N core under high frequency with
all signals have 0.7 static probability, the fresh critical path
is from signal id stage i/alu operator ex o reg[2] and
ends with signal id stage i/alu operand b ex o reg[31];
then the critical path changes to one from signal
id stage i/mult signed mode dot ex o reg[0] and ends
with signal id stage i/mult operand b dot ex o reg[25]
at first year; it changes again to the one from signal
id stage i/mult signed mode dot ex o reg[0] and ends
with signal id stage i/mult operand b dot ex o reg[28]
after two years. Aging effects of all three cores are now
sizable, the difference 10-year aging between the worst-case
(all signals at 0.0 probability) and the case with all signals at
0.99 probability is very obvious. As a side result, the figure
provides upper and lower bounds on the aging frequency.
Clearly, all 0’s will age all p-transistors (worst case) and
0.99 static probability will allow them to recover (best case).

Obviously, aging monotonically decreases for increasing static
probability.
In order to obtain the fixed gate-level aging factor, for a given
core we superimpose the aging curve obtained by setting input
probabilities as described in Section V-C (Table III) on the
corresponding plot of Figure 10. The aging curve will lie
between two curves of Figure 10, by linear interpolation of
these two values we obtain the fixed aging factor. Figure 11
shows an example of the process; curves are in this case
relative to the Plasma core.
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Figure 11. Extrapolation of the Equivalent Signal Probability.

The solid red curve is the curve that represents the sheaf of
aging curves obtained for various input probabilities points, as
described in Section V-C. Since the sheaf is quite concentrated,
it is a reasonable approximation to take the average of all
the curves and use it as a representative of the entire sheaf.
The dashed curves are those obtained by setting all signal
probabilities to the various values from 0 to 0.99 (they
correspond to the top right plot of Figure 10). We can see
that the red curve lies between the 0.5 and 0.6 probability,
being closer to the latter value. Using the curve interpolation
with Matlab, we obtain a value of 0.56 as the aging factor for
this instance.
The outcome of this operation is particularly relevant; since the
actual aging of an instance (core/synthesis constraints) does
not depend on the workload, we can associate an equivalent
aging factor to the entire core as if all gates in the critical
path were aging of the same amount.
The important consequence of this is that this process allows
us to use a “gate-level” model of aging for the whole core
similar to Equation 1, where the activity factor is constant
for a given instance. Obviously, different netlists will have a
different equivalent aging factor. The values of the latter for
the three cores used for characterization under the two timing
constraint are reported in Table IV.
As a general observation, we can notice that more stringent
constraints (higher frequency) yield smaller and closer values
in the rage (0.30–0.32); as we move to slower implementations
(lower frequency), the range gets larger (0.42–0.56) and also
shifted towards larger values. Notice also that simpler netlists
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Figure 10. Aging Degradation of Cores with Different Static Probability for All Signals in the Core Netlist.

Core Fmax [MHz] A

Plasma 354.58 0.32
161.06 0.56

OR1200 346.01 0.31
132.67 0.46

OR10N 352.88 0.30
153.73 0.42

Table IV
EQUIVALENT AGING FACTORS FOR THE THREE CORES AND THE TWO

TIMING CONSTRAINTS.

like the Plasma have larger range between low and high
frequency than more complex core such as the OR1200 or
OR10N, denoting a stronger sensitivity to the synthesis process
for the given timing constraints. It is also shown that ranges
of Plasma are wider because the netlist gets more optimized
given the relatively low constraints compared to more complex
cores. From the other side, in a more optimized network, the
critical path becomes then more sensitive to the aging and
the two extremes become wider. The actual and final output
of the characterization is therefore a range of values for A
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determined by the largest upper and smallest lower bounds
over all the characterization runs. Our simulation yields the
range A = [0.30, 0.56]. The flow of Figure 1 simply yields
in this case the above range rather than a true function as
initially described, thanks to the special property of workload
insensitivity.

E. Model Fitting

Thanks to the workload independence observed during the
characterization phase, the last step of the methodology of
Figure 1 becomes relatively straightforward. Since A is simply
a range, we can derive the frequency degradation F̂ (t) as a pair
of lower and upper bound function [F̂L(t), F̂U (t)]. Notice that
the values of A derived empirically include the technology-
dependent factor K of Equation 2.
The fitting process consists of finding the best approximation
to the upper and lower bound curves by determining the
function g(t) of Equation 2. Using Matlab curve fitting for
the two curves yields the following functions:

F̂L(t) = 0.30× (−0.5175× t0.3259 + 3.3269) (3)

F̂U (t) = 0.56× (−0.1384× t0.2936 + 1.8068) (4)

The SSE and RMSE of the above functions generated by
Matlab curving fitting are 8.47 · 10−5 and 3.26 · 10−3.
These two equations fit the template of Equation 2 by sep-
arating the empirically-derived and the technology-dependent
factor K. However, if we re-arrange [F̂L(t) and F̂U (t)] we get:

F̂L(t) = 1− 0.1465× t0.3205 (5)

F̂U (t) = 1− 0.0719× t0.3023 (6)

These two functions are reminiscent of the more traditional
“power-law” aging formula of threshold voltage (Equation 1),
yet are in the form 1 − tn since F̂ expresses a quantity that
decreases over time due to aging, as opposed to threshold
voltage.
The functions of Equations 5 and 6 exhibit an interesting
feature. The empirically derived A is now modulated by the
interpolation to yield a sort of “effective” aging factor (0.1465
for F̂L, 0.0719 for F̂U ), smaller than A. This is however a
result of the empirical fitting process, while A truly represents
the actual aging factor derived from circuit-level analysis.

VI. MODEL USAGE AND VALIDATION

Our claim is that the two functions F̂L(t) and F̂U (t) denote the
aging bounds (in terms of maximum frequency degradation)
of any core (of comparable complexity to the ones used
in characterization, and under the same environmental and
technological conditions).
For the assessment of the model, we ran the same methodology
for the core left out from the characterization, namely, the
RI5CY one [26]. Table V shows results of the core RI5CY.
The aging factors (obtained using the method described in
Section V-D under the two timing constraints are respectively
0.32 and 0.50, which are both inside the region of A found
empirically.

Core Frequency(MHz) A

RI5CY 352.47 0.32
137.99 0.50

Table V
AGING FACTORS OF RI5CY CORE

In order to quantify the error caused by different range values
([0.32− 0.50] for the RI5CY vs. the [0.30− 0.56] range used
in Equation 3 and 4) at different time points, we compare
simulated and estimated maximum frequency values for two
implementations (low- and high-frequency) of the RI5CY
core. Tables VI and VII report the relative results.

Years Fmax Fmax Error
(Simulated) (Estimated, Worst) [%]

0 352.4692 MHz 352.4692 MHz -
1 301.6320 MHz 297.0681 MHz 1.513%
2 275.2635 MHz 283.1993 MHz 2.883%
3 267.6943 MHz 273.5097 MHz 2.173%
4 262.0570 MHz 265.8155 MHz 1.434%
5 257.7382 MHz 259.3304 MHz 0.618%
6 252.6876 MHz 253.6701 MHz 0.388%
7 247.4047 MHz 248.6749 MHz 0.489%
8 244.5705 MHz 244.0259 MHz 0.223%
9 242.2467 MHz 239.1769 MHz 1.006%

10 237.6745 MHz 235.8971 MHz 0.748%

Table VI
ACCURACY OF PROPOSED NBTI MODEL FOR RI5CY CORE (HIGH

FREQUENCY IMPLEMENTATION).

Years Fmax Fmax Error
(Simulated) (Estimated, Best) [%]

0 137.9890 MHz 137.9890 MHz -
1 128.1659 MHz 128.9237 MHz 0.591%
2 125.9604 MHz 126.5099 MHz 0.436%
3 124.5290 MHz 124.8528 MHz 0.260%
4 123.3782 MHz 123.5514 MHz 0.140%
5 122.3700 MHz 122.4636 MHz 0.077%
6 121.5128 MHz 121.5202 MHz 0.006%
7 120.7220 MHz 120.6823 MHz 0.033%
8 120.0146 MHz 119.9252 MHz 0.075%
9 119.4058 MHz 119.2323 MHz 0.145%

10 118.8340 MHz 118.592 MHz 0.204%

Table VII
ACCURACY OF PROPOSED NBTI MODEL FOR RI5CY CORE (LOW

FREQUENCY IMPLEMENTATION)

Values in columns Fmax (Estimated, Worst) and Fmax (Esti-
mated, Best) are obtained using the lower and upper bound
Equations 3 and 4 respectively. The frequency degradation
for the high frequency implementation of the core (Table VI)
exhibits a maximum error of 2.883%, when comparing against
the worst-case aging; when considering the low frequency
implementation the maximum error is even smaller (0.591%),
in this case when compared against the best case aging.
Notice that, due to the empirical curve fitting, the error is
not monotonic over the various time points; in any case, the
variance of the error remains quite limited.
It is evident from these numbers that a difference in the
actual aging bounds actually results in lower errors in the final
estimate. For instance, for the RI5CY core the 0.32 simulated
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factor vs. the 0.30 of the model (6.6% difference) results only
in an average error of about 1.1% for the worst case; the best-
case factors (0.5 vs. 0.56, 10.7% difference) yields an average
error around 0.17%.
It is worth observing that the comparison in Tables VI and VII
refers to a scenario in which the designer knows whether
the core be analyzed has been synthesized for a fast or slow
synthesis corner. In general, however, the designer is unaware
of this details; in this case he might decide to use the bounds
and obtain a range of aging rather than a single value.
Conversely, if the designer (erroneously) chooses to pick one
of the two extremes and incidentally the target core has been
designed using the opposite synthesis corner. Specifically,
designers use the bound for a slow corner when the character-
ization is done for the fast one. An interesting figure could
be what is the maximum error than one can expected by the
mismatch of the two extremes. Tables VIII and IX provide
the answer, for the cases of a fast corner compared against
the aging lower bound, and a slow corner compared against
the upper bound, respectively. This is clearly a wrong design
choice that would not be done by a designer, in spite of such
a wrong match of corners, the maximum error is 27%. On the
other hand, the true errors for a matched corner analysis are
shown in tables VI and VII, in this case errors are truly small.

Years Fmax Fmax Error
(Simulated) (Estimated, Best) [%]

0 352.4692 MHz 352.4692 MHz -
1 301.6320 MHz 329.3134 MHz 9.177%
2 275.2635 MHz 323.1479 MHz 17.396%
3 267.6943 MHz 318.9149 MHz 19.134%
4 262.0570 MHz 315.5909 MHz 20.428%
5 257.7382 MHz 312.8121 MHz 21.368%
6 252.6876 MHz 310.4026 MHz 22.840%
7 247.4047 MHz 308.2623 MHz 24.598%
8 244.5705 MHz 306.3283 MHz 25.251%
9 242.2467 MHz 304.5584 MHz 25.722%

10 237.6745 MHz 302.9224 MHz 27.452%

Table VIII
WORST-CASE ERROR FOR RI5CY CORE (CASE OF HIGH FREQUENCY

IMPLEMENTATION) USING THE WRONG CORNER.

Years Fmax Fmax Error
(Simulated) (Estimated,Worst) [%]

0 137.9890 MHz 137.9890 MHz -
1 128.1659 MHz 116.2999 MHz 9.258%
2 125.9604 MHz 110.8704 MHz 11.980%
3 124.5290 MHz 107.0770 MHz 14.015%
4 123.3782 MHz 104.0647 MHz 15.654%
5 122.3700 MHz 101.5259 MHz 17.034%
6 121.5128 MHz 99.3099 MHz 18.272%
7 120.7220 MHz 97.3309 MHz 19.376%
8 120.0146 MHz 95.5343 MHz 20.398%
9 119.4058 MHz 93.8834 MHz 21.375%

10 118.8340 MHz 92.3519 MHz 22.285%

Table IX
WORST-CASE ERROR FOR RI5CY CORE (CASE OF LOW FREQUENCY

IMPLEMENTATION) USING THE WRONG CORNER.

We notice that the errors are not so dramatic; the largest
error is 27.452%. Moreover, unlike the case of matched
corners (Tables VI and VII) where the errors are roughly

constant, here they increase as the time horizon gets larger,
and the errors under the case of high frequency implementation
increase more rapid than ones under the case of low frequency
implementation, although both of them have similar values
(around 9.2%) at first year.
Again, the purpose of this analysis is just for assessing the
extreme case of an incorrect use of the model by the designer.
The right use of the model in absence information about the
implementation of the core would be to keep the two bounds
to get a range of aging degradation at different time points
instead of a single value.

VII. CONCLUSIONS

In this paper we have presented a NBTI aging model for
embedded processor cores. The proposed methodology results
into two major conclusions: (1) the aging degradation is
independent of the workload, i.e., the switching activity in the
netlist, and, based on this first observation, (2) it possible to
identify an “effective” static probability, called aging factor,
that can be used as a core-wide stress probability, which allows
one to use a gate-level aging model for the entire core. This
value has been empirically derived as fixed stress probability
correspond to different cores based on a set of synthesis data,
which shows that the aging factor is different for different
embedded cores, and for different synthesis constraints. How-
ever, by taking the extreme values of the aging over all design
points it is possible to derive upper and lower bounds to the
aging as a function of time.
It is worth emphasizing that the proposed methodology does
not claim to propose an universal model for all types of
processors and under all environmental, technological, and
synthesis conditions. The following are possible limitations
of the proposed method, some of which represent possible
directions for future research:

• The characterization procedure could not be very ex-
tensive due to the limited number of synthesizable core
publicly available; therefore, the statistical strength of the
methodology is somehow limited.

• The models derived are applicable to processors belong-
ing to the class of “embedded” cores or micro-controllers,
with relatively simple RISC-like architectures, and we
cannot claim it may apply also to the case of high-end
super-scalar cores with aggressive out-of-order execution
mechanisms.

• The proposed model focuses only on the true aging ef-
fects on circuit delay (and hence of processor frequency)
for a specific PVT corner. As a matter of fact, we are
not considering here neither variability nor temperature
effects on the aging process.

• The models do not consider the effect of power manage-
ment knobs such as voltage scaling, which is known to
affect the NBTI aging. This is not however a limitation
per se, since it has been shown that is possible to calculate
total aging by accruing the aging in multiple time slots
each one using a different supply voltage value [30].

Nevertheless, the proposed solution provides a method for the
construction of aging bounds that is in principle applicable
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to any embedded core. The models expose some limitation
of previous works that assumed a fixed aging factor for a
given core under any operational conditions and without any
convincing motivation.
The proposed aging model shows good accuracy when pre-
dicting the maximum frequency degradation of a core, and our
methodology enable a statistical aging analysis in a standard
design flow, improving design predictability and helping to
avoid pessimistic guardbanding under the NBTI aging effect.
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