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Presence of Facial Occlusions 
 
 
Enrico Vezzetti, Federica Marcolin, Stefano Tornincasa, Luca Ulrich, and Nicole Dagnes 
Department of Management and Production Engineering 
Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy 
 
 
 
Abstract 
 
This study proposes a novel automatic method for facial landmark localization relying on geometrical 
properties of 3D facial surface working both on complete faces displaying different emotions and in 
presence of occlusions. In particular, 12 descriptors coming from Differential Geometry including the 
coefficients of the fundamental forms, Gaussian, mean, principal curvatures, shape index and 
curvedness are extracted as facial features and their local geometric properties are exploited to localize 
13 soft-tissue landmarks from eye and nose areas. The method is deterministic and is backboned by a 
thresholding technique designed by studying the behaviour of each geometrical descriptor in 
correspondence to the locus of each landmark. Occlusions are managed by a detection algorithm based 
on geometrical properties which allows to proceed with the landmark localization avoiding the covered 
areas. Experimentations were carried out on 3132 faces of the Bosphorus database and of a 230-sized 
internal database, including expressive and occluded ones (mouth, eye, and eyeglasses occlusions), 
obtaining 4.75 mm mean localization error. 
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1 Introduction 
 
Automatic landmarking is a key process for different Face Analysis applications such as Face 
Identification, Face Verification, and Face Expression Recognition. Locating landmarks means building  
an alternative compact representation of the face, which could be easily portable and replicable. A set 
of landmark is a facial map which, together with geometrical and texture features, contribute to 
determine typical facial traits, so that the purpose of subject or emotion recognition could be achieved. 
 
Landmarks were defined by Farkas [1] [2] and validated by other Anthropometry handbooks such as 
Swennen at al.’s [3]. Dense facial landmark distributions allow high-level facial description and 
repeatability, and are core for biometric applications, as the face model is an alternative to iris and 
fingerprint. Despite some eminent bidimensional solutions [4], in terms of data, 3D and 2D+3D (or even 
2.5D [5]) are recently more addressed than 2D alone, as the third dimension improves accuracy [6] and 
allows to overcome problems such as pose, different lightning conditions [7], make-up, and camouflages. 
The application of geometry to RGB channels of facial 2D images has also been recently investigated, 
thus producing an hybrid 2D+3D approach [8]. 
 
Various research groups recently worked on automatically localizing facial 3D landmarks by exploiting 
geometrical properties of the facial surface, in particular adopting mean, Gaussian, principal curvatures, 
and Koenderink and vanDoorn's shape index and curvedness [9] as features. 
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Bagchi et al. developed a system based on mean (H) and Gaussian (K) curvatures to extract eye and 
nose points from faces in different poses relying on convexity and concavity information. A so-called HK 
classification of the points is obtained. Experimentations, carried out on the FRAV3D database, gave 
acceptable results, as eye corners were correctly detected in 72.2% cases and nose tip in 98.8% cases 
[10]. Similarly, mean and Gaussian curvature information were exploited by Boukamcha et al. for 
extracting nose tip, nose corners, nose base, and eye corners on faces with different expressions on both 
FRGC 1.0 and FRGC 2.0 databases. After a facial segmentation phase, the sign of H and K curvatures is 
studied for each region and landmark points are localized accordingly. The method worked properly on 
99% of the tested facial images [11]. De Giorgis et al. adopted the Gaussian curvature for facial 
characterization to detect 13 landmarks, which "occur at important maxima and minima" of this 
geometrical descriptor. Experiments were run on the Face Warehouse database with 111 neutral 
expressions frontal-view faces. Nose points achieved 90% accuracy within 11 mm; the same accuracy 
was obtained with 3 mm limit for eye points and with 8 mm for mouth ones [12]. Similarly, Li et al. 
exploited Gaussian curvature point-by-point behaviour to localize nose tip. The method was not 
training-based nor model-based and its testing on the GavabDB database achieved a 100% localization 
accuracy in 10 mm precision [13]. 
 
Canavan and Yin proposed a method for landmark detection and tracking relying on the shape index in 
the scale proposed by Dorai and Jain [14]. In particular, they introduced the so-called Shape Index based 
Statistical Shape Model (SI-SSM) which made use of the global shape of the facial data as well as local 
patches. The method models both the global shape of landmarks and the local curvatures from patches 
around the landmark points. Mean squared errors were 3.2 one-point spacings (≈1.6 mm) on the BU-
4DFE database and 2.9 spacings (≈1-45 mm) on the BP4D-Spontaneous database (with posed and 
spontaneous expressions, respectively) [15]. The same method was also tested on BU-3DFE, FRGC2.0, 
and Eurecom Kinect Face databases [16]. Li et al. developed a new landmark localization method called 
incremental Parallel Cascade of Linear Regression (iPar–CLR). Even if, in this case, the landmarking does 
not specifically rely on geometrical properties, the shape index was used to study the local facial 3D 
shape around each extracted landmark with the final aim of facial expression recognition [17]. Instead, 
the shape index was adopted as descriptor for developing a 3D landmark localization methodology 
robust to expression variations by Perakis et al. [18]. The candidate landmarks are identified and labeled 
by matching them with a Facial Landmark Model (FLM) of facial anatomical landmarks. 
Experimentations were carried out on the FRGCv2 and UND databases showing a mean error under 6.3 
mm, with standard deviation under 2.6 mm on all tested faces. In particular, the mean error was under 
10 mm in 90.4% cases and the facial side was correctly estimated on over 98.9% faces. Then, they 
improved their methodology by proposing a feature fusion technique for automatic landmarking (based 
on the shape index). In particular, "the proposed framework maps each feature into a similarity score 
and combines the individual similarity scores into a resultant score, used to select the optimal solution 
for a queried landmark" [19]. The method was tested on the same datasets and achieved a landmark 
localization error within a range of 3.5–5.5 mm. Lei et al. extracted 16 ear fiducial points by exploiting 
the descriptiveness of curvedness on a novel 3D ear tree-structured graph (ETG) model. On the UND F, 
UND45LR, UND60LR, and UND J2 datasets, the mean localization errors of the triangular fossa and 
incisure intertragica were smaller than 4 mm, thus obtaining a 100% detection accuracy [20]. 
 
Creusot et al. presented an automatic landmarking machine learning framework for 3D objects, applied 
in this study on faces. A 'pool' of 8 local shape descriptors, including principal, mean, Gaussian 
curvatures, the shape index and curvedness, is calculated and relative scores evaluated in order to 
compute landmark score functions; only the most successful among them will be selected and identified 
as the final landmark model. Saliency maps supported the localization of landmarks. The algorithm was 
tested on BFM and FRGC databases and obtained landmark locations were compared to those manually-
annotated [21]. A similar method adopting the same geometrical descriptors was tested on FRGC v2 and 
Bosphorus 3D face datasets to localize 14 landmarks [22]. Gilani et al. used Gaussian, mean, and 
principal curvatures, and curvedness to extract morphologically significant facial landmarks on 6507 
faces from FRGCv2 and BU3DFE databases. In particular, they combined level set curve evolution with 
geometric speed functions in order to automatically extract effective seed points for dense 
correspondence. Then, a deformable model is built and fitted to unseen faces to transfer 
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correspondences and, subsequently, landmarks. The proposed algorithm localized the 85 points 
available for the BU3DFE dataset on the whole database within an error of 5.85 ± 4.26 mm [23]. Mean 
and Gaussian curvatures, shape index, and curvedness were used for geometrically describing nose 
area for automatically detecting nose tip. A 99.9% nose tip true acceptance rate with 6.71% false 
acceptance rate was achieved on the FRGC v2.0 dataset when mean curvature and shape index along 
with curvedness were used as the input to the SVM classifier [5]. 
 
The method proposed in this study is a deterministic technique for automatically extracting 13 soft-
tissue eye and nose landmarks from standard, expressive, and occluded 3D faces. Local properties of the 
12 geometrical descriptors are taken into consideration to design a thresholding methodology which, 
for each landmark, identifies the region of interest, narrows it by applying different geometrical 
conditions, and finally extracts the landmark. The method is robust to facial expressions and occlusions 
involving mouth and eyes, including glasses. When the algorithm processes an occluded face, only the 
landmarks of the non-occluded parts are taken into consideration. 
 
The innovativeness of this method with respect to our previous landmarking ones [24] [25] [26] relies 
on some newly-introduced elements and advances: i) robustness to different facial expressions; ii) 
robustness to occlusions; iii) use of the whole Bosphorus database as testing dataset; iv) overall revision 
and improvement of the method with tangible enhanced results. 
 
2 Method 
 
Figure 1 shows the global process of landmark localization, which extracts the landmarks one-by-one. 
Single landmark localization procedures are in blue blocks, while correctness checks (of the previously 
localized landmarks) are red-coloured. The facial occlusion algorithm is green, as it is a separate 
function which allows to proceed on the localization of the points avoiding the covered areas. Figure 2 
explains the meaning of the landmarks presented in this chart. 
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Figure 1. Diagram showing every step of the global landmark extraction algorithm. 
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Concerning pronasale, nasion, and alae localizations, a double check is made to verify whether these 
points have been correctly localized, otherwise a new localization process starts with a new region of 
research, while geometrical conditions remain unchanged. The reason why this double check is made is 
that, when cases with occlusions happen, occlusions may vary some conditions. In the case of the 
pronasale, this usually happens when the occluded area is close to the nose. Thus, the algorithm checks 
whether the pronasale vertical coordinate lies within left and right alae; otherwise the region of 
research is changed and the localization process restarts. Similar double checks are made for the nasion 
and the alae. 
 
When the localization of pronasale, nasion, alae, and subnasale are complete, the algorithm 
automatically checks whether occlusions are present. The occlusion detection methodology relies on 
geometrical properties via thresholding technique. If occlusions are present, the algorithm deletes the 
landmarks extracted on the occluded parts, so that only the landmarks present on the uncovered parts 
of the face are taken into consideration. Result analysis is undertaken only on the landmarks selected in 
this phase. 
 
 
2.1 Geometrical descriptors 
 
Differential Geometry is a branch of Geometry which allows differentiability/derivability of surfaces, so 
that point-by-point derivatives, and, subsequently, curvatures and other descriptors, are computable. A 
detailed previous study of our research group [27] provides definitions and in-depth explanations of the 
geometrical descriptors adopted in this study. They are briefly listed here below together with the 
formulas implemented in the method here proposed. 
 
The three coefficients of the first fundamental form E, F, G and the three coefficients of the second 
fundamental form e, f, g are: 

 
𝐸 = 1 + ℎ𝑥

2,           (1.1) 
𝐹 = ℎ𝑥ℎ𝑦,           (1.2) 

𝐺 = 1 + ℎ𝑦
2 ,           (1.3) 

𝑒 =
ℎ𝑥𝑥

√1+ℎ𝑥
2+ℎ𝑦

2
,           (1.4) 

𝑓 =
ℎ𝑥𝑦

√1+ℎ𝑥
2+ℎ𝑦

2
,           (1.5) 

𝑔 =
ℎ𝑦𝑦

√1+ℎ𝑥
2+ℎ𝑦

2
,           (1.6) 

 
where ℎ𝑥,ℎ𝑦,ℎ𝑥𝑥,ℎ𝑦𝑦,ℎ𝑥𝑦 are the first and second (and mixed) derivatives of the surface h with respect 

of x and y. h stands as the facial surface in these formulations; nonetheless, in the algorithm, h is given 
by a matrix in which every point describes the facial depth map. In other words, h represents the z-
coordinates. 
 
Gaussian and mean curvatures are given by the formulas: 
 

𝐾 =
ℎ𝑥𝑥ℎ𝑦𝑦−ℎ𝑥𝑦

2

(1+ℎ𝑥
2+ℎ𝑦

2)
2,          (1.7) 

𝐻 =
(1+ℎ𝑥

2)ℎ𝑦𝑦−2ℎ𝑥ℎ𝑦ℎ𝑥𝑦+(1+ℎ𝑦
2)ℎ𝑥𝑥

(1+ℎ𝑥
2+ℎ𝑦

2)
3/2 .        (1.8) 

 
Principal curvatures rely on Gaussian and mean curvatures (and viceversa): 
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𝑘1 = 𝐻 + √𝐻2 − 𝐾,          (1.9) 

𝑘2 = 𝐻 − √𝐻2 − 𝐾.          (1.10) 
 

Koenderink and van Doorn’s shape index and curvedness are defined in their original formulation [9]: 
 

𝑆 = −
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛

𝑘1+𝑘2

𝑘1−𝑘2
,      𝑆 ∈ [−1,1],      𝑘1 ≥ 𝑘2,      (1.11) 

𝐶 = √𝑘1
2+𝑘2

2

2
.           (1.12) 

 
These descriptors, whose facial point-by-point maps are shown in the second column of Table 1, have 
proven to be effective in describing facial shape at different ages and in extracting landmarks [24] [25] 
[26]. Diagnosis [28] and recognition [29] were also successfully addressed. 
 
For manageability reasons [30], a mean filter has been applied to some geometrical descriptors. Means 
are calculated in squared neighbourhoods of side 4 around each point of the facial depth maps. The 
twelve geometrical descriptors and their respective mean-filtered versions are shown mapped on a face 
on Table 1. The images in this table regard only one person (female, aged 25, serious pose), whose depth 
map was obtained via Minolta Vivid 910 laser scanner. 
 
Table 1. Point-by-point maps on a face of descriptors. The second columns shows the twelve geometrical descriptors; 
the third column shows the mean-filtered versions. 

 

 
 

descriptor 
mean-

filtered 

E 

  

F 

  

G 

  

e 

  

f 

  

g 

  

H 
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K 

  

𝒌𝟏 

  

𝒌𝟐 

  

S 

  

C 

  
 
Together with the above mentioned geometrical descriptors, the derivatives have also been taken into 
consideration to describe the face point-by-point. Their mappings on the same face shown in Table 1 
are reported in Table 2. 
 
Table 2. Derivatives of the facial surface shown on a face map. They are computed point-by-point via Matlab® function 
"gradient". 

 

 
 

description map 

Dx 
first derivative with 

respect of x 
 

Dxx 
second derivative 
with respect of x 

 

Dxy mixed derivative 

 

Dy 
first derivative with 

respect of y 
 

Dyy 
second derivative 
with respect of y 

 
 
 
2.2 Landmark localization 
 
The set of 13 landmarks localized by this method is shown in Figure 2. 
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Figure 2. Landmarks used in this study: OE-outer eyebrow, IE-inner eyebrow, EX-exocanthion, EN-endocanthion, N-
nasion, AL-alare, PRN-pronasale, SN-subnasale. Except for the eyebrow points, which are not considered real soft-
tissue landmarks, their morphometric definitions are provided by Swennen et al. [3]. 

 
The method firstly defines an area of research (also called area/region of interest) where to start the 
localization of the point in exam. Regions of interest are rectangular and dimensioned according to the 
3D model dimension, so that region and face size era proportional. These areas are narrowed thanks to 
the application of different geometrical conditions via thresholding technique on numerical values of 
descriptors. The thresholds have been experimentally set using a training facial dataset of 40 serious 
faces + 50 expressive/occluded faces of the Bosphorus dataset. The numerical values of the thresholds 
have been chosen with an automatic function which checks the numerical value of each geometrical 
descriptor on the locus of the ground truth landmark. Figures 3 and 4 show some generated graphs of 
descriptors f and H, respectively, which supports the choice of the thresholds for the extraction of the 
nasion. Other similar representations have been obtained for the other descriptors and landmarks. 
 

 
Figure 3. Numerical point values (y-axis) of descriptor f mapped on each of the 90 faces (x-axis) of the training dataset 
on the locus of the ground truth nasion landmark point. The behaviour of this graph supports the setting of the 
thresholding of descriptor f for the localization of this landmark, and in particular to the formulation of condition 3: 
"the second coefficient of the second fundamental form f is nearly equal to zero, i.e. f ∈ (-0.1; 0.1)." 
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Figure 4. Numerical point values (y-axis) of descriptor H mapped on each of the 90 faces (x-axis) of the training dataset 
on the locus of the ground truth nasion landmark point. The behaviour of this graph supports the setting of the 
thresholding of descriptor H for the localization of this landmark, and in particular to the formulation of condition 2: 
"the mean curvature is approximately equal to zero, namely H ∈ (-0.7; 0.7)." In this representation, the minimum of 
the descriptor (-0.7) is given by a red line; the maximum (+0.7) by a green line. 

 
The local behaviour of each descriptor on the locus of a landmark is reported in Table 3, which was also 
obtained thanks to previous studies of geometrical descriptors on faces [24]. The table reports updated 
values and behaviours with respect to that in [24] and holds for all faces belonging to the training 
dataset.  
 
Table 3. Behaviour of each geometrical descriptor in correspondence to each landmark. Acronyms on the second row: 
c is cup, ru is rut, sru is saddle rut, s is saddle, sri is saddle ridge, r is ridge, d is dome. If there are two notes in the same 
box, the first one is referred to the landmark on the left  side of the face, the other to the right, if we consider the point 
of view of someone who is looking to the face, in front of it. The x-axis is vertical, y is horizontal and z enters the sheet. 

 OE IE EX EN AL PRN N SN 

Class d d ri c/ru ri d sru/s/sri/ri ru/sru/s/sri 

E local max ≈0 
local 
max 

≈0 
local 
max 

≈0 <3 ≈0 

F >0, <0 >0, <0 ≈0 ≈0 >0, <0 ≈0 ≈0 Є (-2;2) 

G >3 >10 ≈0 ≈0 ≈0 ≈0 local max ≈0 

e ≈0 local min 
local 
max 

local 
max 

<0.4 
local 
min 

local min local max 

f 
local min 
local max 

local min 
local max 

≈0 
Є (-
0.4;0.4) 

≈0 ≈0 Є (-0.1;0.1) ≈0 

g local min >-3 
local 
max 

local 
max 

local 
max 

<-2.9 local max local max 

H local min local min ≈0 >-0.6 ≈0 <2 Є (-0.7;0.7) <1.1 

K ≈0 local max 
local 
max 

local 
max 

local 
max 

≈0 ≈0 ≈0 

k1 ≈0 local max ≈0 
local 
max 

local 
max 

local 
min 

local max local min 

k2 local min local min ≈0 
local 
max 

local 
min 

≈0 ≈0 local min 
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S 
Є 
(0.625;1) 

Є 
(0.625;1) 

Є (-
0.625;-
0.125) 

Є (-1;-
0.375) 

Є (-
0.625;-
0.125) 

Є 
(0.56;1) 

Є (-
0.375;0.625) 

Є (-
0.47;0.47) 

C ≈0 local max 
local 
max 

local 
max 

local 
max 

local 
min 

≈0 local min 

Dx >0, <0 >0, <0 ≈0 Є (-3;3) >0, <0 ≈0 ≈0 Є (-1.5;1.5) 

Dxx local min ≈0 >0 >0 
local 
max 

≈0 local min <0 

Dxy local min local min Є (-3;3) 
local 
max 

≈0 
local 
max 

>1 ≈0 

Dy >2 >2 >0 
Є (-
3.5;3.5) 

<0 
local 
max 

<0 local max 

Dyy local min local min Є (-3;3) 
local 
max 

≈0 
local 
max 

>1 ≈0 

 
 
The algorithm starts with the localization of the pronasale, whose key geometrical features are summed 
up here: 
 

1. the mean-filtered shape index S lies in the range (0.56; 1), i.e. the point belongs to the point 
whose geometrical shape is "cap"; 

2. the mean curvature H is lower than a threshold value, i.e. H < 2, which was experimentally set; 
3. the coefficient g is lower than a threshold value, i.e. g < -2.9; 
4. the coefficient e has a local minimum in this area; 
5. k1 has a local minimum in correspondence to the point. 

 
A primary area of research, called Pron1, is identified by focusing on a central area of research, in which 
the point with maximum Z value is identified and called Pmax. A neighbourhood of this point is created, 
which becomes the new area of research called Pron2. Conditions 1 to 4 were used to gradually narrow 
the area of interest, while the final condition carries out point extraction. Also, when the minimum of k1 
is obtained, the algorithm searches for another minimum, lower than a threshold value (k1 < 0.9) in the 
neighbourhood of the one already found. If a point satisfying this condition is obtained, the final 
pronasale is located in the middle of the two points, otherwise the pronasale is the first minimum is 
kept. Figure 5 shows the diagram of the process. 
 
The images showing the narrowing of the area of interest are generated on the whole faces instead of 
on the initial region of interest. This allows an improved understanding on how the descriptor condition 
behaves on the whole facial shape. In the actual algorithm, conditions are applied to the region of 
interest only. This holds for all other landmarks and their related images. 
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Pron1 

 

Pron2 

 

Figure 5. Process for localizing the pronasale. The first row shows the descriptors (mapped on a face of the Bosphorus 
database) involved in the instruction below: (from left to right) shape index, mean curvature, coefficient g, coefficient 
e, first principal curvature. The final row shows the gradual narrowing of the area of interest when the steps above 
are gradually applied. The landmark is extracted at the final step. 

The branch of the global algorithm which verifies the correctness of the PRN localization re-defines the 
initial area of research of the point, in case of anomalies. This re-definition of the area of research is set 
via alae positions, by creating a neighbourhood of the middle point between the AL points. 
 
Then, the alae are extracted. The right AL is detected first, by identifying an area of interest at 
approximately a similar y value of PRN. The area of research of the left AL is defined symmetrically. The 
PRN position is also used to define left and right facial sides. Alae's salient geometrical features are: 
 

1. the coefficient e is lower than a threshold value, i.e. e < 0.4; 
2. the coefficient E has a local maximum in correspondence to the alae points. 

 
Condition 1 refines the area of interest and condition 2 localizes the points. The steps are shown in 
Figure 6. 
 

Identification 
of the initial 

region of 
interest in the 

face centre

Select the 
points whose 
mean-filtered 
shape index 

S ∊ (0.56; 1)

Select the 
points for 
which the 

mean 
curvature 

H < 2

Select the 
points for 
which the 

mean filtered  
coefficient

g < -2.9

Select the 
points which 

minimize  
coefficient

e

Minimize first 
principal 

curvature k1

If another 
minimum for  

k1 is found 
which respects 
condition k1 < 
0.9, then the 
pronasale is 

the mean point 
between the 

two
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Figure 6. Process for localizing the alae. The first row shows the descriptors (mapped on a face of the Bosphorus 
database) involved in the instruction below: (from left to right) derivative with respect of x, coefficient e, coefficient E. 
The final row shows the gradual narrowing of the area of interest when the steps above are gradually applied. The 
landmarks are extracted at the final step. 

 
The pronasale coordinates are also used to identify the area of research of the nasion. The nasion is 
searched in the same vertical direction of the pronasale and distant from it approximately one third the 
length of the face. Its geometrical features are: 
 

1. the point belongs to the points whose shape index value lies in the range corresponding to saddle 
rut, saddle, saddle ridge, and ridge, i.e. S ∊ (-0.375; 0.625); 

2. the mean curvature is approximately equal to zero, namely H ∊ (-0.7; 0.7), where 0.7 is a 
threshold experimentally set; 

3. the second coefficient of the second fundamental form f is nearly equal to zero, i.e. f ∊ (-0.1; 0.1), 
where 0.1 is a threshold experimentally set; 

4. the first coefficient of the first fundamental form E is lower than a threshold value, i.e. E < 3; 
5. the coefficient g has a maximum in correspondence to this point. 

 
Conditions 1 to 4 support the area of interest localization, while the final condition extracts the point. 
Figure 7 exposes the process. 
 
 
  

The regions of interest are 
identified via pronasale position

Select the points for which

e < 0.4

Maximize E
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Figure 7. Process for localizing the nasion. The first row shows the descriptors (mapped on a face of the Bosphorus 
database) involved in the instruction below: (from left to right) shape index, mean curvature, coefficient E, coefficient 
f, coefficient g. The final row shows the gradual narrowing of the area of interest when the steps above are gradually 
applied. The landmark is extracted at the final step. 

The subnasale position is defined horizontally between the alae and in the vertical direction of the 
pronasale. Its geometrical features are the following. 
 

1. The shape index lies in the range (-0.47; 0.47), i.e. this point could be associated to a saddle 
shape; 

2. the first derivative with respect of x is approximately equal to zero, i.e. Dx ∊ (-1.5; 1.5); 
3. the second derivative with respect of x is negative; 
4. the mean curvature is lower than an experimentally set threshold, namely H < 1.1; 
5. the first fundamental form coefficient F lies in the range (-2; 2); 
6. the first derivative with respect of y has a local maximum in correspondence to the subnasale 

point. 
 
Conditions 1-5 are used to refine the area of interest and condition 6 is adopted to extract the point. The 
steps are shown in Figure 8. 
  

The region of 
interest is identified 

via pronasale 
position

Select the points 
whose

shape index 

S ∊ (-0.375; 0.625)

Select the 
points for 

which

H ∊ (-0.7; 0.7)

Select the 
points for 

which

E < 3 

Select the 
points for 

which

f ∊ (-0.1; 0.1)

Maximize g
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Figure 8. Process for localizing the subnasale. The first row shows the descriptors (mapped on a face of the Bosphorus 
database) involved in the instruction below: (from left to right) shape index, first derivative with respect of x,  second 
derivative with respect of x, mean curvature, coefficient F, first derivative with respect of y. The final row shows the 
gradual narrowing of the area of interest when the steps above are gradually applied. The landmark is extracted at 
the final step. 

 

Endocanthions' areas of interests are localized relying on the positions of alae and nasion previously 
localized. These conditions are used to refine the regions of interest and then to extract the points: 
 

1. endocanthions belong to the set of points whose geometrical shape is cup or rut, i.e. S ∊ (-1; -
0.375); 

2. the mixed derivative is lower than a threshold value, Dxy < 0.6; 
3. the first derivative with respect of x ranges from -3 to 3, i.e. Dx ∊ (-3; 3); 
4. the first derivative with respect of y ranges from -3.5 to 3.5, i.e. Dy ∊ (-3.5; 3.5); 
5. the coefficient f is nearly equal to zero, namely f ∊ (-0.4; 0.4), and is positive on the right 

endocanthion and negative on the left; 
6. the mean curvature H is higher than threshold value -0.6; 
7. the mean-filtered coefficient e has a maximum in correspondence to these points. 

 
Conditions 1 to 6 support the refinement of the areas of research, while the final condition detects the 
two points. Figure 9 shows steps and images. 
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Figure 9. Process for localizing the endocanthions. The first row shows the descriptors (mapped on a face of the 
Bosphorus database) involved in the instruction below: (from left to right) shape index, mixed derivative, first 
derivative with respect of x,  first derivative with respect of y, coefficient f, mean curvature, coefficient e. The final row 
shows the gradual narrowing of the area of interest when the steps above are gradually applied. The landmarks are 
extracted at the final step. 

Exocanthions' areas of research are identified based on endocanthions' positions. These are the 
conditions adopted to extract their locations: 
 

1. the first derivative with respect of y is positive; 
2. the second derivative with respect of x is positive; 
3. the second derivative with respect of y lies in the range (-3; 3); 
4. the first coefficient of the first fundamental form E has two maximums in correspondence to the 

two landmarks. 
 
Conditions 4 is adopted the extract the landmarks in the regions of interest identified at steps 1 to 3. 
Figure 10 shows the process. 
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Figure 10. Process for localizing the exocanthions. The first row shows the descriptors (mapped on a face of the 
Bosphorus database) involved in the instruction below: (from left to right) first derivative with respect of y,  second 
derivative with respect of x, second derivative with respect of y, coefficient E. The final row shows the gradual 
narrowing of the area of interest when the steps above are gradually applied. The landmarks are extracted at the final 
step. 

 
The inner eyebrows, whose areas of research are set via endocanthions' positions, have these 
geometrical conditions: 
 

1. the coefficient g is greater than the threshold value -3; 
2. the first derivative with respect of y is greater than 2; 
3. coefficient G is greater than a threshold value 10; 
4. coefficient f has a maximum in correspondence to the right inner eyebrow and a minimum to 

the left. 
 
Left and right sides of the face are identified via PRN coordinates. Conditions 1-3 are used to narrow the 
areas of interest; condition 4 extracts the points. Figure 11 shows the process step by step. 
 

 

                           

 

                                 
 

Figure 11. Process for localizing the inner eyebrows. The first row shows the descriptors (mapped on a face of the 
Bosphorus database) involved in the instruction below: (from left to right) coefficient g, first derivative with respect 
of y, first derivative with respect of x, coefficient G, coefficient f. The final row shows the gradual narrowing of the area 
of interest when the steps above are gradually applied. The landmarks are extracted at the final step. 

 
The outer eyebrows, whose areas of research are set via exocanthions' and inner eyebrows' positions, 
have these geometrical conditions: 
 

1. the coefficient G is greater than a threshold value (G > 3); 
2. coefficient f has a maximum in correspondence to the right outer eyebrow and a minimum to 

the left. 
 
Left and right sides of the face are identified via PRN coordinates. Conditions 1 is used to narrow the 
region of interest; condition 2 extracts the point. The steps are shown in Figure 12. 
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Figure 12. Process for localizing the outer eyebrows. The first row shows the descriptors (mapped on a face of the 
Bosphorus database) involved in the instruction below: (from left to right) first derivative with respect of x, coefficient 
G, coefficient f. The final row shows the gradual narrowing of the area of interest when the steps above are gradually 
applied. The landmarks are extracted at the final step. 

 
 
2.3 Occlusion detection 
 
The method is designed to detect two types of occlusions: eye- and eyeglasses-based. Eye occlusions are 
provoked by hands covering these facial parts. These kinds of occlusions are chosen relying on the 
available occluded faces of the Bosphorus database. 
 
The eye-based occlusion detection process is described in Figures 13 and 14. The algorithm: 
 

1. divides the face into left and right parts; 
2. computes five features for each facial part (left and right): 

a. the 7-bins histogram of the point-by-point facial map of the shape index; 
b. the number of points which respectively satisfy these conditions: 

i. Dx > 15, Dy >10; Dxy > 2; Dx < -15; Dy < -10, and Dxy < -2; 
ii. Dyy > 15 and Dyy < 15; 

iii. H > 0.05 and G > 3; 
iv. g < 0 and Dy > 2; 

3. evaluates the difference between left and right features. The obtained features are: ShapeIndex, 
Derivative1, Derivative2, Coefficient1, and Coefficient2; 

4. compares these features with thresholds: 
a. ShapeIndex > 1000 and ShapeIndex < 500; 
b. Derivative1 ≡ 0; 
c. Derivative2 > 600 and Derivative2 ≤ 0; 
d. Coefficient1 > 1000, Coefficient1 > 500, and Coefficient1 ≤ 0; 
e. Coefficient2  > 1000, Coefficient2  > 500, Coefficient2  ≤ 500, Coefficient2  ≤ 0; 
f. Derivative1 > 20 and Derivative2 < 200; 
g. Derivative1 < 20 and Derivative2 < 300; 
h. Derivative1 < 50 and Derivative2 < 350; 
i. Tot = ShapeIndex + Derivative1 + Derivative2 + Coefficient1 + Coefficient2 ≥ 15000. 

The area of research is identified 
via exocanthions' and inner 

eyebrows' positions

Select the points whose

G > 3

Maximize f on the right and 
minimize it on the left
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5. after this first part, divides the face into three areas, shown in Figure 15: left eye area, right eye 
area, and mouth area; 

6. evaluates, for each area, the number of points with the z-coordinate greater than the pronasale 
one. These features are called, respectively, Area1, Area2, and Area3, depending on the name of 
the area which they are computed on; 

7. on the whole facial area, evaluates the number of points with the z-coordinate greater than the 
pronasale one. This feature is called Peack; 

8. on the whole facial area, evaluates the number of points with the z-coordinate largely lower than 
their neighbouring points. This feature is called Ditch; 

9. calculates %𝑂𝑐𝑐𝑙𝑢𝑑𝑒𝑑 =  
(𝐴𝑟𝑒𝑎1+𝐴𝑟𝑒𝑎2+𝐴𝑟𝑒𝑎3)∙100

𝑁∙𝑀
 where N and M are dimensions of the facial 

depth map; 
10. compares these features with the following thresholds: 

a. %Occluded > 2.4; 

b. Area1 > Area2 and Area1 > Area3; 

c. Area2 > Area1 and Area2 > Area3; 

d. Peack > 100; 

e. Ditch > 100. 

 
Figure 13. First part of the eye-based occlusion detection process. 
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Figure 14. Second part of the eye-based occlusion detection process. 

 
Figure 15. Areas defined at the first step of second part of overall occlusion detection process. 

These features present specific behaviour in presence of eye occlusions provoked by a hand, as shown 

in Figure 16.  
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Figure 16. Facial maps of the Bosphorus database highlighting specific behaviours in the case of eye occlusion: depth 
maps showing respectively Peack zone and Ditch zone, shape index, first derivative with respect of x, second derivative 
with respect of y, mixed derivative, and two depth maps showing the applied geometrical conditions (H > 0-05 and g > 
3 on the penultimate face; g < 0 and Dy > 2 on the last face).  

 
The presence of eyeglasses is detected with an algorithm schematized in Figure 17. The algorithm: 
 

1. taking into consideration only the eyes areas shown in Figure 18a, evaluates the number of 
points satisfying all conditions: Dxx > 2, Dxx < -2, Dxy > 0.5, Dxy < -0.5, Dyy > 1, Dyy < -1, G > 20. This 
feature is called Coefficient; 

2. considering eyeglasses area shown in Figure 18b, computes: 
a. the number of points with the z-coordinate greater than the pronasale one. This feature 

is called Count; 
b. on the whole facial area, evaluates the number of points with the z-coordinate largely 

lower than their neighbouring points. This feature is called Ditch; 
3. compares these features with thresholds: 

a. Coefficient > 400: 
b. Count ∈ (0; 300) and Ditch > 0. 

 
If these conditions are satisfied, eyeglasses are present. Figure 19 shows the behaviour of the involved 
descriptors when eyeglasses are present. 
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Figure 17. Eyeglasses-based occlusion detection process. 

 

a)                   b)  
 

Figure 17. a) Eyes areas used to calculate feature Coefficient. b) Eyeglasses area used to calculate features Count and 
Ditch. 

 
Figure 19. Facial maps of the Bosphorus database highlighting specific behaviours in the case of eyeglasses: facial 
depth map, second derivative with respect of x, second derivative with respect of y, mixed derivative, coefficient G.  

When occlusions, if present, are detected and classified, the algorithm deletes the landmarks on the 
occluded parts, keeping only the ones on actual facial parts. 
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3 Results 
 
The method was tested on 3362 faces overall. Among them, 3132 belong to the Bosphorus database, 
230 belong to our private database. Even if we have developed a methodology for rotating the face into 
a standard pose [31], the faces tested in the present study are all front-view. 
 
The faces belonging to the Bosphorus database include 286 serious, 68 angry, 63 disgusted, 64 fearful, 
99 happy, 59 sad, 65 surprised, 92 eyes-occluded, 93 mouth-occluded, 94 glasses-occluded faces. The 
remaining ones describe Action Units positions. In particular, serious, expressive, occluded faces have 
been included in the testing dataset. 
 
Our private database, acquired via Minolta Vivid 910 laser scanner, collects 32 subjects, each acquired 
with the serious pose and other expressions among the 6 basic emotions. Figure 20 shows a selection of 
the faces. 
 

 
Figure 20. Faces of our database belonging to different subjects performing different expressions. From left to right: 
disgust, joy, fear, anger, serious, surprise, sadness. 

 
Figures 21 and 22 show some landmark localization results on different faces of the Bosphorus  and 
internal databases, respectively. 
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Figure 21. Landmarks localized by our algorithm on different Bosphorus faces. The first two columns refer to occluded 
faces (set on the top: eye-occluded faces; set in the centre: mouth-occluded faces; set on the bottom: eyeglasses-
occluded faces). The third and fourth columns show four serious faces (set on the top) and six expressive faces, one 
per expression (set on the bottom). 
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Figure 22. Landmarks localized by our algorithm on different subjects with various expressions of our internal 
database. 

Table 4 shows the detailed landmark localization errors (in millimetres) computed as Euclidean 
distances between the ground truth landmarks, whose coordinates are reported in the Bosphorus 
database, and the obtained ones. Concerning our database, the ground truth landmarks have been 
manually allocated on the faces and compared to those obtained with the algorithm. 
 
Table 4. Detailed landmark localization errors. 

Database face type
dataset 

size
OE IE EX EN AL PRN SN N

Neutral 286 7,60 4,71 4,90 3,36 4,70 2,54 2,86 2,97

Expressive 418 8,02 5,55 5,48 5,56 4,64 2,69 3,75 4,04 4,97

Action Units 2149 8,06 5,75 5,77 4,15 5,14 2,64 3,51 4,20 4,90

Eye occluded 92 7,20 5,49 4,64 3,73 5,24 2,45 2,84 3,74 4,42

Mouth occluded 93 7,75 4,65 5,47 3,72 5,14 2,88 3,16 3,32 4,51

Glasses occluded 94 9,94 5,55 6,20 3,94 4,93 2,40 2,83 5,22 5,13

Mean

Bosphorus
3132 8,10 5,46 5,56 3,91 5,05 2,61 3,31 4,07

internal 

database

Mean

internal database

(neutral + expressive)

230 5,29 5,42 6,16 5,02 3,57 2,78 6,54 3,05

Global 

testing 

database

Global mean 3362 7,16 5,45 5,76 4,28 4,55 2,67 4,39 3,73

mean

4,68

4,93

Bosphorus 

database

4,76

4,21

4,73

4,75

 
 
Analyzing the two databases separately, we can see that the error obtained on the Bosphorus (4.76 mm) 
is comparable to that of our internal database (4.73 mm). Occluded faces, belonging only to the 
Bosphorus database, show a 4.68 mm mean error, which is given by a mean between eye-occluded (4.42 
mm), mouth occluded (4.51 mm), and glasses occluded (5.13 mm) faces. Expressive faces of the 
Bosphorus database, including those displaying the six basic emotions (4.97 mm) and those 
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representing the Action Units one by one (4.90 mm),  gave 4.93 mm mean error. Overall, the errors are 
very similar among databases and face types, thus proving the robustness of the method under different 
conditions. 
 
Figure 23 shows global landmark localization errors.  
 

 
Figure 18. Mean localization errors [mm] for each landmark. 

 
4 Discussion 
 
The worst results were obtained for the outer eyebrows (7.16 mm), while the best result was gained for 
the pronasale (2.67 mm), followed by the nasion (3.73 mm), the endocanthion (4.28 mm), and the 
subnasale (4.39 mm). Overall, the mean global error for all landmark is 4.75 mm. Only outer eyebrows 
were out of the accuracy limit, while all other points ranged within 6 mm. Overall, the mean error is 
under 10 mm for 94.90 % of the tested facial scans; is under 6.3 mm for 82.52 %. 
 
Despite the evident advances of the newly proposed method with respect to those of our group 
presented in [24] [25] [26], a comparison between obtained results is due. The study presented in [24] 
proposes a 9 landmark extraction methodology which was tested on our private database of 79 adult 
front-view faces. 95% of landmarks have been evaluated as correctly localized by a maxillofacial 
surgeon. The study was completed by that presented in [25], which introduced 8 new landmarks in the 
extraction methodology. 85% of the landmarks, evaluated on 58 adult faces of our private database, 
obtained mean error < 5 mm. A similar methodology was adopted in [26] to detect 13 landmarks on 9 
foetuses' faces. Global mean error was 2 mm, which gives a 100% localization accuracy, considering 
foetuses' faces size (the foetuses were at 24th gestational week). The summed-up comparisons are 
reported in Table 5. 
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Table 5. Comparison between results of landmarking approaches presented in our previous studies. 

Study #landmarks #tested faces tested database accuracy 

 [24] 9 79 private database 95% considered "well localized"  

 [25] 8 58+54 private database 
+ Bosphorus 
(expressive) 

85% landmarks with mean error 
< 5 mm 

 [26] 13 9 
private database 

mean error = 2 mm 
(foetuses's faces are half-sized 
than adults) 

This study 13 3132 + 230 
Bosphorus 
(expressive and 
occluded) + 
private database 

mean error = 4.75 mm 
 
94.90% faces with mean error < 
10 mm 
82.52% faces with mean error < 
di 6.3 mm 

 
The results gained with the method presented in this study show enhanced accuracy (4.7 mm mean 
error) and soundness (3362 faces dataset). While previous contributions were preliminary and 
heuristic approaches to landmarking, this study was obtained via large experimentations and its results 
are effective. 
 
Localization accuracies could not be directly compared to other current works of other authors due to 
the adoption of  different testing databases, landmark sets, and localization error types. A few examples: 
a 11/3/8 mm threshold was used to determine the accuracy depending on facial area in [12]; a 10 mm 
threshold was used in [13]; reported success rates are obtained by accepting points within 10 per cent 
of inter-ocular distance to the ground truth in [32]. 
 
Considering the studies with comparable scenarios, we may mention: Perakis et al. [18], who obtained 
a mean error under 6.3 mm (the mean error was under 10 mm in 90.4% cases); Lei et al. [20], with mean 
localization errors smaller than 4 mm; Gilani et al. [23], with errors ranging from 4.26 to 5.85 mm. Sukno 
et al. [33] achieved an overall error of 4.81 and 4.25 mm for data with and without occlusions, 
respectively, on the Bosphorus database. Our mean localization error of 4.75 mm is consistent with 
these state-of-the-art accuracies and the percentage of faces under 10 mm localization error is 94.90%, 
thus outperforming the result obtained in [18]. 
 
5 Conclusions 
 
An automatic 3D landmark localization method is presented in this study. The algorithm has been 
designed to be robust to occlusions and different facial expressions. The method relies on thresholds, 
set experimentally on a training set of 90 faces, applied to point-by-point facial maps of the geometrical 
descriptors and was tested on 3362 faces (expressive, neutral, eyes-occluded, mouth-occluded, and with 
glasses) of the 3D Bosphorus database and of an internal database including 32 subjects performing the 
6 basic emotions. The final global results show a mean localization error of 4.75 mm, which lays within 
the state of the art accuracy. 
 
The methodology potentials could be fostered with the embedding of bidimensional information such 
as RGB channels, whose feasibility has already been tested [8] and are currently under further 
investigation for enhancing accuracy, especially for Face Recognition purposes. New geometrical 
descriptors have recently been designed [30]. The purpose was to build descriptors based on primary 
ones which could be even more tailored for describing landmark local surface properties. Their 
applicability is now under testing. Both RGB channels and new geometrical descriptors information 
could merge into an hybrid 2D+3D feature-based approach. They could be adopted as features for a 
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convolutional neural network methodology both for automatic landmarking and recognition. Also, we 
planned to widen both training and testing datasets by embedding FRGC v2.0 and BU-3DFE databases. 
 
The idea is to build a sound landmarking methodology which could be transversal through different 
facial conditions and data types and that could be adopted as first step of Face Verification/Identification 
and emotion recognition procedures. The final aim is to reach real-time applicability in different 
scenarios, including real-world conditions "in the wild". 
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