POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Dottorato in Ingegneria Informatica e dei Sistemi — XXVIII ciclo

Tesi di Dottorato

Trust and Integrity in Distributed
Systems

Tao Su

Tutore Coordinatore del corso di dottorato
Prof. Antonio Lioy Prof. Matteo Sonza Reorda

May 2017

Acknowledgements

First and foremost, I would like to give my special gratitude to my supervisor Prof.
Antonio Lioy, for his important suggestions and support throughout my entire Ph.D
study. I am extremely grateful for the great efforts he put into guiding and helping
me. It was extremely useful for my Ph.D study as well as future career.

Meanwhile, I would also like to thank Dr. Andrea Atzeni, for his support and
encouragement in my research work. In addition, I would like to express my great
appreciation to all my colleagues, Roberto Sassu for showing me the way to trusted
computing, Paolo Smiraglia for helping me solving various technical problems, Dr.
Christian Pitscheider, Dr. Daniele Canavese and Dr. Fulvio Valenza for helping me
solving a lot of bureaucratic problems, and also the other group members. I would
also like to express my gratitude to all the people I met during my Ph.D study at
the Politecnico di Torino. It was a great pleasure to work with these nice people,
and I had a great time working in the lab during this period of time.

Finally, very special thanks to my family and my beloved wife Dr. Xin Xiao:
their support and encouragement are always the fuel of my journey.

II

Summary

In the last decades, we have witnessed an exploding growth of the Internet. The
massive adoption of distributed systems on the Internet allows users to offload their
computing intensive work to remote servers, e.g., cloud. In this context, distributed
systems are pervasively used in a number of difference scenarios, such as web-based
services that receive and process data, cloud nodes where company data and pro-
cesses are executed, and softwarised networks that process packets. In these systems,
all the computing entities need to trust each other and co-operate in order to work

properly.

While the communication channels can be well protected by protocols like TLS or
[Psec, the problem lies in the expected behaviour of the remote computing platforms,
because they are not under the direct control of end users and do not offer any
guarantee that they will behave as agreed. For example, the remote party may
use non-legitimate services for its own convenience (e.g., illegally storing received
data and routed packets), or the remote system may misbehave due to an attack
(e.g., changing deployed services). This is especially important because most of these
computing entities need to expose interfaces towards the Internet, which makes them
easier to be attacked. Hence, software-based security solutions alone are insufficient
to deal with the current scenario of distributed systems. They must be coupled with
stronger means such as hardware-assisted protection.

In order to allow the nodes in distributed system to trust each other, their
integrity must be presented and assessed to predict their behaviour. The remote
attestation technique of trusted computing was proposed to specifically deal with
the integrity issue of remote entities, e.g., whether the platform is compromised with
bootkit attacks or cracked kernel and services. This technique relies on a hardware
chip called Trusted Platform Module (TPM), which is available in most business
class laptops, desktops and servers. The TPM plays as the hardware root of trust,
which provides a special set of capabilities that allows a physical platform to present
its integrity state.

With a TPM equipped in the motherboard, the remote attestation is the proce-
dure that a physical node provides hardware-based proof of the software components
loaded in this platform, which can be evaluated by other entities to conclude its in-
tegrity state. Thanks to the hardware TPM, the remote attestation procedure is
resistant to software attacks. However, even though the availability of this chip is
high, its actual usage is low.

IIT

The major reason is that trusted computing has very little flexibility, since its
goal is to provide strong integrity guarantees. For instance, remote attestation
result is positive if and only if the software components loaded in the platform
are expected and loaded in a specific order, which limits its applicability in real-
world scenarios. For such reasons, this technique is especially hard to be applied on
software services running in application layer, that are loaded in random order and
constantly updated. Because of this, current remote attestation techniques provide
incomplete solution. They only focus on the boot phase of physical platforms but
not on the services, not to mention the services running in virtual instances.

This work first proposes a new remote attestation framework with the capability
of presenting and evaluating the integrity state not only of the boot phase of physical
platforms but also of software services at load time, e.g., whether the software is
legitimate or not. The framework allows users to know and understand the integrity
state of the whole life cycle of the services they are interacting with, thus the users
can make informed decision whether to send their data or trust the received results.

Second, based on the remote attestation framework this thesis proposes a method
to bind the identity of secure channel endpoint to a specific physical platform and
its integrity state. Secure channels are extensively adopted in distributed systems
to protect data transmitted from one platform to another. However, they do not
convey any information about the integrity state of the platform or the service
that generates and receives this data, which leaves ample space for various attacks.
With the binding of the secure channel endpoint and the hardware TPM, users
are protected from relay attacks (with hardware-based identity) and malicious or
cracked platform and software (with remote attestation).

Third, with the help of the remote attestation framework, this thesis introduces a
new method to include the integrity state of software services running in virtual con-
tainers in the evidence generated by the hardware TPM. This solution is especially
important for softwarised network environments. Softwarised network was proposed
to provide dynamic and flexible network deployment which is an ever complex task
nowadays. Its main idea is to switch hardware appliances to softwarised network
functions running inside virtual instances, that are full-fledged computational sys-
tems and accessible from the Internet, thus their integrity is at stake. Unfortunately,
currently remote attestation work is not able to provide hardware-based integrity
evidence for software services running inside virtual instances, because the direct
link between the internal of virtual instances and hardware root of trust is missing.
With the solution proposed in this thesis, the integrity state of the softwarised net-
work functions running in virtual containers can be presented and evaluated with
hardware-based evidence, implying the integrity of the whole softwarised network.

The proposed remote attestation framework, trusted channel and trusted soft-
warised network are implemented in separate working prototypes. Their perfor-
mance was evaluated and proved to be excellent, allowing them to be applied in
real-world scenarios. Moreover, the implementation also exposes various APIs to
simplify future integration with different management platforms, such as OpenStack
and OpenMANO.

v

Contents

Summary 11
List of Figures VIII
List of Tables X
1 Introduction 1
2 Background of Trusted Computing 9
2.1 Trusted Platform 9
2.2 Protected Capabilities 10
22,1 Rootsof Trust. 10

2.3 Integrity Measurement L. 12
2.3.1 Trusted Computing Base 13

2.4 Integrity Reportingo 14
2.4.1 Key Hierarchy 14

2.4.2 Configuration-based Remote Attestation 17

2.5 Virtualisation L 19
2.5.1 Hypervisor-based Virtualisation 19

2.5.2 Operating-System-Level Virtualisation 21

3 Remote Attestation Framework 23
3.1 State of the Art and The Way Forward 24
3.1.1 Contribution 32

3.2 Requirement Analysis. 32
3.2.1 Security Requirements 32

3.2.2 Functional Requirements 33

\Y%

3.2.3 Possible Attacks 33

3.3 General Architecture L 34
3.3.1 Attesting Platform oL 34
3.3.2 Integrity Verifier 35

3.4 Remote Attestation Workflow 36
3.4.1 Registration Phase 37
3.4.2 Remote Attestation Phase 38

3.5 Details of the Framework 38
3.5.1 Trusted Boot 39
3.5.2 Service Load-time Integrity Measurement 40
3.50.3 Imtegrity Report oo 41
3.5.4 Analysis Customisation 45

3.6 Application of Remote Attestation Framework in Network Policy Val-
idation Scenario 51
3.6.1 Motivations of A Trusted Network Policy Validator 51
3.6.2 Contributiono L oo 52
3.6.3 Architecture 52

3.7 Discussion 55

Trusted Channel o7

4.1 State of the Art and The Way Forward 58
4.1.1 Contribution L oo 61

4.2 Requirement Analysis. 62
4.2.1 Security Requirements 62
4.2.2 Functional Requirements 62
4.2.3 Possible Attacks oL 63

4.3 Trusted Channel Architecture 63

4.4 Creating Trusted Channel 65
4.4.1 Extension to IPsec Authentication 65
4.4.2 Extension to Remote Attestation Verifier 68

4.5 DIScussion 71

5 Trusted Network

5.1 Softwarised Network

5.2 Security and Trust in Softwarised Networks
5.2.1 Contribution oo

5.3 Requirement Analysis.
5.3.1 Security Requirements
5.3.2 Functional Requirements

5.4 Remote Attestation in Lightweight Virtualisation Environments
5.4.1 General Architecture
5.4.2 Extension of Linux IMA
5.4.3 Extension of Remote Attestation Framework
5.4.4 Extension of IMA Verification Procedure

5.5 DIScussions

6 Implementation Details and Performance
6.1 Remote Attestation Framework
6.1.1 OpenAttestation SDK
6.1.2 Enhancements to OpenAttestation
6.1.3 Performance Evaluation
6.2 Trusted Channel
6.2.1 strongSwan
6.2.2 Extension of strongSwan
6.2.3 Extension of verifier
6.2.4 Performance Evaluation
6.3 Trusted Networks
6.3.1 Docker
6.3.2 Enabling Remote Attestation in Docker containers.

6.3.3 Performance Evaluation
7 Conclusion
Acronyms

Bibliography

VII

73
73
75
82
83
83
84
84
85
86
87
88
89

91

91

92

93
100
106
106
107
108
109
111
112
113
115

124

126

128

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

Abstract description of our solution. 3
A TTP verifier attests remote servers for users. 4
TPM 1.2 Component Architecture. 11
An example of trusted boot.o L 13
Example of TPM managed key hierarchy. 15
Configuration-based attestation. 17
Type I and type II hypervisors. 20
General architecture of model-based behavioural attestation. 26
General architecture of binary-based attestation. 28
IMA measure extend operations. 28
Overall remote attestation framework architecture. 34
Registration phase for PrivacyCA and the first attesting platform. . . 37
Remote attestation process. 39
Diagram of remote attestation process. 39
Example of IMA measures in ASCII format log file. 41
QuoteData example. 42
Example of IMA measurements in an integrity report. 43
Partial integrity report verification. 44
Execution policy of IMA. 47
Example of L3 trust level with downgraded NetworkManager. 49
FilesToPackages column family. 50
PackageHistory column family. 50
Policy validation workflow and the involved components. 52
IMA measures of iptables and sshd and their initial configuration files. 54

VIII

4.1
4.2

4.3
4.4

5.1
5.2
5.3
5.4
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

6.18
6.19
6.20

General architecture of trusted channel. 64

Trusted channel server attestation steps with and without a trusted

third party. 66
Extension to IKEv2 protocol with RSA-sig authentication. 67
Shadow server attack without binding server certificate to its hard-

ware root of trust. Lo 69
SDN architecture. oL 74
vTPM implementation architecture in the Xen hypervisor. 78
Overall architecture of Docker attestation system. 85
Example of the extended measures (from the IMA ASCII log file). . . 87
The extended part of an integrity report. 88
Example of an IMA measure in an OAT integrity report. 94
A remote attestation request calling two analysis types. 94
Registering load-time as a new analysis type. 95
Extend operation with partial integrity report. 95
Fedora update system. 99
Example mail from CentOS-announce mailing list. 100
Actual remote attestation process in the developed framework. 103
The number of the IMA measures in a typical web server.. 105
Number of IMA measures in aday. 106
The configuration file of oat_attest plugin in strongSwan. 107
An remote attestation request example to attest IPsec server. 107
Remote attestation result from strongSwan log. 108
The SECURED application with remote attestation enabled. 109
The image hierarchy in Docker. 112

A remote attestation request example to attest Docker container host. 115
Starting a Docker container with simple task. 116

The error given when the maximum number of active Docker con-

tainers is reached.o 116
Time to start a container with and without IMA and RA. 119
Time to stop a container with and without IMA and RA. 120
Time to remove a container with and without IMA and RA. 121

IX

List of Tables

6.1
6.2
6.3
6.4
6.5

6.6

6.7

6.8

6.9

Number of operations and performance index in three configurations. 102
Average elapsed and processing time for each analysis type. 102
Performance improvements with partial integrity reports. 104
Performance difference between attestation plugin disabled and enabled.111

Time (in seconds) to start a container with and without IMA and
RA, and the difference computed between the average values. 118

Time (in seconds) to stop a container with and without IMA and RA,
and the difference computed between the average values. 118

Time (in seconds) to remove a container with and without IMA and
RA, and the difference computed between the average values. 119

Number of operations and performance index under three settings in
Docker environment. oL 121

Average time (in seconds) required to complete a remote attestation
request with different number of active containers. 122

Chapter 1

Introduction

Distributed systems, that require multiple entities to co-operate on the same task
in order to generate results, are very popular on the Internet. With the help of
virtualisation technology (especially in cloud computing environment), distributed
systems have changed the way how IT services are designed and deployed, with
greatly improved flexibility, increased availability and reduced costs. More recently,
network infrastructures are quickly evolving from a hardware-based switch-only
layer to a full-fledged computational system able to perform several general tasks,
thanks to the advent of two new architectures, namely Software Defined Networking
(SDN) [1, 2] and Network Functions Virtualisation (NFV) [3, 4].

Unfortunately, these innovations come with a penalty since security is negatively
affected by these new scenarios. For example, in cloud computing environment, as
data and services are no more executed on platforms owned and managed by final
users, several threats materialise: from direct access of the data to altered operating
system or services, from direct attacks to the hypervisor to cross attacks between
services of different tenants executed on the same node [5, 6, 7]. As a matter of fact,
studies show that the complexity and the number of attacks on the Internet have
enhanced significantly in the last several years, and the costs of defending against
attacks are going up, while the costs of conducting attacks are going down [8, 9].

Solutions to these threats have been proposed and discussed by several bod-
ies, such the Cloud Security Alliance (CSA)', National Institute of Standards and
Technology (NIST)? and European Telecommunications Standards Institute (ETSI)3.
However, most solutions heavily rely on software controls and hence are reliable only
if the correct execution of this software is guaranteed, i.e. the software is not manip-
ulated or changed by attackers. In other words, we need to trust the control software
for its correct behaviour. This means that the most basic problem for security in a

lhttps://cloudsecurityalliance.org/
’https://www.nist.gov/
Shttp://www.etsi.org/

https://cloudsecurityalliance.org/
https://www.nist.gov/
http://www.etsi.org/

1 — Introduction

distributed system is the ability to trust its execution environment, therefore it is
important to guarantee service integrity in softwarised environments.

The definition of trust is much wider than integrity. Like in human society
relation, a user may trust some companies because of their good reputation. For
instance, services of Google are used by billions of people around the world everyday;,
even though there have been several successful hacks [10]. On the other hand,
integrity has a narrower definition. A platform with integrity does not necessarily
mean that a user can safely trust the platform, but that its behaviour may be
predictable given some assumptions, e.g., a platform only runs authentic software
may comply to its expected behaviour if the software implementations have no
vulnerabilities.

Unfortunately, because of the complexity of distributed systems and the hostile
environment of the Internet, traditional security that relies solely on software coun-
termeasures becomes insufficient, as it may be easily circumvented by exploiting
vulnerabilities or less strict system configurations. Thus it must be coupled with
stronger means, such as hardware-assisted protection.

Under this concern, the Trusted Computing Group (TCG) [11], a non-profit or-
ganisation composed of giant players in each ICT field, released a set of specifications
for a new technology to deal with the trust problem. This new technology covers a
broad set of scenarios and devices, which is commonly referred to as Trusted Comput-
ing (TC). Its aim is to provide hardware-assisted protection for sensitive credentials
and mechanisms to understand and check the behaviour of remote platforms with
a specially designed hardware chip called Trusted Platform Module (TPM). Among
all the possibilities currently available, TC is a convincing and practical choice for
three reasons: from the financial point of view, its standard specifications are avail-
able without fees or charges; on the other hand, the essential building block, i.e.
TPM, is cheap and available in millions of business class devices including servers,
desktops and laptops [12], third, the implementation quality of the chip is good. In
the threat model proposed by TCG, physical attacks are not meant to be prevented.
However, even if physical access is allowed, until now there is only one successful
attack [13] to the TPM device (i.e. TPM 1.2) which is most widely deployed. And
this reverse engineering attack requires physical access to the chip itself as well as
a high-end electron microscope that can manipulate tiny needles less than a micron
across, injecting conductors and insulators to rearrange the chip’s circuits. Even
with this powerful equipment, there is no guarantee that the attack can succeed,
breaking the electrical circuits in the TPM chip may disable it, making it useless.

Taking these advantages of the TPM, this thesis exploits and improves the re-
mote attestation technique of TC technology in distributed systems, which allows
a computing platform to provide hardware-based authentic evidence about its in-
tegrity state to other entities over the network (Figure 1.1). The contribution of this
thesis is threefold. First, we propose a remote attestation framework which is capa-
ble of attesting not only the integrity state of physical platforms but also the load
time integrity of software services. As an example, we adopted this framework into

2

1 — Introduction

attester

N
o
- m ’ software 'b\:\‘v*

— et components .
OK/fail

execute 1000

whitelist

Figure 1.1. Abstract description of our solution.

a formal and trusted network security policy validator. Second, we show our pro-
posal to combine secure channels with remote attestation in order to create trusted
channels, where the secure channel endpoint identity is bound to a specific hardware
node and its integrity state. Third, we offer our idea of trusted softwarised networks,
in which softwarised network functions running inside virtual containers are attested
as if they are running in physical platforms, implying the correct behaviour of the
whole softwarised network.

After detailing our proposals of adopting remote attestation in distributed sys-
tems to prove integrity among different entities, we show our implementations and
evaluate their performance, demonstrating the feasibility and the capability of our
proposals in real-world applications.

The rest of this Chapter gives an overview of this thesis. Such overview should
be interpreted as a high level description of the problems addressed and the solu-
tions proposed. In order to keep the discussion short and simple, many details are
intentionally omitted, and only the necessary information is provided.

Remote Attestation Framework

Distributed systems are evolving as the usage of the Internet grows. Their task is be-
coming much more complex and more computing entities are involved, making their
capability to store and process data elastic and approximately limitless. However,
security of distributed systems is weakened in this new paradigm, since end users
do not have direct control of the device hosting the services. They have to blindly
trust remote party to deploy the legitimate services with correct configurations as
agreed. Moreover, the hostile nature of the Internet makes distributed systems to
be put at stake. They are continuously under remote attacks from the Internet, and
even though a great amount of security tools are available and deployed, system

3

1 — Introduction

Figure 1.2. A TTP verifier attests remote servers for users.

breaching events are happening frequently [10, 14]. From the system administrator
point of view, the number of physical platforms to be run in distributed systems is
huge, e.g., hundreds or thousands physical platforms in a cloud scenario. Managing
and monitoring such large amount of machines is a daunting work, not to mention
the software services running in them. Most of the times, the system administra-
tor is not able to notice that the system is compromised due to attacks or wrong
configurations until a massive destruction has already occurred.

In order to tackle these problems, a remote attestation framework is crucial to
monitor the integrity of the distributed systems, including not only the integrity
of the platforms where the services are deployed but also the services themselves
that directly interact with end users. End users may have two approaches to attest
the integrity of remote servers. Either they can evaluate the integrity evidence of
the servers directly in their terminals or they can offload the attestation work to
a Trusted Third Party (TTP). However, evaluating the integrity evidence needs a
great amount of resources and knowledge, especially if the software services are un-
der concern, i.e. the whitelist is very large and difficult to be created and managed.
Even if the whitelist is available, the introduced remote attestation workload may
significantly degrade the users experience in their terminals. And a user terminal
may not have enough resources to evaluate the integrity evidence by itself, consid-
ering the variety of user terminals, e.g., smartphones and Internet of Things (IoT)
devices. On the other hand, servers may not be willing to share their integrity state
to a random entity, which may expose privacy information (e.g., what software ser-
vices are running and which versions). For such reasons, in this work, we propose
an extensible remote attestation framework with a TTP as the verifier to check the

4

1 — Introduction

integrity state of servers in distributed systems (Figure 1.2).

In our framework, the integrity of servers is composed of two parts, the boot
phase of a physical platform and the load time of all software services running on it.
In other words, in the first step, the server must be booted into a trusted state, i.e.
all components loaded during the boot phase are known and they are loaded in a
specific order. Afterwards, when services are loaded, their associated configurations
and executables loaded in the server kernel must be uniquely identified and known
by the verifier. In the end, the verifier continuously attests the servers to monitor
their integrity state, e.g., whether an unwanted script has been loaded or a service
configuration has been changed.

Trusted Policy Verification Framework: in order to show the applicability
and the necessity of our remote attestation framework in distributed systems, we
present a real use case. We propose a trusted policy verification framework, which
validates network policy enforcement, by checking the network status and possible
causes in case of misconfiguration and remote attacks with the help of the remote
attestation framework.

Network security is a crucial aspect for administrators due to increasing network
size and number of functions and controls (e.g., firewall, parental controls). Errors
in configuring security controls may result in serious security breaches and vulner-
abilities (e.g., blocking legitimate traffic or allowing unwanted traffic) that must be
detected and addressed. Moreover, to detect and avoid the situation that the ser-
vice is correctly deployed but it is cracked by remote attacks, especially for complex
distributed scenarios, remote attestation of service integrity is mandatory.

The remote attestation framework in this scenario continuously monitors the in-
tegrity state of the network services and their hosts deployed in the policy validation
framework. If the remote attestation fails, the verifier immediately alerts the system
administrator, specifying the causes. Otherwise if the attestation result is positive
but the policy validation result is negative, an analyser is triggered to perform policy
analysis.

Trusted Channel

In distributed systems, data transmitted can be well protected with secure chan-
nels, e.g., TLS [15] or IPsec [16], for data integrity, authenticity and confidentiality.
These protocols guarantee the identification of the data source and ensure that no
interference happens in the communication. However, they do not give any infor-
mation about the legitimacy and the integrity of the platforms which the data are
originated from (possible data fraudulence) and sent to (possible data leakage). To
overcome this issue, secure channels should be combined with remote attestation,
which is called Trusted Channel.

This combination serves two purposes. The first one is to indicate whether the
platform and the service generating the data are compromised and how the data is

5

1 — Introduction

handled. However, the usefulness of this point alone is debatable because an attacker
may easily act as Man In The Middle (MITM) that forwards the remote attesta-
tion request to a benign platform and uses the integrity evidence of the legitimate
platform as its own, so it is able to pretend to be innocent while it is actually acting
maliciously, this is known as relay attack. Thus, we mention the second purpose
of integrating secure channel with remote attestation, it is to bind the identity of
secure channel endpoint to the identity of the hardware chip, i.e. the TPM, which
is unique for each physical node. In this way, an end user is able to know that they
are interacting with a benign platform based on its hardware identity.

In this work we propose a solution for establishing trusted channels in a client-
server model with the help of the aforementioned remote attestation framework. For
the sake of user privacy, in this solution only the server is attested in a way that
a user may have knowledge about its integrity state before establishing the secure
channel.

A live demo of the prototype of proposed trusted channel and remote attestation
framework was shown in the ETSI NFV-SEC meeting in Dublin, February 16-19,
2016, and was well accepted and appreciated.

Trusted Network Infrastructure

Network infrastructure is quickly evolving from a hardware-based switch-only layer
to softwarised environment in which switching packets being just one feature. This

evolution is permitted by the advent of two new architectures, namely Software
Defined Networking (SDN) [2] and Network Functions Virtualisation (NFV) [3].

SDN is a particular approach to provide virtualised traffic routing and unified
network flow management across hardware and software-based networking compo-
nents. The principal design of SDN is to virtualise the existing control and data
planes by moving the control part away from all network elements to a centralised
node in the network, known as the SDN controller.

NFV proposes to virtualise several classes of network node functions into generic
building blocks (i.e. virtual instances running on commodity hardware) to be con-
nected for creating various network services. NFV typically exploits SDN to create
custom overlay networks connecting the various network functions and in turn SDN
can use NFV to host its controller and elements.

The usage of SDN and NFV networks introduces new network abstractions and
high-level primitives, but it creates a trust gap for administrators as they cannot
easily assess the correctness of enforced device configurations, especially SDN and
NFV networks heavily rely on software modules running in distributed nodes. Due
to errors or attacks, the software modules may act differently from their expected
behaviour. Therefore we need a technique to know and understand if only the
expected software modules are loaded and if they are configured correctly.

Network infrastructure has two properties which we must take into concern in
our proposal. First, network infrastructure has no privacy issue, because it should

6

1 — Introduction

be owned and used by a single entity, such as an Internet Service Provider (ISP).
Second, network elements (i.e. computing nodes that run network functions) in
general are less powerful than commodity servers. For this reason, the used virtu-
alisation technology should be as lightweight as possible and the pressure of remote
attestation should be alleviated by offloading the computational complexity to the
third party verifier.

Since a software-only solution would be prone to a wide range of remote attacks,
our design uses a hardware-based trusted device inside the network element. This
trusted device should be generally immutable and used as a basis for trust, which is
leveraged by the verifier to attest the network element and its behaviour. Same as
previous solutions, in this one we continue our choice of the TPM, and use it as the
root of trust.

With the help of the aforementioned root of trust, our goal is to check the
integrity state of the boot phase of the network elements and load time of the
softwarised network function modules and their configurations. Since most of these
software modules are running inside virtual instances, we propose a new method to
attest software integrity running in virtual container with hardware-based evidence
as if they are running in physical platforms.

A live demo of the prototype of this proposed solution was shown in the ETSI
NFV-SEC meeting in Bilbao, February 21-24, 2017, and was well accepted and
appreciated.

Foundation

The following publications and pre-prints form the foundation of this thesis:

T.Su, A.Lioy, N.Barresi, “Trusted Computing Technology and Proposals
for Resolving Cloud Computing Security Problems”, in the book “Cloud
Computing Security: Foundations and Challenges” edited by J.R.Vacca, CRC Press,
pp. 345-358. [17]

T.Su, A.Lioy, N.Barresi, “A practical approach of building trusted computing
compliant infrastructures”, in preparation.

A Filograna, P.Smiraglia, C.Gilsanz, S.Krco, A.Medela, T.Su, “Cloudification
of Public Services in Smart Cities the CLIPS project”, ISCC-2016: IEEE
Symposium on Computers and Communication, Messina (Italy), 27-30 June, 2016,
pp. 153-158. [18]

R.Bonafiglia, F.Ciaccia, A.Lioy, M.Nemirovsky, F.Risso, T.Su, “Offloading per-
sonal security applications to a secure and trusted network node”, Netsoft-
2015: 1st IEEE Conf. on Network Softwarization, London (UK), April 13-17, 2015,
pp. 1-2. [19]

L.Jacquin, A.Lioy, D.R.Lopez, A.L.Shaw, T.Su, “The trust problem in mod-
ern network infrastructures”, in the book “Cyber Security and Privacy” edited
by F.Cleary, M.Felici, Springer, pp. 116-127. [20]

7

1 — Introduction

A.Lioy, T.Su, D.R.Lopez, A.Pastor, A.L.Shaw, H.Attak, “Trust in SDN/NFV en-
vironments”, in the book “Guide to Security in SDN and NFV - Challenges, Oppor-
tunities, and Applications” edited by S.Y.Zhu, S.Scott-Hayward, R.Hill, L.Jacquin,
Springer, in press.

T.Su, A.Lioy, A.Atzeni, M.Mezzalama, “Practical integrity verification for the
Docker lightweight virtualization environment”, submitted to Computers & Security,
2017.

F.Valenza, T.Su, S.Spinoso, A.Lioy, R.Sisto, M.Vallini, “A formal approach
for network security policy validation”, in Journal of Wireless Mobile Networks,
Ubiquitous Computing and Dependable Applications, March 2017, pp. 79-100. [21]

Organisation

The structure is organised as follows:

Chapter 2 provides an overview of TC, by introducing this technology and its
main building blocks, especially the details of remote attestation technique. It shows
how remote attestation is used to convey authentic integrity evidence of physical
platforms with the ability to resist remote attacks.

Chapter 3 describes our proposal of a remote attestation framework which is
able to check the integrity state of both the boot phase of physical platforms and
the load time of software services running in them. Then it talks about a specific
use case, showing that the remote attestation is mandatory in network security
policy validation scenario in order to generate validation results with strong integrity
guarantee.

Chapter 4 describes our proposal of trusted channels, where secure channel end-
point is bound to its integrity state and the physical platform which generates its
integrity evidence, in order to avoid relay attacks.

Chapter 5 presents our proposal of trusted softwarised networks, where the in-
tegrity state of software network functions running in virtual instances and their
host are attested, thus implying the expected behaviour of the softwarised network.

Chapter 6 presents our implementation details, including the remote attestation
framework, trusted channels and virtual container attestation system. Besides im-
plementation details, this Chapter also gives experiment results. Such results prove
the proposed solutions are feasible in real-world use cases not only from theoretical
but also practical points of view.

Chapter 7 concludes this work, which also discusses current limitations of this
work and points out future research directions.

Chapter 2

Background of Trusted Computing

Software-based security solutions are becoming insufficient in the current hostile en-
vironment of the Internet, as software means alone can be circumvented by exploiting
vulnerabilities or less strict configurations, thus they cannot provide enough security
guarantees against various attacks in distributed systems. More importantly, they
lack strong integrity guarantee to provide authentic evidence about the behaviour of
the remote parties involved in computation. In other words, in distributed systems,
computational entities need to trust each other ambiguously and blindly with only
software-based solutions.

Trusted Computing was introduced in the 1990s to deal with the issue of platform
trustworthiness with the rapid increasing of the usage of the Internet. Indeed, it
provides hardware protection for sensitive credentials and mechanisms for presenting
the behaviour of remote platforms [22].

Apart from TC, virtualisation technology is another essential building block of
this work. It is commonly adopted in distributed systems to maximise the utility of
the underlying physical resources. Thus, in order to cover the integrity state of all
software services running in distributed systems, it is important to guarantee the
integrity state of not only the host where the virtual instances are running, but also
the services running inside these virtual instances.

This Chapter provides an extensive overview of TC and virtualisation main func-
tionalities, in order to help readers understanding its current limitations and our
motivation. More importantly, it shows why remote attestation is incompetent to
be directly applied in distributed systems and the needs of improvement.

2.1 Trusted Platform

Trust is the expectation that a device will behave in a particular manner
for a specific purpose [23].

According to the TCG definition, in order to be a Trusted Platform (TP), the

9

2 — Background of Trusted Computing

platform must provide three basic features: protected capabilities, integrity measure-
ment and integrity reporting [23]. With these features, a platform has enough basic
functionalities to convince a remote entity that it is trustworthy.

2.2 Protected Capabilities

Protected capabilities work in collaboration with shielded locations, which are special
regions of the platform where it is safe to store and operate on sensitive data. For
security reasons, shielded locations must be isolated from the rest of the system in
order to reduce the attack surface. On the other hand, protected capabilities are
the commands that have exclusive permissions to operate on the shielded locations.
These two functions are essential to other features, e.g., integrity measurement and
integrity reporting.

2.2.1 Roots of Trust

In order to trust the operations of protected capabilities, the TCG defines three Root
of Trust (RoT), i.e. components meant to be trusted because their misbehaviour
may not be detected [24]:

e Root of Trust for Measurements (RTM) implements an engine capable of mak-
ing inherently reliable integrity measurements and it is also the root of the
chain of transitive trust (one component gives trust guarantee to another);

e Root of Trust for Storage (RTS) securely holds the integrity measurements (or
a summary and sequence of those values) and protects data and cryptographic
keys used by the TP that are held in external storage (non-shielded storage);

e Root of Trust for Reporting (RTR) is capable of reliably reporting to external
entities the measurements held by the RTS.

A complete set of RoT encompasses the minimal combination of hardware and
software elements that a remote entity needs to trust in order to validate the entire
platform. It is recommended by the TCG specifications to use hardware device in
combination with software components to create a strong unforgeable identity and
provide safer storage of evidence. Therefore the main components of the RoTs are:
(7) a specialised hardware component to store the identities and measurements away
from the software access, (ii) an initial isolated component that is able to measure
the first non-trusted software, which will be then trusted to measure the next stage
software.

In the solution proposed by TCG, Trusted Platform Module (TPM) is the core
building block to implement the aforementioned functions. To be more specific,
it provides shielded locations to store the platform integrity measurements, simple
cryptographic functions to create unique keys and to sign data stored inside itself.

10

2 — Background of Trusted Computing

cryptographic persistent memory
rocessor
P endorsement key
random number
generator storage root key
TPM]
» RSA key generator versatile memory

platform configuration
registers

SHA-1 hash
generator

secured input and output

attestation identity keys

encryption-
decryption-
signature engine

storage keys

Figure 2.1. TPM 1.2 Component Architecture.

By design, the shielded locations to securely store integrity measurements are seated
in the internal memory of a TPM, which are called Platform Configuration Registers
(PCRs). Each TPM should have a minimum number of 24 PCRs (numbered from
0 to 23) with each of them has 20 B storage (Figure 2.1).

The protected capabilities allow free read access to the PCRs, but direct writing
is prevented. These PCRs act as accumulators: when the value of a register is
updated, the new value depends on both the new data and its old value, to guarantee
that it is impossible to forge the value of a PCR once initialised. Moreover, most
PCRs (PCRO through PCR15) have persistent values until the whole platform is
reset (e.g., rebooted).

The PCR values are updated by a operation called extend and it works as
follows:
PCRneW = SHA—l(PCROld H data) (21)

where PCRq is the value present in the register before the extend operation, || is
the concatenation operator, and data is the new data to be inserted. This approach
brings two benefits. First, it allows for an unlimited number of data to be captured in
a single PCR, since the size of the values is always the same and it retains a verifiable
ordered chain of all the previous data to be inserted. Second, it is computationally
infeasible for an attacker to calculate two different hashes that will match the same
resulting value of a PCR extend operation!. Thus, even if a system is compromised,

!Currently, the weakness of SHA-1 is showing as there is known SHA-1 collision found [25].
With the updated TPM version (i.e. TPM 2.0), the hash algorithm is upgraded to SHA-256 and
MD5. However in this thesis, we are still referring to the old TPM version which only supports
SHA-1.

11

2 — Background of Trusted Computing

an attacker cannot forge PCR values in his favour.

Since there are correlations between old and new PCR values, a PCR somehow
contains the history of all extended data. However, the nature of the extend opera-
tion makes computationally impossible to recover the list of stored values backwards
from the current content of a PCR. That is the reason why logging each integrity
measure is strongly recommended, even if not compulsory, in order to precisely
identify the compromised component and the time of its compromission.

2.3 Integrity Measurement

The integrity of a platform is defined as a set of metrics that identifies the loaded
software components, such as Basic Input/Output System (BIOS), operating system
kernel and their configurations. For each component, a fingerprint acts as a unique
identifier and as proof of no modification when it is loaded; in other words, com-
ponents are “measured” by computing the digests of their content. Subsequently,
the measurement process uses protected capabilities to “cumulatively” store these
platform component measures into the PCRs.

At each instant, the TP has a trust boundary, which is the set of its trusted
components. Such trust boundary can be extended if a trusted component gives
a trustworthy description of (i.e. it measures) another component and extend the
measure to a designated PCR before loading it. The result is that the trust boundary
is extended from the first to the second entity. This process can be iterated: the
second entity can give a trustworthy description of a third one, and so on. In
practice, the platform creates a chain of trust where each component is measured
by its previous one. This iterative process is called transitive trust and it is used to
provide a trustworthy description of the whole platform.

Integrity measurement is the operation used to create the transitive trust of the
platform: each component in the system startup process measures the to-be-loaded
component before transferring the control of the platform and these measures are
stored into the PCRs. This forms the basis for other functionalities such as remote
attestation (Section 2.4).

The RTM should be the first component activated when the system is booted,
it is required to be able to measure the subsequent components and extend their
measures into the designated PCRs in the platform’s TPM. A passive chip as the
TPM cannot provide the RTM by itself, since it cannot actively measure the BIOS
or other components to create the chain of transitive trust. Typically, in a com-
modity platform, RTM can be implemented either by the first software module of a
computer system executed when the latter is switched on (i.e. a small portion of the
BIOS) or directly on-chip by processors of new generations (e.g., Intel processors
equipped with Trusted eXecution Technology (TXT) [26]). The set of operations and
instructions performed in this phase are called Core Root of Trust for Measurement
(CRTM). On the contrary, the RTS and the RTR can be implemented directly using

12

2 — Background of Trusted Computing

. extend measure
services . .
operations operations
TPM
kernel / : \

GSTsap
~o \eLV’Ces)

-~

PCR 10

bootloader

DGST
S~ (ieriel)
-

PCR 2

- e -

~ PCR 1

L
II...I-

- PCR 0

_)

Figure 2.2. An example of trusted boot.

—
—
- -

the TPM, as its internal functions supports cryptographic operations, to securely
maintain the integrity measures and to report them.

2.3.1 Trusted Computing Base

When a computing platform is powered on, the first component loaded is BIOS.
After the BIOS is measured by the RTM and its measure stored into a designated
PCR, it takes full control of the platform and starts to measure the bootloader
and puts its digest into another PCR. Afterwards, when this operation finishes, the
control is passed from the BIOS to the bootloader. Then the bootloader does the
same thing to the operating system kernel, it computes the digest of the latter and
any parameters or additional code before loading it. Specifically in Unix systems,
it is required to take concern of options passed to the system kernel and the initial
RAM disks, which may change the behaviour of the kernel. These steps create the
transitive trust chain of the platform as described in Section 2.3.

Since each component in the boot process is measured and their digests are
extended into the corresponding PCRs, the PCR values are capable of reflecting the
content of loaded components. This procedure is called trusted boot or measured boot
(Figure 2.2), which is able to prove the components loaded in the boot phase of a
platform are known and they are loaded in a specific order. Unlike Secure Boot [27],
which checks the content of loaded components against the signatures signed by
their manufactures, in trusted boot, there is no limitation of the component that
can be loaded in the platform. The only constraint is that the components must be
measured and the measures must be extended into the corresponding PCR before
they are loaded. The verification task of the loaded components is irrelevant to the
platform, but delegated to another entity.

At this point, the operating system kernel can start measuring other loaded
services. It may compute the digests of the service code, the configuration files,

13

2 — Background of Trusted Computing

the command line options and any data that may influence the service’s behaviour.
In this way, a Trusted Computing Base (TCB) is created from the RoTs to the
operating system application layer.

2.4 Integrity Reporting

Integrity reporting (often called remote attestation instead) is the process that a
computing platform reports its own integrity state to an external party. The basic
idea behind integrity measurement and integrity reporting is that a platform is
allowed to enter any state, even untrusted ones, but it cannot lie about its state.

In the previous part of this Chapter, we have shown how integrity is measured
in a trusted platform, however, the integrity measurement is not able to be used if
it is not authenticated. Therefore TPM provides hardware means to protect and
manage its keys.

2.4.1 Key Hierarchy

Protecting and managing of keys using hardware means is mandatory since these
keys are used for other security critical operations, such as authentication in remote
attestation and encryption/decryption in content sealing.

The keys used by the TPM can be roughly grouped into two categories: authenti-
cation keys (also called signing keys) and storage keys (also called encryption keys).
A signing key is a general purpose key used for authentication, while a storage key
is used to encrypt data or other keys (e.g., wrapping keys). For this reason, each
TPM provides two non-migrateable asymmetric keys, Endorsement Key (EK) and
Storage Root Key (SRK), that their private parts never leave the TPM.

Authentication Keys

EK is a special authentication key, which is part of the RTR. This key is generated
and injected into the TPM when the chip is manufactured, and it is unique for
each TPM chip. Moreover, manufacturers of the TPM should provide each EK a
certificate (EK certificate) signed by their keys in order to state that the certified
EK belonging to a genuine TPM which follows the specifications defined by TCG.
The reason to have a unique and unchangeable EK for each TPM is twofold, (i) a
TPM cannot forge its or other TPM’s EK, (i) a rogue TPM can be detected.

However, this feature may cause a privacy issue if the EK is directly used for
authentication, that all transactions can be linked to a specific TPM (i.e. trace-
ability). In order to eliminate the traceability issue, the EK is never used directly
for signing nor encrypting. Its purpose is purely to decrypt owner authorisation
data when the TPM’s ownership is taken and associate the TPM to another type
of signing key called Attestation Identity Keys (AIKs). In simple words, AIK is a

14

2 — Background of Trusted Computing

Data

Figure 2.3. Example of TPM managed key hierarchy.

variant of EK, whose private part is also never exposed outside the TPM but can be
generated by the TPM itself. In the case that the private part of an AIK needs to be
stored outside of the TPM, e.g., there is not enough storage in the TPM persistent
memory, the private part of the AIK needs to be encrypted using the SRK. A TPM
can only have one EK but it can have multiple AIKs. It is exclusively used to sign
data originated by the TPM (e.g., PCR values) during remote attestation instead
of EK. Actually, the TCG specification suggests to have a different AIK for each
remote attestation session to avoid the traceability.

In order to prove the AIK comes from a genuine TPM, it needs a certificate
issued by a Certificate Authority (CA). Its role is to assess the trustworthiness of
the TPM through its EK. Actually, the CA should issue a certificate for a AIK
only if the request comes from a genuine TPM. It should checks the EK certificate
was issued by a legitimate TPM manufacture and states that this EK belongs to a
genuine TPM which will behave correctly.

The steps need to be done are follows:
1. the CA checks the EK certificate issued by a legitimate manufacture;
2. the CA checks the certificate request comes from this very EK;

3. the CA issues the AIK certificate encrypted with the EK’s public key (which
is available in the EK certificate);

The last step guarantees that only the TPM made the AIK certificate request
can decrypt this blob and retrieve the AIK certificate correctly. If a rogue TPM

15

2 — Background of Trusted Computing

sends a certificate request for its AIK, the CA will detect this because the public
part of its EK can be identified as rogue. Or if a malicious platform resends the
AIK certificate request generated by another platform, it cannot decrypt the blob
because the EK of the other platform is known.

In the previous scheme, the CA can still trace a specific TPM, since it has
knowledge of all AIK certificates bound to the EK of this TPM. Thus the CA has
special requirement regarding to privacy. For this reason, it is often called Privacy
Certificate Authority (PrivacyCA)?.

If full anonymity is required, TPM 1.2 supports Direct Anonymous Attestation
(DAA) protocol [28], which allows a TPM authenticates its integrity evidence with-
out being linked to other remote attestation transactions with the help of proof of
knowledge. Generally speaking, DAA can be regarded as a group signature without
revocable anonymity but with a mechanism to detect rogue members (i.e. rogue
TPMs). More precisely, Camenisch-Lysyanskay (CL) signature scheme [29, 30] is
used to issue certificates on a membership public key. Then, to authenticate as a
valid group member (i.e. a valid TPM), a TPM proves that it possesses a certifi-
cate of the public key for which it knows a secret key. This scheme is provably
secure in the random oracle model where the unforgeability of certificates holds un-
der the strong RSA assumption and privacy and anonymity is guaranteed under the
decisional Diffie-Hellman assumption in a finite field.

Storage Keys

On the other hand, each TPM provides a Storage Root Key (SRK) which is part
of the RTS and it is a self generated key by the TPM, i.e. the TPM ensures that
its generation and cryptographic operations are executed internally of the chip in
a secure manner and its private part never leaves the chip. Immediately after the
TPM ownership is taken, that a password is set to ensure only the user (usually the
system administrator) knowing the password can operate on this TPM (e.g., enable,
disable or clear the TPM through command line remotely), the SRK is generated
and available.

At this point, the TPM can securely store other keys by encrypting them with
the SRK or their parent keys. This operation is called wrapping key. To be more
specific, if a key (regardless of its purpose) is generated and inserted into the key
hierarchy, it is wrapped with the SRK. Later when another key is created, it may
chose to be wrapped with the SRK or an existing storage key (Figure 2.3). Each time
a key needs to be used, it must be operated inside the TPM. In order to correctly
load a key into the chip, its parent (wrapping key) must be loaded. Since the SRK
is the root of the wrapping keys, it must be loaded first, then the other wrapping
keys.

2More details in Section 3.4, where the PrivacyCA approach is followed in our remote attestation
framework.

16

2 — Background of Trusted Computing

’ A} o T TTTTTETE TS ~
: attester l / verifier N
|
| :‘ NONCE : PCR :
| <
| HOST OS : ‘: compare !
| — , {PCRO,PCR1,..,PCR23} | | _module I
| . | + | !
NONCE sign . - i
: ! | Sig{AIK,{NONCE+PCRs}} | \ d !
I I | — !
| 5CRO I I compare ~v :
: PCR1 : : I
| | \ WhiteList I'
: : \\\ database 7

Figure 2.4. Configuration-based attestation.

These keys can be both migrateable or non-migrateable. Non-migrateable keys
can only be used by the TPM which generates them, and cannot be known or used
by other entities. While migrateable keys can be exchanged between TPM chips
in a secure manner. In practice, in a TPM, AIK, EK and SRK are always non-
migrateable keys while other keys may be non-migrateable as well as migrateable
depending on their usage.

Exploiting the TPM’s key management capability, the TPM provides a protected
storage for sensitive data with hardware means. This feature is mainly offered by
two functionalities, binding and sealing. Binding is to bind some data to a specific
TPM. This happens when non-migrateable keys are used to encrypt data. This
guarantees the data can be only decrypted by a particular TPM. Sealing enhances
the function of binding, such that the data encrypted are not only bound to a specific
platform with a particular TPM, but they can be decrypted only when the platform
is in a particular integrity state. Indeed, sealing associates the encrypted data with
a specific set of PCR values and a symmetric key. After the data is sealed, it is
only possible to be decrypted when the PCR values are the same as those specified
during the sealing. Because of this feature, sealing is some times referred as local
attestation.

2.4.2 Configuration-based Remote Attestation

In general, in remote attestation process, attesting platform (hereafter called attester
for simplicity) needs to transmit the evidences of its integrity state to an external
entity (hereafter called verifier or challenger) in an authenticated manner.

The most popular evidence is the TCG’s integrity report (IR) [31], which com-
prises the values stored in the PCRs and a digital signature of them computed with
an AIK. It is used in a wide range of applications, e.g., Trusted Network Communica-
tion architecture [32] and Trusted Compute pools [33]. As mentioned in Section 2.4.1,
AlKs are alias of EK and only used to sign the data structures stored inside a TPM

17

2 — Background of Trusted Computing

(e.g., PCR values), and the private parts of these keys are never exposed, thus guar-
antees the authenticity and integrity of the integrity reports. To be more specific,
the operation to get signed PCR values from a TPM is called Quote.

This solution is simple from both the verifier’'s and the attester’s points of view.
The verifier wishing to validate the platform configurations of the attester sends a
remote attestation request specifying an AIK for generating the digital signature,
the set of PCRs to quote, and a nonce to ensure freshness of the digital signature.
After the TPM receives the remote attestation request, it validates the authorisation
to use the AIK with the password set in TPM taking ownership phase, fills in a
structure that with the set of PCRs to be quoted and generate a digital signature
on the filled in structure with the specific AIK. Then the host operating system
returns the digital signature to the verifier. The verifier, after receiving the digital
signature, validate the integrity of the PCR values received using the public portion
of the AIK. Then if the authenticated PCR values (i.e. platform configurations) are
marked as trusted in the whitelist database, then the verifier assesses the attester’s
trustworthiness.

Since this solution relies on platform configurations (stored inside PCRs) to
assess platform’s trustworthiness, it is generally referred as configuration-based at-
testation (Figure 2.4).

Configuration-based attestation is simple and sufficient to guarantee that the
platform has some specific components and configurations loaded in the system
(e.g., in trusted boot scenario) once deployed correctly. However, it has three severe
drawbacks.

First of all, because of the limited resource provided by the hardware TPM
chip, this solution can only covers limited amount of components loaded in the
system. It may happen that even some key components of a platform are measured
and extended into the designated PCRs, the system is still compromised because
a cracked active component which is checked, and the verifier is not able to detect
the attack. Hence, this method needs to be extended to continuously monitor and
check the integrity of the whole system at runtime.

Second, the assessment is not flexible and lacks useful information. Using di-
gests for measuring loaded components and their configuration files implies that
any change, even different configuration options, may cause a totally different mea-
sure. For this reason, integrity measurement does not directly reflect the platform’s
trustworthiness, since it may happen that a component is updated legitimately but
its measure changes.

Third, the nature of extend operation makes the final PCR values depend not
only on the components loaded in the platform, but also on the order of loading
operations, i.e. extend(A,B) # extend(B,A). This drawback leads to configuration-
based attestation extremely difficult to be managed and maintained, especially when
runtime measurement is involved. For instance, on the one hand, the attester needs
to be very careful and persistent about the order of the components loaded during
the usage, on the other, the verifier needs to update its whitelist of trusted PCR

18

2 — Background of Trusted Computing

values every time a new component of the attester is added or an existing one is

modified.

2.5 Virtualisation

Virtualisation technology also plays a central role in distributed systems. It can opti-
mise the utilisation of hardware platforms and simplify system management, leading
to improved flexibility, availability and reduced cost. Nowadays, it is very popular
given their application not only to server consolidation and to cloud computing but
also to network softwarisation, as in the case of SDN and NFV technologies.

In practice, the virtualisation system presents to guest operating systems an
abstraction of the underlying hardware. The guests, or virtual instances, can then
run in parallel sharing the physical hardware (e.g., CPU, memory and harddisk).

Remote attestation is a well-known technique to assess the integrity of a physical
platform, but not so well with virtualised instances hosted on top of hypervisor,
either hypervisor-based virtualisation environment (such as KVM [34] and XEN [35])
and it is simply not available for operating system level virtualisation environment
(such as Docker [306]).

2.5.1 Hypervisor-based Virtualisation

Theoretically, hypervisor-based virtualisation can be broadly grouped into full vir-
tualisation and para-virtualisation.

Full virtualisation provides to guests a complete abstraction of a physical system.
Thus the guest is executed as it is running on a real physical platform. In this case,
once the guest requests a privileged instruction (e.g., I/O operations) which could
not be executed in virtualisation environment, the hypervisor replaces it with the
corresponding emulated instruction. The main advantage of this approach is that
any software can be run in guest without modification, but it imposes a performance
penalty as privileged instructions need to be rewritten.

Paravirtualisation, on the other hand, requires the guest code to be modified,
so that no privileged instruction is called directly, but only its virtual version. The
virtual privileged instructions called by guests are executed by the hypervisor, which
is also called hypercalls. This approach can achieve much better performance than
full virtualisation, as it is close to a native system.

From the architecture point of view, there are two types of hypervisor, type I
and type II (Figure 2.5). Type I hypervisors, that are also called native or bare-
metal hypervisors, run directly on the host’s hardware to control the hardware
and to manage guest operating systems. Type II or hosted hypervisors, run on a
conventional operating system just as other computer programs do, which means a
guest operating system runs as a process on the host.

19

2 — Background of Trusted Computing

HYPER
VISOR

HARD
WARE

TYPE 1

native

TYPE 2

(bare metal) hosted

Figure 2.5. Type I and type II hypervisors.

The hypervisor’s virtualisation technique defines how its guests can access the
shared resources from the hypervisor, and its type defines how the hypervisor ac-
cesses the hardware resources. For instance, Xen? is a type I hypervisor which adopts
paravirtualisation technique, i.e. the hypervisor is deployed on bare metal and the
guests need to be modified in order to run on this hypervisor. On the contrary,
Oracle VirtualBox* is a type II hypervisor which adopts full virtualisation, i.e. the
hypervisor is running in the host of the physical platform and the guests running on
this hypervisor does not require modification. However, in order to provide higher
performance for its guests, VirtualBox also starts supporting paravirtualisation from
version 5.0.

From the security point of view, virtual machines are vulnerable to attacks from
their hypervisor, since the hypervisor is in charge of managing all their requests to
the hardware resources. For instance, a compromised hypervisor may maliciously
change the result of a request from a virtual machine, thus its behaviour, with-
out being detected by the virtual machine. On the other hand, the hypervisor is
vulnerable to a special type of attack, called hyperjacking, where a hacker takes
malicious control over its hypervisor from a compromised virtual machine [37]. This
issue is especially relevant to provide a secure execution environment for distributed
systems.

As a matter of fact, since the hypervisor is loaded as a component in the platform,
it can be a target of the attestation process directly. Depending on its type, it can
be attested either as a component loaded at boot (type I hypervisor) or as a service
running in the host system (type II hypervisor). But this solution is not effective
for virtual machines, because the link amongst the services running in VMs and the
hardware TPM is in general broken by the virtualisation layer.

Shttps://www.xenproject.org/
‘https://www.virtualbox.org/

20

https://www.xenproject.org/
https://www.virtualbox.org/

2 — Background of Trusted Computing

Even if the link is available, as in KVM that implements a pass-through driver to
allow the internal of the VM to interact with the hardware TPM [38], the number
of virtual machines running on a single platform is significantly higher than the
resources provided by the TPM, which makes the chip unable to provide authentic
evidence for all the virtual machines. In particular, the secure storage provided
by the TPM has very limited size: although it is sufficient to store the integrity
measurement of a single operating system, it cannot store the integrity measurement
of tens of operating systems coming from tens of virtual machines.

The aforementioned problem is the obstacle to use remote attestation in a
hypervisor-based virtualisation environment. Previous works addressed this issue
either by introducing a software entity to simulate the TPM functionality [39, 40],
which however cannot provide the same strong guarantees provided by an hardware
trust anchor, or by modifying the hypervisor to monitor the internal behaviour of
the VMs [41, 42], which brings additional performance loss and still misses the direct
link to the hardware anchor (more details in Chapter 5).

So, remote attestation for hypervisor-based virtualised environments is still dif-
ficult, incomplete, and with bad performance.

2.5.2 Operating-System-Level Virtualisation

Virtual containers represent an operating system level virtualisation technique, some-
times called paenevirtualisation [43] or container virtualisation, where the kernel of
an operating system allows for multiple isolated user-space instances.

Same as hypervisor-based virtualisation, operating-system-level virtualisation is
used in virtual hosting environments, where it is useful for securely allocating finite
hardware resources amongst a large number of mutually-distrusting users. It can
also be used for consolidating server hardware by moving services on separate hosts
into containers on one server.

Operating-system-level virtualisation usually imposes little to no overhead, be-
cause programs in virtual partitions use the normal system call interface of the
kernel and do not need to be subjected to emulation or be run in an intermediate
virtual machine, which removes the overhead introduced by the hypervisor. This
feature makes them smaller, agiler and faster to be launched than hypervisor-based
virtual machines, taking just seconds to be launched and stopped, while start/stop
operations of VMs usually take tens of seconds [44].

Moreover, some container virtualisation implementations (e.g., Docker [36]) pro-
vide file-level copy-on-write (CoW) mechanisms. More commonly, a standard file
system is shared between partitions, and those partitions that change the files au-
tomatically create their own copies, coordinated by a storage driver. This is easier
to back up, more space-efficient and simpler to cache.

However, operating-system-level virtualisation is not as flexible as other virtual-
isation approaches since it cannot host a guest operating system different from the

21

2 — Background of Trusted Computing

host one, or a different guest kernel. For example, with Linux, different distributions
are fine, but other operating systems such as Windows cannot be hosted.

Since operating system level virtualisation technology is popular just recently,
there is little work addressing remote attestation of virtual containers. As described
in Chapter 1, in this thesis, we are going to address this limitation and propose
our solution to attest the internal of virtual containers based on hardware-based
integrity evidence.

22

Chapter 3

Remote Attestation Framework

Distributed systems nowadays are widely deployed. Their components are located on
computer networks, and they communicate and coordinate their actions by passing
messages, in order to achieve a common goal. Since the number of involved entities
and how they interact are dynamic, the structure of these systems is more flexible.
The flexibility allows for much improved extensibility and availability, providing
theoretically unlimited computing power and storage. However, these benefits come
with a cost, since security is negatively affected by this new scenario, user data and
applications are no longer processed and executed on physical platforms directly
owned and managed by end users, but on machines seated remotely.

As a real life example, in March 2008, an attack was announced against Han-
naford Brothers, a large American grocery store chain. Even though Hannaford’s
payment systems were designed not to store customer payment details and to ad-
here to compliance standards of the credit card companies, changes to their service
software led to large disclosures. The attacker succeeded in loading unauthorised
code to retain the credit card information for each transaction occurring at a store
and periodically transmitting the information to a third party. As a consequence,
over 4.2 million credit and debit cards were compromised and at least two thousand
fraudulent transactions have been identified as results [45].

Thus, for the secure provision of digital services over the Internet, endpoint
integrity is vital. To avoid such issues, evidence of distributed system endpoint
integrity has to be provided in a secure and reliable manner, to enable peers to
evaluate each other’s “trustworthiness”.

In this Chapter, we propose a remote attestation framework, which is fully com-
pliant with TCG specifications. The details of the implementation and performance
evaluation are presented in Chapter 6. This framework attests not only the integrity
state of the boot phase of remote platforms, but also the integrity state of services
running in them. We also propose intermediate integrity level by identifying if the
software running in attester are up-to-date or have known security and functional
bugs. Attestation requests are issued periodically in this framework such that com-
promission can be discovered in a timely fashion and the whole life cycle of remote
platforms and services is monitored.

23

3 — Remote Attestation Framework

3.1 State of the Art and The Way Forward

Since the beginning of trusted computing, remote attestation has been an important
and uttermost useful feature. In this section, we first list the current available remote
attestation work from both theoretical and practical points of view. Then we discuss
their limitations and show the improvements of our framework against the previous
ones.

As described in Chapter 2, configuration-based attestation is simple from the
deployment point of view and is the de-facto standard used in real-world applica-
tions. However, it is a management nightmare, since the attestation results depend
on the order of the measured components that are extended into PCRs, thus mak-
ing configuration-based attestation impossible to cover runtime software modules.
Moreover, every time a component is updated, the golden PCR values need to be
changed too. In addition, showing the PCR values to external entities means ex-
posing the platform’s configurations, which may be advantageous for attackers.

In literature, researchers proposed various methods to tackle these issues, e.g.,
introducing additional components specifically to maintain PCR values regarding
to component updates, or extending other information instead of digests of loaded
components. These solutions can be generalised as different representations of the
system based on its security property or its model behaviour.

Property-based Attestation

Property-based Attestation, proposed by Sadeghi et al. [46] and later generalised by
Poritz [47], attests if a platform possesses certain security properties instead of raw
configurations. These two solutions encourage practitioners to take a closer look
at what property a platform fulfils instead of its configuration. In these solutions,
properties are defined as a quantity which describes an aspect of the behaviour
regarding to certain security requirements, e.g., a platform has confidentiality if in
its configuration no information leakage is possible.

The major difficulty in these solutions is to map software and hardware con-
figurations to the security property, i.e. to generate a Property Profiles. Though
difficult, yet possible, the authors of [46] suggested to use proof-carrying code [48, 49]
to determine a set of specific properties provided by a set of specific configurations.
If a Trusted Thrid Party (TTP) is involved, the TTP can transform platform con-
figurations to properties and vice versa, either with property certificates (certify
the correctness of the underlying configurations to certain property) or with secu-
rity property language (produce security statements) [50, 51]. Then a platform or
an application claiming certain property can download the appropriate certificate
from the TTP after proving its configurations, e.g., via conventional configuration-
based remote attestation mechanism or off-line human inspection. Afterwards, the
property certificate should be extended into a PCR slot which binds the property
certificate to this platform. Then, when the platform receives a remote attestation
request, it shows to the challenger that it has a valid property certificate and the

24

3 — Remote Attestation Framework

digest of the certificate is present in its PCR without disclosing any other sensitive
information. Moreover, platform component updates do not require new property
certificate, and the attestation result only depends on the corresponding property
certificate and if the digest of the certificate is in its PCR.

Implementation of property-based attestation is a hard task. It should be acti-
vated in an early phase when a platform is booted, so that the property certificate
can cover as many components as possible in the platform.

Under this concern, Kithn et al. [52] and Korthaus et al. [53] tried to enhance
the boot loader to support both property-based attestation and sealing with existing
TCG-enabled hardware and software. A Property Certificate Authority (Property
CA) is introduced to issue property certificates in an extended X509v3 format. The
enhanced boot loader is in charge of translating the measures of the components
loaded in the boot phase (e.g., operating system kernel) into properties with the
help of property certificates, and extending the digest of these certificates instead
of the components into designated PCRs. Thus it allows property-based attestation
and sealing of unmodified operating systems. Moreover, applications running on top
of this operating system can use existing tools (e.g., TCG Trusted Software Stack,
TrouSerS [54]) to seal data into TPM based on property defined in the property
certificate, i.e. whether the digest of the property certificate present in physical
PCR is correct or not. Still, this solution relies on binary measures to identify the
components loaded before the enhanced boot loader.

Property-based attestation preserves attester’s privacy by preventing the leakage
of any information not pertinent to the relevant security issue. It can simplify the
management efforts regarding to component updates. However, the most challeng-
ing task is to determine meaningful properties and map them to specific platform
configurations. By considering the origin of this problem, a formal definition of prop-
erty is still missing. More importantly, the platform is still considered as a whole,
thus making it impossible to differentiate with runtime services, e.g., it may happen
that the deployed service is compromised due to runtime attacks but the underly-
ing platform is intact, and the verifier does not know which part of the platform is
compromised.

Model-based Behavioural Attestation

An alternative solution was proposed by Li et al. [55] and later generalised by Alam
et al. [56], which is called Model-based Behavioural Attestation. In this approach,
the system behaviour is generally defined as quad-tuples with a set of subjects, a set
of executable programs, a set of behaviour relevant inputs and a set of behaviour
outputs.

After the trusted computing base of a platform is measured with a conventional
configuration-based attestation mechanism, an additional component is introduced
to collect system behaviour measures or monitor the attester’s behaviour (e.g., as
part of Linux Security Module [57]) and extend these measures into PCRs to prove

25

3 — Remote Attestation Framework

o —— -

] 1 7’ .o N

! attester | / verifier \
1

L} = | 1

: OS record behaviour :: NONCE : report - :

! » report ' 1| integrity N-d. / !

1 : module : system behaviour logs 1 check policy 1

! system behavpur . + ! database !

11| measure/monitor | {PCRO,PCRL,..,PCR23} T .

1] 1

module sign h + y 1

| ! Sig{AIK,{NONCE+PCRs}} ; [model model]!

: 1 : recreate =+ verify :
1

! extend 11 \ module module K

! II \\ //

Figure 3.1. General architecture of model-based behavioural attestation.

their integrity. Thus when a remote attestation request is received, a report module
(e.g., as part of operating system) prepares a report with enough information to
model the system behaviour, e.g., system measures and the quote data from the
TPM to ensure the integrity of the measures. Then the verifier first checks the
report’s integrity and generates the system behaviour model. Subsequently, the
model is confronted against a policy to decide if the attester’s behaviour is legitimate
or not (Figure 3.1).

Under the assumption that a secure kernel enforces process separation, Gu et
al. proposed a solution modelling a specific program [58]. It uses static analysis
to create a System Dependence Graph (represents the data dependences and the
control dependences among procedures of a program) and a Program Dependence
Graph (represents the language level dependences of a program), that are used as
a benchmark for attestation. On the attester side, an attestation agent is running
in the kernel space using the kernel services such as process management and file
system management to monitor the execution of the program of interest. Every
operation performed by the program, e.g., file access operation, socket operation,
other program invocation or inter-process communication are recorded and extended
into a free PCR. In the end, the recorded operations and quote data from TPM are
sent back to the verifier for evaluation.

Usage CONtrol (UCON) model [59, 60] is a popular choice in model-base be-
havioural attestation. It specifies the boundaries in which the attester is allowed
to use some object and associates the attesting platform’s trustworthiness to the
object’s policy, which is sent together with the object. Once the attester becomes
untrusted, revocation of the access privilege to this object is relied on the continuity
of access decision', a feature provided in UCON model.

Nauman et al. [61] also use UCON model, and their approach is more com-
prehensive. An additional component called Behaviour Manager is in charge of

LControl access to the object even if it is outside the direct control of the concerned stakeholder.

26

3 — Remote Attestation Framework

enforcing the UCON policy attached to the received objects. Meanwhile, it records
attribute update logs and access logs of the object and extend the logs into PCRs.
The verifier, after receiving the logs, can re-generate the attester’s policy model and
confront it against the UCON policy with an information flow check algorithm or
directly with the UCON safety check algorithm.

Model-based behavioural attestation can provide very rich semantic information,
which can help tracing the system behaviour modification, and verification of access
control and usage control models. On the one hand, it helps identifying the “attack”
point, hence to employ more explicit countermeasures. On the other, it could bring
significant overhead of, not only evaluation process in the verifier, but also data
collecting process in the attester, which makes it a less feasible choice in real-world
cases.

As a conclusion, property-based attestation and model-based behavioural attes-
tation are still in early stage. They are very difficult to be adopted directly in main-
stream products. For instance, the behaviour specification and security property
definition are not automatic, human intervention (e.g., an extensive analysis of the
attester) is mandatory. Moreover, each system needs its own behaviour specification
and configuration to fulfil certain security property, combined with the aforemen-
tioned issue, it will require a huge amount of efforts from system administrators.

Binary-based Attestation

Another approach to enhance the flexibility of configuration-based attestation with-
out the complexity of property-based and model-based behavioural attestation is
called binary-based attestation. It is a simplified variant of model-based behavioural
attestation, with the main target to include runtime services at application layer
when a computing platform is attested.

Binary-based attestation proposes to infer the behaviour of runtime service by
identifying its executables and configurations through their digests. It uses the TPM
as a trusted anchor, which implicitly proves the integrity of the measurement list
which contains the executable and configuration digests. Thus, the main analysis
target changes from the PCR values to the measurement list (Figure 3.2).

Compared to property-based and model-based behaviour attestation, binary-
based attestation is easier to adopt because its scope is definite and narrower. The
most influential work to measure static data (sometimes called structural data) in
Linux kernel is called Integrity Measurement Architecture (IMA) [62]. Since 2009,
this work has already been mainstreamed into Linux kernel. It has been used in
several large scale trusted computing relevant projects, such as OpenTC [63] and
SECURED [64].

In short, using Linuz Security Module (LSM) [57] hooks (e.g., fileemmap), IMA
measures static data when they are loaded into kernel memory and prior to be
executed, and extends the measures into the TPM (Figure 3.3). Thus no file can
hide the fact that it is loaded. With regards to binary-based attestation of software

27

3 — Remote Attestation Framework

—— o ——— -

(, =

! attester J/ verifier K
| . ! |
1 i 1
! 0S record inary ! NONCE : . report - !
: —— report 1| integrity N’ :
X binary module [, measurement list | check - - '
: measure + | % reference:
1 module {PCRO,PCR1,..., PCR23} : ¥ o| database
T ' + ! binary |
: S|g{AIK,{NONCE+PCRS}}I measure :
| extend ‘\ search /
1 \\ //
N e e o o o o e e —— ~ -

Figure 3.2. General architecture of binary-based attestation.

IMA measure

IMA log file 00000000...00000000
| IMA measure I > hash
| IMA measure I
| PCR10 |
| IMA measure I
| | hash
|

| PCR10 |

»
P oo

| PCR10 |

Figure 3.3. IMA measure extend operations.

services, IMA provides a viable approach for collecting binary digests of software
services.

Based on its policy, IMA starts measuring static data upon various system events,
e.g., binary execution, file access, kernel module/library loading. Thus, the LSM
hooks may be frequently triggered when a great amount of files needs to be measured
(e.g., a featured service such as Apache web service is started), hence degrades the
performance. As a countermeasure, a cache is created in IMA to store the previous
measurement operations, thus IMA only (re-)measure a file if the measurement
operation of this file is not in the cache or an attribute of the file is changed, to
reduce the occurrences of measurement.

When a file is measured and inserted into the measurement list, a PCR (default
10) accumulates the digest of the new measurement entry in the measurement list.

28

3 — Remote Attestation Framework

In this way, the measurement list can be implicitly authenticated by the TPM. This
architecture is the first practical work to extend the TCG integrity measurement
concept from the physical layer all the way up to the static data in the application
layer in an operating system, which is a big step forward to reallocate TC technology
from labs into real-world applications.

On the other hand, IMA can also appraise files based on their signatures stored
in their extended attributes (xattrs). For instance, if the signature of an executable
comes from an invalid key or the signature verification fails, e.g., the certificate of
the key is not present in kernel’s keyring, IMA prevents the executable to run, but
the digest of the executable and its signature are still recorded in IMA measurement
list. In [65], the authors combined the local appraisal feature of IMA with remote
attestation, where the concatenation of file digest and its signature are extended
into PCR10 in order to ensure their integrity. Further these data are sent to the
verifier in order to show that only the executables with valid signature have been
run in the platform.

However, IMA is not capable of dealing with unstructured /dynamic data, such
as temporal program input/output or inter process communication. This drawback
mainly brings three problems. First, the load-time measurement of executable code
and static configuration files alone cannot accurately reflect runtime behaviour of
the service. For example, a service can be compromised if a malicious input triggers
a vulnerability, or a stateful program can be compromised if the dynamic state is
not handled in a manner that preserves its high integrity (e.g., modified by other
process). Second, all measured data (the digests of all acceptable scripts, executables
and system configurations) need to be known by challenging party even if some
measured components are not relevant to the service of interests. Third, the solution
reveals sensitive information (e.g., what software is running in the attester), it may
be misused for platform discrimination, that an attacker can use the data in remote
attestation to launch remote attacks or limit user’s choice of used software services.

Controlling unstructured data integrity has been studied for a long time but
there is no optimal solution. The approaches to deal with this issue can be mainly
categorised in two ways.

The solutions in the first category adopt a Mandatory Access Control (MAC)
tool to ensure information flow integrity, e.g., PRIMA in [66] and Dynamic Remote
Attestation Framework and Tactics (Dr@ft) in [67]. However, these solutions do
not consider how an application internally handles its input, as a software may mis-
use assigned privileges if it operates on information at different security levels [68].
Decentralised Information Flow Control (DIFC) addresses the above problem by
allowing developers to specify flexible policies, but it requires modifications to the
applications or even the operating system [69]. In summary, when a platform is
attested, not only the measures of data, but also the measure of the MAC policy
need be provided to the challenging party in an authentic manner, in order to assess
whether the policy enforcing the information flows is trusted. Thus, the solutions in
this category are very difficult to be deployed and generalised, since every platform
needs its own custom MAC policy.

29

3 — Remote Attestation Framework

The second category comprises solutions inferring runtime integrity of the targets
by directly collecting measures of dynamic data. In particular, some solutions aim at
evaluating the dynamic state of the Linux kernel, like LKIM [70] (further improved
in [71] by employing a Copy-on-Write mechanism), and SBCFI [72]. Among the
solutions at application level, we mention ReDAS [73], an architecture to attest two
dynamic properties of applications (structural integrity and global data integrity)
and Dynamic Integrity Measurement Architecture (DynIMA) [74], which detects
return-oriented programming attacks with a new software module, called Process
Integrity Manager (PIM). In order to take advantage of the easiness of deploying
IMA, authors in [75] proposed another extended version of IMA called Enhanced
IMA, which records all interactions occurring between different processes through
regular files. Hence not only static data, but also a specific set of dynamic ones can
be measured. However, it is inevitable that the solutions in this category introduce
additional performance loss because of the newly added functionalities. Moreover,
in some cases system kernel or the application of interests need to be modified
to support the measurement of dynamic data feature, e.g., add hooks to function
output and extend it into PCRs.

Implementation Perspective

From the practical perspective, remote attestation technique requires support from
various components, from the hardware layer to the application layer. In each layer,
different implementations are available.

In the hardware layer, besides hardware discrete TPM chip, software-based emu-
lation of the hardware TPM is also popular, e.g., swTPM2.0 [76], TPM-emulator [77,
78] and firmware TPM [79, 80]. They provide almost the same functions as the
hardware TPM but have much worse security guarantee since they are still prone
to software attacks.

Trusted boot can measure the integrity of the platform’s boot phase, which forms
a trusted computing base, where the operating system and the services are running
in a platform with a known initial state. Moreover, this initial state can be used for
sealing and full hard disk encryption systems, such as Microsoft BitLocker Drive En-
cryption [81]. Trusted boot is the most popular trusted computing feature nowadays
with multiple implementations available, e.g., GRUB-IMA [82], TBoot [83|, Trust-
edGrub2 [84], Intel’s Trusted Execution Technology [26] and so on. They provide
almost the same functionalities, with the differences come only from the implemen-
tation perspective. These tools can prevent Bootkit attacks, such that the boot
component code (e.g., Master Boot Record, Volume Boot Record or boot sector) is
infected to compromise full disk encryption systems. An example is the Fvil Maid
Attack, in which an attacker installs a bootkit on an unattended computer, replac-
ing the legitimate boot loader with one under their control [85]. However, trusted
boot implementations can be directly used to prove the boot phase integrity of the
platform to itself, but it cannot inform any remote party of its integrity state, thus
a high level framework to convey the integrity evidence is mandatory.

30

3 — Remote Attestation Framework

From the framework point of view, Open Platform Trust Service (OpenPTS) is
a proof-of-concept and experimental implementation of the trusted platform spec-
ification defined by TCG [86]. This framework is developed with the support of
TrouSerS [54], which is intentionally written in C to support many types of target
platform, including servers, PCs and embedded devices. Once the integrity evidence
is prepared, it is sent back to the verifier through a Secure Shell (SSH) channel and
processed there.

Along this vein, OpenAttestation SDK [87] and OpenCIT [88] SDK, both were
initiated by Intel, partially adopted the TCG specifications in order to attest the
boot phase integrity of the nodes running in a cloud. Thus an OpenStack [33]
manager can be informed to deploy virtual instances on machines that has a known
initial state, this is called trusted compute pools.

Trusted Network Connect (TNC) [32] is an open-source architecture proposed
by TCG for network security, and it focuses on solving Network Access Control
(NAC) problems, including network and endpoint visibility, network enforcement
and device remediation. This standard provides a communication foundation for
securing embedded systems such as network equipment, automotive, and IoT solu-
tions. TNC can integrate with a TPM for secure authentication and attestation,
addressing detection and mitigation of bootkits and other compromised software.
To be more specific, during TNC handshake, the TPM of end point sends its PCR
values to Policy Decision Point (PDP), subsequently the PDP compares them to
a whitelist, and if not listed, the end point will be quarantined and remediated.
The Internet Engineering Task Force (IETF) Network Endpoint Assessment (NEA)
working group has published several Request for Comments (RFCs) based on TNC
client-server protocols [89], e.g., RFC 5792 [90] and RFC 6876 [91]. Currently, this
standard has been implemented in strongSwan as part of authentication criteria [92].
Recently, this set of specifications was extended to also cover the trust communica-
tion problem, and its name was changed to Trusted Network Communication.

The aforementioned tools can be used to attest the authenticity of a platform and
whether a legitimate operating system is started in a trusted environment. They can
be used to defend against software-based or remote attacks trying to steal sensitive
data by corrupting the components loaded during the boot phase or modifying
the platform’s configurations. However, this protection is incomplete, because on
the one hand, even the boot phase of a platform is trusted, the platform is still
continuously exposed to remote attacks coming from the network. On the other,
the aforementioned frameworks do not take into account the integrity of services
running on these platforms, i.e. they do not integrate IMA or any other tools to
measure the software services. The services are the front-end towards end users by
providing answers to the user’s inquiry, their integrity is of high relevance to the
trustworthiness of the whole distributed system and the genuineness of the answers
received.

31

3 — Remote Attestation Framework

3.1.1 Contribution

In this work, we propose a remote attestation framework, which provides a cov-
erage of not only the integrity state of the boot phase of a physical platform but
also the load time of software services running in it. Their integrity is continuously
checked against a reference database containing all published legitimate packages
and configuration whitelists. Thus if the platform is compromised by loading un-
known boot components or the service is compromised with unknown configuration
files or executables, the verifier in our framework can detect this fault in a timely
fashion. Moreover, our framework provides simple property identification of whether
the services running in attester have security and functional bugs.

3.2 Requirement Analysis

In this section, we follow the expected properties of remote attestation defined in [93],
and analyse and define the basic requirements from security and functional perspec-
tives.

3.2.1 Security Requirements

Platform boot phase integrity measurement: inherited from the transitive
chain of trust model from TCG, our first step is to identify the root of trust for the
chain and measure the initial state of the attester, which is the platform hosting
the services. We follow the approach of trusted boot, that is a Core Root of Trust
for Measurement (CRTM) is needed as the first component to be activated when
an attesting platform is powered on. Subsequently, the other components loaded
during the boot phase of the attester need to be measured and their measures need
to be extended into designated PCRs by their previous active component.

Service load time integrity measurement: unique identification of loaded ex-
ecutables and configuration files of services is needed, and the measures of these
structural data need to be inserted or appended in the integrity evidence signed by
hardware-based identity key and evaluated by the verifier.

Evidence integrity and authenticity: the integrity evidence needs to be au-
thenticated by a hardware-based identity, thus the evidence is bound to a physical
platform and cannot be forged or modified. Additionally, the evidence should con-
tain random temporal data to prove its freshness.

32

3 — Remote Attestation Framework

3.2.2 Functional Requirements

Fast deployment: the alteration to existing software and hardware environment
should be minimal (if any) and additional concept introduced should make use of
and adhere to existing specifications.

Minimal additional cost to management and original system: the intro-
duced management overhead and performance loss to the original system should be
minimal. Meanwhile, the constraints to the used software and operating systems
should be minor.

Rich semantic information for integrity evidence: the remote attestation
process should not be limited to a Boolean result (i.e. trusted and untrusted), but
should provide a more informative result which allows decisions to be derived from
several claims, e.g., property that the attester provides.

Backward compatibility: the remote attestation feature should generate no con-
straint for the original distributed system and its service. Moreover the original
system should preserve its behaviour after the remote attestation feature is deacti-
vated.

3.2.3 Possible Attacks

As no solution solves all problems, in this section we present the expected threats
from attackers. The attacker may be a malicious third party, a system user or even
the administration of the platform where the distributed system is running.

He may perform bootkit attack that replaces components loaded in the boot
phase of a platform to corrupt ones, e.g., replace the authentic kernel to a cracked
one. Or, after the system is running, the attacker may modify service’s behaviour
by loading customised service binaries (e.g., to store received data) or configuration
file to his favour (e.g., lower the security of the distributed system by using obsolete
cryptographic algorithms), or he can even perform attacks in the platform by launch-
ing scripts (e.g., to occupy the platform’s resources by doing heavy computation or
to inject malicious code to files).

Afterwards, the attacker may change the integrity evidence stored inside the
platform operating system, e.g., removing or modifying the record belonging to the
script he launched, but he cannot change the data already stored inside the hardware
root of trust.

The adversary can also forward a remote attestation request to another genuine
party to get a valid attestation result. Similarly, he can record the remote attes-
tation response message transmitted between attester and verifier, and resend the
attestation response after he compromises the attester.

33

3 — Remote Attestation Framework

ATTESTER 01
VERIFIER
IMA
meaSlIJ.rement RA agent > Privacy CA ;"’
ist RA :
agent 4‘
API X
R Appraiser

ATTESTER 02

Signature
IMA check

measurement
list

IMA
measure

RA agent
PCR

whitelist

Figure 3.4. Overall remote attestation framework architecture.

For the sake of completeness, we need to mention that there is still one possible
attack. Inherited from the attack model of TCG specifications, our design does not
consider sophisticated invasive or non-invasive hardware attacks on any platform
involved in distributed system.

3.3 General Architecture

Our solution aims to provide a complete solution of attesting the integrity state
of boot phase of physical platforms and load time of software services running in
distributed systems. In order to fulfil the requirements defined in Section 3.2, the
verifier in our framework is placed in a node running as a third party.

This design is mainly for three reasons, (i), attestation of a platform with the
services running in it is a computing intensive work, hence using a third party node
can help offloading the workload from the attester or any other nodes in the system;
(i), a single point of management can significantly reduce the workload to monitor
the whole system and the management point can also be in charge of certifying the
AIK involved, which further simplifies the framework architecture; (7ii), detaching
remote attestation from the system enable backward compatibility, since the remote
attestation feature will be used as an additional insurance for system integrity. Thus,
the overall architecture of our framework is illustrated in Figure 3.4.

3.3.1 Attesting Platform

The attesting platform, or attester, in our design would host the services of the
distributed system. They should be attested in order to check their integrity state

34

3 — Remote Attestation Framework

and that of the services running in their application layer.

Each attester needs a TPM working as a hardware root of trust. To measure
structural data of the services when they are loaded, each attester needs to acti-
vate the IMA module in its operating system kernel. Further, IMA will insert the
measures into its measurement list and extend the digest of measurement entry
into a pre-defined PCR (PCR10 by default), in order to ensure that no field in the
measurement entry can be changed without being detected.

A remote attestation agent is running in the attester, which is in charge of
interacting with the verifier and preparing integrity reports sent to the verifier for
evaluation. For simplicity, the remote attestation agent should be prepared by the
verifier for all its attesters, thus it can be downloaded and installed at the registration
phase of the attester.

3.3.2 Integrity Verifier

The integrity verifier in our framework is hosted in a third party node, it is in charge
of checking the integrity state of all attesters registered with it. From the functional
point of view, the verifier has two roles, and in the following section we will separate
it as two components, i.e. PrivacyCA and Appraiser.

The PrivacyCA is the CA certifying the registered AIK of each attester, and its
purpose is to allow the appraiser to identify the generator of the received integrity
evidence. Although there are privacy preserving attestation algorithms available
to hide the platform identity during the remote attestation process (e.g., Direct
Anonymous Attestation [28] and its variant schemes [94, 95]), in our scenario, we
do not consider the privacy issue of attesters. Because the attestation paradigm
has been changed, the targets are servers instead of user terminals. As a matter of
fact, we prefer the server’s identity to be revealed to the end users, so they can have
knowledge of the server he is interacting with using hardware-based identity. In this
sense, the term “PrivacyCA” is a legacy one: it was used when attesting personal
devices to protect the user privacy (as the user could register many different ATKs).
In order to be consistent to the terminology of the TCG specifications and previous
remote attestation work, we still use PrivacyCA in the rest of the thesis, although it
acts as a normal CA which helps the appraiser to identify the generator of integrity
evidence.

The appraiser is the core component in the verifier, and its job is to evaluate
the integrity evidence provided by each attester in various ways. First of all, it
needs to check the authenticity and integrity of the evidence, in order to check if
the evidence has been compromised. Then it needs to check the boot phase of the
attester in order to see if the attester has been booted in a trusted state. This
step is mandatory because the chain of trust is needed from the hardware root of
trust, and by evaluating the boot phase of an attester we can understand if the
attester loaded all known components with known configurations, and a trusted
computing base is created (i.e. all components loaded until this state are trusted).

35

3 — Remote Attestation Framework

Moreover, since the services running in the attesters are directly interacting with
end users, their integrity is also critical. In our design, the appraiser also needs to
provide evaluation of the integrity state of software service in the application layer.
Software components are compiled into binaries and then the binaries and their
associated configuration files are loaded into operating system kernel memory when
the service is activated. Thus, the integrity of the loaded binaries and configuration
files can partially guarantee the expected behaviour of the activated services. For
this reason, the appraiser also needs to evaluate the binaries and the configuration
files loaded into the kernel memory, i.e. the IMA measures of the attester.

Framework Components

To be more specific, the required components in our framework are the following:

e TPM, the core of our solution, which is the hardware root of trust;

e RA agent, which is in charge of generating integrity evidence and interacting
with the verifier;

e /MA, which is mandatory to measure structural data (i.e. files) when they are
loaded into memory;

e (Privacy) CA provisions and certifies attesting platform’s AIK, which is re-
quired to identify the generator of the integrity evidence;

e Appraiser is the orchestrator of the overall attestation process and it is the
one that actually evaluates the integrity evidence from each attester and gives
result;

o WhiteList table is a collection of trusted PCR values, it can be derived from
a clean setup state;

o IMA measure reference database is a collection of trusted IMA measures, it

can be derived from a clean setup state or from packages released from their
official repositories.

3.4 Remote Attestation Workflow

In this section, we present the overall workflow of our remote attestation framework.
Mainly it is composed of two phases, registration phase and remote attestation phase.

36

3 — Remote Attestation Framework

Attesting Platform Verifier
TP Attesting Host PrivacyCA Appraiser
Y v

1. create PrivacyCA.cert & PrivacyCA.pri
2. register PrivacyCA.cert to Appraiser

3. retrieve RA agent installation package w/ PrivacyCA.cert

Y VY

S RREEEEEEEE

4.take TPM ownership
5. get EK.pub 6. send EK.pub encrypted
w/ PrivacyCA.cert e
i ! 7. generate EK.cert from EK.pub signed
Ly 8. send back EK.cert ' w/ PrivacyCA.pri
9. write EK.cert into NVRAM H

10. get EK.cert & new AlK.pub

11. send HostID w/ EK.cert &
AlK.pub encrypted w/ PrivacyCA.cert

\ 4

12. decrypt to get get EK.cert & AlK.pub
13. verify EK.cert

! ! 14. generate AlK.cert w/ PrivacyCA.pri
16. send back encrypted AlK.cert i | 16. send back encrypted AlK.cert ' 15. encrypt AlK.cert w/ EK.cert

SRV N N
A

17. get decrypted AlK.cert

. A

18. send registration request w/ AlK.cert & HostID

A :

>

19. save AlK.cert & '
HostID into database ,

Figure 3.5. Registration phase for PrivacyCA and the first attesting platform.

3.4.1 Registration Phase

In registration phase, the involved components are TPM and RA agent running
in attesting host installed in the attesting platform and PrivacyCA and appraiser
installed in the verifier (Figure 3.5).

Each component has its own task during the registration process, and the purpose
of this phase is for the appraiser to record the AIK certificate of a TPM, thus it is
associated to a specific device to sign the integrity evidence, i.e. the PCR values.

This AIK certificate should be issued from a trusted PrivacyCA with the Pri-
vacyCA’s certificate known by the appraiser (i.e. steps 1-2). Since each TPM may
have multiple AIKs but only one EK, thus the AIK must be endorsed by an EK
and the AIK certificate can only be issued after the EK is proved to be genuine
(i.e. steps 5-14). After the AIK certificate is created, it will be sent back to the
TPM encrypted by the public part of its EK, ensuring that only the TPM with this
EK can use this specific AIK and AIK certificate, and later the AIK certificate is
registered to the appraiser (i.e. steps 15-19).

Step 1 and step 2 are only needed when the verifier is initiated, and the other
steps are required for each attester in order to put its AIK certificate into the

37

3 — Remote Attestation Framework

appraiser’s database.

Afterwards, the nodes should also register their trusted state (with trusted boot)
in order for the appraiser to have golden PCR values stored in its whitelist database
for further usage. Since the same software may have different binaries in different
Linux distributions, e.g., the source code is compiled with different flags, the at-
tester also needs to tell the appraiser which Linux distribution it is using. Later in
the remote attestation phase, the appraiser can evaluate the trustworthiness of the
attester using this parameter.

3.4.2 Remote Attestation Phase

The abstract level of the interactions in remote attestation is illustrated in Figure 3.6,
while more detailed information is illustrated in Figure 3.7.

From Figure 3.6 we can see there are six steps to be completed in order to vet an
attester. First, the verifier asks the remote attestation agent to send the integrity
evidence of the attester (step 1). Once the request is received, the RA agent issues
a quote operation to the TPM for getting the PCR values and a signature of them
(step 2), and uses the result plus the recorded IMA measures (step 3) to create an
integrity report.

When an integrity report is received by the verifier (step 4), it first checks the
digital signature of the report with the public part of the registered AIK. Then it
compares the received PCR values that contain the digests of the components loaded
in the boot phase to a whitelist database in order to check that the boot phase of the
attester is trusted (step 5). Afterwards, the verifier distils the IMA measures from
the integrity report, and recomputes the final value following the extend operations
illustrated in Figure 3.3. If the final value equals the PCR value in the received
integrity report, this proves the IMA measurement list is intact. Finally, the verifier
queries the IMA measures to a well-formed database containing the digests of the
binaries found in the released packages from the official repositories with whitelisted
custom configurations (step 6). In the case that the received PCR value does not
match the whitelist or there is an unknown measure, the verifier can alert the system
administrator that a certain node is not booted in a trusted state or certain service
in the application layer is compromised.

Figure 3.7 is more informative, and it also shows how the freshness of the integrity
report is assured with a nonce sent by the appraiser (step 1) and when it retrieves
the AIK certificate registered by the attester based on its host ID and verify the
quote signature (steps 5-6). Most importantly, it shows the step to check the IMA
measurement list is intact (step 8).

3.5 Details of the Framework

In this section, we provide the details of our framework, showing the exact way how
it works. In particular, we show how to enable attestation of the integrity of software

38

3 — Remote Attestation Framework

I / - gu
: attester } i verifier |
1 H H
1 ~N 1 ' H
: IMA RA | @ i signature |!
] ! H
1| measurement agent . ‘ and PCR |
: list) @ ' verification |:
. : | |
! &) ! i
1 ' '
! 1 ' @ measures ||
1 TPM 1 verification) !
\ \ /

Figure 3.6. Remote attestation process.

Attesting Platform

TPM RA agent Appraiser
> > ®
! L 1. send random nonce and requested PCRs H
| < '
E{ 2. send QUOTE request E E
E 3. get QUOTE output E .
: » :
' ' 4. send HostID & QUOTE output o
: ; >
, , 5. retrieve AlK.cert and distr based on HostID E
E E 6. verify QUOTE signature w/ AlK.cert !
! ! 7. compare PCR values to whitelist for trusted boot !
! ! 8. recompute PCR 10 value w/ received IMA measures H
' ' 9. query IMA measures to reference database based on distr A

Figure 3.7. Diagram of remote attestation process.

services running in system application layer and how to create a reference database
for multiple Linux distributions. In the end, since extended integrity reports will
bring significant additional performance overhead, we also show the methods to
minimise this overhead in both the attester and the verifier.

3.5.1 Trusted Boot

Trusted boot is used to ensure the attester is booted into a trusted state by loading
known components (i.e. BIOS, boot loader, kernel and its modules) in the boot
phase. This feature is meant to show a trusted computing base of the attester is
available by storing digests of the components loaded in the boot phase into different
PCRs. The following describes an example usage of PCRs during a trusted boot
phase:

39

3 — Remote Attestation Framework

e PCRs 00-03: for use by the CRTM (e.g., initial EEPROM or PC BIOS);
e PCRs 04-07: for use by the boot loader stages;

e PCRs 08-15: for use by the booted base system (e.g., compartmentalisation
system, hypervisor).

As shown in Chapter 2, the PCR values are fixed if and only if the same compo-
nents are loaded in a fixed order. Thus, when the verifier receives a set of authentic
PCR values, it can conclude that the attesting platform is booted with trusted com-
ponents and its operating system is running in a trusted state, i.e., until this point,
the attesting platform complies with its expected behaviour.

3.5.2 Service Load-time Integrity Measurement

TCG does not provide any implementation detail or constraint about how integrity
measures are obtained. In our framework, the Linux Integrity Measurement Archi-
tecture (IMA) [62] is chosen for the purpose to measure the software service load
time integrity because, on one hand, it does not require any modification to the
Linux operating system (it is already integrated into the Linux kernel from version
2.6.30), on the other hand, it is one of the most accepted TCG-compliant solutions?.
IMA is the state of the art static measurement mechanism. It is the first practi-
cal work to extend the TCG’s trust measurement concepts to dynamic executable
content from the BIOS all the way up to the application layer, which makes the
remote attestation technique much more feasible in commodity platforms. It is an
important step to introduce a TC-compliant system into a real-world scenario.

Once activated, IMA starts measuring the loaded files according to the crite-
ria specified in its policy. System administrator can define the policy by writing
all its statements into the special file policy in the securityfs file system (typi-
cally mounted at /sys/kernel/security/ directory). Each static data is measured
when it is loaded into the kernel memory, and immediately the digest of the mea-
surement entry is extended into a PCR (default PCR10) to guarantee that the
obtained measure cannot be tampered by any other component. Moreover, the list
of measured files (with their digests) is visible any time through another special file
ascii_runtime measurements (Figure 3.8) from the same file system, encoded as
ASCII text, or in binary form through the file binary runtime measurements.

The following information is provided in Figure 3.8: the template used is ima,
which only has four attributes, i.e. PCR#, template-hash, filedata-hash and filename-
hint. The PCR# indicates which slot is used for extend operation, i.e. PCRI10.
Filename-hint contains the measured file’s name and its location. Filedata-hash is
the SHAT digest of the content of these files, and template-hash is the SHA1 digest

21137 citations in published papers by 1st Jan., 2017.

40

3 — Remote Attestation Framework

PCR# template-hash template filedata-hash filename-hint
10 4ad08...af759 ima 2517d...87ecc /usr/bin/tail
10 48327...9fed4 ima 9eed6...644ed /usr/bin/ssh

Figure 3.8. Example of IMA measures in ASCII format log file.

of the other values concatenated (i.e. the digest of the measurement entry), in or-
der to assure their integrity. Both filedata-hash and template-hash are encoded in
hexdecimal.

In the case that the device is equipped with a TPM chip, an aggregation of the
template-hash values are stored in one of the available registers, normally PCR10,
instead of filedata-hash values, because the correctness of the template-hash value
can imply the correctness of all other values in a measurement entry. The PCR value
will be signed by the TPM with its AIK once a quote request is issued, and in this
case the integrity of all the values in the measurement list can be cryptographically
verified with the hardware-based AIK. A challenging party is able to simulate the
extend operation, by hashing the concatenation of each template-hash value and the
previous hashed value (Figure 3.3). If the result matches the authenticated value in
PCRI10, then the IMA measurement list has not been tampered.

3.5.3 Integrity Report

In order to attest the software integrity in the application layer, the IMA measures
of loaded binaries and configuration files need to be put in integrity reports. In
our framework, we follow the semantics proposed in the TCG Infrastructure Work
Group Integrity Report Schema specification [31].

The integrity report is composed of two parts: (i), QuoteData, which contains
the information required to ensure the integrity of the PCR wvalues, such as the
nonce, selected PCRs, and the signature of the PCR values generated with the AIK
(Figure 3.9); (i) IMA measures, which contains all the measures recorded by IMA
after the platform is booted (Figure 3.10).

QuoteData follows an XML structure, which contains the following information:

e the PcrComposite is used to aggregate multiple PCR values in a single struc-
ture and represents the TPM TPM_PCR_COMPOSITE structure from a call
to TPM quote;

— PcrSelection - identifies which PCRs are quoted:

x SizeOfSelect - the size in bytes of the PcrSelect structure;

* PcrSelect - PerSelect is a contiguous bit map that shows which PCRs
are selected. Each byte represents 8 PCRs. Byte 0 indicates PCRs

0-7, byte 1 8-15 and byte 2 16-23. For each byte, the individual bits
represent a corresponding PCR;

41

3 — Remote Attestation Framework

<QuoteData ID="_82897509-2D8A-4061-A2D9-DA2975998C70">
<Quote>
<PcrComposite>
<PcrSelection SizeOfSelect="2" PcrSelect="AAQ="/>
<ValueSize>15</ValueSize>
<PcrValue PcrNumber="13">
AQW6avizcmWILOmTpWncin/NrPE=
</PcrValue>
</PcrComposite>
<QuotelInfo VersionMinor="2" Fixed="QUOT"
ExternalData="BqW335izcmWILOmO9Wncin/NrPE="
DigestValue="AqW6avizcmWILOmTpWncin/NrPE="
VersionMajor="1" VersionRevMajor="1" VersionRevMinor="2"/>
</Quote>
<TpmSignature>
<SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>
<SignatureValue>
4Rxc/Nh/i16zYEumYbqhh8h+qTbGWowCKbEJgEH3rraxM1WMPYi3YdKR
/D+2TNhBdPg3U7ydy6WwJ/c6uULq7ywUREGOzjxY4Vxedwxv269VXtX
QNXwzPCwfVEVhbc+wJw6HE4fhX6y4FCx2D6djD9r2geIBRi10IfrU=
</SignatureValue>
</TpmSignature>
</QuoteData>

Figure 3.9. QuoteData example.

— ValueSize - the length in bytes of the array of PcrValue complex types;

— PcrValue - the array of PcrValue structures. Each PcrValue contains a
PCR number attribute to correspond to a PCR identified in PcrSelection;

e the Quotelnfo is the structure created inside the TPM and used in the calcu-
lation of the Quote signature;

— ExternalData - the externally supplied nonce;

— DigestValue - the composite hash value of the PCRs;

e TpmSignature - contains the quote signature value and signature method in-
formation.

The IMA measure is inserted into the XML attribute named SimpleSnapshotO-
bject (Figure 3.10). The XML attribute is a fully TCG-compliant representation of
IMA integrity measures and enables the analysis of service load-time integrity state
in the attesting platform.

The integrity report includes the information from IMA measurement list. Each
<ns4:0bjects> corresponds to one IMA measure, with the PCR number stored
in <ns4:pcrindex>, template-hash stored in <ns4:Hash>, filedata-hash stored in
<ns4:eventdigest> and filename-hint stored in <ns4:eventdata> (also see exam-
ple from Figure 3.8).

42

3 — Remote Attestation Framework

<ns3:SimpleSnapshotObject>

<ns4:0bjects>
<ns4:Hash AlgRef="shal" Id="PCR_10_LV1_O_O_EVENT">
4ad0868e88dc676£f043d3367176b4af7788af759
</ns4:Hash>
<ns4:pcrindex>10</ns4:pcrindex>
<ns4:eventtype>0</ns4:eventtype>
<ns4:eventdata>/usr/bin/tail</ns4:eventdata>
<nsé4:eventdigest>
2517d0a40aaef7ef9092fc8c6086baa749087ecc
</ns4:eventdigest>
</ns4:0bjects>
<ns4:0bjects>
<ns4:Hash AlgRef="shal" Id="PCR_10_LV1_O_O_EVENT">
4832768ae5310aa59663cal7eb280403ef69fed4
</ns4:Hash>
<ns4:pcrindex>10</ns4:pcrindex>
<ns4:eventtype>0</ns4:eventtype>
<ns4:eventdata>/usr/bin/ssh</ns4:eventdata>
<ns4:eventdigest>
9ee465e3ed831£630228206866c0f010ceb6644ed
</ns4:eventdigest>
</ns4:0bjects>

</ns3:SimpleSnapshotObject>

Figure 3.10. Example of IMA measurements in an integrity report.

Partial Integrity Report

The remote attestation performance is limited due to the large size of the integrity
reports: a new complete integrity report must be sent to the verifier and evaluated
at each attestation request, otherwise the obtained attestation result may not reflect

the current state of the attesting platform.

However, some properties of IMA and of the extend operation can be used to

optimise the overall attestation process:

e once a measure has been extended to a PCR, no attacker can reverse the

operation, because of the incremental nature of the extend operation;

each step of the IMA measure validation process relies on the previous value
stored in the used PCR, so this value can be used as a starting point for
verifying subsequent measures (Figure 3.11);

the production of IMA measures does not increase linearly, since a new digest is
computed only if the extended component has never been measured or modified
since last reboot. This implies a high rate of new measures at boot time, and
a very low rate at run time.

The first two points permit the remote attestation agent at each attestation
request not to send all IMA measures, but just those ones that have not already

43

3 — Remote Attestation Framework

Appraiser Partial IR

last valid value of

f le
PCR 10 > hash [

IMA measure |

IMA measure |

result |
IMA measure |
result |
| SR .
| A g g o4
PCR 9 |

[
compare |
|
[

result |'—

Figure 3.11. Partial integrity report verification.

been sent to the verifier. This greatly reduces the integrity report size.Also due to
the third point above, the number of new measures will decrease significantly when
the system is running in a stable phase. Indeed, the number of measures collected
between two attestation requests may be very low when the system is in stable
phase, thus making the integrity report size quite small.

The validation of a partial integrity report (i.e. an integrity report containing
only a subset of IMA measures that have not been sent to the verifier) slightly differs
from the verification of a complete integrity report. As shown in Figure 3.11, the
main difference between the classic IMA validation process and the approach used
with partial integrity report is the starting point for the hashing chain. Indeed, in
the first case, it is a 20 B long sequence of zeros (Figure 3.3), while in the second
case it is the last valid value of PCR10 which is obtained from the last integrity
report received from the same attester.

In order to indicate the improvement of partial integrity reports, we give an
example of a fresh minimal installation of CentOS7 attester, which has 290 IMA
measures when the system is newly booted. With a full integrity report, the size
is around 100 kB, while with a partial integrity report, the size can be reduced to
around 4 kB when there is only one new IMA measure.

Periodic Attestation Requests

Even though with partial integrity reports the performance is improved, the verifier
still needs a magnitude of seconds before providing an attestation result, which is
infeasible in some use cases. For this reason, we introduced the concept of periodic

44

3 — Remote Attestation Framework

attestation, in order to provide users attestation results in a timely fashion, i.e. the
framework user will immediately receive the latest attestation result not older than
a threshold for certain target after he sends a request. The user has the possibility
to submit a periodic remote attestation request, including two extra parameters:

o timeThreshold is the age limit of integrity report used to evaluate the trust-
worthiness of the target attester;

e cxpirationTime indicates the expiration time for the periodic attestation task.

Given these parameters, the verifier takes care of always having a valid attes-
tation result that matches the user’s requirements. It periodically requests a new
integrity report from the attester and performs the requested analysis. Then, the
latest result is available for asynchronous retrieval by calling a proper API.

3.5.4 Analysis Customisation

Once the integrity report is ready, the next step is to define how to analyse it. For
this reason, in our remote attestation framework, we exposed the API for defining
customised analysis tools to the received integrity reports. The administrator should
specify the analysis type (i.e. its name) and the location of the analysis tool (either
on-line or off-line). Thus, when the system administrator issues remote attestation
requests, he needs only to define the analysis type in the request and the criteria
that the integrity report should achieve in order to be trusted.

In the current version of our framework, we envision two analysis types that are
mandatory. First, we need to compare the received PCR values to a whitelist in
order to check the integrity state of the boot phase of the attester, which we call
VALIDATE_PCR. Second, we need to compare the IMA measures to a reference
database, which we call IMA_VERIFY. If the integrity report remains the same
as the previous one (based on the PCR values), there is no need to analyse the
integrity report again, but give the same result as previous one. Under this concern,
we define another analysis type called COMPARE_REPORT, which compares the
received report with the last one from the same attester.

However, no matter which analysis type is used, there are two steps that are
mandatory. The first one is to check the authenticity and integrity of the quote
output in the report with the attester’s registered AIK certificate. The second one
is to check the integrity of the IMA measurement list against the received PCR10
value.

Comparing the received PCR values in the integrity report to the whitelist is
straightforward but it is a management nightmare, because the extend operation is
order sensitive. For this reason we only use VALIDATE_PCR analysis type to verify
the integrity of the boot phase of the attester where each component is loaded in a
specific order and the parameters in each command are easily predefined and less
dynamic, thus the final PCR values are predictable. However, not all PCRs are used

45

3 — Remote Attestation Framework

to store the digests of components loaded in boot phase, thus only a subset of PCR
values are compared to the whitelist.

Verifying the integrity of load-time services is a much more complex task. In
our framework, we adopt our previous solution [96], an IMA measurement analysis
tool which is able to compare the IMA measures to a reference database, in order
to check if the measures are known and the packages they belong are up-to-date.
However, the previous solution has a problem since it lacks a standard method to
transmit the IMA measures from an attester to the verifier and the quote output of
the attester is also not available in the verifier, thus making this solution incomplete
without a remote attestation framework. Hence, not only we integrate it into our
framework to evaluate the IMA measures in the integrity report on the fly, but also
with the remote attestation framework, the integrity of the IMA measurement list
is verified against the received quote output of the attester.

In order to provide better flexibility, based on our previous solution, we extended
the supported Linux distributions. Software packages are compiled from their source
code, with slightly different configurations for different distributions. The compiled
packages are published in various repositories that allow users to download and
install directly, thus allows us to collect all binaries/executables in a convenient
way. This approach makes TCG defined binary attestation possible, which identifies
the running components (and their configuration) through their digests to infer the
platform behaviour.

Measuring key structural data with IMA

IMA is able to measure structural data when it is loaded into kernel memory, how-
ever, not all structural data is relevant or meaningful. The first issue is verifying
the custom configurations of running services, and the second one is that, the mea-
sured data may contain useless or temporary information, which is not able to be
identified, e.g., random file opened for writing.

Regarding to the first issue, key custom configuration files, e.g., sshd_config
needs to be taken into consideration. However, they are unpredictable for each plat-
form (e.g., may have its own data like port number), so a static reference database is
not able to identify them correctly. A computer system configuration management
and change control system (like CFFEgine?®) is required to dynamically supplement
the reference database for each node that is going to be attested.

In our case, we solve the second issues with an Fzecution policy, which sets IMA
to measure the executables only, i.e. the main application’s binary executed via
ezecve() and its related shared libraries loaded through the mmap() system call by
either the linker-loader (after finding the required dependencies in the ELF header),
or by the programs themselves using the glibc function dlopen(). For instance, the
execution policy statements in Figure 3.12 tell IMA to measure:

3https://cfengine.com/

46

https://cfengine.com/

3 — Remote Attestation Framework

Measure all files mapped in the memory as executable
measure func=FILE_MMAP mask=MAY_EXEC

Measure all files executed by the execve() syscall
measure func=BPRM_CHECK mask=MAY_EXEC

Measure all files with object type equals CONFIG_t
measure obj_type=CONFIG_t

Figure 3.12. Execution policy of IMA.

e the files mapped in memory as executable;
e the files executed by the ezecve() system call in the kernel;

e the files loaded into kernel memory with obj_type equals to CONFIG_t (i.e.
expected configuration files).

As an example, for a fresh minimal installation of CentOS 7 build 1503* distribution,
the number of measures of loaded binaries is 290 with this execution policy (i.e. the
first two entries). The third entry is used to identify and measure the expected
configuration files of both the host operating system and the software services. In
order to do so, there are three approaches. First, it is possible to use predefined
SELinux® and AppArmor® labels. For instance, in Linux system, the configuration
files are mostly labelled as etc_t type (i.e. environmental configurations). Then
in order to measure these files, this label should be specified in the IMA policy.
Second, it is possible to define a custom label, e.g., CONFIG_t. This approach
is more suited in a service deployment scenario, where default configuration files
labels are predefined and stored in packages. For instance, the IPsec service has its
credential configuration files labelled as ipsec_key file t type. Third, if there is
only one or a few configuration files to be measured and they are hard to be identified
because their labels are generic, it is also possible to workaround and change the file
owner to a fake user, and specifically define measure fowner=UID_fake in the IMA
policy. With this trick, IMA will measure all the files belonging to this fake user
when they are loaded into kernel memory.

Verifying IM A measures with a reference database

At this point, we can find the digests of all the loaded executables and configuration
files of concern in the IMA measurement list. The next step is to define how they
can be analysed.

First and uttermost, we need a reference database containing all digests which
are considered as trusted. Moreover, in order to provide flexible attestation results,

‘https://www.centos.org/
Shttp://selinuxproject.org/page/Main_Page
Shttp://wiki.apparmor.net/index.php/Main_Page

47

https://www.centos.org/
http://selinuxproject.org/page/Main_Page
http://wiki.apparmor.net/index.php/Main_Page

3 — Remote Attestation Framework

the stored trusted digests should be grouped based on which distribution they are
located in, such solution is to tackle the issue of code-diversity, related to the problem
that the same service may have different binaries in different distributions.

At the same time, the result for analysing the integrity report containing the
IMA measures should provide as much useful information as possible, so the remote
attestation result is not only Boolean, but can provide semantic information. For
this reason, we define four trust/integrity levels based on the stored data in the
reference database:

e L1: TPM and IMA functions are running correctly. The IMA measurement
list is intact and it is implicitly authenticated with the signature of the TPM;

e L2: in addition to the L1 achievements, the binaries executed and configu-
rations applied are all known, i.e. found in the reference database of trusted
components but they have at least one known security vulnerability;

e L3: in addition to the L2 achievements, the binaries executed and configura-
tions applied do not have any known security vulnerability, but have at least
one known functional bug;

e L4: in addition to the L3 achievements, the binaries executed and configura-
tions applied do not have known security vulnerability or functional bug.

The aforementioned known vulnerability and known bug are included with the
information provided by the reference database which contains the information of
the updated packages, e.g., updated version, update type. For each binary executed,
when its digest is found in the reference database, it will be mapped to the package
version. If in the reference database there is an updated version of this package
labelled as security fix, then the current version is considered as containing at least
one security vulnerability. Similarly, if in the reference database there is an updated
version labelled as bug fix, then the current version is considered as containing at
least one functional bug. Another possible approach is to find the relevant informa-
tion from a vulnerability database such as National Vulnerability Database (NVD)7
and Common Vulnerabilities and Ezposures (CVE)®.

The distributed system administrator can choose their preferred trust level when
sending the attestation requests. For example, he may use highest security require-
ment (i.e. L3 or L4) when attesting a server hosting security critical services (e.g.,
bank, stock trading) and use lower security requirement (i.e. L2) when the server is
hosting security irrelevant services (e.g., gaming).

If some software fails to reach the trust level defined in the input, then a graph
can be automatically generated to indicate which software is below the required

"https://nvd.nist.gov/
8https://cve.mitre.org/

48

https://nvd.nist.gov/
https://cve.mitre.org/

3 — Remote Attestation Framework

/usr/bin/nmcli
[bugfix]

57465cd7c8fd1ea6e8cb92d5413b6bb3f30ca@
[bugfix]

32664b3b4fdb64ee8bf1ba30edf854cab23aabca <>
fusr/sbin/NetworkManager [bugfix]

bugfi
[bugfix] NetworldQhs ager-1:1.0.0-14.git20150121.bdea599¢.el7
[bugfix]

o

Sab054e52be291bd74f56ec2d2126ca360d99aa2
[buafix]

&

/usr/lihexec/nm-dispatcher
[bugfix]

@)

Figure 3.13. Example of L3 trust level with downgraded NetworkManager.

trust level, and what service is calling it as library, in order to present which service
is compromised. Figure 3.13 shows an example, where the NetworkManager-1.0.0-
14.g1t20150121.b4ea599c.el7, which is the one installed with CentOS7 build 1503
minimal installation by default, has a bug fixed in version NetworkManager-1.0.0-
16.9it20150121.b4ea599c.el7-1. Thus when the node is attested, the verifier can
tell that this platform only achieves trust level L3 because the NetworkManager
running in the platform has a functional bug. It first finds the IMA measures in
the reference database, and map them to the packages they belong, then conclude
whether the package has known vulnerability or functional bug by checking the latest
package label. In this example, the squares represent the IMA measures found in
the integrity report received from the attesting platform, which are also found in
the reference database, their full path are represented as circles. All these three
measures are mapped to the NetworkManager package, and there is an updated
version of it which is labelled as bugfiz in the reference database. Subsequently, the
IMA verification tool labels the IMA measures as bugfix as well as their full paths,
and concludes the attested platform only achieves L3.

However, it is important to say that this mechanism gives only an estimation
of which executable may be affected. Since IMA does not report exactly which
executable is affected by the loading of an unknown/untrusted library, we must
conclude (the worst case) that all executables are affected. The IMA verification
tool behaves this way and determines the integrity level of the system based on the
worst update type assigned to measure list, i.e. unknown >security >bug.

In order to fully understand whether the executables and configuration files
launched in the attesting platform are trusted or not, a reference database with the
complete data of trusted measures is mandatory. We choose to use a highly-scalable

49

3 — Remote Attestation Framework

FilesToPackages = {
file_hash: {
distro_name -pkg_arch: {

rpm_file_1: ‘‘pkg_name_1’7;
rpm_file_2: ‘‘pkg_name_2’’;
fullpath: ‘‘path_name_full’’;

Figure 3.14. FilesToPackages column family.

PackageHistory = {
pkg_name-distro_name: {
pkg_version-pkg_release: {

name: ‘‘pkg_name’’;
updatetype: ‘‘newpackage’’|‘‘enhancement’’|
‘‘bugfix’’ | “‘security’’;

Figure 3.15. PackageHistory column family.

NoSQL database, suited to manage huge amount of data with a key-value struc-
ture. In our database, we create two templates: FilesToPackages (Figure 3.14)
and PackagesHistory (Figure 3.15).

FilesToPackages binds the digest of each file to its full path name and the
packages in which it is contained. While PackagesHistory stores the update his-
tory of packages. Following the naming convention and release updates of software
vendors, packages are keyed by the concatenation of their name and distribution.
They contain information on the update type for each version and release number
as delivered by repository maintainers.

The possible update types are: newpackage, which identifies new packages,
enhancement, which means that the package contains new features, bugfix, which
reports that non-security critical bugs have been corrected and, lastly, security,
which indicates that security vulnerabilities found in an older version have been
solved. In the last case, if some package are published but no information is avail-
able (in some rare cases), an unknown update type is defined for them. These update
types are the key parameter to define the trust levels described above.

50

3 — Remote Attestation Framework

3.6 Application of Remote Attestation Framework
in Network Policy Validation Scenario

In this section, we show one example application of the proposed remote attestation
framework in a network policy validator. The remote attestation framework is used
to ensure the integrity of the whole validator and the genuineness of the validator’s
results. The purpose of this section is to show the flexibility and extensibility of the
remote attestation framework in various scenarios.

3.6.1 Motivations of A Trusted Network Policy Validator

In recent year, the adoption of server virtualisation, NFV and cloud computing
techniques has brought several advantages such as service provisioning and deploy-
ment depending on user’s requests. This approach enables elastic capacity to add
or remove services reducing hardware cost. Although these techniques have several
benefits, the management complexity of the entire system increases.

In order to tackle this issue, during the last decade, several approaches in the
field of Policy-Based Network Management (PBNM) have been proposed to auto-
matically configure services and applications. This typically provides automatic con-
figuration of applications and services from scratch by defining high-level policies.
Although this permits automatic provisioning of resources, by hiding refinement
process details, these approaches typically do not support the management of en-
forced configurations, that is a crucial and complex task in production environments
(e.g., data centres). It requires high accuracy (e.g., to identify and perform precise
modification on configuration settings) and it must limit service downtime.

Although the automatic deployment of an application instance is a common
feature of recent virtualisation platforms, on the other side, the monitoring and
management of its configuration is currently not well addressed. A typical provi-
sioning system does not periodically check the configuration settings of a instance.
Often, this operation is performed manually, by an administrator, in case of failure
or misbehaviour. For instance, think of updates to a firewall configuration.

This approach has at least two drawbacks. First, it is an error-prone and ex-
pensive task because it is performed by humans. For example, the administrator
manually adds a new rule on a firewall that shadows another existing rule, modifying
the resulting policy in an unexpected way. Second, it does not address misconfigu-
rations that do not affect service operation. For example, an attacker could add a
rule on a firewall to mirror traffic to another system. In this case, the service op-
erates correctly but its configuration is altered and the attack succeeds. Therefore,
to detect and avoid these situations, especially for complex scenarios, automatic
monitoring and analysis of service configurations is mandatory.

Commonly resources are run on a specific platform with a dedicated node or as
part of a cloud computing environment. However, these software are continuous ex-
posed in the Internet. For example, an attacker could modify a software component

51

3 — Remote Attestation Framework

Whitelist DB . /Qé -
- Verifier %

N S — CTRL%\
- S F=t i
~(s) -
© T emL | s | ::>
Analyser

; @ Anomaly

2 L ’ Rty
(% Monitor —>
ONLINE OFFLINE

Figure 3.16. Policy validation workflow and the involved components.

to change its behaviour (e.g., to steal information from a virtual resource). Also in
this case, these software changes may not affect the service operation, thus in order
to evaluate the trustworthiness of these systems, the trusted computing techniques
must be considered. In particular, the remote attestation technique makes it possi-
ble to verify the integrity of binaries and their configurations, although with some
limitations.

3.6.2 Contribution

This work proposes a novel approach for validation and analysis of security policies,
which uses trusted computing techniques to evaluate the trustworthiness of the
security applications deployed into the network to enforce the policies, in order
to guarantee the integrity state of the policy validator and the genuineness of the
results.

3.6.3 Architecture

In this work, we present a unified approach to evaluate the enforcement of security
requirements, expressed by a set of security policies. This evaluation enables the
possibility to guarantee an adequate security level in the network, since the func-
tional configuration of each deployed security control is checked to be consistent with
the defined requirements. The presented approach consists of on-line policy enforce-
ment validation by using monitoring and remote attestation. Remote attestation
framework in this system is used to attest the nodes in the policy validation system,
in order to assess the trustworthiness of the final result of the whole framework.

In our perception, the possible causes of failure in policy enforcement can be
derived from: (i) errors in manual changes of the configuration rules for a security

52

3 — Remote Attestation Framework

function, that can alter the application behaviour or introduce policy anomalies;
(7) untrustworthiness of the security functions deployed into the network (e.g.,
modifying a software binary code to modify its behaviour).

In order to perform a comprehensive monitoring of the enforced security con-
trols’ ¢ configurations, first of all, we need a High Level Security Policy Language
(HSPL), useful to define security requirements by using an abstract and high-level
approach. It can define the security requirements as a set of sentences close to natu-
ral language, e.g., “do not access gambling sites” or “allow Internet traffic from 8:30
to 20:00 for employees”. In particular, the elements of a sentence (subject, object,
etc.) can be selected by the administrator from a predefined set and implemented
in an editor as different lists.

Starting from a set of HSPL statements, we designed a policy validation frame-
work, composed of several modules, and its three-phases validation workflow. As
depicted in Figure 3.16, two out of three phases are performed on-line (i.e. the
involved processes work at run-time, when the network is enabled), while the third
phase is performed off-line (i.e. it is triggered regardless of the network state). In
particular, the framework includes:

e Policy monitor to periodically check the enforced HSPLs. In case of wrong
enforcement, the process triggers another service to perform further analysis
to detect the causes;

o Conflict analyser, triggered by the monitoring service to perform an exhaustive
detection of anomalies among the configuration rules installed into the security
functions;

e Remote attestation verifier to verify the trustworthiness of the network func-
tions and the other components involved in the validation process.

The monitoring process is performed by the monitor module, which checks, by
exploiting policy refinement techniques, if security functions are configured to en-
force the HSPLs. This component relies on sender and receiver modules, deployed
in the network. These nodes (depicted in Figure 3.16 respectively as “S” and “R”)
are transparent functions that generate, forward and monitor packets, without mod-
ifying them, and collect information for the monitor.

When the monitor detects a wrong enforced HSPL, it triggers the conflict anal-
ysis service to identify the causes of the misbehaviour. This service is implemented
by another module, named analyser, which exploits formal techniques for detecting
anomalies of configurations. By means of First Order Logic and Boolean modelling,
the analyser is able to detect when an anomaly is triggered by one or more config-
uration rules. In case of anomaly, the administrator is notified by a report of the
detected anomalies and related configuration rules.

9We use interchangeably the terms security controls (or controls) and security functions (or
functions).

53

3 — Remote Attestation Framework

PCR# template-hash template filedata-hash filename-hint
10 fc465...848¢e ima e4092...732e6¢c /usr/sbin/iptables
10 48327...9fed4 ima f7655...43f45c /etc/iptables-initial
10 bd57b...e45b3 ima 810cf...£f821d6 /usr/sbin/sshd
10 94ea2...eff6b ima 960£f7...a9728a /etc/ssh/sshd_config

Figure 3.17. IMA measures of iptables and sshd and their initial configuration files.

The workflow also includes a third module, the wverifier, to check the integrity
state of the network with remote attestation. The verifier works simultaneously with
the monitor, as an on-line service. This component, thus, is in charge of verifying
the trustworthiness of all the elements involved in the workflow, i.e. the network
functions and the newly introduced components (and their sub-elements). If the
remote attestation fails, the verifier immediately sends an alert to the administrator,
specifying the causes.

In particular, in our validation workflow, the analyser is triggered only in case of
wrong enforced HSPLs and positive attestation result. Therefore conflict analysis is
not performed when there is at least one untrusted element. This choice has been
proposed to avoid the overhead required by the analysis module and to increase the
overall performance.

Remote Attestation Verifier

The remote attestation verifier used in this network policy validator is the remote
attestation framework defined above. The primary goal of the verifier is to pe-
riodically attest the nodes hosting security applications in the framework and to
cooperate with the conflict analyser, which analyses anomalies of the applied poli-
cies only when security controls are in trusted state. Furthermore, it can even attest
every other components (e.g., senders, receivers) to ensure the whole framework is
in trusted state, implying the genuineness of the test result.

The integrity state of a security control ensures that: (i) the system is booted
with all known components in a predefined order, which implies the system is run-
ning in a trusted state without any bootkit attack; (i7) the services running in the
application layer of each host are loaded with legitimate executables and known
service configurations with reference to a well formed database, which implies the
network functions are running in trusted state to deal with their inputs correctly.
In case of compromised node, either because of remote attacks or wrong service
configurations, the verifier alerts the administrator of this integrity state change.

For instance, in the policy validator, the security control functions (e.g., iptables)
are essential tools to be used in the validator, thus their binary executables and initial
configurations must be known by the remote attestation verifier. Moreover, sshd,
the remote access tool and its configurations are also important, e.g., no password
authentication is allowed. Thus their measures also must be present in the integrity

54

3 — Remote Attestation Framework

evidence provided by the attester and known by the remote attestation verifier
(Figure 3.17).

3.7 Discussion

In this Chapter, we have shown our design of a remote attestation framework, which
can attest not only the boot phase of a physical platform but also the services load-
time integrity.

Regarding to the adversary model defined in Section 3.2, here we briefly discuss
the countermeasures to these attacks in our framework and possible menaces.

The attacker can modify the behaviour of the distributed system by loading
customised service binaries or configuration file to his favour, or he can even perform
attacks in the platform by launching scripts. In our framework, we use IMA to
measure and record the structural data when it is loaded into kernel memory. These
measures are further extended into the PCR, which will be evaluated in the verifier.

Alternatively if the attacker can change the IMA measurement log in the plat-
form, e.g., removing or modifying the measurement entries belonging to the scripts
he launched. Because the digest of these measurement entries are extended into
PCRs after being inserted into the measurement list, the integrity of these mea-
sures and the other values of the measurement list is protected. Any unauthorised
modification to the measurement list will be detected by the verifier when it is recon-
structing the final PCR value by simulating the extend operations of the digests of
the measurement entry in the integrity report. Further, after the IMA measurement
list integrity is checked, the verifier will query the measures of executables to the
reference database which is generated with the help of the package update reposi-
tories for different Linux distribution, and the measures of configuration files to the
whitelist, in case of unknown measure or the running software does not achieve the
requirement (e.g., it is outdated), the verifier will detect the issue immediately.

The attacker can also perform a bootkit attack by replacing the authentic com-
ponent with a corrupt one when the platform is booted, e.g., a cracked kernel in
which IMA is disabled and no structural data is measured. However, this attack
requires changing the content of the components loaded during the boot phase, and
by using trusted boot and the PCR whitelist table, the modification is visible to the
verifier during remote attestation process.

The attacker can also forward a remote attestation request to another genuine
party to get a valid attestation result. To counter this attack, each platform in our
framework needs to be pre-registered before they are deployed to host services, and
their AIKSs used for generating attestation signature will be certified by a PrivacyCA
hosted in the verifier and each AIK certificate will stored in the verifier mapped to
its host. Thus, each remote attestation result is associated to a specific node and
forwarding a remote attestation request is not able to prove the “trust” integrity
state of a corrupt device compromised by the attacker.

55

3 — Remote Attestation Framework

Similarly, the attacker can record the remote attestation response message trans-
mitted between an attester and the verifier, and resend the attestation response after
he compromises the attester. Since the verifier will send also a nonce to an attester
along with the remote attestation request, the old response (even coming from the
same attester) will be detected and vetted as an untrusted result.

For the sake of completeness, we need to mention that there are still two possible
attacks. First, runtime memory corruption, the adversary may try to compromise a
service by exploiting its vulnerabilities after it has been loaded into kernel memory.
This issue exists because IMA can only measure structural data at their load time,
but cannot give any information of the data already in kernel memory. However,
memory corruption attacks can be prevented by adopting other operating system se-
curity mechanisms, like Address Space Layout Randomisation (ASLR) [97]. Second,
since the attack model of TCG specifications does not take into account any physical
attack to the attesting platform, we neither do nor consider sophisticated invasive or
non-invasive hardware attacks on any platform involved in the distributed system.
However, as described in Chapter 1, even when physical access is allowed, it is still
very difficult to crack the TPM [13].

56

Chapter 4

Trusted Channel

Secure channels are widely adopted to provide secure communication between dif-
ferent nodes on the Internet. Transport Layer Security (TLS) [15] and Internet
Protocol Security (IPsec) [16, 98] are the most used ones to provide secure commu-
nication between services and users. These security protocols protect data during
its transmission and allow authentication of the channel endpoints, i.e. data confi-
dentiality, integrity and authenticity. However, they do not provide any information
of the integrity state of the platform and the software that generate or receive these
data, e.g., maliciously modified software running may send fake or malicious data
that infects another node. Also, attack and compromise secure channel endpoints
with malware, e.g., trojan, would be easier to attack the secure channel directly.
This leads to a severe problem of the current secure channel protocols, that a se-
cure channel endpoint may be compromised and software maybe tweaked while the
other peer have no information about it, thus opening a door for a wide range of at-
tacks. The situation is depicted precisely by Prof. Gene Spafford [99] from Purdue
University as:

Using encryption on the Internet is the equivalent of arranging an ar-
moured car to deliver credit card information from someone living in a
cardboard box to someone living on a park bench.

In order to make the problem more clear, let’s consider the following scenario: an
employee wants to access a file stored in the company server from his home. Then he
sets up a secure channel (either TLS or IPsec) to the internal network of his company
and downloads this file. Everything seems fine, but the fact is that the server hosting
this file has been attacked and compromised with a script injecting every file with
a trojan, which will install itself automatically and silently when the file is opened.
The employee, giving his full trust to the server, opens the downloaded file without
being scanned by anti-virus software (if the trojan is a zero day malware, then the
scanning is not helpful). As a result, his machine is infected by this trojan and the
whole system is silently under the control of the attacker.

In the above example, the secure channel is deployed correctly and it works as
expected, but the attack still succeeds because the integrity state information of the

57

4 — Trusted Channel

server is missing. To avert such attack scenarios, integrity state of communication
endpoints should be vetted before the channel is established, or at least the channel
endpoints should have the chance to evaluate the “trustworthiness” of the other peer
and make informed decisions.

In this Chapter we focus on the combination of TCG remote attestation tech-
nique and secure channel protocols to form Trusted Channels, in which the channel
endpoints are attested and their identities are bound to their hardware platforms.
Moreover, we present our implementation and performance evaluation in Chapter 6.

4.1 State of the Art and The Way Forward

The main feature provided by a trusted channel is the capability to provide integrity
state information concerning the trustworthiness of a communication partner. With
this capability, it is possible to enforce the security of data not only during trans-
mission but also in the involved endpoints.

A naive and straightforward solution would be conveying the integrity evidence
within the secure channel. Unfortunately, such simple solution is not practical and
leaves space for relay attacks (where the integrity evidence is generated by a genuine
platform but forwarded to other peers by a malicious platform, as an instance of
Man-in-the-Middle attacks). Indeed, a strong linkage between the integrity evidence
and the secure channel is mandatory.

The proposal of trusted channel has already been investigated in literatures by
multiple work. It is often combined with SSL/TLS protocol (the most widely used
secure communication channel for web servers) or IPsec protocol suite (the most
widely used secure communication channels for Virtual Private Networks, VPNs).
TCG also has a work group working on this issue, i.e. Trusted Network Communi-
cation (formerly known as Trusted Network Connect, TNC) [32].

One of the earliest and most influential work of linking platform integrity evi-
dence to secure channels is [100]. This work proposed to include the SSL certificate
used by the secure channel communication as part of the integrity measurements
presented by the contacted endpoint during the remote attestation process. In this
way, a malicious platform cannot relay the attestation request to another platform
as its certificate will not be present in the measurement list of the genuine one (in
the case that the genuine platform is not colluding with the malicious one). In ad-
dition, it also proposed to construct extended certificates, called Platform Property
Certificate, which links the platform AIK to its SSL certificate, e.g., merge domain
name and AIK public portion, thus simplifying the certifice creation, revocation and
validation process.

Along the same vein, in [101] Gasmi et al. proposed a security architecture and
mechanisms for establishing and maintaining a trusted channel. It allows the secure
channel peers to cryptographically bind the measurements of their configurations,
and an additional software module is introduced to force the changes in the configu-
ration of one endpoint to be reported to the other peer when the channel is in place.

58

4 — Trusted Channel

This solution relies on the binding feature of the TPM, and uses a certificate of the
binding key (non-migrateable key) for authentication instead of a TLS certificate.
Further this certificate is signed by the AIK of the TPM during remote attestation
phase, which guarantees the binding key is indeed in this platform and no relay
attack is possible. Further, the system is running in compartmental environment,
where the session keys of the channel are store in the trusted computing base of the
platform and will not be disclosed to other components.

However, this solution has some deficiencies. First, some features do not conform
to the TLS specifications, e.g., sending attestation data within the key exchange
message and including integrity data in session key computation, which may cause
problem for backward compatibility and further requires re-specification. Second,
the cost of certification is not considered. In [101], recertification is required every
time the system is updated, which limits its feasibility in practice. Third, the
trustworthiness of the platform is still evaluated based on golden binary values,
thus the included components are limited, otherwise the golden values are hard to
be achieved. Fourth, dynamic configuration changes are monitored by a software
entity, and these changes do not reflect in the hardware-based evidence. Last but
not least, each time an incoming connection is received by the server, it needs to
prove its own trustworthiness on the fly, given the fact that TPM is a very slow
device, the performance will degrade dramatically in a heavy loaded scenario.

To tackle the previous shortcomings, the authors in [102] proposed a design and
a proof-of-concept implementation protocol, which adheres to the original TLS spec-
ifications and uses existing message extension formats to convey platform integrity
information. It supports all relevant kinds of key exchange methods and provides
forward secrecy of session keys. These keys are held protected by hardware, render-
ing their disclosure very difficult.

In [102], the trustworthiness of a platform is evaluated by comparing the platform
component measurements to reference values provided by a trusted third party or
certificates that can vouch for certain property of respective components. To guar-
antee strong isolation, the implementation is based on compartments, which consists
of one or a group of software components that are logically isolated from other soft-
ware components. Thanks to system compartmentation, a trusted computing base
with minimal amount of software components is derived, where all security rele-
vant operations of the common TLS protocol, like encryption, signing and handling
credentials are moved to the trusted computing base. On the other hand, the pro-
tocol implementation remains in user space because there is no need to protect it.
To be more specific, the attestation data is transmitted by introducing additional
handshake message described in RFC-4680 [103] from the IETF networking group.
This RFC defines the additional SupplementalData handshake message envisioned
to carry additional generic data, whose format must be specified by the application
that uses it, and whose delivery must be negotiated via Hello message extension.
Following the same TLS extension, Yu et al. [104] proposed a trusted remote at-
testation model which combines the secure channel and the integrity measurement
architecture.

59

4 — Trusted Channel

In the case that anonymity is a requirement, in [105] the authors proposed to
combine TLS with Direct Anonymous Attestation (DAA) to create anonymous au-
thentication systems. If remote attestation is activated, then the system can turn
into anonymous trusted channels, where the original attestation data transmitted
in [102] changed to the values used in DAA.

Similar to [102], [106] tries to create session keys of trusted channel with the
public part of the Diffie-Hellman (DH) key signed by the AIK of the TPM, ensur-
ing the session key is bound to a specific platform. However, in [107], the authors
pointed out the vulnerability of [102, 106] to a collusion attack that an untrusted
server colludes with a genuine platform and proves itself trusted to others without
the genuine party knowing the agreed session keys. To be more specific, the gen-
uine platform uses its AIK to sign its PCRs and the public part of the key used by
authenticating the attacker, and then the attacker sends this signature to others in
order to prove its trustworthiness. In order to tackle this problem, the authors pro-
posed KFEIA protocol, which employs password-based authentication key exchange
and TPM based attestation. Unlike previous solutions, in KEIA, the genuine plat-
form can give a valid attestation result (trusted by others) if and only if it knows
the seed to create the session key, thus the collusion attack can be foiled.

Similarly, in [108], the authors extended TLS with mutual attestation for plat-
form integrity assurance. This solution proposed a unique identifier for each TLS
session, and such identifier is included in the AIK certificate when the AIK is cer-
tified by the PrivacyCA. Thus in this solution, no host can relay other platform
to generate integrity evidence for itself. However, for each TLS session, both en-
tities need to generate a new AIK certificate and use the new AIK certificate for
attestation, which makes this solution only feasible with long term TLS sessions.

Regarding to VPN, IPsec is a more popular option. In [109], the authors gave a
comprehensive analysis of the problems of creating a trusted IPsec based VPN ser-
vice, especially when security and complexity of the service are taken into concern.
This solution uses a microkernel-based operating system and delegates all uncriti-
cal functionalities, such as network card driver and IP stack, to isolated software
modules. Thus it allows to create IPsec gateways with a small trusted computing
base.

Along this vein, the authors of [110] proposed an extension to the IPsec key
exchange protocol, i.e. the Internet Key Exchange version 2 (IKEv2), to exchange
attestation data before and after the IPsec channel is running. To be more specific,
the first extension is to introduce an additional Security Association (SA) transfor-
mation type, called remote attestation, as an optional component of the IKE SA.
This approach allows a peer to propose and select remote attestation as part of
the negotiated set of algorithms. Then the second extension introduces a new IKE
payload, called attestation data, it is the actual remote attestation data (i.e. TPM
quote output) of the other peer in the channel. Since the derived session key from
the negotiation messages is signed by the AIK of the channel endpoint, it guar-
antees the received integrity evidence belongs to the platform which is negotiating
the SAs. However, in order to uniquely identify the channel endpoints, a public

60

4 — Trusted Channel

key infrastructure is mandatory to certify the AIK used by the attester. Moreover,
commercial products such as Trusted VPN [111] adopts similar solutions.

TCG also release several specifications on integration of remote attestation into
existing secure channel protocols, which is named Trusted Network Communica-
tions (formerly known as Trusted Network Connect, TNC) [32]. The TNC architec-
ture was originally introduced as a network access control standard with a goal of
multi-vendor endpoint policy enforcement (i.e. focuses on connect). In 2009 TCG
extended the specifications to systems outside of the enterprise network. And the
focus of the working group changed from network access control to communication
as the name suggests. In a nutshell, the main idea of TNC is as follows: there is
an agent software installed in every terminal, and this software is used to collect
integrity information of the terminal platform. The collected integrity information
may be integrity status of all running processes and/or status of firewall or other
components of concern. The TNC system will compare the information obtained
from terminal with special policy made by network administrator when the terminal
tries to connect the network. If the collected terminal integrity status matches with
the given policy, the terminal is allowed to access network, otherwise it is denied.

In the extended specifications, part of the TNC architecture is defined as IF-
T [112, 113], a standard for mapping the communications between TNC Clients and
TNC Servers (TNCCS) onto existing protocols such as tunnelled Extensible Authen-
tication Protocol (EAP) and TLS. The IF-TNCCS message, carrying the integrity
measurement messages, are transported in the IF-T protocol, and its message format
is defined in the IF-TNCCS specifications [114].

In summary, in order to create trusted channels, all the following major prob-
lems and requirements must be addressed: (i), the slowness of the TPM makes it
impossible to send integrity evidence (i.e. quote data from the TPM) on the fly
for multiple clients, because getting quote output from the TPM is time consum-
ing. Hence the better option is to delegate the attestation work to a trusted party.
(i), the modification needs to adhere to the existing specifications, thus it can be
backward compatible with tools without remote attestation. (i), the evaluation
of the trustworthiness should be widely spread to all connected clients. Meanwhile
the attestation result should be semantically rich, instead of Boolean results. (iv),
known attacks, e.g., relay attacks and collusion attacks, must be avoided.

4.1.1 Contribution

In this Chapter, we present our trusted channel design to combine TCG remote
attestation technique and secure channel protocols. As one example, we describe
how it works with IPsec protocol, but the same concept can be directly used with
other secure channel protocols.

In trusted channel, the client can have the integrity state information of the
remote [Psec server before connecting to it. Moreover, the credentials used by the
[Psec server for authentication must be bound to a specific hardware platform, thus

61

4 — Trusted Channel

an attacker cannot pretend to be a genuine IPsec server by forwarding the attestation
result from another platform.

To further facilitate the management of the server component updates, we pro-
pose a single management entity (i.e. the remote attestation verifier defined in
Chapter 3) to assess the integrity state of [Psec servers. Hence the information of
the updates does not need to be spread in all connecting users, but only to the
verifier. Furthermore, since the IPsec server is continuously exposed to the Internet
even after the connection is established, in our trusted channel design, we envision
that a client needs to query the verifier periodically about the latest integrity state
information of the IPsec server, in order to tear down the channel immediately when
the server is compromised.

4.2 Requirement Analysis

In the following section, we show the expected properties of trusted channel from
both security and functional point of view.

4.2.1 Security Requirements

Secure channel properties: trusted channel should inherit the secure channel
properties, such as integrity, confidentiality, authenticity and freshness of data dur-
ing transmission.

Binding server identity to its hardware root of trust: the identity of trusted
channel server should be bound to its integrity information and a specific hardware
platform, during and after the channel establishment phase in order to prevent relay
attacks and collusion attacks.

Privacy preservation: creation and maintenance of the trusted channels should
adhere to the least information paradigm, i.e. each role only knows what is absolute
necessary for proper integrity validation.

4.2.2 Functional Requirements

Fast deployment: the alteration to existing software and hardware environments
should be minimal (if any) and additional concepts introduced should make use of
and have to adhere to existing specifications.

Minimal overhead to channel establishment: the additional workload intro-
duced to the original secure channel establishment should be negligible, i.e. the
time needed to set up a trusted channel should be similar to set up a common
secure channel.

62

4 — Trusted Channel

Minimal overhead to channel performance: the performance of trusted chan-
nel should be similar to the original secure channel, i.e. remote attestation should
not introduce any significant additional weight to both IPsec client and server.

Backward compatibility: the introduced remote attestation feature should in-
cur no constraint with regards to the original secure channel establishment, and
the secure channel establishment should preserve its original behaviour after remote
attestation feature is disabled.

4.2.3 Possible Attacks

In trusted channel scenario, the attack model inherits the one from Section 3.2.3,
hence we only emphasise the differences. The attacker may be a malicious third
party, a trusted channel user or even the administrator of the IPsec server. He can
eavesdrop and manipulate the communication between the IPsec client and server
or control either one or both (e.g., creating a shadow server). Moreover, he can
eavesdrop and manipulate the communications between the IPsec clients and the
remote attestation verifier, but he cannot compromise the verifier, which in our
design is always trusted and behaves correctly.

4.3 Trusted Channel Architecture

In this section we describe the general architecture of our trusted channel design,
which follows a client-server model. Following this model, the involved roles are
[Psec client(s), an IPsec server and a remote attestation verifier. The trusted channel
is established between the clients and the server, and the verifier is running as a
trusted third party that interacts with both entities (Figure 4.1).

Client

The [Psec client runs in a user terminal that directly interacts with an end user who
intends to create an [Psec channel to a remote server whose integrity state is known.

In a heterogeneous scenario where every node has similar structure and com-
puting power, both the IPsec client and server can be attested. However, in our
scenario, we only attest the IPsec server but not the clients for the following two
reasons: (%), the user may not wish to expose the configuration information of his
device because of privacy issues. (ii), the user terminal may not have the ability
(e.g., lack of the root of trust) to provide authentic integrity evidence about itself.

Since the [Psec client does not need to be attested, there is no specific require-
ment for the client machine, nor does it needs a hardware root of trust or a specific
operating environment.

63

4 — Trusted Channel

3b: server 3b: server
attestation R . attestation

user terminal > verifier
2: get server cert 7~ N\
3a: server attestatioh server
4: continue/stop

trusted channel IPsec

handshake 1: trusted channel \service

A\ 4 handshake l— —|
& > RA agent
userH> IPsec [P
arp arp . authN module

| | TPM | hardware
\ J

Figure 4.1. General architecture of trusted channel.

Server

The server is the other endpoint of trusted channel, and it hosts the IPsec service
and allows end users to access certain services, thus in our design, this node is the
one that needs to be attested. For instance it can be the front-end (i.e. gateway) of
an enterprise’s internal network, which authenticates the employees before allowing
them to access the internal network or it may adopt security services like firewall or
bandwidth control to the devices running in the internal network.

The requirement of the IPsec server is almost the same as the attester defined in
Chapter 3, thus it needs a hardware root of trust (i.e. the TPM) and a measurement
architecture (i.e. IMA) activated in the privileged operating system which runs on
bare metal hardware, allowing the measures of executables and configuration files to
be extended into the PCR in the TPM. Apart from the original requirements, in a
trusted channel server, IPsec service and its authentication module are mandatory.
These two parts should also be measured and assessed during the remote attestation
process in the same way as other software running in the server.

Verifier

The verifier is the central point of our proposal, since it is in charge of periodically
attesting the IPsec server, receiving remote attestation requests from clients and
sending back the latest attestation result. It is the same verifier presented in Chap-
ter 3, but it is extended in order to have the ability to bind the channel endpoint
identity to its attestation result and a specific physical platform, thus an attacker
cannot launch relay attacks or collusion attacks, that a compromised server is proven
to be genuine by using the attestation result of another platform.

64

4 — Trusted Channel

4.4 Creating Trusted Channel

The steps required for the establishment of a trusted channel are depicted in Fig-
ure 4.1. Initially the IPsec client begins the trusted channel handshake with its
selected IPsec server (step 1) and gets the certificate of the latter (step 2); the re-
ceived certificate will be used for verifying the binding between the attestation result
and the contacted endpoint identity. Then, the IPsec client performs the server at-
testation itself (step 3a) or with the help of a trusted verifier (step 3b). If the result
of the attestation is positive, the IPsec client continues the handshake and estab-
lishes the trusted channel. Otherwise, it closes the connection immediately (step 4).
To be more specific, the steps to attest the IPsec server is illustrated in Figure 4.2
with detailed operations for each role.

Because of the variety of user terminals, we envision two possible approaches to
attest the remote server: (i), the user terminal has enough computing power and
the user has enough knowledge that the user terminal can attest the remote IPsec
server by itself, thus the remote server can transfer its integrity report back to the
client directly during channel authentication phase (similar to the case of TNC).
(i), the user terminal has less computing power required to attest the remote server
by itself (e.g., a smart mobile device), thus it has to trust and offload the remote
attestation work to a third party (i.e. verifier).

However, in trusted channel working scenario, the additional workload intro-
duced by remote attestation in both the IPsec clients and the server should be
minimised, otherwise it is less feasible from the practical point of view. For this
reason, we chose the second approach that the clients offload the work of attesting
the IPsec server to a trusted third party (e.g., a verifier set up by ISP or enterprise).
But we still show the steps of the first approach in Figure 4.1 and Figure 4.2 with
different suffix (a for the first approach and b for the second approach).

4.4.1 Extension to IPsec Authentication

[Psec is a protocol suite to secure Internet Protocol (IP) communications, and it
works by authenticating and encrypting every IP packet of a communication ses-
sion. Currently only IPsec protects all application traffic over an IP network, i.e.
automatically secure applications at the IP layer. It supports network-level peer
authentication, data-origin authentication, data integrity, data confidentiality (en-
cryption), and replay protection [16, 98].

IPsec uses the concept of Security Association (SA) as the basis for building
security functions into IP. An SA is simply a bundle of algorithms and parameters
(e.g., keys) that is being used to encrypt and authenticate a particular flow in one
direction. Therefore, in normal bi-directional traffic, the flows are secured by a pair
of SAs. The framework for establishing SAs is provided by the Internet Security
Association and Key Management Protocol (ISAKMP) [115], in order to negotiate,
set-up, modify and delete a SA. Protocols such as Internet Key Exchange [116] and
Kerberized Internet Negotiation of Keys [117] provide authenticated key exchanges.

65

4 — Trusted Channel

5b: evaluate
measurements

> 2b: request

Trusted integrity report
> 1b: request Third <4b: send
integrity status Party i integrity report
< 6b: send a N\
integrity status server
> 1a: request
integrity report IPsec
user terminal < 3a: send orvice
integrity report
= RA agent -
2a/3b: retrieve measurements,
4a: evaluate authN module create and sign TPM quote
measurements
1
user|a Psec | 0: measure hw/sw — e privileged OS
h < components at boot mocue
app client ==
\ J

Figure 4.2. Trusted channel server attestation steps with and without a
trusted third party.

In order to support additional remote attestation feature before the secure chan-
nel is created, the authentication phase needs to be extended. We chose to work
with Internet Key Exchange v2 (IKEv2) [118, 119], which creates a SA to protect
ISAKMP exchanges. This SA is used to protect the negotiation of the SAs needed
by IPsec traffic.

As shown in Figure 4.3, the step to assess the integrity state of the IPsec server is
after IKE_AUTH response message and before CREATE_CHILD_SA message, i.e. before
the client actually installs the IPsec SAs for communication.

Initial Phases in IKEv2 Exchange

IKEv2, compared to its predecessor IKEv1, has only two initial phases of negotia-
tion: IKE_SA_INIT and IKE_AUTH exchanges.

IKE_SA _INIT is the initial exchange in which the peers establish a secure channel.
This phase generates a shared secret key to encrypt further IKE communications.
After the initial exchange is completed, all further exchanges are encrypted. As
a matter of fact, the responder is computationally expensive (because of Diffie-
Hellman key exchange algorithm) to process the IKE_SA_INIT packet and cannot
leave to process the first packet, it leaves the protocol open to a Denial of Service
(DoS) attack from spoofed addresses. In order to protect from this kind of attacks,
IKEv2 has an optional exchange within IKE_SA_INIT to prevent against spoofing
attacks. If a certain threshold of incomplete sessions is reached, the responder does
not process the packet further, but instead sends a response to the initiator with
a cookie. For the session to continue, the initiator must resend the IKE_SA_INIT
packet and include the cookie it received.

66

4 — Trusted Channel

1. IKE_SA_INIT/Request

1 1]
1 1 1
L A 1
1 71 1
]
! 2. IKE_SA_INIT/Response ' i
&] 1
e 1 1
! 3. IKE_AUTH/Request ! '
I)I !
1
1 4. IKE_AUTH/Response ! !
1, 1 :
[N 1
[} 1 1
1 1 1
1 1 :
]
: 5. derive Common Name (CN) 1 :
' from server.cert ')
: 6. compute digest of server.cert : :
1 7. prepare remote request using : :
: CN & DGST(server.cert) 1 1
< | :
: 8. remote attestation requ}ast + { CN & DGST(server.cert) } :
L 1 A}
1 1 1
]
: : 9. remote attestation request + NONCE 1
| < :
]
! : 10. QUOTE output '
1 1 N
[} 1 ’:
[} 1
! 11. integrity stake verification result '
1€ : ;
]
1 12. CREATE_CHILD_SA/Request : :
i > :
1
: 13. CREATE_CHILD_SA/Response | :
i€ i |
1 1 1
1 1]
v v v

Figure 4.3. Extension to IKEv2 protocol with RSA-sig authentication.

After the IKE_SA_INIT exchange is complete, a pair of unidirectional ISAKMP
SAs is generated; however, the remote peers have not been authenticated. The
IKE_AUTH exchange is performed to authenticate the other peer. This exchange
contains the ISAKMP ID along with an authentication payload. The contents of
the authentication payload is dependent on the method of authentication, which can
be Pre-Shared Key (PSK) [120], RSA certificates (RSA-SIG) [121], Elliptic Curve
Digital Signature Algorithm certificates (ECDSA-SIG) [122], or Extensible Authen-
tication Protocol (EAP) [123], etc. In addition to the authentication payloads, the
exchange includes the SA and Traffic Selector payloads that describe the IPsec SA
to be created (steps 1-4 in Figure 4.3).

In our design, we can use all supported authentication methods, and the only
requirement is that there need to be structural data that can be measured by IMA
in the IPsec server when the data is loaded into kernel memory. This is a strict re-
quirement, otherwise the credentials of the channel endpoint cannot be bound to its
hardware root of trust, which makes relay and collusion attacks possible. For sim-
plicity, we use RSA signature authentication method in further description, which

67

4 — Trusted Channel

uses a unique-identity digital certificate issued by a certificate authority. During au-
thentication, each device digitally signs a set of fresh data and sends it to the other
party along with its certificate. If the public key stored in the certificate matches
the signature then the remote party is authenticated, otherwise the authentication
fails. Specifically in IKE protocol, each initiator and responder of an IKE session
using RSA signatures sends its own ID value, its identity digital certificate, and
an RSA signature value consisting of a variety of IKE values, all encrypted by the
negotiated IKE encryption method (e.g., DES or 3DES).

At this point, the IPsec client receives the certificate used by the server for
authenticating itself. Afterwards, it derives the Common Name from the server
certificate and computes the digest of the received certificate, in order to prepare a
remote attestation request of the server. The request includes the server’s identity
(i.e. the common name in the certificate), the digest of the certificate, and required
analysis types and their arguments. In the end, the IPsec client continues further
IKEv2 exchanges if the received integrity evaluation result of the server is positive.

4.4.2 Extension to Remote Attestation Verifier

Thanks to the extended integrity reports (Section 3.5.3) and the analysis type cus-
tomisation feature of the remote attestation verifier (Section 3.5.4), we introduce
a new analysis type that allows the sender of remote attestation requests (i.e. the
client in our schema) to define parameters in their requests which must be present
in the attester’s measurement list. In the trusted channel scenario, this new analysis
type is called check-cert.

This feature is critical in the case that the remote attestation request sender
knows that the attester must have applied some predefined custom configurations,
thus the digests of these configuration files should be present in the integrity report
generated by the attester (e.g., the public key certificate used to authenticate the
[Psec server). If the digests of these custom configuration files are missing, then the
attester should be evaluated as untrusted.

For instance, in the trusted channel scenario, if the public key certificate of the
[Psec server is missing in the integrity report of the attester, then there may be
an attack where the client is connecting to a compromised (shadow) server but the
verifier is attesting the legitimate one. In this case, even though the client receives
the positive attestation result from the verifier, his connection is still not trusted
(Figure 4.4).

This check-cert feature of the remote attestation verifier to check if certain con-
figuration of the attester is present mainly brings two benefits and one problem.

The first benefit is that, it binds custom configurations to a specific physical
node. As an example, in trusted channel scenario, the certificate used by IPsec
server to authenticate itself is unique and predefined, and the AIK used to sign the
integrity report is also unique, thus when the verifier receives the digest of server
certificate from the IPsec client and the integrity report from the server signed with

68

4 — Trusted Channel

verifier
(3) attest server 01 '

(6) server 01 is E (5) integrity report
trusted

/ (legitimate) \

(4) attestation request

IPsec server 01
(shadow) service
server 01 IMA -
. RA
(1) NONCE { measurement list Eizfelnie
client IPsec l
service

(2) sig(NONCE) + cert

R

Figure 4.4. Shadow server attack without binding server certificate to
its hardware root of trust.

the AIK containing the digest of its certificate, then the verifier knows that the
client is trying to connect to this specific IPsec server (based on server certificate)
which is running on this specific physical machine (based on AIK certificate). If an
attacker successfully compromises the IPsec server, then its integrity state change
will be detected with its integrity report. On the contrary if the attacker pretend
to be a legitimate [Psec server and authenticates himself with another certificate
(even if its common name is correct and issued by the trusted certificate authority),
then the digest of the fake certificate will not be present in the integrity report
signed with the AIK from the legitimate IPsec server. The scenario is similar in
other distributed systems, such as 802.1X authentication system [124], where the
authenticator asks the verifier to attest the authentication server to check whether ()
the authentication server (hosting RADIUS [125] or Diameter [126]) is compromised
due to remote attacks and (i7) the authentication service is running with the correct
configurations, before sending supplicant’s credential to the authentication server
for validation.

The second benefit is that, it prevents leaking any configuration information to
random entities, because the entities querying about IPsec server’s integrity state
must have some specific information of remote servers (e.g., the digest of the [Psec
server certificate), otherwise they will only receive “untrusted” as the integrity eval-
uation result.

On the other hand, the problem is caused because these custom configuration
files (e.g., IPsec server certificate) are unknown to the verifier, thus the latter will
evaluate the attester as untrusted without a remote attestation request containing
the digests of these files. We envision there are three possible approaches to solve
this issue.

In the first approach, the client sends his remote attestation requests along with

69

4 — Trusted Channel

the digests of these configuration files (i.e. digest of the IPsec server certificate)
to the verifier, then the latter uses the received digests to evaluate the attester’s
fresh integrity report and gives the attestation result on the fly. However, this
approach is time consuming because the verifier needs to launch a fresh attestation
process including all the needed steps (e.g., getting quote from TPM, generating
integrity report), which needs at least several seconds before the result can be given
back (more details in Chapter 6). Moreover, this approach has little scalability, for
instance, when tens of clients connect to the same server at the same time would
create a long queue before any one can successfully connect.

In the second approach, the system administrator decides which file(s) must
be present in the attester, and registers their digests to the verifier as part of the
attester’s registration process. In this case, the verifier has the knowledge of the
digests of these custom configuration files and can create the correct remote at-
testation requests by itself. Hence it can periodically attest the IPsec server and
give the latest attestation result to the clients immediately when it receives a query
from the client. However, in this approach the client cannot define his preferred
analysis types in the requests, but can only accept the attestation results of the
analysis type defined by the verifier. For instance, the client might use the anal-
ysis type COMPARE_REPORT, but the verifier only has the attestation result of
VALIDATE_PCRs and load-time analysis types.

In the third approach, the verifier issues remote attestation requests to the at-
tester without considering any custom configurations, and it stores the unknown
digests in its file system. Later, when the verifier receives a remote attestation
request containing the digests of custom configuration files from the client, it com-
pares the digests in the request with the unknown digests it previously stored. If all
the stored digests match the ones in the request, then the verifier gives “trusted”
evaluation result to the client, otherwise if any of the digest mismatches, the re-
sult will be “untrusted”. Although this approach requires less time than the first
one, it is still slower than the second approach because the verifier needs to per-
form additional comparisons before giving the result, which means the scalability
issue persists. Moreover, in this approach, the client neither can define his preferred
analysis type freely in his requests.

The choice of these three approaches is relevant to the use scenario. For instance
in the trusted channel scenario, the time needed to receive the attestation result
is critical, asking a user to wait several seconds before he can establish the IPsec
channel to the remote server is infeasible from the user experience point of view.
Moreover, the only “must-have” file in an [Psec server should be its public key cer-
tificate that is used to authenticate itself. Any other custom configuration files, that
may be also critical, but not strictly relevant in the trusted channel scenario. Under
these concern, in our trusted channel design, we ask the IPsec server to register the
digest of its public key certificate when it enrols to the verifier, then the verifier uses
this digest to generate correct remote attestation requests and periodically attests
the IPsec server. When it receives attestation request from a client with the correct
digest value in the request, it immediately gives back the latest attestation result.

70

4 — Trusted Channel

4.5 Discussion

In this section, we carry out a brief evaluation of our proposal based on the require-
ments defined in Section 4.2.

First of all, IPsec provides secure channel properties during data transmission,
while the integrity state of the IPsec server (including both platform and service
integrity) is offered by remote attestation process, which is provided by a trusted
verifier. The positive attestation result implies the genuineness and security proper-
ties of the data within IPsec server. If the remote attestation framework is properly
deployed in trusted channel, the IPsec server and its services should not be able
to be tampered without being noticed by the verifier. And because of the periodic
remote attestation requests issued by the client, the client can drop the connection
immediately once the IPsec server is compromised. This solution is even able to
provide protection against a malicious administrator, because the measures of the
platform components, service executables and their configuration files cannot be
faked without being detected by the remote attestation verifier.

Regarding to relay attacks, the attacker cannot forward the remote attestation
request to other genuine platform because the credential used by secure channel
endpoint to authenticate itself cannot be present in another platform, i.e. the au-
thentication certificate of one platform cannot be present in another platform with-
out being considered as unknown digests. Similarly, collusion attacks can also be
avoided, because in the registration phase each platform gives its AIK certificate to
the verifier, thus no platform can generate integrity report for another platform.

However, we envision a constraint for the attacker’s behaviour, since he cannot
steal the credentials of the IPsec server used for secure channel authentication.
Otherwise he can pretend to be another IPsec server by using the stolen credentials
even if the IPsec server certificate is present in the integrity report generated by the
legitimate IPsec server.

On the other hand, protecting secure channel credentials is a challenging task
from the practical point of view. Theoretically, it is possible to encrypt the creden-
tials (but needs manual insertion of encryption password when the credentials are
used), use ephemeral credential that is valid only for a short period of time (but
needs to frequently regenerate credentials), or if possible, an external hardware,
such as hardware security module or the TPM itself, to store the credentials (but
the performance is slower).

So we assume the IPsec server can prevent its credentials to be stolen, and
under this assumption, the public key certificate of the IPsec server can be indeed
bound to the TPM attached to the physical platform. When a client sends a remote
attestation request with the digest of the public key certificate it received in the
authentication phase, the verifier knows the client is indeed contacting with a specific
IPsec server. And the public key certificate is bound to a specific hardware device
if the digest of the certificate is present in its integrity report.

With regards to the communication between the IPsec client and the remote

71

4 — Trusted Channel

attestation verifier, a traditional SSL/TLS channel can be adopted to ensure the ()
the identity of the verifier and (i) the attestation result released by the verifier is
authentic.

To make a fast and widespread deployment of our approach, we extended the re-
mote attestation framework presented in Chapter 3 to attest the [Psec server in our
trusted channel. Even though the same approach can be used in all IPsec implemen-
tations, e.g., OpenVPN! and Openswan?, in this thesis, we used the widely deployed
[Psec implementation, strongSwan [127], and started our implementation based on
it. Because the architecture of the strongSwan implementation is pluggable, the
efforts that we had to be put into the implementation of our solution was moderate.
Meanwhile, the development community of strongSwan is active, thus our questions
can be resolved in a timely fashion. Additionally, we adhere to the mechanisms and
concepts that have already been defined in existing specifications, in a way that
original IPsec secure channel client can communicate with IPsec server without any
modification if remote attestation feature is not required. The only difference is that
the remote attestation plugin should be enabled when attestation of remote server is
required. On the other hand, the IPsec service in the server side does not need any
modification, and the platform where the service is deployed only needs a hardware
root of trust, a measurement architecture and a remote attestation agent from our
framework.

https://github.com/OpenVPN/
Zhttps://github.com/xelerance/openswan/

72

https://github.com/OpenVPN/
https://github.com/xelerance/openswan/

Chapter 5

Trusted Network

Software Defined Networking (SDN) [1, 2] and Network Functions Virtualisation
(NFV) [3, 4] are modern techniques to implement networking infrastructures. Sim-
ilar to cloud computing infrastructure, SDN and NFV exploit distributed system
model and virtualisation technology to improve the feasibility, flexibility and elas-
ticity of creating and deploying networks, and significantly reduce cost. Besides
switching packets, they can also be used to provide other more advanced function-
alities, e.g., security applications at the network edges.

The new paradigm of SDN/NFV brings the aforementioned benefits but also
introduces a security gap in the network, because traditional hardware-based net-
work functions are softwarised and SDN/NFV architectures heavily rely on specific
software modules executed on highly distributed nodes, and those modules may act
differently from their expected behaviour due to various errors and remote attacks.
The use of remote attestation in network environments to ensure network node in-
tegrity is quite new and recent, currently it is raising interest not only in research
community but also in the industry, as demonstrated by its consideration in the
ETSI NFV standardisation efforts [128].

In this Chapter, we first discuss the techniques useful to evaluate the software
integrity of a SDN/NFV node, especially the software running in virtual instances,
and hence its trustworthiness to execute the desired applications. Further we present
our solution to adopt hardware-based remote attestation of softwarised network
nodes along with software modules running in virtual instances, making it feasible
to create trusted softwarised networks. The actual implementation and performance
evaluation of this solution are presented in Chapter 6.

5.1 Softwarised Network

Modern telecommunication networks contain an ever increasing variety of propri-
etary hardware. The equipment has evolved from a simple device that conveyed
voice over modest distances (telephony) to complex media that transfer voice and

73

5 — Trusted Network

application layer
application plane

SDN application SDN application

SDN northbound interfaces

A-CPI: Application-Controller Plane Interface

control layer

SDN controller
controller plane

D-CPI: Data-Controller Plane Interface

SDN Southbound Interface

network .
network P infrastructure layer
Sl element

element

data plane

Figure 5.1. SDN architecture.

data worldwide. The launch of new services often demands network reconfiguration
and on-site installation of new equipment that in turn requires additional space,
power supply and trained maintenance staff. Hard-wired network with single func-
tions devices are tedious to maintain, hard to evolve, and prevent service providers
from offering dynamic services. However, the network innovation cycles currently
accelerate and require greater flexibility and dynamism than hardware-based appli-
ances allow.

In the same way as applications are supported by dynamically configurable and
fully automated cloud environments, Virtualised Network Functions (VNF) allow
networks to be agile and capable of responding automatically and quickly to the
needs of the traffic and services running over it. The key enabling technologies
for this vision include SDN and NFV. They are complementary but increasingly
co-dependent for the benefits of softwarised networking to be fully achieved.

SDN is a particular approach to provide virtualised traffic routing and unified
network flow management across hardware and software-based networking compo-
nents. It is meant to address the fact that traditional network architecture is not
suited any more in managing the current dynamic computing and scalable storage
needs of enterprise data centres, campuses and carrier environments. The principal
design of SDN is to decouple the existing control and data planes by moving the
control part away from all network elements to a centralised node in the network,
known as the SDN controller (Figure 5.1). The controller can then be programmable
and manipulated by an upper layer called application plane, where the SDN appli-
cations give instructions to the SDN controller based on, e.g., policy defined by
network administrator, in order to tell the latter how to distribute the flow rules.
Thus, the underlying infrastructure can be abstracted from network applications
and services.

On the other hand, NFV aims to transform the traditional networks by evolving

74

5 — Trusted Network

standard virtualisation technology to consolidate many network functions into vir-
tual instances that can be run on industrial standard servers, switches and storages.
These components could be located in data centres, network nodes and even end
user premises, thus they can be moved to or instantiated in various locations in the
network as required without the need for installing new equipment. NFV typically
exploits SDN to create custom overlay networks connecting the various network
functions and in turn SDN can use NFV to host its controllers and applications.
An NFV service deployment requires the onboarding, activation and start-up of a
set of virtualised elements that will be run on a uniform infrastructure supporting

the virtualised execution environment, which is usually called NF'V Infrastructure
(NFVI).

In the softwarised networks, lightweight virtualisation technology is critical, es-
pecially in an NF'V environment, as the network nodes usually have limited com-
putational resources and VNF tends to have one to one relationship to the virtual
instance. For this reason, recently a lot of interest has been raised by operating sys-
tem level virtualisation techniques, as they incur much lower performance compared
to full virtualisation techniques (i.e. hypervisor-based virtualisation) with smaller
and more agile execution environments called virtual containers.

5.2 Security and Trust in Softwarised Networks

Without any doubt, the SDN/NFV infrastructure paradigm makes managing and
programming the network much easier than hardware-based legacy networks. Es-
pecially, data handling rules in SDN are implemented as software modules instead
of embedding them in the hardware, thus fine-grained network flows can be flexibly
adapted within seconds and without involving any changes to the physical topology,
which enables agile provisioning and removal of network services. However, SDN
also brings its own set of problems, especially with regards to the security aspects,
since the programmable nature introduces new risks that remote attacks could af-
fect the behaviour of the network itself by modifying the loaded software module in
network nodes (i.e. network integrity property).

Security of SDN is a hot topic nowadays. There are a lot of work surveying the
security aspects of SDN in the last two years. Ahmad et al. [129] presented the
evolution of SDN starting from its predecessor, i.e. active networking, then they
discussed security challenges of different SDN planes (i.e. application, control and
data planes), and categorised these threats and countermeasures based on their tar-
gets. For instance, the most prominent attack in the application plane would be
fraudulent flow rules insertion, which is caused by malicious or compromised ap-
plications. While the most prominent attacks to the control plane is DoS, because
of its visibility nature, centralised intelligence and limited resource. In data plane,
fraudulent flow rules and flooding attacks are more relevant because the data plane
is dumb and flow tables can only store a finite number of flow rules. While Als-
madi et al. [130] discussed the security threats to SDN according to their effects, and

75

5 — Trusted Network

listed possible security controls to counter, mitigate and recover from these threats.
Moreover, they presented the current progress of different countermeasures.

Similarly, Shu et al. [131] discussed the security features of SDN as a whole and
then analysed the security threats and countermeasures in detail from three aspects,
based on which part of the SDN paradigm they target, i.e. the data forwarding layer,
the control layer and the application layer. Li et al. [132] gave particular attention
to OpenFlow-based SDN environment [133] and presented an up-to-date view to
existing security challenges and countermeasures in the literature, i.e. the authors
focused on the security issues of the lower two layers (i.e. control and data planes).
Moreover, they mentioned the problem of software integrity, i.e. whether it will deal
with the input correctly, regarding to network trust and software attestation. More
recently, Dacier et al. [134] highlighted the pros and the cons of SDN regarding to the
network security perspective. In particular they discussed whether SDN approach
enriches the security of softwarised networks or sabotages it.

Apart from the generic security issues, the SDN controller has even more threats
since it is centralised and has direct connections to each of the switches. The con-
troller has an indirect view of the network topology based on the rules it has pro-
grammed to the switches. The latency incurred when updating the forwarding rules
implies a synchronisation problem between the controller’s view of the network and
the actual network configuration. Existing work, such as [135] and [136] proposed
incomplete solutions to this problem.

With regards to the software module integrity of SDN switches, Jacquin et
al. [137] used trusted computing techniques to provide a strong hardware-based plat-
form identity and dynamically monitor the low level configurations used to route
virtual LANs. With the help of a newly introduced software component running
in SDN switches, which collects the software measures and received flow rules and
extend them into the hardware TPM, this architecture provides hardware-based
evidence of the switches integrity state. This work is the first to use trusted com-
puting in SDN switches, which provides a mechanism to check the network posture,
bridging the gap between the remote attestation and virtual networking.

Similar to SDN, security of NFV is also a popular topic these days. In [138],
Firoozjaei et al. analysed potential security threats in NFV environments and cat-
egorised them from the network and virtualisation points of view. To be more
specific, the authors discussed infrastructure-target, VNF-target and user-target
threats. Then they proposed reasonable countermeasures to cope with these dan-
gers. Most importantly, this survey recognises the importance of software integrity
in NFV environment, and promotes trusted computing (remote attestation) as the
most promising solution to this issue. However, because the hardware TPM chip
is improper to perform bulk data cryptographic operations due to its slow perfor-
mance. The authors suggested to use firmware-based TPM [79, 80] platforms and
TPM emulators [39, 78] because they may provide much better performance.

Ravidas et al. [139] provided an overview of the challenges to incorporate trust
in NFV environment and proposed a basic and incomplete solution, that the image
of the virtual instance hosting VNF is signed and the signature is checked before the

76

5 — Trusted Network

VNF is deployed. Further, they designed another approach to bind the VNF image
to a NFVI based on the PCR values in the NF'VI’s TPM. However, no internal of the
virtual instance is going to be probed and this solution does not check the integrity
of the software VNFs.

The only issue is that the authors of [138, 139] have not discussed the problem of
using remote attestation in virtualisation environment. The direct application of re-
mote attestation to NF'V environments is not possible without several enhancements.
First, remote attestation is not virtualisation-friendly. As mentioned in Chapter 2,
the major issue is that the hardware TPM chip cannot provide enough resources for
multiple virtual instances running on a single platform, especially the PCRs. Sec-
ond, NFV environments typically have a plethora of network nodes, management,
scalability and performance must be carefully addressed .

These problems mostly concern traditional hypervisor-based virtualisation envi-
ronment, even if the most widespread solution vIPM [39] is adopted. The vITPM
solution tries to allow unmodified operating system and services running in virtual
machines to use trusted computing techniques, not only remote attestation but also
sealing, with the help of a virtual TPM. In general the threats to a virtual ma-
chine are essentially the same as for a physical node, plus those coming from its
virtual machine manager (VMM) or hypervisor. A VM must completely trust its
VMM, because the VM cannot defend itself in any way against VMM attacks, e.g.,
a VMM can temper its VM’s memory without being detected by the latter. Thus
the integrity of the VMM itself must be established in the first place, and this is
part of the basic attestation which addresses those components directly executed
on the hardware. Depending on the hypervisor type, it can be attested either as a
component loaded at boot time (type I hypervisor) or as a service running in the
host system (type II hypervisor). However this distinction is not influent on the
result: the VMM’s integrity is attested as part of the base operating environment
of the node.

The actual implementation of vI'lPM has been mainstreamed in the Xen hyper-
visor, which is different from the proposal in [39]. For instance, the vIPM manager
and multiple vIPM instances are running inside Xen’s stub domains® instead of the
domain 0 (dom0), which runs the privilege guest in the system to manage other
guest domains (Figure 5.2).

This implementation architecture brings severe problems. First of all, the vIPM
manager stub domain has its own TPM driver, which directly communicates with
the physical TPM. This can cause a race condition if dom0 has its own TPM driver
activated at the same time. Hence the privileged domain dom(O cannot use the
TPM functionalities, neither using the physical TPM (which is not accessible due
to conflict with the vIPM manager stub domain) nor via the vIPM (which is not
yet available when domO is started). A more elegant and secure solution would be

1Stub domains are the same as other guest domains, but are dedicated for special purposes such
as disaggregated device drivers

77

5 — Trusted Network

guest guest
domain domain
/vTPMMGR r“) 53_-! vTPI\/I\ [-3-1 vTPI\/I\
stubdom ! S stubdom 51 stubdom application application
VIPM i€ 31 1o il VvIPM |[I g [VIPM
Iz 2. - 1 i oo
man\fger ig g nE .5 i mstznce .5 i mstznce m m
i mini-os iix g i mini-os 1|} i mini-os | i- xen | i' xen |
L tpm_tis § = i1_tpmback i = i1 tpmback 1 I tpmfront | 1 tpmfront |
NG % 4 v WAV SR 2 e innnnnt | e i

TPM

_,r physical i Xen
1 I
']

Figure 5.2. vTPM implementation architecture in the Xen hypervisor.

to set a different locality? of the physical TPM for dom0 and the vIPM manager
stub domain. However, in this case, another practical problem appears: the vI'PM
manager fails to start if using a locality different from the default one [140]. This is a
bug known to vIPM developers and, at the time of writing, no solution is available
to resolve this problem. Therefore dom0 cannot be attested when using the vI'PM
feature, which is unacceptable since dom0 is at the heart of Xen.

The second problem is related to the vI'PM client-side driver, which is compiled
as a module in the guest VMs’ kernel. As explained in [141], the problem is that
IMA is loaded with the kernel and when it starts taking measurements, the client-
side driver has not been loaded yet and the vI'PM instance is not available, with the
consequence that the IMA measures are not extended to any PCR. This problem also
affects all the components loaded during the VM’s boot process. For this reason,
guest domains do not have access to a virtual root of trust with high integrity
guarantee and this reduces the benefits of the remote attestation feature.

The third problem is that, without an entity guaranteeing the integrity state of
each vI'PM instance stub domain, it is possible that a stub domain is compromised
(e.g., an attacker changes the vITPM instance behaviour to not record its malicious
actions) and this fact goes undetected. This problem poses a serious question about
the integrity guarantee provided by the vI'PM solution.

Last but not least, the performance drop would increase with regard to the
number of attested VMs, since a substantial portion of computing power would
be used by each VM to prepare its own integrity report, especially if the remote
attestation framework presented in Chapter 3 is used. In this case each VM needs

2Locality is an assertion to the TPM that a command is associated to a particular component.
The purpose of setting different localities for dom0 and the vIPM manager is to permit them to
use different PCRs and avoid conflicts.

78

5 — Trusted Network

to insert the IMA measurement list into its own integrity report even if there may
be a lot of duplicates.

In conclusion, although vI'PM is an attractive concept and it is currently pro-
moted by the TCG as the solution to virtualisation environments [142], it has both
performance and practical issues that severely limit its application. For this reason,
in a VMM-based virtualised environment, normally integrity verification is available
only for the host system and VMM, while the integrity guarantee for the VMs is
limited to checking the image being loaded in a VM via a digital signature and/or
download from a trusted repository. As a consequence, run-time integrity verifica-
tion for the applications executed in the VMs is not provided. A detailed analysis
and comparison of vIPM related work can be found in [143].

Along the same vein, another work [40] addresses the scalability issue by ex-
tending the original vITPM model. Since the conventional periodic polling model
does not scale well, i.e. each VM adds effort to the attestation cost, Goldman et
al. [40] proposed an event-based monitoring and pushing model. In this way, every
time there is an extend operation to the vI'PM instance, the monitor will notify the
users that subscribed to the VM associated with this vI'PM instance, thus achieving
event-based attestation. The benefit of the pushing model is that it will eliminate
the problem of Time-of-Measure Time-of-Use (ToMToU) attacks (a platform is gen-
uine at the time of measuring, but it is compromised when it is actually used) and
TPM reset attacks (fast rebooting the system after malicious script execution, to
reset TPM PCR values).

In general event-based monitoring is more convenient and the feedback time
can be much faster than periodic attestation model, since the hypervisor itself has
full control of its guests, and can be extended to support event-based monitoring.
Following this idea, the authors of [42] directly offloaded the remote attestation
work to the hypervisor, which is called Integrity Verification Prozy (IVP). The VMs
running on top of the hypervisor are in Debug Mode, so a debugging tool (e.g., gdb)
can be used to set watch points (e.g., locations in memory) triggered by integrity
relevant operations such as IMA measurement list insertion. When a watch point
is triggered, the hypervisor can pause the VM and calls an additional module to
check its integrity. If the integrity test result is positive, then the VM is resumed
for its execution, otherwise it is stopped. However, this solution suffers a severe
performance penalty due to executing the VMs in debug mode and the remote
attestation feature, and the integrity evidence of the services running in VMs are
not present in the hardware TPM chip, which lower the security guarantees.

Lauer et al. [144] combined vTPM and IVP solutions. Their approach uses the
vITPM to record integrity evidence for each VM and an additional module embedded
within the hypervisor to generate the integrity reports for itself and all its guests. As
recognised by [142], the integrity evidence of VMs needs to be bound to the integrity
evidence of its hypervisor, which is called deep attestation. Thus the authors of
[144] proposed to concatenate the nonce received from the challenger, the PCR
values from all vTPM instances and the measurement list of all VMs, and then the
concatenation result will be signed by the physical TPM as the external data of

79

5 — Trusted Network

the quote operation. In this way, the challenger can check the integrity of all VM’s
measurement lists against the PCR values of vI'PM instances based on signature
from the physical TPM. Meanwhile the integrity state of the hypervisor is also
available in this integrity report as presented in the hardware PCR values.

However, this solution has two problems. First it is unfriendly to the privacy
of the VM, because each challenger can have the integrity information of all VMs
running in this platform, i.e. what software is running and what version. Second,
this solution is computing power demanding to both the challenger and the attester,
because the challenger needs to distil useful information from a massive amount of
data and the attester needs to generate a very large integrity report, which makes
the ToMToU problem more severe.

In [145], the authors presented a new design of a TPM that supports hardware-
based virtualisation techniques by using functionalities of the Intel VT-X/I archi-
tecture [146]. This architecture augments the x86-processor architecture with two
new forms of CPU mode, VMX root in which the VMM runs and VMX non-root
in which the guest VMs run. Because of this new mode, VMM can use a second
privilege level to issue scheduling and management commands. In this proposal,
the information about the state of a physical TPM is stored in TPM Control Struc-
ture (TPMCS), it is loaded into the corresponding TPM by the VMM each time a
particular VM operates on the TPM, this ensures that the state of on VM’s TPM
does not corrupt the state of another VM’s TPM, although the TPM is the same
one. However, the TPM specification and its implementation need to be extended
in order to support the second privilege level and the TPMCS, such that the TPM
context of each VM can be saved and loaded. Additionally, it can only work with
virtualisation capable hardware TPM, introducing another limitation to its usage.

Similarly, taking advantage of the Intel VT technology, Intel proposed its own
container solution called Intel Clear Containers [147]. It provides an alternative
approach which delivers the benefits of both by combining the hardware-assisted
isolation of hypervisor-based VMs with the high performance of Linux containers.
In short, it is a container for a workload wrapped inside its own VM based on
a minimal QEMU hypervisor [148]. The QEMU hypervisor retains the ability to
enforce workload isolation of containers in hardware using Intel VT technology.
All container workloads are spawned by unmodified Docker [36] or Rocket [149]
software stacks and run unmodified within their own VM. Further the TPM helps
applications or VMs to validate the hardware they run on. If the BIOS, physical or
virtual machine configuration doesn’t meet a baseline, the operating system simply
doesn’t boot.

Taking advantage of the para-virtualisation technique, where software running
in guest VM needs to make specially hypercalls, the authors of [150] tried to para-
virtualise the TPM in order to share the TPM amongst several operating systems.
This solution requires the software components running in guest VM to be ported
in order to use the para-virtualised TPM interface instead of the original one. Then
the hypervisor multiplexes the TPM commands, schedule the access to the physical
TPM and prevent unauthorised access to the TPM functionalities.

80

5 — Trusted Network

However, several important resources still need to be virtualised, including PCRs
and EK. Because of this, this solution is not suited for remote attestation, especially
to attest the integrity state of software running in guests, because the vPCRs and
vEK do not provide enough authenticity and integrity guarantees. Apart from
this issue, the only implementation related details disclosed by the authors are the
number of lines of code that was required to achieve TPM para-virtualisation. No
details regarding the platform used for implementation are available in the paper.

With the massive and very successful adoption of Docker [36], operating system
level virtualisation (i.e. virtual container) comes back to public view. Various work
try to extend the chain of trust into the internal of virtual containers. In [151],
the authors proposed the idea to integrate vI'PM with virtual containers with two
different models, i.e. either put the vI'PM instances in the host operating system
kernel but beneath the container manager or in one of the privileged container.
However, the authors only presented their proposals with no actual implementation.

The authors of the original vITPM are also implementing the vI'PM support for
Linux containers [152]. In short, they implemented a vtpm_prozy driver in the Linux
kernel that enables to spawn a TPM device with the front-end being the /dev/tpmX
(where X=0,1,2...) on the host and the back-end being a file descriptor returned
from an ‘octl on /dev/vtpmx. The former is moved into the container by creating
a character device with the appropriate major and minor numbers while the latter
is passed to the TPM emulator. This allows programs to interact with a TPM in
a container using the character device and the emulator will receive the commands
via the file descriptor and use it for sending back responses.

However, this solution does not link the internal of virtual containers to the
physical TPM, thus the integrity guarantee provided is lower. Moreover, because
the integrity state of the underlying host system is not included in a single remote
attestation request to a virtual container, deep attestation is mandatory. This means
in order to attest a virtual container, two remote attestation requests are needed.

CoreOS team?® developed another container engine which is more security fo-
cused. It supports measuring container state and configuration into the TPM event
log, and the measured data include the container root filesystem, the contents of
the container manifest and the arguments passed to container engine [153]. This
provides a cryptographically verifiable audit log of the containers executed on a
physical node, including the configuration of each container. However, the solution
is still incomplete because not all software modules running containers are measured
and extended into the PCR.

An alternative of the TPM as the root of trust is the Intel Software Guard eX-
tensions (SGX) [154, 155], which is available in the 6th generation Intel CPUs. It
provides similar functionalities as the TPM, but software isolation and remote at-
testation are provided using CPU instructions, i.e. the root of trust is built into
the CPU. The software isolation capabilities allow for the software to have private

3https://coreos.com/

81

https://coreos.com/

5 — Trusted Network

data in memory that cannot be accessed by another process, even in the face of a
root-level exploit, as the access control is enforced by the processor. The remote
attestation feature allows a challenger to confirm that certain software is executing
in one of these protected memory regions (called enclaves). When combined to-
gether, a challenger can verify that certain software is running in its enclave before
transmitting private data to it, and can then be assured that the data cannot be
accessed by the rest of remote system, even the operating system.

Nowadays, this topic is very popular in NFV environments, especially because
the SGX enclaves are suited to be trusted execution environment for operations
like perform packet processing. With the help of Intel SGX, the authors in [156]
proposed a secure framework for NF'V applications. The framework provides an
interface to move the VNF state and state processing code inside the enclave. Since
VNF functionality is tightly coupled with their state, what needs to be done by the
framework is to provide a model to only allow relevant state, which needs protection,
to be moved into enclaves. In [157], the authors proposed a packet processing
software module running in SGX enclaves in order to improve the privacy of NFV
applications. Also they experimented the performance overhead introduced by SGX,
and the result shows the computational overhead of using SGX is negligible in a
realistic development scenario. As long as the data is stored inside of an SGX
enclave and makes use of remote attestation to establish a secure channel between
the enclave and the rest of the network, any private data that the VNF needs to
access will be protected.

In [158], the author proposed SCONE, a secure container mechanism for Docker
that uses the SGX trusted execution support to protect container processes from
outside attacks. It offers a standard library interface that transparently encrypt-
s/decrypts I/O data, in order to reduce the performance impact of thread synchro-
nisation and system calls inside SGX enclaves. However, the performance overhead
is more than expected, being around 40% with regards to the service running in
native container environment.

The current limitations of adopting remote attestation in NFV environments
can be summarised as following: (i) the internal of VMs or virtual containers is
not present in the hardware TPM, it is only available in vITPM (e.g., vPCR and
vAIK). (4i) the performance impact of hypervisor-based solutions (e.g., [VP) is huge,
making them less feasible in real-world application. (74) Intel SGX based solution,
while promising, is only supported by a very limited number of devices. Moreover,
SGX is known to be vulnerable to side-channel attacks [159, 160}, such as Conceal
Cache Attacks.

5.2.1 Contribution

Softwarised networks, that heavily rely on software modules running in virtual in-
stances on distributed nodes and virtualisation technology, eagerly need reliable
means to report the software integrity running in virtualised instances. In this
Chapter, we present our design to attest the integrity state of the software service

82

5 — Trusted Network

running not only on the physical platform hosting virtual containers but also inside
these containers (e.g., VNFs). This solution can boost the trustworthiness of net-
work nodes to execute the desired network functions, which is an important step to
create trusted networks.

Our solution has four advantages compared to previous work; (7) virtual con-
tainer instead of virtual machine is chosen as the virtualisation technique because
it is more lightweight and agile, thus more feasible in SDN/NFV environments; (%)
the integrity evidence of the software services running in virtual container is based
on a hardware-based entity, thus the integrity guarantee is as strong as if they are
running directly on bare metal physical hardware; (iiz) for as many virtual contain-
ers can be launched on a single platform, only one integrity report is generated,
which significantly reduces the performance loss compared to other solutions. (iv)
the virtual containers are differentiated from each other, thus the managing entity
can restore trust integrity state of the whole platform by replacing the compromised
virtual container instead of resetting the whole platform.

As a matter of fact, our solution was presented and well appreciated in the ETSI
NFV security working group in the the ETSI NFV meeting hosted in Bilbao on
February 21-24, 2017.

5.3 Requirement Analysis

In this Section, we present the expected properties of trusted softwarised networks
and the requirements to be achieved.

5.3.1 Security Requirements

Hardware-based root of trust: network nodes need to be attested based on
hardware-based evidence. This is a strict requirement to provide the evidence in-
tegrity and authenticity, that elevates the integrity guarantees of the attestation
results.

Platform boot integrity measurement: the boot phase of a network node
need to follow the trusted boot approach that a CRTM is activated as the first
component when the platform is booted. Subsequently, other components loaded
during platform boot phase needs to be measured and the measures need to be
extended into corresponding PCRs by its previous loaded component.

Service load-time integrity measurement: unique identification of loaded ex-
ecutables and configuration files of services (e.g., VNFs) is needed, and the measures
of these structural data need to be inserted or appended in the integrity evidence
signed by hardware-based identity key and evaluated by the verifier.

83

5 — Trusted Network

Attestation of virtual containers: not only the services running in the physical
platform but also the VNFs running inside virtual containers need to be attested
with hardware root of trust. Because in trusted softwarised networks, both the
integrity of the host platforms and the network functions are crucial, hence the
internal of virtual containers must be probed.

5.3.2 Functional Requirements

Fast deployment: the alteration to existing software and hardware environments
should be minimal (if any) and additional concepts introduced should make use of
and have to adhere to existing specifications. Meanwhile, the introduced remote
attestation feature should be transparent to the network function developers, thus
with no additional requirement from their side, as they should use the virtual con-
tainers as the unmodified ones.

Minimal performance loss: new features usually bring performance overhead,
because they need to occupy CPU cycles. In the case of trusted softwarised networks,
the network nodes are typically short of computing power, thus the performance
overhead in the network elements’ side should be negligible.

Differentiate attestation of virtual container: runningin commodity devices,
not all virtual containers are running network functions, since some may be irrelevant
to security sensitive tasks. For this reason, virtual containers need to be identified,
thus it is possible to differentiate whether the compromised container is relevant or
not.

Simple roll back strategy: after a virtual container is compromised, the roll
back strategy to restore the trusted state should be simple, instead of rebooting the
whole platform as it is used to be.

Backward compatibility: the introduced remote attestation feature should in-
cur no additional constraint. Meanwhile the original network should preserve its
behaviour after the remote attestation feature is deactivated.

5.4 Remote Attestation in Lightweight Virtuali-
sation Environments

Considering the requirements defined above, we made the following choices. First of
all, we chose the TPM as the hardware root of trust, because it is widely deployed
in modern commodity devices and its usage is free of charge. Second, we chose
operating system level virtualisation technique (i.e. virtual containers) instead of

84

5 — Trusted Network

\ host + container list () username

—verifier manager
E attestation attestation

response response

admin/user

attestation
request
Integrity
Report

] i i]
RA agent] RA agent [l] A

4 (
IMA measurement IMA measurement
list list

Figure 5.3. Overall architecture of Docker attestation system.

hypervisor-based one (i.e. virtual machines) because the latter is usually much more
heavier than the former [44]. To be more specific, we worked with Docker virtual
container implementation due to its open source nature and extreme active com-
munity. Third, we chose the remote attestation framework described in Chapter 3
as the basis, because it already supports attestation of trusted boot and services
running on the physical platform, thus the expected extension work is minimised.

5.4.1 General Architecture

The general architecture of our Docker attestation system is illustrated in Figure 5.3.
In our schema there are three actors: the verifier, the attester (i.e. virtual container
host) and manager. These three components, as their names suggest, play different
roles in our system.

The manager creates the required virtual containers for deploying network func-
tions and keeps track of both the universally unique identifier (UUID) of the virtual
container (hereafter called virtual container ID or container ID for simplicity) and
the network node ID which hosts the virtual containers.

When the network administrator asks for the integrity of a network function
deployed in some virtual containers running in the network, the manager initiates a
remote attestation process. It sends to the verifier the list of virtual containers to
be checked, along with the list of the network nodes hosting these containers, and
asks for their integrity state.

85

5 — Trusted Network

The verifier is the one defined in Chapter 3, but it needs extension to fulfil the
requirements defined above. It is the core of the architecture, since it is in charge
of evaluating the integrity state of the network nodes and the virtual containers
running in them. After it receives the remote attestation request from the manager,
the verifier first contacts the network nodes in the host list, asking them to send back
their integrity reports, which include the integrity evidence of both the host system
and all virtual containers running in them. With the knowledge of the container
list, the verifier then starts to check the integrity state evidence belonging to the
virtual containers of interest.

Since the manager is in charge of managing all the virtual containers hosting
network functions, it can start a rollback strategy if it notices a compromission of
any virtual container or host. For example, the manager can pause the compromised
container and start a new one to take over its job without rebooting the whole
platform. However, if the host operating system (i.e. the one hosting the virtual
containers) is compromised, then the whole platform must be rebooted because all
containers could potentially have been compromised in subtle and unpredictable
ways (e.g., in their application data).

In order to offer the aforementioned features, several existing components have
to be modified and extended.

5.4.2 Extension of Linux IMA

The first important modification we made is related to the Linux IMA module. We
extended the original module with a new template, with the capability of putting an
identifier of a virtual container in the measurement list. The extension permits to
discern between the IMA measures produced by the host system and those produced
inside a certain virtual container, i.e. to differentiate where the executables and
configuration files are loaded.

Given the internal working of virtual containers, the containers invoke directly
the functions in the underlying kernel of the host system. Thus, when executables
and configuration files in the containers are loaded into kernel memory, these opera-
tions will be automatically captured by the IMA module running in the host system,
so that the corresponding digests are added to the IMA measurement list and the
digest of measurement entry is extended into the PCR10 to ensure the integrity of
the IMA measurement list. This standard feature is the basis of our solution and, in
order to adapt its usage for a container-enabled platform, we created the new IMA
template.

Our template adds a new attribute, called dev-id, which records in which virtual
device the structural data is loaded, thus allowing to identify the corresponding
container. For example, Figure 5.4 displays five measures recorded with our new
template: two of them belong to the host system, which has the dev-id 8:19, while
the other three belong to two containers, specifically those with dev-id 253:1 and

86

5 — Trusted Network

PCR# template-hash template dev-id filedata-hash filename-hint
10 ccd75...21c04 ima-cont-id 8:19 shal:1bc28...aab2c /usr/bin/ping
10 742f2...1£f79c ima-cont-id 8:19 shal:bb53bc...c0740 /usr/sbin/sshd
10 318cc...4fdcb ima-cont-id 253:1 shal:1bc28...aab2c /usr/bin/ping
10 66789...916a4 ima-cont-id 253:1 shal:9fb4b...a02f3 /badScript.sh
10 3fcee...28826 ima-cont-id 253:2 shal:1bc28...aab2c /usr/bin/ping

Figure 5.4. Example of the extended measures (from the IMA ASCII log file).

253:2 (fourth column)?. More in detail, after connecting to the host with SSH, we
launched the ping command (i.e. load ping executable into kernel memory) three
times, one each in the host and in two different containers. Since the ping executable
is the one provided by the host system and shared by all the containers, the digest
recorded in the filedata-hash column is the same for all the records.

The template-hash column is the digest of all the other values in the row con-
catenated and is extended into PCR10 to ensure the integrity of those values. As a
consequence, since the dev-id for the third and the fifth records are different, hence
they have different template-hash values even if the filedata-hash is the same.

Note that IMA records information not only for standard binaries but also for
custom applications, such as the script in the fourth record. As an example, we
assume that this script has been injected into the container exploiting a bug in a
service. When the whole measurement list is sent to the verifier, it will decide if the
container with dev-id 253:1 needs to be checked. If this is the case, the verifier will
announce that this container is untrusted, because the digest of badScript.sh is
unknown in the reference database. In this way, not only the verifier knows what
binaries have been executed, but it can also identify the container or the host system
where they are executed.

This feature brings a key advantage: if a container loses at any point its trusted
state, then the manager does not need to reset the whole attester platform to restore
trust state. On the contrary, it just needs to pause the untrusted container and
start a new one. This feature makes the remote attestation technique much more
appealing from a performance point of view, hence applicable in real cases.

5.4.3 Extension of Remote Attestation Framework

The second component to be extended is the remote attestation agent of our frame-
work. The extension is to support the mapping of the container ID to its device
number (i.e. dev-id) assigned by the host system.

Our remote attestation framework is the core tool for providing the remote attes-
tation function. We extended the integrity report template of the original framework

4The dev-id is defined by the file system driver in the host kernel.

87

5 — Trusted Network

<Container Id="8948d6£f37d41">
<DevId>253:1</DevId>
</Container>
<Container Id="1beb7b9c05s6">
<DevId>253:2</DevId>
</Container>
<Container Id="2f9695f9db36">
<DevId>253:3</DevId>
</Container>
<Host>
<DevId>8:0</DevId>
<DevId>8:1</DevId>
</Host>

Figure 5.5. The extended part of an integrity report.

defined in Chapter 3 by adding new attributes to map the container ID with the
corresponding device number.

This extension is mandatory because the verifier only knows the list of the con-
tainer ID to be checked, which is sent from the manager. But in the integrity report
received from the network node, there is no direct reference to the container ID,
since the integrity report provides only the dev-id assigned by the host system.

Luckily, this modification is simple, since our remote attestation framework pro-
vides support for the transmission of the IMA measurement list to the verifier. What
remains to be done is to add new elements and types in the XML schema used by
the integrity reports. Additionally, the remote attestation agent is also modified so
that it inserts these new elements in the reports.

As shown in Figure 5.5, the new XML elements added are:

e a Container element providing the mapping between a container’s ID and the
associated virtual device number created in the host system;

e a Host element containing the list of all physical device numbers associated to
the host system.

5.4.4 Extension of IMA Verification Procedure

Finally, the last component to be modified is the remote attestation verifier, by
extending its original behaviour to distil the containers to be attested out of the full
integrity report when it receives a remote attestation request from the manager.

As presented in Chapter 3, the verifier has the ability to attest the services run-
ning on the physical platform by using a reference database storing the digests of

88

5 — Trusted Network

all known “good” executables and configuration files for a certain purpose. For in-
stance, it is possible to initially populate the database with all the elements in the
packages available in the official repository for multiple Linux distributions. How-
ever, this approach has a drawback that it only considers the platform as a whole. If
the integrity report contains just one unknown digest for a loaded binary or applied
configuration file, the verifier will evaluate the whole platform as untrusted and a
trusted state can be restored only by resetting the whole platform. Unfortunately,
resetting a physical platform hosting tens or hundreds of VMs or virtual containers
is not acceptable in a real-world scenario when the problem is affecting just one
virtual instance.

For this reason, we need to extend the original implementation. We introduce a
new analysis type in the verifier, named cont-check, which requires as parameter a
list of the containers to be checked. We call this list cont-list and it is created by
the manager based on the virtual container to be verified for a specific service or
user. The new cont-check analysis type works cooperatively with load-time analysis
type, it reduces the full IMA measurement lists received from the network nodes by
keeping for each node only the measures related to the containers of interest plus the
measures generated by the host system (since it is the base for running the virtual
containers). Afterwards, the verifier compares this reduced list of measures with the
known good values in the reference database in order to decide if there is unknown
measure(s) or if all active software services achieve the required trust level based on
their IMA measures.

As previously explained, each measure in the extended IMA template is linked
to its virtual device ID, so the verifier knows if a measure is related to the host
system or to a container (and in this case, which one). In this way, the result of
the verification is related only to specific containers. For example, if one container
is compromised and it is present in the cont-list, then the attestation result will
be untrusted. Or if the software service running in a container of interest does not
achieve the required trust level. On the contrary, if the compromised container is
not in the cont-list (i.e. the manager does not care about its state, for example
because it is not involved in any sensible operation), the overall system status will
remain trusted.

In the case of untrusted result, the verifier and the manager know which measures
are unknown or bring security and functional bugs from the reference database
and which container they belong to, so the manager can proceed to replace only
the corrupted container in the attested host, with no need of rebooting the whole
network node.

5.5 Discussions

In this Chapter, we presented our solution, an architecture to support integrity
verification of operating system level virtualisation instances, i.e. virtual containers,
using trusted computing techniques.

89

5 — Trusted Network

With this solution, the service running in the virtual containers can be practically
attested as if they would be running on a physical platform, and the integrity state of
the virtual containers can be well understood by a third party in a reliable manner.
The capability to directly interact with the hardware root of trust makes the integrity
reports from the virtual container host non-forgeable, which has strong resistance
against remote attacks.

Another important feature of our solution is that, the verifier is able to know
exactly which element (container or host system) is compromised. Thus the network
manager can take informed decision about the rollback strategy, e.g., pause just the
compromised virtual container or stop all containers and restart the whole platform.

Moreover, our solution is transparent to the services running in virtual contain-
ers, that they don’t need to be modified in any way as if they are interacting with
a normal operating system level virtualisation environment. All modifications to
enable remote attestation are small and performed directly in the host system. This
makes our solution very easy to be adopted and without any impact to the hosted
services. As a matter of fact, our solution can be directly applied in cloud computing
environment to monitor more general service running in virtual containers.

Last but not least, the images in current official Docker repository contains
various known vulnerabilities because of out-of-date software, according to [161],
24% of latest Docker images have significant vulnerabilities. This situation justifies
the needs of the integrity level in our remote attestation framework, which is able to
identify which software and container has security vulnerability or functional bugs.

90

Chapter 6

Implementation Details and
Performance

Besides theoretical proposals, we also provide details about the implementation.
Our implementation is based on existing and widely adopted open source software,
mostly released under open source license in the SECURED [64] European project
and available to be deployed directly®.

Moreover, we also provide extensive performance details of our systems, including
the performance overhead in the attester with the additional remote attestation
feature, the overall time needed of a remote attestation operation in our framework,
the time needed to establish a trusted channel and the performance impact in virtual
container environment.

6.1 Remote Attestation Framework

Our remote attestation framework is developed based on Intel’s OpenAttestation
(OAT) SDK v1.62, which we largely extended for our purpose. The original OAT
framework aims to deal with the integrity state of the boot phase of physical plat-
forms equipped with a TPM, thus a machine is considered trusted to deploy virtual
machines if the machine is booted with all known components in the right order.
However, it does not take into account the integrity of the platform after they are
running, which leaves a gap for a wide range of remote attacks.

In the following paragraphs, we first briefly describe the original OAT framework,
pointing out its drawbacks and advantages in order to justify our choice of using
it as the basis of our development. Then we present our enhanced version of OAT
(hereafter referred as OAT v1.7), detailing our extensions and performance efficiency
of the new version.

https://github.com/SECURED-FP7/
Zhttps://github.com/OpenAttestation/OpenAttestation/

91

https://github.com/SECURED-FP7/
https://github.com/OpenAttestation/OpenAttestation/

6 — Implementation Details and Performance

6.1.1 OpenAttestation SDK

First of all, the original OAT framework is well designed and provides all compo-
nents necessary to adopt TCG-defined remote attestation feature, of which we took
advantage in order to avoid reinventing the wheel. It provides three important fea-
tures that reduce the amount of work from our extension, which are PrivacyCA,
WhiteList tables and integrity report portal.

As described in Chapter 3, PrivacyCA is required to certify a TPM generated
ATIK associated with the its EK when the platform is registered to the verifier. We
chose PrivacyCA approach instead of Direct Anonymous Attestation (DAA) [28, 95]
because in our working scenario, the attestation targets are servers instead of user
terminals, thus we do not consider the privacy issue. As a matter of fact, in our
scenario we prefer the server identity to be revealed to the end users, so they can
have a hardware-based identity proof of the server, hence removing the chance of a
shadow server attack. Also, DAA is a very complex protocol which requires multiple
interactions with the TPM in order to generate a valid quote output that introduces
unnecessary performance overhead in our solution.

The native support of the Whitelist table is another advantage, since this feature
can be directly used to evaluate the boot integrity of attesters. As described in
Section 3.5.1, the final PCR values are fixed and predictable if the components
loaded in the boot phase are intact.

Integrity report portal summarises all previous reports may not be a mandatory
feature for a remote attestation framework, but it is a very useful feature because
in our case the integrity report is largely extended and a portal can help to identify
the compromising point of the attester.

All the data of registered AIK certificate, whitelist PCR values and the received
integrity reports are stored inside a well structured MySQL database®, which makes
efforts of the management and our extension moderate.

After presenting the advantages of OAT v1.6, we then have a look at the way
OAT v1.6 works, especially the remote attestation process and why it needs to be
extended.

The attestation process proposed by OAT v1.6 relies on the appraiser’s orchestra-
tion role and the polling feature implemented on the remote attestation agent. The
latter periodically polls the remote attestation API for new actions to be performed.
If an attestation request is submitted, the appraiser defines a new send_report
action for all involved agents and the corresponding agents start their work. For
instance, when the agent receives a send _report command, it generates an integrity
report which contains just the output of a Quote operation from the TPM, obtained
through the mediation of the TrouSerS software stack [54]. In particular, the PCR
values are stored into an element named QuoteData in the integrity report, which
contains the necessary information to prove the integrity and freshness of the PCR

3https://www.mysql.com/

92

https://www.mysql.com/

6 — Implementation Details and Performance

values, such as the nonce, the selected PCRs, and the AIK signature of the PCR
values.

All integrity reports from remote attestation agents are collected by the ap-
praiser, which executes a three-step validation process as a whole. In the first step,
the appraiser validates the authenticity of the integrity report by verifying the AIK’s
signature with its registered public key. Then it compares the received integrity re-
port to the last one from the same agent, and if the PCR values in both reports
are the same it means the integrity state of the platform has not changed, so the
appraiser just gives back the same result as the last one. Otherwise, the appraiser
compares the received PCR values to the ones stored in the WhiteList table, in
order to conclude the integrity state of the platform.

However, this validation approach has two drawbacks. First, it has no flexibility,
since the appraiser can give only Boolean decisions, either trusted or untrusted.
There is no intermediate level and the result contains no useful information (e.g.,
why the platform is untrusted). Second, the whitelist table used by the appraiser is
a set of binary cumulative measures, and by nature, the extend operation is order
sensitive, i.e. extend(A,B) # extend(B,A). Thus in order to get a positive result, not
only “good” components are loaded, but also they need to be loaded in a specific
order.

Both problems limit the feasibility of remote attestation in real-world applica-
tions. For example, the whitelist approach is infeasible to be used to prove the
integrity state of services running in application layer, since it is practically impos-
sible to set the executables and configuration files to be loaded in a predefined order
and no modification is allowed afterwards (e.g., no change of their configurations).

6.1.2 Enhancements to OpenAttestation

Extensions to the original OAT framework have been designed following the ideas
presented in Chapter 3. Because the original OAT framework does not allow plug-
gable components, thus our extension has to dig into its internal source code.

First of all, we extended the appraiser web service in order to expose the re-
ceived integrity reports to external tools and storage with a RESTful API through
a function called fetchReport. The API receives the integrity report ID and gives
back the raw integrity report in XML format from the MySQL database, which can
be invoked by external analysis tools that have been registered to the appraiser.

Then we modified the remote attestation agent that appends the IMA measures
in the integrity reports. Especially we added a new SnapshotType and its sub-
attributes in the integrity report, which contains the IMA measures. However, in
order to send arbitrary length bytes without getting corrupted by, e.g., a couple of
special symbols, in which case may break the transmission, all information retrieved
from the operating system (e.g., executable names) are encoded in Base64 format,
thus the raw integrity report is less human readable (Figure 6.1).

93

6 — Implementation Details and Performance

<Values>
<ns4:SimpleObject>
<ns4:0bjects Image="BQAAA...RvcgA=" Type="ima">
<ns4:Hash AlgRef="shal" Id="PCR_10_LV1_O_1_EVENT">KYh...N8Y=</ns4:Hash>
</ns4:0bjects>
</ns4:SimpleObject>
</Values>

Figure 6.1. Example of an IMA measure in an OAT integrity report.

bash oat_pollhosts -h verifier ’{"hosts":["attester"],
"analysisType":"VALIDATE_PCR;load-time,l_req=14_ima_all_ok|=="}"

Figure 6.2. A remote attestation request calling two analysis types.

Afterwards, the hash value (i.e. the digest of the measurement entry) in the
report will be extended one after another and the final value will be compared to
the one stored in the quote output, in order to prove the IMA measures are intact.

After the integrity report is extended to include IMA measures and exposed
through fetchReport function, we modified the internal source code of OAT ap-
praiser in order to change the hardcoded analysis types (i.e. compare reports and
validate PCR) into adjustable parameters and exposed another RESTful APT (called
analysis Types) for the registration of external integrity report analysis tools (Fig-
ure 6.3).

From now on, attestation request is adjustable. For instance, in Figure 6.2,
the remote attestation request is calling two analysis types, i.e. VALIDATE_PCR
and load-time. Thus, it will compare the received PCR values to the whitelist
table and call the external tool which is registered with load-time analysis type
(i.e. in our case, the IMA measure verification script registered as shown in Fig-
ure 6.3). Meanwhile the load-time analysis type has its own input parameters, i.e.
l_req=lj_ima_all_ok| ==, it means that the required integrity level is 4 with all IMA
measures must be known and the software services must be up-to-date regarding to
the reference database.

In order to minimise the performance impact introduced by the largely extended
integrity reports, we introduced a new feature called partial integrity reports, which
only contains data have not been sent to the appraiser. As mentioned in Chapter 3,
we can achieve this feature thanks to the nature of the extend operation. In order
to do so, we added a new field to the attestation log, called firstReport, which stores
the ID of the report containing the first part of the list of measures. With this
additional information, the appraiser is able to build a report with the complete
set of measures from partial reports. On the remote attestation agent side, it is
extended to store the number of bytes read from the measurement list file and the
last measure read, thus it can ignore data which have been sent previously when
the appraiser requests a report of type ‘continue’ (i.e. an identification of partial
integrity report).

In Figure 6.4, there is only one file newly measured by IMA, and we simulate

94

6 — Implementation Details and Performance

addAnalysisType () {
curl -H "Content-Type: application/json" -X POST \
-d ‘{"name":"load-time","module":"IMAVerify","url":" ‘$RAPATH’ -H ¢$DBIP’"}’> \
"https://verifier :8443/WLMService/resources/analysisTypes"

}

Figure 6.3. Registering load-time as a new analysis type.

<ns3:PcrValue PcrNumber="0">BirD520eWLX4kZdDyaORcqagziw=</ns3:PcrValue>
<ns3:PcrValue PcrNumber="9">AAAAAAAAAAAAAAAAAAAAAAAAAAA=</ns3:PcrValue>
mtegnty <ns3:PcrValue PcrNumber="10">jZiQlffKn+QzK3M4p2x4yGy+kK0=</ns3:PcrValue> ==
report <ns3:PcrValue PcrNumber="11">AAAAAAAAAAAAAAAAAAAAAAAAAAA=</ns3:PcrValue>

<ns3:PcrValue PcrNumber_"23">AAAAAAAAAAAAAAAAAAAAAAAAAAA </ns3:PcrValue>

| echo —n jZiQlffkn+QzK3M4p2x4yGy+kKO= | base64 -D |

echo —n sChQkoX6UQ56mknT75qyuYSi+ks= | base64 -D |

v
b028509285fa510e7a9a49d3ed2ab2b984a2fa4b (in hexdecimal) EXTEND
sChQkoX6UQ56mknT7SqyuY Si+ks= (in base64)

|openss| dgst -shal -binary | base64

<ns3:PcrValue PcrNumber="0">BirD520eWLX4kZdDyaORcqgagziw=</ns3:PcrValue>

<ns3:PcrValue PcrNumber="9">AAAAAAAAAAAAAAAAAAAAAAAAAAA=</ns3:PcrValue>
integrity <ns3:PcrValue PcrNumber="10">fahgxfeRW9l+TDO3PI/e1Lse81w=</ns3:PcrValue> ¢
report <ns3:PcrValue PcrNumber="11">AAAAAAAAAAAAAAAAAAAAAAAAAAA=</ns3:PcrValue>

<ns3:PcrValue PcrNumber="23">AAAAAAAAAAAAAAAAAAAAAAAAAAA=</ns3:PcrValue>

Figure 6.4. Extend operation with partial integrity report.

the extend operation with software tools (i.e. openssl and echo). The data are
operated in bit level, thus the concatenation operation needs to first decode the
base64 data, then the concatenation result are inputted to openssl with the binary
option and later the binary output are encoded to base64. The PCR10 value in the
new integrity report shows that the final result of our simulated operations is the
same one as the TPM extend operation.

Either with full or partial integrity reports, every time the remote attestation
agent receives a send_report request, it generates a fresh quote output and sends it
back to the appraiser. This operation is to prove the remote attestation agent is not
lying about if there are new executables loaded into kernel memory, i.e. measured
by IMA. The difference between full and partial integrity reporting is only relevant
to the IMA measures to be inserted into the integrity report.

Moreover, if the PCR values in the integrity report is the same as the previous
report, it means the integrity state of the attester has not changed, thus the new
integrity report will not be stored in the attestation log in order to save the disk
space of the verifier.

95

6 — Implementation Details and Performance

Periodic attestation request has also been implemented because getting a fresh
remote attestation result on-the-fly is time consuming, since it needs several seconds.
Hence we introduce periodic attestation request to always have a valid attestation
result and give back the result immediately. A new function named getPendingRe-
quests was introduced to obtain a list of attestation requests to be served from the
OAT MySQL database for either periodic or non-periodic requests. This function
will be invoked by the attestation API to know if there is any attestation to be
performed for a certain attestation agent.

In the case there is a periodic attestation request, the appraiser first checks if
the request has expired by comparing the associated expiration time to the age of
the request. Afterwards, it checks if the time threshold is less than the difference
between the current time to the last request time, if so, the appraiser sets the flag
asking the remote attestation agent to send its integrity report, otherwise the period
threshold is not reached and the agent needs to do nothing. In the end, the appraiser
updates the request time associated with the request in the OAT database in order
to tell if the attestation threshold is reached in the next time. While in the case
there is a non-periodic attestation request, the appraiser directly sets a flag asking
the remote attestation agent to send its latest integrity report.

IMA Measure Verification

After the description of our OAT framework extension, in the rest of this section we
will have a deep look at the IMA measure verification implementation (i.e. load-time
analysis type) and its reference database creation.

The IMA measure verification tool is developed using python. After it is regis-
tered in the new OAT framework (Figure 6.3), it can be invoked through the remote
attestation API by calling load-time analysis type. Then the script accesses the in-
tegrity report received from attester and evaluates the IMA measures in the report
based on the defined arguments. Since the script is invoked through the remote
attestation API, its evaluation result influences the global attestation result of the
attester.

In the first step, the IMA measure verification tool gets the received integrity
report by calling the fetchReport function with the latest report ID of the attester.
Then it distils the IMA measures from the integrity report and parses them from
Base64 to ASCII, and creates a dictionary containing all IMA measures. Since OAT
has already checked the integrity state of the IMA measures in the integrity report,
then the verification tool can rest assure and query these IMA measures in the
dictionary directly to a reference database and give assessment result.

Development of the IMA measure verification tool is straightforward and the
difficult part is creating the reference database. We chose to use Apache Cassandra?,

“http://cassandra.apache.org/

96

http://cassandra.apache.org/

6 — Implementation Details and Performance

a highly-scalable NoSQL database, suited to manage huge amount of data with a
key-value structure (i.e. the digest values).

The Cassandra data model is based on the concept of Column, an elementary
data structure with a name (or key), a value and a timestamp. It also supports a
more complex data structure, called SuperColumn, whose value consists in a map of
Columns instead of plain data. Moreover, since the structure is dynamic, the row
(i.e. the key), its Column or SuperColumn can be inserted together.

Following the definition in Chapter 3, our database is organised around two main
Column Families: FilesToPackages and PackagesHistory. In FilesToPackages,
each digest is organised as a row in the database and its full path name and the
packages are organised as Columns. The package name is further grouped by the
distribution name (e.g., CentOS) and the processor architecture (e.g., x86) as a Su-
perColumn. Meanwhile in PackagesHistory, the row is the concatenation of the
package name and its distribution. Further the package’s version and its release num-
ber is organised as another SuperColumn in the same way as released by repository
maintainers. In the end, the package full name and its update type are organised as
Column. In this approach, the packages with same name and distribution can have
a sorted order based on the package version. Thus when the reference database is
queried, it can give result immediately without sorting the package version on the

fly.

After the reference database is structured, the next step is to find the correct
data and fill the database. The task is more complicated, especially to find the
update type of each package, which will be used to conclude the integrity level of
the attested platform. For different distributions, we have to use different methods
and tools to get this information.

Software packages of Ubuntu® are published and stored according to their types,
which can be:

e trusty: normal release;

e trusty-backports: unsupported updates, it offers a way to selectively provide
newer versions of software for older Ubuntu releases;

e trusty-proposed: pre-released updates, i.e. the testing area for updates;

e trusty-security: important security updates; patches for security vulnera-
bilities in Ubuntu packages;

e trusty-updates: recommended updates; updates for serious bugs in Ubuntu
packaging that do not affect the security of the system.

Shttps://www.ubuntu.com/

97

https://www.ubuntu.com/

6 — Implementation Details and Performance

The packages are downloaded using debmirror® and stored in the local disk before
further processing. Their update types are derived from the repository name’. Then
a python script named client_insert_pkg_hash.py is called to dissect the compiled
packages, computing the SHA1 digests of the binaries inside, and insert the digests,
package names and versions, update types into the reference database.

The software packages of other three distributions are processed with a similar
approach. Fedora® and CentOS® are downstream distributions of Red Hat'°. They
share some similarities inherited from Red Hat, e.g., they both use RPM Package
Manager and install .rpm suffix packages. Sometimes, the update packages are
compiled from the same source file used for patching the upstream Red Hat instal-
lation. Eztra Packages for Enterprise Linuz (EPEL)M is a Fedora Special Interest
Group that creates, maintains, and manages a high quality set of additional pack-
ages for Enterprise Linux, including, but not limited to, Red Hat Enterprise Linux
(RHEL), CentOS and Fedora. It is usually a supplementary repository for CentOS
and Fedora, thus we also create a reference database for it.

These three distributions do not have a unified tool to download the compiled
packages from their repositories, but luckily most repositories can work with the
rsync'? protocol.

Fedora community (including EPEL) has a very nice website!® for interacting
between developers and users. In this website, each package publishes its submit-
ter, release, status, and most importantly, the update type (Figure 6.5). Thus, we
developed a new python script to parse the web pages in order to find the update
package name and retrieve its update type directly from the web site. When Red
Hat downstream distributions are chosen to host the verifier, then we can directly
use bodhi-cli'* tool to display the update type for each package, but this tool is not
available for Debian-based distributions.

Unfortunately, CentOS does not have such website, hence a different approach
to retrieve the update type for each package is needed. There are two possibilities:
searching for the information from the upstream Red Hat update website!® or the

Shttps://linux.die.net/man/1/debmirror/

"Lately Ubuntu repository changes the way to publish update packages, the actual packages
are released in a single directory but the information of these packages is still stored in separated
directories as it used to be, so the approach is the same, but needs some modification to the
implementation.

8https://getfedora.org/

https://www.centos.org/
Ohttps://www.redhat.com/
Uhttps://fedoraproject.org/wiki/EPEL/
2https://linux.die.net/man/1/rsync/
13https://bodhi.fedoraproject.org/updates/
Yhttps://fedoraproject.org/wiki/Bodhi/

5https://rhn.redhat.com/errata/rhel-server-7-errata.html

98

https://linux.die.net/man/1/debmirror/
https://getfedora.org/
https://www.centos.org/
https://www.redhat.com/
https://fedoraproject.org/wiki/EPEL/
https://linux.die.net/man/1/rsync/
https://bodhi.fedoraproject.org/updates/
https://fedoraproject.org/wiki/Bodhi/
https://rhn.redhat.com/errata/rhel-server-7-errata.html

6 — Implementation Details and Performance

FEDORA-2015-15798
Submitter @ vravec

Builds selinux-policy-3.13.1-128.13.fc22 =0

Update ID FEDORA-2015-15798
Release F22

Karma stable threshold: 3 unstable threshold: -2
Type

Severity

Status

Suggestion

Submitted 8 days ago, 2015-09-14 09:59:10.428460

Figure 6.5. Fedora update system.

CentOS package announce mailing list!®.

Although most of CentOS update packages are compiled from the source package
of Red Hat, still quite a lot of CentOS packages are missing in the Red Hat website.
On the contrary, the mailing list is a better option. In the mailing list, we can have
the update package name, the update version and the update type (Figure 6.6). The
format of the mail is consistent, which saves our effort to adapt the script to find
the update type information.

Similar to Ubuntu, all downloaded packages from the repositories of these three
distributions are dissected, the SHA1 digests of all binaries will be computed and
inserted into the reference database, along with the package name, package version
and package update type.

Collecting and filling all the information into the reference database is a time
consuming process, for example, Ubuntu trusty (14.04 LTS) alone has more than
10,000 packages in 60 GB that need to be downloaded and processed. However,
only the first time to create the reference database is time consuming, afterwards,
only the newly uploaded packages will to be appended into the database, which
requires very little time.

Creating the reference database is more difficult than developing the standalone
IMA measurement verification tool. It heavily relies on the support from the distri-
bution repository maintainers. Finding the relevant information from Fedora and
EPEL website is more straightforward, but the format and the URL address change
from time to time, and a lot of efforts are required to adapt to these changes. On

https://lists.centos.org/pipermail/centos-announce/

99

https://lists.centos.org/pipermail/centos-announce/

6 — Implementation Details and Performance

Cent0S Errata and Bugfix Advisory 2015:1542
Upstream details at : https://rhn.redhat.com/errata/RHBA-2015-1542.html

The following updated files have been uploaded and are currently
syncing to the mirrors: (sha256sum Filename)

x86_64:
5c1f6a42a94fb5b12dcde9739900234872aac346d837414dd330153bc24bee85a
unix0DBC-2.3.1-11.e17.1686.rpm
932850e7a11b5ce7f35e47ealbf29da70c28a36bf7ba2f8650554c8bf1fb3985f
unix0DBC-2.3.1-11.e17.x86_64.rpm
6a03a1740c5bbeb6d6a9facddcab6abe86c87e204f6878470df9c0601dlclcaell
unix0DBC-devel-2.3.1-11.e17.i686.rpm
48d78784659d95b2800ffaebd7£f43677e5646eb3bel6646cc2cf2c1ba9d642d0
unix0DBC-devel-2.3.1-11.e17.x86_64.rpm

Source:
70b40153fb4659ec6177b65d5£f948d16e0e8342656d18c4c294547eb3acff1d3
unix0DBC-2.3.1-11.el7.src.rpm

Johnny Hughes
Cent0S Project { http://www.centos.org/ }
irc: hughesjr, #centos at irc.freenode.net

Figure 6.6. Example mail from CentOS-announce mailing list.

another hand, for CentOS update packages, it may happen that some packages are
published, but they cannot be found in the announce mailing list, so we have to
find the update type of these packages manually from the upstream website. If a
package has no update type information, an unknown update type (treated the same
as newpackage) is defined for them, indicating that this package is released in official
repository, but there is no update type information available.

6.1.3 Performance Evaluation

In order to assess the performance of our implementation, we present the data
collected in our testbed.

The setup

We use two different machines in our setup, acting as the attester and the verifier.
In order to simplify the scenario, the reference database is running inside the same
machine hosting the OAT appraiser (i.e. verifier), but it can be deployed in another
machine.

One of the advantages provided by our approach is that the attestation burden
lies in the machine hosting the verifier, while approximately no performance impact
exists on the attester side. For this reason, the devices deployed are as following: one
very old (i.e. powerless) device is used as the attester to exacerbate the performance

100

6 — Implementation Details and Performance

impact, while one powerful virtual machine is used as the verifier and hosts the
reference database. The individual specifications are those:

e qattester: Intel Core 2 6400 CPU @ 2.4GHz + 2GB RAM + Infineon TPM
v1.2 4+ 160 GB hard disk

e verifier: a KVM virtual machine assigned with 2 Intel Xeon CPU cores
@ 2.4GHz + 4GB RAM and 160 GB hard disk

To reduce the network influence in the test, both machines are connected to
the same switch. Although multiple Linux distributions are supported by in our
approach, in our test, we use CentOS 7 with distribution kernel version 3.10.0-
229.el7.x86_64 as the operating system in the attester. Because CentOS is the first
Linux distribution compiled with IMA enabled by default and it is one of the most
widely adopted operating system in servers. Similarly, the verifier is also running
CentOS 7, but the distribution kernel version is 3.10.0-123.20.1.el7.x86_64.

Test cases

In our work, the performance of concern is the attestation cost, mainly the perfor-
mance penalty introduced to the attester with IMA and RA and the time needed
for the verifier to finish its analysis.

In order to accurately test the performance penalty in practice, we simulated a
real-world use case, with the attester set to perform operations similar to those of a
HTTP server reacting to incoming requests. To discard the influence of the network
communication, which may be unstable because of various reasons, we deliberately
decided to perform only local I/O operations with a local trigger to start all the
operations. In this test, the attester creates a single 1 MB file, then starts an infinite
loop to repeatedly compute the SHA512 digest of this file. At every computation a
counter is updated in a file on disk. This test mimics the case that a server reads a
request, performs a computing operation and writes log data on disk.

We repeated the test ten times for each of the three different settings: basic
configuration (i.e. no IMA and no RA), execution IMA policy configuration (i.e.
IMA activated with execution policy described in Section 3.5.4 but no RA) and
finally IMA remote attestation configuration (i.e. IMA activated with execution
policy and RA requested every 10s). Each run of the test lasts 300 s and the recorded
results are presented in Table 6.1.

As it is shown that the differences among these three configurations are minor,
the overall performance is only slightly affected by the introduction of IMA and
RA. Considering as a reference the average value of performed operations without
neither IMA nor RA, the performance only drops by 0.66% in average with IMA and
RA enabled and in worst case the performance drops about 2.8%. So we conclude
that the performance impact of our proposed integrity verification feature is nearly
optimal and suitable for application in real-world cases, with respect to the overhead
on the attesting platform.

101

6 — Implementation Details and Performance

no IMA, no RA | IMA, no RA | IMA, RA
MIN 49,705 49,604 48,702
AVG 50,109 49,894 49,778
MAX 50,584 50,600 50,366
index 100% 99.57% 99.34%

Table 6.1. Number of operations and performance index in three configurations.

The verifier is hosted on a (trusted) third party, which also hosts the reference
database and needs to query the latter with the IMA measurement list received from
the attester. Although its performance has no direct influence on the attester, but
its behaviour affects the overall performance of remote attestation process.

As described above, our updated remote attestation framework supports multiple
analysis types of integrity reports, the user can define his preferred analysis type in
the attestation request, individually (only one analysis type) or cumulatively (overall
analysis with all supported analysis types).

The most important analysis type is load-time, i.e. the IMA verification script
is invoked to analyse the IMA measurement list to check the if the binaries exe-
cuted and the configurations applied are known in the reference database, mean-
while it concludes the integrity level of the attesting platform. This analysis is
more time consuming, while the other two analysis types, VALIDATE _PCR and
COMPARE_REPORT take less time (the functions are also much simpler). Thus
we launched ten remote attestation requests with each analysis type with a fresh
CentOS 7 minimal installation without any software running on it, in this case the
number of IMA measures in the attester is 290.

Table 6.2 presents our test results of elapsed time (the period between user
submits a remote attestation request until he receives the result) and processing
time (the period between the OAT verifier receives the integrity report until it
produces the result) for each attestation analysis type.

ANALYSIS TYPE ELAPSED TIME (s) | PROCESSING TIME (s)
COMPARE_REPORT 5.672 4.606
VALIDATE_PCR 5.842 4.758
load-time 6.757 5.738

Table 6.2. Average elapsed and processing time for each analysis type.

As presented, the time required by load-time analysis type is about 1s longer
than the other two analysis types. But be reminded that in all three cases, the
remote attestation agent needs to insert all 290 IMA measures into the integrity
report and the difference comes from the verifier side, i.e. if the verifier needs to
call the IMA verification tool or not. The time needed in all three analysis types
will increase with the number of IMA measures increases, and this behaviour is
more clear in load-time analysis type because every new IMA measure introduces

102

6 — Implementation Details and Performance

I \}
attester 1
: O
1)
1 c
: RO, &
: measurement 1 2 <
list o
: L@
1
: @) :
: :
1 TPM 1
! 1

Figure 6.7. Actual remote attestation process in the developed framework.

additional workload to be queried to the reference database and evaluated with the
integrity level.

Now we are going to have a deep look at the load-time test result presented in
Table 6.2. When the verifier receives a remote attestation request from a user, the
following seven steps must be performed before the verdict can be issued (Figure 6.7).
The details of time used in each step in our framework are the following: in order to
minimise performance loss and attack surface of the attesting platform, the remote
attestation agent does not accept incoming attestation requests from other parties,
rather it periodically polls the verifier (it registered to) at a predefined interval (step
0). Once a remote attestation request is present as a flag (step 1), the agent issues
a quote request to the TPM (step 2) for getting the signed PCR values and uses
the result plus the recorded IMA measures to create the integrity report (step 3).
The time to perform a quote operation is fixed while the time to prepare the IR is
proportional to the number of IMA measures because each measure along with its
name must be encoded in Base64 and then appended to the XML template defined in
the TCG specifications. Thus the size of the integrity report is also proportional to
the number of IMA measures and so is the time needed to transmit the report from
the attester to the verifier (step 4). After the report is received, the verifier checks
the digital signature of the quote output against the public key certificate of the
attester, stored when the host machine was registered. Next the consistency of the
IMA measurement list is checked against the PCR values (i.e. PCR10), as previously
shown in Figure 3.3 (step 5). When these steps are completed, the measurement list
is passed to the IMA verification tool to be compared to the reference database, in
order to evaluate the integrity level of attester (step 6). At this point, the verifier
is able to return the integrity verification result with load-time analysis type.

In our setup, each remote attestation agent running in attester polls to the
verifier every 2s (an adjustable parameter), so the time cost for step 0 and step
1 is non-deterministic, and it is relevant to the time instant of sending the remote
attestation request from the verifier. This is the reason why in Table 6.2 the average
elapse time is about 1s more than the process time in all three analysis types.

In step 2, the remote attestation agent needs to get the quote result from the
TPM. This operation is performed through the TrouSerS TCG software stack [54]

103

6 — Implementation Details and Performance

and it takes around 2s for the remote attestation agent to get a quote result from
the TPM in CentOS 7, which is consistent with the results in [162].

The time to create a TCG compliant integrity report (step 3) in the attester
is proportional to the number of IMA measures in the list. It takes about 2.4s in
case of 290 IMA measures. But be reminded that the attester is running on an old
machine, and with a more powerful device the time could be reduced. When the
integrity report is ready with these 290 IMA measures, its size is about 96.5kB.

The network quality (step 4) impacts the time that the attester sends its integrity
report to the verifier. In order to evaluate the network impact to each attestation
operation, we used iperf3, a tool for active measurements of the maximum achievable
bandwidth on IP networks'” to evaluate the network connection speed. The average
bandwidth from the attester to the verifier ranges from 11.0 MB/s to 11.8 MB/s, and
the average is 11.3 MB/s. Considering the integrity reports, whose maximum size is
about 100kB, the time for transferring the reports is negligible (around 0.01s).

In step 5, the verifier needs to perform two operations. First it checks the AIK
signature in the integrity report, then it extends the measures in order to see if the
IMA measures have been modified. This step is rather fast, as it takes around 0.4s.

Finally, in step 6, the IMA verification tool is invoked to query the IMA measures
with the reference database. With 290 IMA measures, the time needed to assess the
measures and conclude the final result takes around 0.95s.

In order to present the performance improvement of partial IR (mainly in step
3, since extend operation in step 5 is very fast which makes the improvement neg-
ligible), we launch RA requests in both normal mode and in partial IR mode, and
the results are presented in Table 6.3.

OPERATION | normal mode | partial IR mode | improvement
create IR time 2.385s 1.738s 0.647s (27.1%)
IR size 96.5 kB 3.7kB 92.8kB (96.2%)

Table 6.3. Performance improvements with partial integrity reports.

In normal mode, the integrity report sent from the attesting platform comprises
290 IMA measures, and its size is about 96.5kB. On the contrary, a partial integrity
report is sent when a new measure is detected, then it only contains one IMA measure
and its size is about 3.7kB. The time to generate a full integrity report is about
2.38s and it is reduced to 1.74s with a partial report (27.1%).

The partial IR feature can significantly reduce the time cost in step 3 by dis-
carding the duplicated IMA measures to be processed, and slightly improve the
performance of step 5 by discarding duplicated extend operations. Potentially step
6 (query IMA measures to the reference database) can also benefit from partial in-
tegrity report, because only a subset of IMA measures (i.e. IMA measures in the

http://software.es.net/iperf/

104

http://software.es.net/iperf/

6 — Implementation Details and Performance

300 290
250
200

150

106
100

29

16
0] -

boot time login web service database

Figure 6.8. The number of the IMA measures in a typical web server.

latest partial integrity report) needs to be queried to the reference database. How-
ever, this benefit brings an additional problem with regard to unknown digests in
the previous integrity reports. If the usage scenario is simple that all IMA measures
are equivalent, then this problem can be solved with an additional flag showing if
there is unknown digest in each report. However, this is not always the case, as
we will show in the trusted channel and the virtual container attestation scenarios.
Hence step 6 is not taking advantage of the partial integrity report feature, each
time the IMA verification tool is called, all IMA measures collected starting from
the platform boot are queried to the reference database.

In a typical situation, when the attester is booted, the OAT appraiser attests it
in order to ensure the integrity of booting process (measured by TrustedGRUB2'®
and validated with VALIDATE_PCR analysis type'?), at that time, the number of
the IMA measures is 290. Afterwards, IMA measures another 29 executables with a
local login operation, 106 executables with the activation of the Apache web service
and 16 executables with the activation of an SQL database (Figure 6.8). In total,
the full IMA measurement list contains at least 441 measures when the web server
system is up and running in a stable phase without considering configuration files.

In order to show the benefit of the periodic attestation feature of our remote
attestation framework, we set the verifier to attest the attester every 10s for one
day starting from 15:00 and at that time there were 441 measures. The increment of
the IMA measure number is shown in Figure 6.9. At 00:02 on the second day, there
were two new measures of anacron, which performs periodic commands scheduling.
Then at 03:21, 12 new measures showed up, including nice to set the priority of the

8https://github.com/Rohde-Schwarz-Cybersecurity/TrustedGRUB2/

19We have no modification or extension of TrustedGRUB2, so we omit its description in this
thesis. The introduction can be found in Chapter 3.

105

https://github.com/Rohde-Schwarz-Cybersecurity/TrustedGRUB2/

6 — Implementation Details and Performance

460
O
S
a455
(48]
S 450
€ 445
< ——
S 440
G
S 435
I+
430
ocNoNoNoNoNoloBololNoNoNoBRolNoNeolNolNolNolNoloeoloeoleoleoleoleo]
e k-Rek=-R-E=-E-R-R-R-R-R-R-R-R-R-R-R-R- NN RN
N O N OO O A AN MO A AN NS ONOOODO AN MW
I A A1 AN NN N OOO OO OODOOO ™ 1 +

Figure 6.9. Number of IMA measures in a day.

process, Oyum-daily.cron to check if yum needs to automatically update the system,
logrotate to compress the generated system logs, renice and ionice to set the priority
of processes, mandb to update the manual page caches and some dependencies.

These 14 new measures were all called by the automatic services enabled by
the operating system, they can be disabled by carefully configuring the attester.
However, we note that, even after these 14 unexpected measures were recorded by
IMA, the attester was still in trusted state, because all these measures were all in
the reference database when the corresponding packages were published.

6.2 Trusted Channel

Trusted channel is secure channel with its endpoints attested by each other or by a
trusted third party. It can bind the identity of secure channel endpoint to its integrity
state and to a specific physical node. In our work, we chose strongSwan IPsec
implementation because it is open source and supports various operating systems,
e.g., Linux 2.6 and later, Android, Mac OS X and Windows.

6.2.1 strongSwan

strongSwan [127] was launched in 2005, and it was developed based on the discon-
tinued FreeS/WAN project?’. Since the first target platform was Linux, the source
code of strongSwan are written in C. Currently its latest version is 5.5.1, which has
been ported in other popular operating systems.

strongSwan implements both IKEv1 and IKEv2 key exchange protocols. Starting
from version 5.x, it uses a single monolithic IKEv1 and IKEv2 daemon, which is

2Onttp://www.freeswan.org/

106

http://www.freeswan.org/

6 — Implementation Details and Performance

oat-attest {
load = yes

oat_server = verifier
ima_level = 14
attest_interval = 15

Figure 6.10. The configuration file of oat_attest plugin in strongSwan.

bash oat_pollhosts -h verifier ’{"hosts":["ned"],
"analysisType":"load—time+check—cert,1_req=l4|==,
cert_digest=cb0c80994ddced19f401debdab6e216dd9a6£8c90"}’

Figure 6.11. An remote attestation request example to attest [Psec server.

named charon. Our trusted channel design requires IKE protocol to authenticate
each other and to transfer the public key certificate of the [Psec server to the client,
thus our extension starts from the charon daemon.

6.2.2 Extension of strongSwan

Taking advantage of the modular plugin-based architecture of strongSwan, our ex-
tension requires no change of the internal code of the charon daemon, we only need
to implement a plugin attached to this daemon. Once the charon daemon is acti-
vated, it will invoke all plugins set to enabled in order to check different criteria to
decide whether key exchange should continue or not.

Following this idea, we developed a plugin called oat_attest. It consists of two
parts, oat_attest_plugin (towards the charon daemon) and oat_attest_listener
(towards the OAT verifier). oat_attest_plugin first creates a plugin interface to
the charon daemon, then it generates a listener instance and registers this listener.
Afterwards, it destroys the listener to free the memory space when the latter finishes
its job. oat_attest_listener is invoked by the oat_attest_plugin, and this listener
is in charge of generating remote attestation requests to the verifier and authorising
further operations only when the received attestation result is positive, otherwise
the SA will not be installed or the plugin instructs the daemon to uninstall the
current SA.

The configuration file of the oat_attest plugin is shown in Figure 6.10. It tells
the charon daemon whether the plugin should be loaded (i.e. load option), which
verifier the plugin should contact (i.e. oat_server), which integrity level should be
expected (i.e. ima_level) and how often the plugin should contact the verifier asking
for the latest attestation result of the IPsec server (i.e. attest_interval in second).

When the oat_attest plugin is invoked, it asks the certificate used by the IPsec
server through the charon daemon, afterwards it extracts the common name and
computes the SHA1 digest of the certificate. Both values are used in generating
the remote attestation request in order to tell the verifier which IPsec server it is

107

6 — Implementation Details and Performance

Extracted Common Name from peer certificate: ned
SHA1 of the peer certificate: cb0c80994ddced19f401debda6e216dd9a6£8c90

—————————— Remote Attestation begins ----------

User terminal -> verifier:
request: { "hosts": ["ned"], "analysisType": "load-time+check-cert,l_req=14[>=, \
cert_digest=cb0c80994ddced19f401debdabe216dd9a6£8c90" }

Verifier -> user terminal:
response: {"status":"success","code":200,"results":[{"host_name":"ned", \
"trust_lvl":"trusted"}]}

---------- Remote Attestation ends ----------

IKE_SA test-ned[15] established between 10.0.2.15[tao]...130.192.1.76 \
[C=CH, O=strongSwan, CN=ned]

scheduling reauthentication in 9785s

maximum IKE_SA lifetime 10325s

installing DNS server 8.8.8.8 via resolvconf

installing new virtual IP 10.2.1.1

CHILD_SA test-ned{15} established with SPIs c010bd49_i cac30078 and \
TS 10.2.1.1/32 === 0.0.0.0/0

connection ’test-ned’ established successfully

Figure 6.12. Remote attestation result from strongSwan log.

connecting to and what certificate the server uses for authentication (Fig 6.11). The
request will be filled into a JSON object and periodically sent to a REST API hosted
in the verifier via POST requests (Figure 6.12).

6.2.3 Extension of verifier

The extension of the verifier consists of two parts. The first part is to extend the
IMA verification script to assess the input parameter as a must-have measure of the
attester. This extension is straightforward, the verifier only needs to check if the
must-have parameter is in the measurement list before giving the final result. The
second part is to bind the identity of the IPsec server to the physical node without
degrading user experience of the client.

As discussed in Section 4.4.2, there are three possible approaches for the verifier
to attest the IPsec server and send back the attestation result to the client: (i)
the verifier attests the server on-the-fly after receiving request from the client, (i)
the verifier periodically attests the server with pre-registered parameters and gives
immediate result, and (iiz) the verifier periodically attests the server and compares
the parameters in received attestation request to the stored unknown digests, then
gives back the result.

In the trusted channel scenario, the time needed to establish the channel is
crucial, i.e. asking a user to wait several seconds before he can connect to the
remote server is unacceptable from the user experience point of view. Meanwhile,
in the trusted channel scenario, we envision that the only must-have measure of the

108

6 — Implementation Details and Performance

X) SECURED APP

File
SECURITY STATUS: Enforced
Ea NED
o The policy that you defined
is available here.
/ Attestation \
' % The NED is trusted \
D. < © 2016-11-14 11:05:39
Last Update /
valentinos
Here is more detailed information
© Logout | bout the status of the NED.
Your Personal Security Applications Mobility Off

Type: Packet Filter @

Figure 6.13. The SECURED application with remote attestation enabled.

[Psec server is its public key certificate, which is used to bind the server’s identity
to its TPM. Thus we chose the second approach and set the IPsec server to register
the digest of its certificate when it is enrolled to the OAT verifier, then the verifier
uses this digest to generate the remote attestation requests and periodically attest
the IPsec server (with the periodic attestation feature introduced in our new OAT
framework), and finally, it gives the latest attestation result immediately when it
receives a request from clients. For this reason, a new REST API is developed
for receiving incoming remote attestation requests and giving the latest attestation
result. In order to be consistent with the development language, the new API was
developed using PHP. Its task is to process the received remote attestation request,
distil the IPsec server name (i.e. attester’s name) and the digest of its certificate,
and finally find the latest attestation result of this server from the OAT verifier’s
attestation log.

This aforementioned trusted channel implementation is adopted in SECURED
project, where the IPsec client now supports Linux (Figure 6.13).
6.2.4 Performance Evaluation

In order to evaluate the performance of our solution, we set up the following testbed:

109

6 — Implementation Details and Performance

e an [Psec client running in a virtual machine on top of VirtualBox hypervisor,
the virtual machine is assigned with one Intel Core 15-5287U CPU @ 2.9 GHz,
4GB DDR3 RAM and 16 GB fixed size virtual hard disk;

e an [Psec server (i.e. attester) running on a physical node with Intel Core

i7-4600U CPU @ 2.1 GHz, 16 GB DDR3 RAM and 120 GB SSD hard disk;

e an OAT verifier running in a virtual machine on top of KVM hypervisor, the
verifier is assigned with 2 Intel Xeon CPU @ 2.4 GHz, 4 GB RAM and 160 GB
hard disk.

The IPsec server is running in CentOS 7 operating system using kernel version
3.10.0-327.el7.x86_64, the verifier is running in CentOS 7 using kernel version 3.10.0-
123.20.1.el17.x86_64 and the IPsec client is running in Ubuntu 14.04 LTS using kernel
version 3.19.0-25-generic. Meanwhile, in order to reduce the network influence in
our test, all machines are connected to the same switch.

Test case

The major performance impact of concern in trusted channel scenario is the ad-
ditional time introduced in the channel setup phase. Thus we provide the time
detected in establishing a trusted channel with and without the oat_attest plugin
enabled in the IPsec client side.

In strongSwan, the establishment of [Psec channel can be separated into two
steps. The first step is to launch an executable called starter, and it is used to start,
stop, and configure the IKE daemon using its configuration file, i.e. loads the IPsec
connection configuration from the ipsec.conf file and passes the configuration to
the stroke plugin in the keying daemon. The second step is to launch the stroke
executable, which is invoked to actually start the key exchange process for a specific
connection defined in ipsec.conf.

These two steps design facilitates our test. Since our primary goal is to test the
time difference in the key exchange phase between the IPsec client and the server,
we only need to measure the time needed to finish the key exchange phase (i.e. the
time needed by stroke) with and without the oat_attest plugin.

We launched the starter executable and then use stroke to set up a test connec-
tion and tear down it after 10s. We repeated the same operation 10 times with the
oat_attest plugin activated and 10 times without the plugin. The minimum, average
and maximum time detected in each configuration are presented in Table 6.4.

Using the average time to finish the key exchange without the attestation plugin
as the base, the time needed with the plugin increases from 0.357s to 0.455s in
average, which causes 0.098 s (27.5%) raise. And in the worst case, the time increases
0.151s (42.3%).

Even if the numbers seem to be non-negligible, we remind that this additional
time is only introduced when an IKE authentication is performed, afterwards, the

110

6 — Implementation Details and Performance

w/o oat_attest (s) | w/ oat_attest (s)
MIN 0.290 0.398
AVG 0.357 0.455
MAX 0.424 0.508
index 100% 127%

Table 6.4. Performance difference between attestation plugin disabled and enabled.

attestation requests are sent in background without incurring any other degradation
of the user experience. Moreover, since our design and implementation do not require
any additional cryptographic operation, there is no performance loss compared to
the original secure channel implementation. While from the security point of view,
the integrity guarantee of the connected IPsec server (including the platform and
the services) and the binding between the server’s identity to a specific hardware
node are deemed to be crucial and strong, which can protect the clients from various
remote attacks.

In the IPsec server side, the newly launched strongSwan service introduces 60
IMA measures which will be inserted in the integrity report and sent to the verifier
for evaluation. Especially the public key certificate (i.e. peerCert.der) used by the
server to authenticate itself is in the integrity report to bind the identity of the
server to the AIK generated by its TPM. Since the remote attestation requests from
the verifier are periodic, the overall remote attestation time has no impact to the
trusted channel setup. Meanwhile, the performance overhead introduced by IMA
and RA is the same as the results shown in Section 6.1.3. Hence in order to omit
the duplicates, we do not present the test results for these two aspects in trusted
channel scenario.

6.3 Trusted Networks

As described in Chapter 5, in our design of trusted network, we chose the operating
system level virtualisation technique to host the network functions. Because the
additional hypervisor layer and operating system kernel of each virtual instance are
removed, virtual containers are much more lightweight and agile than the conven-
tional hypervisor-based virtual machines.

In our development, we chose Docker as the virtual container implementation
because it had a boosting increase in the market share during the last years. Ac-
cording to a survey conducted by Datadog, 10.7% of its customers are now using
Docker containers in production by June 2016, which is a 30% year-over-year growth
in the number [163]. Currently, a lot of Internet service provider companies are re-
searching about SDN/NFV technology based on virtual containers. As a matter of
fact, Deutsche Telekom has started experimenting to deploy NFV networks with the
help of Docker containers [164].

111

6 — Implementation Details and Performance

read-write image E

1
1
{
| K o 1
| read-only image (e.g. apache) read-write image i
|
|
|

base image (e.g. ubuntu) base image (e.g. fedora)

bootfs

host OS Cnamespaces, cgroups)

hardware platform

Figure 6.14. The image hierarchy in Docker.

6.3.1 Docker

Docker is an open-source virtual container implementation, and it aims to sim-
plify the deployment of services running inside virtual containers with the help of
an additional layer of abstraction called the Docker Engine. It uses the resource
isolation features of Linux kernel (such as cgroups and kernel namespaces) and a
union-capable filesystem (such as Device Mapper) to allow independent containers
to run within a single Linux instance.

A fundamental building block in Docker is the concept of image: containers
themselves are launched from images. Images can be considered as the “source code”
for containers, i.e. pre-arranged blocks for providing special functions. Images are
built in a layered way, using a union filesystem that implements a union mount for
different file systems (Figure 6.14).

At the base layer there is a boot filesystem image, called bootfs, that works like
a typical Linux boot filesystem. In general, bootfs mainly contains the bootloader
and the kernel of a container. When a container has booted and its kernel has been
loaded into the memory, this layer is unmounted to free space in memory.

The second layer is composed by one or more root filesystems images, called
rootfs or base image. Each base image hosts one kernel of the specific container’s
operating system. These layers are read-only, and on top of them other additional
read-only layers are hosted. Then, every time a new container is launched, the
Docker daemon or Docker engine constructs a read-write layer on the top of the
image hierarchy, in which all processes belonging to this container are executed.

Docker works in a “copy-on-write” pattern: all lower layers are set with read-
only access, thus when a file is going to be modified, it is beforehand copied into
the topmost read-write layer and then modified there. The original version of the
modified file still exists after the change, but hidden behind the copy. In this way,
each new container only has a read-write layer at top of the image hierarchy, and
more containers can share the same image layers underneath. This permits Docker
to launch containers in a timely fashion and saves a lot of resources, e.g., disk and
memory.

Each image is managed by a storage driver which is responsible to manage the
image layers and perform the copy-on-write operations. Storage drivers used by

112

6 — Implementation Details and Performance

Docker in general are Aufs*' (the first supported by Docker), Device Mapper®* and
Btrfs?3, where the former two are the most popular ones. Depending on the Linux
distribution, Docker uses different storage drivers as its default option (e.g., Aufs
on Ubuntu, Device Mapper on CentOS), but this is not a constraint as it is a
configurable parameter during installation. Comparing Aufs and Device Mapper,
they work at different abstraction level. Aufs operates at file level: if a file is going to
be modified, then the file is entirely copied inside the read-write layer and modified
there. Device Mapper operates at block level: when a file is going to be modified,
only the blocks of interests are moved to the read-write layer. Thus, the latter one is
a better choice for performance, because the latency for the copy-on-write operations
is reduced. For this reason, in the rest part of this section, we refer Device Mapper
as the storage driver of Docker.

At this point, when a virtual container is activated by the Docker daemon (with
run command), Device Mapper creates a new virtual device for the container, giving
it a device number (hereafter also referred as dev-id) that is composed of a major
number and a minor number. This behaviour is inherited from Linux kernel, where
a device is identified by a major number that typically identifies the driver used for
managing the device, and a minor number that exactly identifies the device referred.
The identifier is made up of 32 bits, where the most significant 12 bits represent the
magor number and the least significant 20 bits identify the minor number.

In particular, Device Mapper uses either 252 or 253 as the major number, de-
pending on the package compiled for each Linux distribution, while as the minor
number it assigns a growing positive number for each new virtual device. For exam-
ple, considering 253 as the major number (as it happens in CentOS), the starting
pool will have a device number like 253:0, the first container created will be iden-
tified as 253:1, the second as 253:2 and so on. The device number is an important
parameter in our solution as it is used to identity each virtual container in the host
operating system.

6.3.2 Enabling Remote Attestation in Docker containers
As described in Chapter 5, we have to make modification in three different com-

ponents in our previous remote attestation framework, the IMA module, the OAT
agent, and the IMA verification script.

The modification to IMA

Regarding to the IMA module, we introduced a new “field” to represent the device
number associated with the measured file with the help of a new IMA template

2lnttp://aufs.sourceforge.net/
22ftp://sources.redhat . com/pub/dm/
2https://btrfs.wiki.kernel.org/index.php/Main_Page/

113

http://aufs.sourceforge.net/
ftp://sources.redhat.com/pub/dm/
https://btrfs.wiki.kernel.org/index.php/Main_Page/

6 — Implementation Details and Performance

called ima-cont-id. Since our goal is to introduce a new IMA template with the new
field, we started our modification with the file ima template.c, in which there are
two arrays we need to modify to add our new template name and its fields:

e ima template_desc: which defines a template and inside it stores the name,
the format string and an array of type “ima_template_field structures” (one
for each field that makes up the template);

e ima template field: which defines a specific field and inside it stores the
name and the pointer to two functions, one to retrieve information to be
assigned to the field, and one to print the output.

Afterwards, we extended the ima template 1ib.c file by introducing a new func-
tion called ima_eventdev_id_init, which is the initial function to include the file device
number as part of the template data. Once the new template is activated, this func-
tion receives two parameters, which are automatically passed by the IMA module
at the time of a new measure needs to be inserted into the list. They are event_data
(contains information about the file being measured) and field_data (contains in-
formation to be filled in the measurement list). Following the newly defined IMA
template, this function extends the field_data by adding a new attribute containing
the dev-id associated with the file via its inode retrieved from the event_data.

After the implementation is finished, we only need to recompile the kernel and
activate the new template by adding tma_template=ima-cont-id in the attester’s
boot configuration.

The modification to the OAT framework

The modification to the OAT framework is straightforward, since only the remote
attestation agent needs to be modified to add the new attributes in the integrity
reports.

Core_Integrity Manifest vl 0_1.xsd is the XML template used to create in-
tegrity reports, and the new elements need to be introduced into the template are
Container and Host. The Container element has an additional attribute called Id,
which is to store the container’s UUID, that recorded by its manager. Further, the
element has a child tag called Devld, which is the dev-id associated to this container
assigned by Device Mapper in the container host. In the same way, Host element also
has a child tag called Devld, which is the dev-id associated to the devices belonging
to the host operating system.

Moreover, in order to be backwards compatible, we added a new property called
AddContainerAnalysisSupport in the configuration file of the remote attestation
agent. Once the property is set to true, retrieveHostDevices (to obtain a list of
all the dev-id associated to host devices) and retrieveMapDmContainers (to obtain
the mapping between container id and its associated dev-id) are invoked to fill the
new elements in integrity reports.

114

6 — Implementation Details and Performance

bash oat_pollhosts -h verifier ’{"hosts":["ned"],
"analysisType":"VALIDATE_PCR;load-time+cont-check,l_req=12_ima_all_ok|==,
cont-list=7b7e912abda3+3a5f603b86c4"}"’

Figure 6.15. A remote attestation request example to attest Docker container host.

The modification to IMA verification script

As presented in Chapter 3, the OAT verifier in our new framework is capable of
defining custom analysis type. Thus we introduced a new analysis type called cont-
check, which is specifically called to analyse the IMA measures belonging to a set
of virtual containers. In order to call this analysis type, an additional parameter
is required in the remote attestation request, which is called cont-list. This new
parameter lists the container IDs which need to be attested (e.g., Figure 6.15).

After the verifier receives the integrity report from an attester, it calls a new
function called ContainerCheckAnalysis, which corresponds to the cont-check anal-
ysis type. This function is developed based on the original IMA measure verification
tool, and at first it looks for the newly introduced elements in the reports and creates
a mapping between container ID and its associated device ID. Then when the IMA
measurement entries stored in integrity report are decoded from Base64 to ASCII,
the parser calls the generated mapping to distil the IMA measures belonging to the
containers in the cont-list and the ones belonging to the host operating system with
the help of the newly introduced elements in integrity reports. Further, these IMA
measures will be queried to the executable reference database and configuration
whitelist. If any of these measures is unknown, the verifier will tell on which device
the unknown measure is generated, i.e. either on the host or on a device belonging
to a specific container and the container’s ID.

6.3.3 Performance Evaluation

In order to evaluate the performance of our solution, we set up the following testbed:

e a Docker host running on a node with Intel Core i7-4600U CPU (2 core, 4
threads), @ 2.1 GHz, 16 GB DDR3 RAM and 120 GB SSD hard disk;

e an OAT verifier running in a virtual machine on top of a KVM hypervisor.
The verifier is assigned with 2 Intel Xeon CPU @ 2.4 GHz, 4GB RAM and
160 GB hard disk.

Both machines are running the CentOS 7 operating system, with the Docker
host using a custom compiled kernel based on version 4.4, Docker version 1.9.1
with Device Mapper version 1.02.107, and the verifier using original kernel version
3.10.0-123.20.1.el7.x86_64.

115

6 — Implementation Details and Performance

docker run -d centos /bin/sh -c "while true; do echo hello world; sleep 1; done"

Figure 6.16. Starting a Docker container with simple task.

sudo docker run -d centos service
33c0laa75a3402eb012b7aabad601ecdf781£c21682e6130877b1e0122360227
Error response from daemon: Cannot start container
33c0laa75a3402eb012b7aabad601ecdf781£c21682e6130877b1e0122360227:

adding interface veth767ele6 to bridge dockerO failed: exchange full

Figure 6.17. The error given when the maximum number of active Docker
containers is reached.

Performance limitation of Docker

In order to evaluate the maximum number of containers that Docker can run in a
single host, we created a simple script to launch as many containers as possible,
each of them is executing just a basic test function, writing to standard output the
“hello world” string every second (Figure 6.16).

At first, we assumed the maximum number of launched containers on a single
platform is limited by the size of the minor number in the dev-id assigned by the
Device Mapper, i.e. 20 bits, or the resources can be offered by this platform. On the
contrary, we found out that the maximum number of active containers in a single
platform is limited to 1023, even if the computing resources of the platform are
not saturated. And when the maximum number of container is reached, an error is
shown (Figure 6.17).

We discovered that this limitation lies on the number of network interfaces the
Linux kernel can assign to the virtual instances, either virtual containers or virtual
machines. Since the size of the network bridge identifier BR_PORT_BITS in the
Linux kernel is 10 bits, the maximum number of containers or any sort of virtual
instances that can be launched in a single default platform is 1023 [165].

However, according to the discussion in [166], the maximum number of Docker
instances can be increased through two practical approaches:

e use Open vSwitch?? to assign the network resources, which allows for activating
216 ports;

e disable the Spanning Tree Protocol and tweak the BR_.PORT _BITS size, and
theoretically it also allows for activating 2! ports.

24nttp://openvswitch.org/

116

http://openvswitch.org/

6 — Implementation Details and Performance

In any case, the maximum number of supported container instances activated on
a single platform is less than the minor number of dev-id supported by the Device
Mapper.

Performance impact of IMA and RA

The general performance impact of the attester with IMA and RA has been pre-
sented in Section 6.1.3, here we show our test results of specific Docker environment.
Especially we show the time differences in sending run, stop and remove commands
with and without the two additional features.

Similar to previous test cases, to provide adequate coverage and avoid measuring
unnecessary files, we used the execution policy presented in Section 3.5.4. In our
test, with the execution policy, each container adds seven new IMA measures in the
integrity report, because the function running inside the containers is very simple
(Figure 6.16). More specifically, the following measures are added by each container:
four for various glibc standard and shared libraries (used by the Linux kernel), one
for the ncurses library (providing the text-based user interface), one for the shell
itself and a last one for the sleep binary (as it is not a built-in command in the shell).
Thus, the number of IMA measures grows linearly with the number of containers
launched in the platform.

If more complex services are deployed inside the container, the number of mea-
sured binaries would increase even by the orders of magnitude. For example, with
a newly built Apache server image (without any additional component, like a SQL
database) the number of detected IMA measures is 123.

To test the performance penalty to the basic Docker container operations in-
troduced by IMA and RA in the attesting platform, we launched 512 containers
sequentially and then we stopped them one by one. We repeated this test ten times,
to get statistically meaningful results, and repeated the test once with both IMA
and RA deactivated, once with IMA activated and RA deactivated and once with
both IMA and RA activated.

Three essential operations are involved in the test: run (to start a container), stop
(to send SIGTERM to the process running inside a container) and remove (to remove
a container along with its assigned resources, e.g., disk storage and network bridge).
The minimum, average and maximum time to finish these three operations are
given respectively in Table 6.5, 6.6, and 6.7. The average time for these operations
is presented graphically in Figure 6.18, 6.19, and 6.20, where the X-axis shows the
number of active containers in the attesting platform and the Y-axis is the time to
finish the operation. These tables and graphs are to be interpreted as time needed
to perform an operation given a certain number of containers already active. For
example, values for 256 containers represent respectively the time needed to create
a new container (hence to have 257 active containers), to stop a container (hence
to have 256 containers with only 255 active), and to remove a container (hence to
have 255 active containers).

117

6 — Implementation Details and Performance

start # containers 1 2 4 8 16 32 64 128 256 512
IMA min 1.19 1.13 1.14 1.19 1.17 1.27 1.23 1.42 1.62 2.14
X?g RA avg 1.28 1.22 1.17 1.24 1.26 1.37 1.34 1.56 1.75 2.39
max 1.37 1.37 1.24 1.29 1.44 1.45 1.41 1.77 1.86 2.73
w/ IMA min 1.29 1.21 1.24 1.27 1.25 1.32 1.42 1.52 1.66 2.37
w/o RA avg 1.39 1.31 1.38 1.32 1.34 1.40 1.50 1.55 1.75 2.45
max 1.53 1.55 1.49 1.39 1.40 1.51 1.69 1.57 1.90 2.59
w/ IMA min 1.24 1.23 1.22 1.28 1.25 1.37 1.39 1.43 1.65 2.16
w/ RA avg 1.37 1.24 1.32 1.36 1.44 1.44 1.46 1.51 1.77 2.38
max 1.81 1.25 1.40 1.55 1.72 1.51 1.67 1.70 2.03 2.58
difference w/ IMA | +0.11 | +0.09 | +0.19 | +0.08 | 40.08 | +0.03 | 4+0.16 | -0.01 | +0.00 | +0.06
difference w/ IMA+RA | +0.09 | +0.02 | +0.15 | 40.12 | +0.18 | 4+0.07 | +0.12 | -0.05 | +0.02 | -0.01

Table 6.5. Time (in seconds) to start a container with and without IMA and RA,
and the difference computed between the average values.

stop # containers 1 2 4 8 16 32 64 128 256 512

w/o IMA min 10.55 | 10.55 | 10.55 | 10.46 10.48 10.46 10.45 10.50 10.50 10.57
w/o RA avg 10.59 | 10.57 | 10.58 | 10.55 10.54 10.56 10.52 10.57 10.57 10.68
max 10.69 | 10.59 | 10.59 | 10.59 10.56 10.63 10.57 10.63 10.66 10.84

w/ IMA min 10.54 | 10.49 | 10.48 | 10.51 10.49 10.53 10.46 10.46 10.50 10.60
w/o RA avg 10.57 | 10.55 | 10.56 | 10.56 10.55 10.58 10.56 10.59 10.58 10.69
max 10.60 | 10.59 | 10.62 | 10.60 10.58 10.64 10.66 10.66 10.67 10.83

w/ IMA min 10.56 | 10.54 | 10.55 | 10.56 10.55 10.57 10.57 10.61 10.63 10.69
w/ RA avg 10.58 | 10.56 | 10.57 | 10.58 10.58 10.58 10.58 10.61 10.66 10.77
max 10.65 | 10.59 | 10.59 | 10.62 10.62 10.60 10.60 10.63 10.70 10.85
difference w/ IMA | -0.02 | -0.02 | -0.02 | 40.01 | +0.01 | +0.02 | +0.04 | +0.02 | +0.01 | +0.01
difference w/ IMA+RA | -0.01 | -0.01 | -0.01 | +0.03 | +0.04 | +0.02 | +0.06 | +0.04 | +0.09 | +0.09

Table 6.6. Time (in seconds) to stop a container with and without IMA and RA,
and the difference computed between the average values.

The main difference in performance with and without IMA is related to the start
of a new container (Table 6.5 and Figure 6.18) which requires about 79 ms more with
IMA and 71 ms in the case both IMA and RA are activated. Apart for statistical
fluctuations, it is independent of the number of active containers. This is expected
because the start operation directly adds workload to the attesting platform and
each start operation needs to measure and extend seven new IMA measures into the
TPM, so we can estimate that each new measure requires about 11 ms.

An interesting behaviour is that the start time of the first four containers without
IMA is decreasing (Figure 6.18) because the CPU of the attesting machine has two
cores and supports four threads, hence the first four containers have the privilege to
share the resources equally without competing for CPU cycles. But when IMA comes
into play the behaviour changes and is more unpredictable as another important
process (IMA itself) comes into play.

On another hand, the differences for the stop and remove operations with and
without IMA and RA are minor (if any), since these two operations do not involve
any IMA nor RA functionality.

The time to stop a container is always around 10s (Table 6.6 and Figure 6.19)
because the Docker stop operation sends SIGTERM to the main process of the con-
tainer. However, in our test, this signal cannot stop the process executed in the
container, so it needs to wait the predefined threshold (with default value 10s) to
send SIGKILL and kill the whole container process.

118

6 — Implementation Details and Performance

remove # containers 1 2 4 8 16 32 64 128 256 512
w/o IMA min 2.66 2.61 2.64 2.74 2.88 3.11 3.66 5.35 7.39 11.73
w/o RA avg 2.72 2.71 2.75 2.82 2.96 3.26 3.72 5.45 7.69 12.03

max 2.83 2.84 2.81 2.90 3.09 3.54 3.84 5.55 8.14 12.17

w/ IMA min 2.56 2.62 2.63 2.75 2.89 3.10 3.62 5.32 7.40 11.87
w/o RA avg 2.64 2.67 2.69 2.84 2.95 3.15 3.90 5.42 7.68 12.06
max 2.72 2.70 2.77 2.97 3.09 3.29 4.59 5.49 8.11 12.29

w/ IMA min 2.63 2.62 2.60 2.74 3.00 3.14 3.63 5.34 7.46 11.66
w/ RA avg 2.77 2.73 2.77 2.85 3.07 3.24 3.81 5.55 7.59 11.81
max 2.95 2.87 3.01 2.93 3.15 3.41 4.08 5.79 7.77 11.97

difference w/ IMA | -0.08 -0.04 -0.06 +0.02 -0.01 -0.11 | 40.18 | -0.03 | -0.01 | 40.03
difference w/ IMA+RA | +0.05 | 40.02 | +0.02 | 40.03 | +0.11 | -0.02 | +0.09 | +0.10 | -0.10 | -0.22

Table 6.7. Time (in seconds) to remove a container with and without IMA and
RA, and the difference computed between the average values.

time [s]

261 |-=-w/oIMA + w/o RA
-»- w/ IMA + w/o RA
—— w/ IMA + w/ RA

2.4

2.2 ¢

1.6 |

1.4 ¢

#£container
1

256

5

Figure 6.18. Time to start a container with and without IMA and RA.

12

The remove operation removes the resources assigned to a container and the
time needed grows linearly with the number of active containers (Table 6.7 and
Figure 6.20). As described in Section 6.3.1, Device Mapper is a block-level copy-
on-write system, which creates a “pool” of space with the help of two sparse files,
data and metadata. When a container is removed, Device Mapper needs to find the
location of the blocks belonging to this container from the metadata file and then
remove these blocks in the data file. So, the performance of sparse files limits the

119

6 — Implementation Details and Performance

time [s]

e w/o IMA + w/o RA
10.75 1 |- =- W/ IMA + W/O RA
—— w/ IMA + w/ RA

10.70 +

10.65

10.60

10.55 |

10.50 +

F#container
‘

1 2 4 8 16 32 64 128 256 512

Figure 6.19. Time to stop a container with and without IMA and RA.

overall performance of the remove operation.

Performance in a real-world test case

Similar to the previous test case (Section 6.1.3), we also simulated a real-world
application, with the containers set to perform operations similar to those of a
HTTP server reacting to incoming requests. In this test, each container creates a
single 1 MB file and then starts an infinite loop to repeatedly compute the SHA512
digest of this file. At every computation a counter is updated on disk. This approach
mimics the case of a server reading a request, performing a computation and writing
log data on disk. To discard the influence of the network interface (which could be
a bottleneck with many containers) we deliberately decided to perform only local
I/O operations.

To start and stop all operations simultaneously (as we have seen that containers
must be started sequentially and this takes a lot of time), all the containers are
mapped to a volume linked to the same folder, waiting for a trigger file to be present.
Once the trigger is created, all the containers start their computation simultaneously
and at every step test if the trigger file still exists. If not, the container enters in

120

6 — Implementation Details and Performance

time

13.00 %

12.00 +

11.00

10.00

9.00 +

8.00 |

7.00 |

6.00 +

5.00 |

4.00 |

3.00 +

[s]

w0 IMA +
-o- w/ IMA +
—— w/ IMA +

w/o RA
w/o RA
w/ RA

F#container
‘

Table 6.8.

16

32

64

128

256

512

Figure 6.20. Time to remove a container with and without IMA and RA.

no IMA, no RA | IMA, no RA | IMA, RA
min 134,855 133,849 133,799
avg 135,284 134,623 134,440
max 135,602 135,626 134,769
index 100% 99.51% 99.37%

tings in Docker environment.

Number of operations and performance index under three set-

a sleep mode, stopping the computation and checking periodically if the trigger is
re-created to repeat the process again.

In this test we started 256 containers to execute the aforementioned task. Same

as the previous test, we repeated the test ten times for each of three different settings:
plain Docker environment, Docker with IMA, and finally Docker with IMA and RA
agent. Each run of the test lasts 300s, and the recorded results are presented in

Figure

6.8.

It is clear that the differences among these three settings are minor: the overall
performance is only slightly affected by the introduction of the remote attestation.
Considering as a reference the average value of performed operations without IMA

121

6 — Implementation Details and Performance

containers 0 32 | 128 | 256 | 512
attester | 3.71 | 3.80 | 4.05 | 4.99 | 6.56

time verifier | 1.56 | 1.63 | 1.77 | 1.95 | 2.35
total 5.27 | 5.43 | 5.82 | 6.94 | 8.91

Table 6.9. Average time (in seconds) required to complete a remote attestation
request with different number of active containers.

and RA, the performance only drops by 0.63% in the full case (i.e. with IMA and
RA enabled). So we conclude that the performance impact of our proposed integrity
verification feature is nearly optimal and suitable for application in real-world cases,
with respect to the overhead on the attested platform.

Overall remote attestation performance evaluation

Let’s now look at the other main component of our architecture: the verifier, which
hosts the reference database and needs to query it with the IMA measures received
from the attesters.

Table 6.9 presents the results of our test about the global performance of the
remote attestation process with different number of active containers (all active
containers and the host system are attested in this case). Be reminded that each
container introduces seven new IMA measures, and in the initial state the Docker
host has around 900 IMA measures (i.e. produced by the host system).

The processing time is given as a total and also split into two components related
to the attester and the verifier, since the time for transmitting the integrity report is
very small and hence negligible. With 512 containers the number of IMA measures
in our test is around 4500 and the size of the report is about 1.38 MB, which only
needs around 0.1s to be transmitted.

The total time (and also the individual components) grow roughly linearly with
the number of active container (given that in this case each container produces the
same number of IMA measures). The time taken by the attester is related to the
quote operation and the generation of the integrity report. In this test scenario, the
attester is much more powerful than the attester in the Section 6.1.3, thus the time to
generate an integrity report is much shorter. While the time of the verifier includes
the efforts to verify the signature of the quote output, to validate the integrity of all
IMA measures in the report and to compare the IMA measures with the reference
database. Even with 512 active containers, the time needed to attest the internal
of all of them is less than 10s that we deem a good result weighting the integrity
guarantee provided by our solution.

In case this performance is not considered adequate, there are margins for im-
provement. On the attester side, the hard limit is the time taken to perform the
digital signature over the integrity report by the TPM, which in our machine takes
about 2s. The rest of the time is spent in creating the integrity report and this

122

6 — Implementation Details and Performance

time can be reduced by creating partial integrity reports (i.e. containing only those
measures added since the last integrity report). In case a high-frequency verification
is desirable, then dedicating a whole core to the Docker host system would be an
option, so that the remote attestation agent would not have to compete with the
containers for the CPU. Additionally re-implementing the remote attestation agent
as native code would improve performance as current implementation is in Java,
which is notoriously slower than C programs.

123

Chapter 7

Conclusion

In this work, we have proposed an innovative remote attestation framework, which is
able to attest the integrity state not only of the boot phase of a physical platform but
also of the services running in its application layer, with hardware-based methods.
The framework allows user of the services or administrator of the distributed system
to know the integrity state of the nodes. Thus they can make an informed decision
whether to trust the system with their private data or the responses of the system
based on its integrity state. Moreover, in our framework, the remote attestation
burden is offloaded to a trusted third party, i.e. the verifier, leading to a minimum
amount of performance loss in the attesting platform side, where the actual services
are running.

Based on our remote attestation framework, we presented our solution to create
trusted channels, which are secure channels with the endpoint integrity attested and
bound to a specific hardware platform. This solution allows secure channel users to
know the integrity state of the server they are going to connect before the connection
is actually established, i.e. before the potential damage is done.

We also proposed a solution to attest the services running in virtual containers
with hardware-based evidence. This feature is especially important in SDN/NFV
environments, since the software modules are in general running in virtual instances
instead of directly on the hardware platform. Moreover, in this solution virtual
containers can be differentiated from each other. Thus in the case that one container
is compromised, only this container is required to be paused to restore the trust state
without the need to reset the whole physical platform. Implicitly, with the hardware-
based integrity evidence to ensure the correct behaviour of the network functions,
it enables the possibility of creating trusted softwarised networks.

We not only developed the theoretical models, but also provided their actual
implementations. The source code of the prototypes are released under open source
licenses of the SECURED project. The prototypes have been presented in two
ETSI NFV security group meetings and they are going to be deployed in the new

124

7 — Conclusion

SHIELD project!. The performance evaluation of all three prototypes indicates their
feasibilities to be applied in real-world scenarios.

Regarding to future work, although the integrity of the software module and
the distributed system is able to provide certain level of trust, trust is much more
difficult to achieve. The correct execution of software modules does not make them
invulnerable to system design errors or implementation problems. Hence, formal
verification [167] and continuous integration [168] techniques must also be considered
in real system design and implementation. On the other hand, with regards to
the current limitation of measuring dynamic or unstructural data, which is not
able to be measured with original IMA, we are investigating the enhanced Berkeley
Packet Filtering (eBPF) tracing tool [169], which is mainstreamed to the Linux
4.x series kernels. We are expecting to complement eBPF with IMA in order to
provide a complete coverage of both structural and unstructural data which affect
the behaviour of the software services.

Thttps://www.shield-h2020.eu/

125

Acronyms

AIK
BIOS
CA
CPU
CRTM
CSA
DoS
EK
ETSI
HSPL
ICT
ID
IKE
IMA
IoT

IP
IPsec
IR
MITM
NAPT
NAT

Attestation Identity Key

Basic Input/Output System

Certificate Authority

Central Processing Unit

Core Root of Trust for Measurement

Cloud Security Alliance

Denial of Service

Endorsement Key

European Telecommunications Standards Institute
High Security Policy Language

Information and Communications Technology
[Dentity

Internet Key Exchange

Integrity Measurement Architecture

Internet of Things

Internet Protocol

Internet Protocol Security

Integrity Report

Man In The Middle

Network Address and Port Translation

Network Address Translation

126

7 — Conclusion

NFV
NFVI
NIST
PBNM
PCR
RA
RFC
RoT
RTM
RTR
RTS
SA
SDN
SGX
SRK
SSH
SSL
TC
TCG
TLS
TP
TPM
TTP
TXT
VM
VPN
vIPM
XML

Network Functions Virtualization
Network Functions Virtualization Infrastructure
National Institute of Standards and Technology

Policy-Based Network Management
Platform Configuration Register
Remote Attestation

Request for Comments

Root of Trust

Root of Trust for Measurement
Root of Trust for Reporting
Root of Trust for Storage
Security Association
Software-Defined Network
Software Guard eXtension
Storage Root Key

Secure Shell

Secure Sockets Layer

Trusted Computing

Trusted Computing Group
Transport Layer Security
Trusted Platform

Trusted Platform Module
Trusted Third Party

Trusted eXecution Technology
Virtual Machine

Virtual Private Network

virtual Trusted Platform Module

Extensible Markup Language

127

Bibliography

[1] B.McCouch, “SDN, Network Virtualization, And NFV In A Nut-
shell” 2014, http://www.networkcomputing.com/networking/
sdn-network-virtualization-and-nfv-nutshell/1655674152.

[2] K.Kirkpatrick, “Software-defined Networking”, Communications of the ACM,
Vol. 56, No. 9, September 2013, pp. 16-19, doi:10.1145/2500468.2500473.

[3] C.Donley, J.Berg, M.Kloberdans, “Network function virtualization (nfv)”
2016, https://www.google.com/patents/US20160006696.

[4] European Telecommunications Standards Institute, “Network Functions Vir-
tualisation” https://portal.etsi.org/NFV/NFV_White_Paper.pdf.

[5] M. K.Srinivasan, K.Sarukesi, P.Rodrigues, M. S.Manoj, P.Revathy, “State-
of-the-art Cloud Computing Security Taxonomies: A Classification of
Security Challenges in the Present Cloud Computing Environment”,
ICACCTI’12: International Conference on Advances in Computing, Commu-
nications and Informatics, Chennai, India, August 3-5 2012, pp. 470476,
doi:10.1145/2345396.2345474.

[6] K.Hashizume, D. G.Rosado, E.Ferndndez-Medina, E. B.Fernandez, “An anal-
ysis of security issues for cloud computing”, Journal of Internet Services and
Applications, Vol. 4, No. 1, February 2013, pp. 1-13, doi:10.1186/1869-0238-
4-5.

[7] S.Singh, Y.-S.Jeong, J. H.Park, “A survey on cloud computing security: Is-
sues, threats, and solutions”, Journal of Network and Computer Applications,
Vol. 75, September 2016, pp. 200-222, doi:10.1016/j.jnca.2016.09.002.

[8] P. B.Kurtz, “Cybersecurity: Change or Die” 2016, https://blog.
cloudsecurityalliance.org/2016/09/09/cybersecurity-change-die/.

[9] Akamai, “Akamai’s Internet security executive review” 2016, https://
www.akamai.com/us/en/multimedia/documents/state-of-the-internet/
akamai-q2-2016-internet-security-executive-review.pdf.

[10] A.Robertson, “Google Docs wusers hit with sophisticated phish-
ing attack” 2017, Thttps://www.theverge.com/2017/5/3/15534768/
google-docs-phishing-attack-share-this-document-with-you-spam.

[11] Trusted Computing Group https://www.trustedcomputinggroup.org/.

[12] Trusted Computing Group, “Trusted Platform Module
(TPM) Summary” http://www.trustedcomputinggroup.org/
trusted-platform-module-tpm-summary/.

[13] W.Jackson, “Engineer shows how to crack a ’secure’ TPM chip” 2010, https:

128

http://www.networkcomputing.com/networking/sdn-network-virtualization-and-nfv-nutshell/1655674152
http://www.networkcomputing.com/networking/sdn-network-virtualization-and-nfv-nutshell/1655674152
http://dx.doi.org/10.1145/2500468.2500473
https://www.google.com/patents/US20160006696
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://dx.doi.org/10.1145/2345396.2345474
http://dx.doi.org/10.1186/1869-0238-4-5
http://dx.doi.org/10.1186/1869-0238-4-5
http://dx.doi.org/10.1016/j.jnca.2016.09.002
https://blog.cloudsecurityalliance.org/2016/09/09/cybersecurity-change-die/
https://blog.cloudsecurityalliance.org/2016/09/09/cybersecurity-change-die/
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/akamai-q2-2016-internet-security-executive-review.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/akamai-q2-2016-internet-security-executive-review.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/akamai-q2-2016-internet-security-executive-review.pdf
https://www.theverge.com/2017/5/3/15534768/google-docs-phishing-attack-share-this-document-with-you-spam
https://www.theverge.com/2017/5/3/15534768/google-docs-phishing-attack-share-this-document-with-you-spam
https://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/trusted-platform-module-tpm-summary/
http://www.trustedcomputinggroup.org/trusted-platform-module-tpm-summary/
https://gcn.com/articles/2010/02/02/black-hat-chip-crack-020210.aspx?m=1
https://gcn.com/articles/2010/02/02/black-hat-chip-crack-020210.aspx?m=1

Bibliography

//gcn.com/articles/2010/02/02/black-hat-chip-crack-020210.aspx?
m=1.

[14] S.Thielman, “Yahoo hack: 1bn accounts compromised by biggest data breach
in history” 2016, https://www.theguardian.com/technology/2016/dec/
14/yahoo-hack-security-of-one-billion-accounts-breached.

[15] T.Dierks, E.Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.27, RFC-5246, August 2008.

[16] S.Bellovin, “Guidelines for Specifying the Use of IPsec Version 2”, RFC-5406,
February 2009.

[17] T.Su, A.Lioy, N.Barresi, “Trusted Computing Technology and Proposals for
Resolving Cloud Computing Security Problems”, Cloud Computing Security:
Foundations and Challenges (J. R.Vacca), Taylor & Francis Group, CRC Press
2016, pp. 345-358, doi:10.1201/9781315372112-27.

[18] A.Filograna, P.Smiraglia, C.Gilsanz, S.Krco, A.Medela, T.Su, “Cloudification
of Public Services in Smart Cities the CLIPS project”, ISCC’16: IEEE Sym-
posium on Computers and Communication, Messina, Italy, June 27-30 2016,
pp. 153-158, doi:10.1109/ISCC.2016.7543731.

[19] R.Bonafiglia, F.Ciaccia, A.Lioy, M.Nemirovsky, F.Risso, T.Su, “Offloading
personal security applications to a secure and trusted network node”, Net-
Soft’15: 1st IEEE Conference on Network Softwarization, London, UK, April
13-17 2015, pp. 1-2, doi:10.1109/NETSOFT.2015.7116171.

[20] L.Jacquin, A.Lioy, D. R.Lopez, A. L.Shaw, T.Su, “The Trust Problem in Mod-
ern Network Infrastructures”, Cyber Security and Privacy: 4th Cyber Security
and Privacy Innovation Forum, CSP Innovation Forum 2015, Brussels, Bel-
gium April 28-29, 2015, Revised Selected Papers (F.Cleary, M.Felici), Springer
2015, pp. 116-127, doi:10.1007/978-3-319-25360-2_10.

[21] F.Valenza, T.Su, S.Spinoso, A.Lioy, R.Sisto, M.Vallini, “A formal approach
for network security policy validation”, Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications (JoWUA), Vol. 8, No. 1,
March 2017, pp. 79-100.

[22] P.England, B.Lampson, J.Manferdelli, M.Peinado, B.Willman, “A Trusted
Open Platform”, Computer, Vol. 36, No. 7, July 2003, pp. 5562,
do0i:10.1109/MC.2003.1212691.

[23] Trusted Computing Group, “TCG Specification Architecture Overview”
http://www.trustedcomputinggroup.org/wp-content/uploads/TCG_1_4_
Architecture_QOverview.pdf.

[24] Trusted Computing Group, “TPM Main Design Principles - revison
116”7 2011, https://trustedcomputinggroup.org/wp-content/uploads/
TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf.

[25] B.Schneier, “SHA-1 Collision Found” 2017, https://www.schneier.com/
blog/archives/2017/02/sha-1_collision.html.

[26] Intel Corporation, “Solutions and Products with Intel Trusted Execu-
tion Technology (Intel TXT)” http://www.intel.com/content/www/us/
en/architecture-and-technology/trusted-execution-technology/
where-to-buy-isv-txt.html.

129

https://gcn.com/articles/2010/02/02/black-hat-chip-crack-020210.aspx?m=1
https://gcn.com/articles/2010/02/02/black-hat-chip-crack-020210.aspx?m=1
https://gcn.com/articles/2010/02/02/black-hat-chip-crack-020210.aspx?m=1
https://www.theguardian.com/technology/2016/dec/14/yahoo-hack-security-of-one-billion-accounts-breached
https://www.theguardian.com/technology/2016/dec/14/yahoo-hack-security-of-one-billion-accounts-breached
http://dx.doi.org/10.1201/9781315372112-27
http://dx.doi.org/10.1109/ISCC.2016.7543731
http://dx.doi.org/10.1109/NETSOFT.2015.7116171
http://dx.doi.org/10.1007/978-3-319-25360-2_10
http://dx.doi.org/10.1109/MC.2003.1212691
http://www.trustedcomputinggroup.org/wp-content/uploads/TCG_1_4_Architecture_Overview.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/TCG_1_4_Architecture_Overview.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://www.schneier.com/blog/archives/2017/02/sha-1_collision.html
https://www.schneier.com/blog/archives/2017/02/sha-1_collision.html
http://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/where-to-buy-isv-txt.html
http://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/where-to-buy-isv-txt.html
http://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/where-to-buy-isv-txt.html

Bibliography

[27]

28]

[29]

[30]

[31]

[42]

Fedora, “What is UEFI Secure Boot?” https://docs.fedoraproject.org/
en-US/Fedora/18/html/UEFI_Secure_Boot_Guide/chap-UEFI_Secure_
Boot_Guide-What_is_Secure_Boot.html.

E.Brickell, J.Camenisch, L.Chen, “Direct Anonymous Attestation”, CCS’04:
11th ACM conference on Computer and Communications Security, Washing-
ton DC, USA, October 25-29 2004, pp. 132-145, doi:10.1145/1030083.1030103.
J.Camenisch, A.Lysyanskaya, “Dynamic Accumulators and Application to Ef-
ficient Revocation of Anonymous Credentials”, CRYPTO’02: 22th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 18-22
2002, pp. 61-76, doi:10.1007/3-540-45708-9_5.

J.Camenisch, A.Lysyanskaya, “A Signature Scheme with Efficient Protocols”,
SCN’03: 3rd International Conference of Security in Communication Net-
works, Amalfi, Italy, September 11-13 2003, pp. 268-289, doi:10.1007/3-540-
36413-7_20.

Trusted Computing Group, “TCG Infrastructure Working Group In-
tegrity Report Schema, Specification Version 2.0”7 2011, http://www.
trustedcomputinggroup.org/wp-content/uploads/IWG_Integrity_
Report_Schema_v2.0.r5.pdf.

Trusted Computing Group, “Trusted Network Communica-
tion” http://www.trustedcomputinggroup.org/work-groups/
trusted-network-communications/.

OpenStack, “Trusted Compute Pools” http://docs.openstack.org/
admin-guide/compute-security.html.

“Kernel-based Virtual Machine” http://www.linux-kvm.org/page/Main_
Page.

“Xen project” https://www.xenproject.org/.

“Docker - home page” https://www.docker.com/.

J.Geffner, “Virtualized Environment Neglected Operations Manipulation”
http://venom.crowdstrike.com/.

S.Berger, “Trusted Platform Module Support Phase I” http://wiki.qgemu.
org/Features/TPM.

S.Berger, R.Caceres, K. A.Goldman, R.Perez, R.Sailer, L.van Doorn, “vTPM:
Virtualizing the Trusted Platform Module”, USENIX'06: 15th Conference on
USENIX Security Symposium, Vancouver, B.C., Canada, July 31-August 04
2006, pp. 305-320.

K.Goldman, R.Sailer, D.Pendarakis, D.Srinivasan, “Scalable integrity mon-
itoring in virtualized environments”, STC’10: 5th ACM workshop on Scal-
able Trusted Computing, Chicago, II, USA, October 4-8 2010, pp. 73-78,
doi:10.1145/1867635.1867647.

T.Garfinkel, B.Pfaff, J.Chow, M.Rosenblum, D.Boneh, “Terra: a virtual
machine-based platform for trusted computing”, SOSP’03: 19th ACM sym-
posium on Operating Systems Principles, Bolton Landing, NY, USA, October
19-22 2003, pp. 193-206, doi:10.1145/1165389.945464.

J.Schiffman, H.Vijayakumar, T.Jaeger, “Verifying System Integrity by Proxy”,

130

https://docs.fedoraproject.org/en-US/Fedora/18/html/UEFI_Secure_Boot_Guide/chap-UEFI_Secure_Boot_Guide-What_is_Secure_Boot.html
https://docs.fedoraproject.org/en-US/Fedora/18/html/UEFI_Secure_Boot_Guide/chap-UEFI_Secure_Boot_Guide-What_is_Secure_Boot.html
https://docs.fedoraproject.org/en-US/Fedora/18/html/UEFI_Secure_Boot_Guide/chap-UEFI_Secure_Boot_Guide-What_is_Secure_Boot.html
http://dx.doi.org/10.1145/1030083.1030103
http://dx.doi.org/10.1007/3-540-45708-9_5
http://dx.doi.org/10.1007/3-540-36413-7_20
http://dx.doi.org/10.1007/3-540-36413-7_20
http://www.trustedcomputinggroup.org/wp-content/uploads/IWG_Integrity_Report_Schema_v2.0.r5.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/IWG_Integrity_Report_Schema_v2.0.r5.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/IWG_Integrity_Report_Schema_v2.0.r5.pdf
http://www.trustedcomputinggroup.org/work-groups/trusted-network-communications/
http://www.trustedcomputinggroup.org/work-groups/trusted-network-communications/
http://docs.openstack.org/admin-guide/compute-security.html
http://docs.openstack.org/admin-guide/compute-security.html
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
https://www.xenproject.org/
https://www.docker.com/
http://venom.crowdstrike.com/
http://wiki.qemu.org/Features/TPM
http://wiki.qemu.org/Features/TPM
http://dx.doi.org/10.1145/1867635.1867647
http://dx.doi.org/10.1145/1165389.945464

Bibliography

[44]

[45]

[46]

[48]

[49]

[50]

[51]

[52]

[54]

TRUST’12: 5th International Conference on Trust and Trustworthy Comput-
ing, Vienna, Austria, June 13-15 2012, pp. 179-200, doi:10.1007/978-3-642-
30921-2_11.

S.Soltesz, M. E.Fiuczynski, L.Peterson, M.Mccabe, J.Matthews, “Virtual
Doppelganger: On the Performance, Isolation, and Scalability of Para-
and Paene- Virtualized Systems” 2006, http://people.clarkson.edu/~jnm/
publications/paenevirtualization.pdf.

H.Ali, “Performance of Docker vs VMs” 2014, http://www.slideshare.net/
Flux7Labs/performance-of-docker-vs-vms.

E.Messmer, “Details emerging on Hannaford data breach - Mal-
ware loaded onto Hannaford servers let attackers intercept credit card
data” 2008, http://www.networkworld.com/article/2284998/lan-wan/
details-emerging-on-hannaford-data-breach.html.

A. R.Sadeghi, C.Stiible, “Property-based attestation for computing platforms:
caring about properties, not mechanisms”, NSPW’04: Workshop on New Se-
curity Paradigms, Nova Scotia, Canada, September 20-23 2004, pp. 6777,
doi:10.1145/1065907.1066038.

J. A.Poritz, “Trust[ed|in] Computing, Signed Code and the Heat Death of the
Internet”, SAC’06: ACM Symposium on Applied Computing, Dijon, France,
April 23-27 2006, pp. 1855-1859, doi:10.1145/1141277.1141716.

A. W.Appel, E. W.Felten, “Models for Security Policies in Proof-Carrying
Code”, Princeton University 2001, ftp://ftp.cs.princeton.edu/reports/
2001/636 . pdf.

G. C.Necula, “Proof-carrying Code”, POPL’97: 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Paris, France,
January 15-17 1997, pp. 106119, doi:10.1145/263699.263712.

A.Bernard, P.Lee, “Enforcing Formal Security Properties”, Carnegie Mellon
School of Computer Science 2001, April, http://reports-archive.adm.cs.
cmu. edu/anon/usr0/anon/usr0/£ftp/2001/CMU-CS-01-121 . pdf.

J.Poritz, M.Schunter, E.Herreweghen, M.Waidner, “Property Attestation—
Scalable and Privacy-friendly Security Assessment of Peer Computers”, IBM
Zurich Research Laboratory 2004, October, http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.128.5802&rep=repl&type=pdf.

U.Kiihn, M.Selhorst, C.Stiible, “Realizing property-based attestation and seal-
ing with commonly available hard- and software”, STC’07: 2nd ACM work-
shop on Scalable Trusted Computing, Alexandria, Virginia, USA, October
29-November 02 2007, pp. 50-57, doi:10.1145/1314354.1314368.

R.Korthaus, A. R.Sadeghi, C.Stiible, J.Zhan, “A practical property-
based bootstrap architecture”, STC’09: 4th ACM workshop on Scalable
Trusted Computing, Chicago, IL, USA, November 9-13 2009, pp. 29-38,
doi:10.1145/1655108.1655114.

“TrouSerS, The open-source TCG Software Stack” http://trousers.
sourceforge.net/.

131

http://dx.doi.org/10.1007/978-3-642-30921-2_11
http://dx.doi.org/10.1007/978-3-642-30921-2_11
http://people.clarkson.edu/~jnm/publications/paenevirtualization.pdf
http://people.clarkson.edu/~jnm/publications/paenevirtualization.pdf
http://www.slideshare.net/Flux7Labs/performance-of-docker-vs-vms
http://www.slideshare.net/Flux7Labs/performance-of-docker-vs-vms
http://www.networkworld.com/article/2284998/lan-wan/details-emerging-on-hannaford-data-breach.html
http://www.networkworld.com/article/2284998/lan-wan/details-emerging-on-hannaford-data-breach.html
http://dx.doi.org/10.1145/1065907.1066038
http://dx.doi.org/10.1145/1141277.1141716
ftp://ftp.cs.princeton.edu/reports/2001/636.pdf
ftp://ftp.cs.princeton.edu/reports/2001/636.pdf
http://dx.doi.org/10.1145/263699.263712
http://reports-archive.adm.cs.cmu.edu/anon/usr0/anon/usr0/ftp/2001/CMU-CS-01-121.pdf
http://reports-archive.adm.cs.cmu.edu/anon/usr0/anon/usr0/ftp/2001/CMU-CS-01-121.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.5802&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.5802&rep=rep1&type=pdf
http://dx.doi.org/10.1145/1314354.1314368
http://dx.doi.org/10.1145/1655108.1655114
http://trousers.sourceforge.net/
http://trousers.sourceforge.net/

Bibliography

[55]

[58]

[59]

[60]

[61]

[67]

X.Li, C.Shen, X.Zuo, “An Efficient Attestation for Trustworthiness of Com-
puting Platform”, ITH-MSP’06: International Conference on Intelligent Infor-
mation Hiding and Multimedia, Pasadena, CA, USA, December 18-20 2006,
pp. 625630, doi:10.1109/1TH-MSP.2006.265080.

M.Alam, X.Zhang, M.Nauman, T.Ali, J. P.Seifert, “Model-based behavioral
attestation”, SACMAT’08: 13th ACM Symposium on Access Control Mod-
els And Technologies, Estes Park, CO, USA, June 11-13 2008, pp. 175-184,
doi:10.1145/1377836.1377864.

W.Chris, C.Crispin, S.Stephen, M.James, K.-H.Greg, “Linux Security Mod-
ules: General Security Support for the Linux Kernel”, USENIX'02: 11th
USENIX Security Symposium, San Francisco, CA, USA, August 5-9 2002,
pp. 213-226, doi:10.1109/FITS.2003.1264934.

L.Gu, X.Ding, R. H.Deng, B.Xie, H.Mei, “Remote attestation on pro-
gram execution”, STC’08: 3rd ACM workshop on Scalable Trusted
Computing, Alexandria, Virginia, USA, October 27-31 2008, pp. 11-20,
doi:10.1145/1456455.1456458.

J.Park, R.Sandhu, “Towards Usage Control Models: Beyond Traditional Ac-
cess Control”, SACMAT’02: 7th ACM Symposium on Access Control Mod-
els and Technologies, Monterey, California, USA, June 3-4 2002, pp. 57-64,
doi:10.1145/507711.507722.

X.Zhang, F.Parisi-Presicce, R.Sandhu, J.Park, “Formal Model and Pol-
icy Specification of Usage Control”, ACM Transaction on Information
and System Security, Vol. 8, No. 4, November 2005, pp. 351-387,
doi:10.1145/1108906.1108908.

M.Nauman, M.Alam, X.Zhang, T.Ali, “Remote Attestation of Attribute Up-
dates and Information Flows in a UCON System”, TRUST’09: 2nd Interna-
tional Conference on Trust and Trustworthy Computing, Oxford, UK, April
6-8 2009, pp. 63-80, doi:10.1007/978-3-642-00587-9_5.

R.Sailer, X.Zhang, T.Jaeger, L.van Doorn, “Design and Implementation of a
TCG-based Integrity Measurement Architecture”, USENIX'04: 13th USENIX
Security Symposium, San Diego, CA, USA, June 27-July 02 2004, pp. 223-238.
“Open Trusted Computing (OpenTC)” www.opentc.net/.

“The SECURED project (SECURity at the network EDge)” http://www.
secured-fp7.eu/.

S.Berger, K.Goldman, D.Pendarakis, D.Safford, E.Valdez, M.Zohar, “Scalable
Attestation: A Step toward Secure and Trusted Clouds”, IEEE Cloud Com-
puting, Vol. 2, No. 5, September 2015, pp. 10-18, doi:10.1109/MCC.2015.97.
T.Jaeger, R.Sailer, U.Shankar, “PRIMA: policy-reduced integrity measure-
ment architecture”, SACMAT’06: 11th ACM Symposium on Access Control
Models And Technologies, Lake Tahoe, CA, USA, June 7-9 2006, pp. 19-28,
doi:10.1145/1133058.1133063.

W.Xu, G.-J.Ahn, H.Hu, X.Zhang, J.-P.Seifert, “DR@QFT: Efficient Remote
Attestation Framework for Dynamic Systems”, ESORICS’10: 15th European
Symposium on Research in Computer Security, Athens, Greece, September
20-22 2010, pp. 182-198, doi:10.1007/978-3-642-15497-3_12.

132

http://dx.doi.org/10.1109/IIH-MSP.2006.265080
http://dx.doi.org/10.1145/1377836.1377864
http://dx.doi.org/10.1109/FITS.2003.1264934
http://dx.doi.org/10.1145/1456455.1456458
http://dx.doi.org/10.1145/507711.507722
http://dx.doi.org/10.1145/1108906.1108908
http://dx.doi.org/10.1007/978-3-642-00587-9_5
www.opentc.net/
http://www.secured-fp7.eu/
http://www.secured-fp7.eu/
http://dx.doi.org/10.1109/MCC.2015.97
http://dx.doi.org/10.1145/1133058.1133063
http://dx.doi.org/10.1007/978-3-642-15497-3_12

Bibliography

[68]

[69]

[71]

[73]

[74]

[75]

[76]

[77]

78]

[79]

B.Hicks, S.Rueda, T.Jaeger, P.McDaniel, “From trusted to secure: building
and executing applications that enforce system security”, ATC’07: USENIX
Annual Technical Conference, Santa Clara, CA, USA, June 17-22 2007, pp. 1—
14.

W.Sze, R.Sekar, “A Portable User-level Approach for System-wide Integrity
Protection”, ACSAC’13: 29th Annual Computer Security Applications Con-
ference, New Orleans, Louisiana, USA, December 9-13 2013, pp. 219-228,
doi:10.1145/2523649.2523655.

P. A.Loscocco, P. W.Wilson, J. A.Pendergrass, C. D.McDonell, “Linux ker-
nel integrity measurement using contextual inspection”, STC’07: 2nd ACM

workshop on Scalable Trusted Computing, Alexandria, Virginia, USA, Octo-
ber 29-November 02 2007, pp. 21-29, doi:10.1145/1314354.1314362.

M.Thober, J. A.Pendergrass, C. D.McDonell, “Improving coherency of run-
time integrity measurement”, STC’08: 3rd ACM workshop on Scalable
Trusted Computing, Alexandria, Virginia, USA, October 27-31 2008, pp. 51—
60, doi:10.1145/1456455.1456464.

N. L.Petroni, Jr., M.Hicks, “Automated detection of persistent kernel control-
flow attacks”, CCS’07: 14th ACM conference on Computer and Communi-
cations Security, Alexandria, Virginia, USA, October 29-November 02 2007,
pp. 103-115, doi:10.1145/1315245.1315260.

C.Kil, E.Sezer, A.Azab, P.Ning, X.Zhang, “Remote attestation to dy-
namic system properties: Towards providing complete system integrity ev-
idence”, DSN’09: IEEE/IFIP International Conference on Dependable Sys-
tems Networks, Lisbon, Portugal, June 29-July 02 2009, pp. 115-124,
doi:10.1109/DSN.2009.5270348.

L.Davi, A. R.Sadeghi, M.Winandy, “Dynamic integrity measurement and
attestation: towards defense against return-oriented programming attacks”,
STC’09: 4th ACM workshop on Scalable Trusted Computing, Chicago, IL,
USA, November 9-13 2009, pp. 49-54, doi:10.1145/1655108.1655117.

R.Sassu, G.Ramunno, A.Lioy, “Practical Assessment of Biba Integrity for
TCG-Enabled Platforms”, TrustCom’14: 13th International Conference on
Trust, Security and Privacy in Computing and Communications, Beijing,
China, September 24-26 2014, pp. 495-504, doi:10.1109/TrustCom.2014.63.
IBM, “Software ~TPM 2.0” https://sourceforge.net/projects/
ibmswtpm?2/.

“Software-based TPM Emulator” https://sourceforge.net/projects/
tpm-emulator.berlios/.

M.Strasser, H.Stamer, “A Software-Based Trusted Platform Module Emula-
tor”, Trust’08: 1st International Conference on Trusted Computing and Trust
in Information Technologies, Villach, Austria, March 11-12 2008, pp. 33-47,
doi:10.1007/978-3-540-68979-9_3.

H.Raj, S.Saroiu, A.Wolman, R.Aigner, J.Cox, P.England,
C.Fenner, K.Kinshumann, J.Loeser, D.Mattoon, M.Nystrom,

133

http://dx.doi.org/10.1145/2523649.2523655
http://dx.doi.org/10.1145/1314354.1314362
http://dx.doi.org/10.1145/1456455.1456464
http://dx.doi.org/10.1145/1315245.1315260
http://dx.doi.org/10.1109/DSN.2009.5270348
http://dx.doi.org/10.1145/1655108.1655117
http://dx.doi.org/10.1109/TrustCom.2014.63
https://sourceforge.net/projects/ibmswtpm2/
https://sourceforge.net/projects/ibmswtpm2/
https://sourceforge.net/projects/tpm-emulator.berlios/
https://sourceforge.net/projects/tpm-emulator.berlios/
http://dx.doi.org/10.1007/978-3-540-68979-9_3

Bibliography

[30]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

D.Robinson, R.Spiger, S.Thom, D.Wooten, “fTPM: A Firmware-
based TPM 2.0 Implementation”, Microsoft Research 2015, Novem-
ber, https://www.microsoft.com/en-us/research/publication/
ftpm-a-firmware-based-tpm-2-0-implementation/.

H.Raj, S.Saroiu, A.Wolman, R.Aigner, J.Cox, P.England, C.Fenner,
K.Kinshumann, J.Loeser, D.Mattoon, M.Nystrom, D.Robinson, R.Spiger,
S. Thom, D.Wooten, “fTPM: A Software-Only Implementation of a TPM
Chip”, USENIX"16: 25th USENIX Security Symposium, Austin, Texas, USA,
August 10-12 2016, pp. 841-856.

“BitLocker Drive Encryption Overview” https://technet.microsoft.com/
en-us/library/cc732774(v=ws.11) .aspx.

“Open Platform Trust Services, GRUB-IMA” https://osdn.net/projects/
openpts/wiki/GRUB-IMA.

“Trusted Boot” https://sourceforge.net/projects/tboot/.

“TPM enabled GRUB2 Bootloader, TrustedGRUB2” https://github.com/
Rohde-Schwarz-Cybersecurity/TrustedGRUB2.

B.Schneier, “Evil Maid Attacks on Encrypted Hard Drives” https://www.
schneier.com/blog/archives/2009/10/evil_maid_attac.html.

“Open Platform Trust Services” https://osdn.net/projects/openpts/
wiki/FrontPage.

“OpenAttestation SDK” https://github.com/OpenAttestation/
OpenAttestation.

“Open Cloud Integrity Technology” https://github.com/opencit/opencit.
“Trusted Network Communication and Internet Engineering
Task Force” http://trustedcomputinggroup.org/work-groups/
trusted-network-communications/tnc-and-ietf/.

P.Sangster, K.Narayan, “PA-TNC: A Posture Attribute (PA) Protocol Com-
patible with Trusted Network Connect (TNC)”, RFC-5792, March 2010.
P.Sangster, N.Cam-Winget, J.Salowey, “A Posture Transport Protocol over
TLS (PT-TLS)”, RFC-6876, February 2013.

“Trusted Network Connect (TNC) HOWTO” https://wiki.strongswan.
org/projects/1/wiki/trustednetworkconnect.

G.Coker, J.Guttman, P.Loscocco, A.Herzog, J.Millen, B.O’Hanlon,
J.Ramsdell, A.Segall, J.Sheehy, B.Sniffen, “Principles of remote attestation”,
International Journal of Information Security, Vol. 10, No. 2, April 2011,
pp. 63-81, doi:10.1007/s10207-011-0124-7.

L.Chen, P.Morrissey, N. P.Smart, “Pairings in Trusted Computing”, Par-
ing’08: 2nd International Conference of Pairing-Based Cryptography, Egham,
UK, September 1-3 2008, pp. 1-17, doi:10.1007/978-3-540-85538-5_1.
E.Brickell, L.Chen, J.Li, “Simplified Security Notions of Direct Anony-
mous Attestation and a Concrete Scheme from Pairings”, International Jour-
nal of Information Security, Vol. 8, No. 5, September 2009, pp. 315-330,
doi:10.1007/s10207-009-0076-3.

E.Cesena, G.Ramunno, R.Sassu, D.Vernizzi, A.Lioy, “On Scalability
of Remote Attestation”, STC’11: 6th ACM Workshop on Scalable

134

https://www.microsoft.com/en-us/research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/
https://www.microsoft.com/en-us/research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/
https://technet.microsoft.com/en-us/library/cc732774(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/cc732774(v=ws.11).aspx
https://osdn.net/projects/openpts/wiki/GRUB-IMA
https://osdn.net/projects/openpts/wiki/GRUB-IMA
https://sourceforge.net/projects/tboot/
https://github.com/Rohde-Schwarz-Cybersecurity/TrustedGRUB2
https://github.com/Rohde-Schwarz-Cybersecurity/TrustedGRUB2
https://www.schneier.com/blog/archives/2009/10/evil_maid_attac.html
https://www.schneier.com/blog/archives/2009/10/evil_maid_attac.html
https://osdn.net/projects/openpts/wiki/FrontPage
https://osdn.net/projects/openpts/wiki/FrontPage
https://github.com/OpenAttestation/OpenAttestation
https://github.com/OpenAttestation/OpenAttestation
https://github.com/opencit/opencit
http://trustedcomputinggroup.org/work-groups/trusted-network-communications/tnc-and-ietf/
http://trustedcomputinggroup.org/work-groups/trusted-network-communications/tnc-and-ietf/
https://wiki.strongswan.org/projects/1/wiki/trustednetworkconnect
https://wiki.strongswan.org/projects/1/wiki/trustednetworkconnect
http://dx.doi.org/10.1007/s10207-011-0124-7
http://dx.doi.org/10.1007/978-3-540-85538-5_1
http://dx.doi.org/10.1007/s10207-009-0076-3

Bibliography

[101]

[102]

103]

[104]

[105]

[106]

107]

[108]

109

Trusted Computing, Chicago, 1L, USA, October 17-21 2011, pp. 25-30,
doi:10.1145/2046582.2046588.

“Address Space Layout Randomization” https://pax.grsecurity.net/
docs/aslr.txt.

S.Frankel, S.Krishnan, “IP Security (IPsec) and Internet Key Exchange (IKE)
Document Roadmap”, RFC-6071, February 2011.

E. H.Spafford, “Spaf’s Home Page” http://spaf.cerias.purdue.edu/
index.html.

K.Goldman, R.Perez, R.Sailer, “Linking Remote Attestation to Secure
Tunnel Endpoints”, STC’06: 1st ACM Workshop on Scalable Trusted
Computing, Alexandria, Virginia, USA, November 03 2006, pp. 21-24,
doi:10.1145/1179474.1179481.

Y.Gasmi, A. R.Sadeghi, P.Stewin, M.Unger, N.Asokan, “Beyond Se-
cure Channels”, STC07: 2nd ACM Workshop on Scalable Trusted
Computing, Alexandria, Virginia, USA, November 02 2007, pp. 3040,
doi:10.1145/1314354.1314363.

F.Armknecht, Y.Gasmi, A. R.Sadeghi, P.Stewin, M.Unger, G.Ramunno,
D.Vernizzi, “An Efficient Implementation of Trusted Channels Based
on Openssl”, STC08: 3rd ACM Workshop on Scalable Trusted Com-
puting, Alexandria, Virginia, USA, October 31 2008, pp. 41-50,
doi:10.1145/1456455.1456462.

S.Santesson, “TLS Handshake Message for Supplemental Data”, RFC-4680,
September 2006.

Y.Yu, H-Wang, B.Liu, G.Yin, “A Trusted Remote Attestation Model Based on
Trusted Computing”, TrustCom’13: 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, Melbourne,
Australia, July 16-18 2013, pp. 1504-1509, doi:10.1109/TrustCom.2013.183.
E.Cesena, H.Lohr, G.Ramunno, A. R.Sadeghi, D.Vernizzi, “Anonymous Au-
thentication with TLS and DAA”, Trust’10: 3rd International Conference on
Trust & Trustworthy Computing, Berlin, Germany, June 21-23 2010, pp. 47—
62, doi:10.1007/978-3-642-13869-0_4.

F.Stumpf, O.Tafreschi, P.Roder, C.Eckert, “A robust integrity reporting pro-
tocol for remote attestation”, WATC’06: 2nd Workshop on Advances in
Trusted Computing, Tokyo, Japan, November 31-December 1 2006, pp. 308—
317.

L.Zhou, Z.Zhang, “Trusted Channels with Password-Based Authentication
and TPM-Based Attestation”, CMC’10: International Conference on Commu-
nications and Mobile Computing, Shenzhen, China, April 12-14 2010, pp. 223—
227, doi:10.1109/CMC.2010.232.

N.Aziz, N.Udzir, R.Mahmod, “Extending TLS with Mutual Attestation for
Platform Integrity Assurance”, Journal of Communications, Vol. 9, No. 1,
January 2014, pp. 63-72, d0i:10.12720/jcm.9.1.63-72.

S.Schulz, A. R.Sadeghi, “Secure VPNs for Trusted Computing Environments”,
Trust’09: 2nd International Conference on Trusted Computing, Oxford, UK,
April 6-8 2009, pp. 197-216, doi:10.1007/978-3-642-00587-9_13.

135

http://dx.doi.org/10.1145/2046582.2046588
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
http://spaf.cerias.purdue.edu/index.html
http://spaf.cerias.purdue.edu/index.html
http://dx.doi.org/10.1145/1179474.1179481
http://dx.doi.org/10.1145/1314354.1314363
http://dx.doi.org/10.1145/1456455.1456462
http://dx.doi.org/10.1109/TrustCom.2013.183
http://dx.doi.org/10.1007/978-3-642-13869-0_4
http://dx.doi.org/10.1109/CMC.2010.232
http://dx.doi.org/10.12720/jcm.9.1.63-72
http://dx.doi.org/10.1007/978-3-642-00587-9_13

Bibliography

[110] A. R.Sadeghi, S.Schulz, “Extending IPsec for Efficient Remote Attestation”,
FC’14: 14th International Conference on Financial Cryptography and Data
Security, Tenerife, Canary Islands, Spain, January 25-28 2010, pp. 150-165,
doi:10.1007/978-3-642-14992-4 14.

[111] “TrustedVPN” https://cybersecurity.rohde-schwarz.com/en/
products/secure-networks/trustedvpn.

[112] Trusted Computing Group, “I'NC IF-T: Protocol Bindings for Tunneled
EAP Methods Specification” 2014, https://trustedcomputinggroup.org/
tnc-if-t-protocol-bindings-tunneled-eap-methods-specification.

[113] Trusted Computing Group, “TNC IF-T: Binding to TLS” 2013, https://
trustedcomputinggroup.org/tnc-if-t-binding-tls/.

[114] Trusted Computing Group, “Trusted Network Connect Client-Server” 2014,
https://trustedcomputinggroup.org/tnc-if-tnccs-specification/.

[115] D.Maughan, M.Schertler, M.Schneider, J.Turner, “Internet Security Associa-
tion and Key Management Protocol (ISAKMP)”, RFC-2408, November 1998.

[116] D.Harkins, D.Carrel, “The Internet Key Exchange (IKE)”, RFC-2409, Novem-
ber 1998.

[117] S.Sakane, K.Kamada, M.Thomas, J.Vilhuber, “Kerberized Internet Negotia-
tion of Keys (KINK)”, RFC-4430, March 2006.

[118] C.Kaufman, “Internet Key Exchange (IKEv2) Protocol”, RFC-4306, Decem-
ber 2005.

[119] D.Black, D.McGrew, “Using Authenticated Encryption Algorithms with the
Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol”,
RFC-5282, August 2008.

[120] D.Harkins, “Secure Pre-Shared Key (PSK) Authentication for the Internet
Key Exchange Protocol (IKE)”, RFC-6617, June 2012.

[121] T.Kivinen, J.Snyder, “Signature Authentication in the Internet Key Exchange
Version 2 (IKEv2)”, RFC-7427, January 2015.

[122] D.Fu, “IKE and IKEv2 Authentication Using the Elliptic Curve Digital Sig-
nature Algorithm (ECDSA)”, RFC-4754, January 2007.

[123] H.Tschofenig, D.Kroeselberg, A.Pashalidis, Y.Ohba, F.Bersani, “The Extensi-
ble Authentication Protocol-Internet Key Exchange Protocol version 2 (EAP-
IKEv2) Method”, RFC-5106, February 2008.

[124] IEEE Standard Association, “802.1X - IEEE Standard for Local and
metropolitan area networks-Port-Based Network Access Control” 2010.

[125] A.DeKok, A.Lior, “Remote Authentication Dial-In User Service (RADIUS)
Protocol Extensions”, RFC-6929, April 2013.

[126] V.Fajardo, J.Arkko, J.Loughney, G.Zorn, “Diameter Base Protocol”, RFC-
6733, October 2012.

[127] “strongSwan” https://www.strongswan.org/about.html.

[128] ETSI NFV Security ISG, “Security and Trust Guidance” http://docbox.
etsi.org/ISG/NFV/0Open/Drafts/SEC18/NFV-SEC003ed112v002.doc.

[129] T.Ahmad, S.Namal, M.Ylianttila, A.Gurtov, “Security in Software Defined
Networks: A Survey”, IEEE Communications Surveys Tutorials, Vol. 17,
No. 4, August 2015, pp. 2317-2346, doi:10.1109/COMST.2015.2474118.

136

http://dx.doi.org/10.1007/978-3-642-14992-4_14
https://cybersecurity.rohde-schwarz.com/en/products/secure-networks/trustedvpn
https://cybersecurity.rohde-schwarz.com/en/products/secure-networks/trustedvpn
https://trustedcomputinggroup.org/tnc-if-t-protocol-bindings-tunneled-eap-methods-specification
https://trustedcomputinggroup.org/tnc-if-t-protocol-bindings-tunneled-eap-methods-specification
https://trustedcomputinggroup.org/tnc-if-t-binding-tls/
https://trustedcomputinggroup.org/tnc-if-t-binding-tls/
https://trustedcomputinggroup.org/tnc-if-tnccs-specification/
https://www.strongswan.org/about.html
http://docbox.etsi.org/ISG/NFV/Open/Drafts/SEC18/NFV-SEC003ed112v002.doc
http://docbox.etsi.org/ISG/NFV/Open/Drafts/SEC18/NFV-SEC003ed112v002.doc
http://dx.doi.org/10.1109/COMST.2015.2474118

Bibliography

[130] L.Alsmadi, D.Xu, “Security of Software Defined Networks: A sur-
vey”, Computers & Security, Vol. 53, September 2015, pp. 79-108,
d0i:10.1016/j.cose.2015.05.006.

[131] Z.Shu, J.Wan, D.Li, J.Lin, A. V.Vasilakos, M.Imran, “Security in Software-
Defined Networking: Threats and Countermeasures”, Mobile Networks and
Applications, Vol. 21, No. 5, January 2016, pp. 764-776, doi:10.1007/s11036-
016-0676-x.

[132] W.Li, W.Meng, L. F.Kwok, “A survey on OpenFlow-based Software De-
fined Networks: Security challenges and countermeasures”, Journal of
Network and Computer Applications, Vol. 68, April 2016, pp. 126-139,
d0i:10.1016/j.jnca.2016.04.011.

[133] N.McKeown, T.Anderson, H.Balakrishnan, G.Parulkar, L.Peterson,
J.Rexford, S.Shenker, J.Turner, “OpenFlow: Enabling Innovation in
Campus Networks”, SIGCOMM Computer Communication Review, Vol. 38,
No. 2, April 2008, pp. 69-74, doi:10.1145/1355734.1355746.

[134] M. C.Dacier, H.Konig, R.Cwalinski, F.Kargl, S.Dietrich, “Security Challenges
and Opportunities of Software-Defined Networking”, IEEE Security & Privacy,
Vol. 15, No. 2, March/April 2017, pp. 96-100, doi:10.1109/MSP.2017.46.

[135] W.Liu, R. B.Bobba, S.Mohan, R. H.Campbell, “Inter-flow consistency: A
novel SDN update abstraction for supporting inter-flow constraints”, CNS’15:
IEEE Conference on Communications and Network Security, Florence, Italy,
September 28-30 2015, pp. 469-478, doi:10.1109/CNS.2015.7346859.

[136] L.Schiff, S.Schmid, P.Kuznetsov, “In-Band Synchronization for Distributed
SDN Control Planes”, Journal of SIGCOMM Computer Communication Re-
view, Vol. 46, No. 1, January 2016, pp. 37-43, doi:10.1145/2875951.2875957.

[137] L.Jacquin, A. L.Shaw, C.Dalton, “Towards trusted software-defined networks
using a hardware-based Integrity Measurement Architecture”, NetSoft’15: 1st
IEEE Conference on Network Softwarization, London, UK, April 13-17 2015,
pp. 1-6, doi:10.1109/NETSOFT.2015.7116186.

[138] M. D.Firoozjaei, J. P.Jeong, H.Ko, H.Kim, “Security challenges with net-
work functions virtualization”, Future Generation Computer Systems, Vol. 67,
February 2017, pp. 315-324, doi:10.1016/j.future.2016.07.002.

[139] S.Ravidas, S.Lal, I.Oliver, L.Hippelainen, “Incorporating trust in NFV:
Addressing the challenges”, ICIN’17: 20th Conference on Innovations in
Clouds, Internet and Networks, Paris, France, March 7-9 2017, pp. 87-91,
doi:10.1109/1CIN.2017.7899394.

[140] Xen Project mailing list, “vtpmmgr bug: fails to start if locality not
0” 2014, https://lists.xen.org/archives/html/xen-devel/2014-11/
msg00606 . html.

[141] M.Fioravante, D. D.Graaf, “Virtual TPM interface for Xen” https://www.
kernel.org/doc/Documentation/security/tpm/xen-tpmfront.txt.

[142] Trusted Computing Group, “Virtualized Trusted Platform Ar-
chitecture Specification, Version 1.0, Revision 26" 2011, https:
//www.trustedcomputinggroup.org/wp-content/uploads/TCG_VPWG_
Architecture_V1-0_RO-26_FINAL.pdf.

137

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1007/s11036-016-0676-x
http://dx.doi.org/10.1007/s11036-016-0676-x
http://dx.doi.org/10.1016/j.jnca.2016.04.011
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/MSP.2017.46
http://dx.doi.org/10.1109/CNS.2015.7346859
http://dx.doi.org/10.1145/2875951.2875957
http://dx.doi.org/10.1109/NETSOFT.2015.7116186
http://dx.doi.org/10.1016/j.future.2016.07.002
http://dx.doi.org/10.1109/ICIN.2017.7899394
https://lists.xen.org/archives/html/xen-devel/2014-11/msg00606.html
https://lists.xen.org/archives/html/xen-devel/2014-11/msg00606.html
https://www.kernel.org/doc/Documentation/security/tpm/xen-tpmfront.txt
https://www.kernel.org/doc/Documentation/security/tpm/xen-tpmfront.txt
https://www.trustedcomputinggroup.org/wp-content/uploads/TCG_VPWG_Architecture_V1-0_R0-26_FINAL.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TCG_VPWG_Architecture_V1-0_R0-26_FINAL.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TCG_VPWG_Architecture_V1-0_R0-26_FINAL.pdf

Bibliography

[143]

[144]

[145]

[146]

[147]
[148]

149
[150]

[151]

[152]
[153]

[154]

[155]

[156]

X.Wan, Z.Xiao, Y.Ren, “Building Trust into Cloud Computing Using Virtu-
alization of TPM”, MINES’12: 4th International Conference on Multimedia
Information Networking and Security, Nanjing, China, November 2-4 2012,
pp. 59-63, doi:10.1109/MINES.2012.82.

H.Lauer, N.Kuntze, “Hypervisor-Based Attestation of Virtual Environ-
ments”, UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld’16: International
IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud and
Big Data Computing, Internet of People, and Smart World Congress,
Toulouse, France, July 18-21 2016, pp. 333-340, doi:10.1109/UIC-ATC-
ScalCom-CBDCom-IoP-Smart World.2016.0067.

F.Stumpf, C.Eckert, “Enhancing Trusted Platform Modules with Hardware-
Based Virtualization Techniques”, SECURWARE’08: 2nd International Con-
ference on Emerging Security Information, Systems and Technologies, Cap Es-
terel, France, August 25-31 2008, pp. 1-9, doi:10.1109/SECURWARE.2008.23.
R.Uhlig, G.Neiger, D.Rodgers, A. L.Santoni, F. C. M.Martins, A. V.Anderson,
S. M.Bennett, A.Kagi, F. H.Leung, L.Smith, “Intel virtualization technology”,
Computer, Vol. 38, No. 5, May 2005, pp. 48-56, doi:10.1109/MC.2005.163.
Intel Corporation, “Intel Clear Containers” 2017, https://clearlinux.org/
features/intel-clear-containers/.

“QEMU is a generic and open source machine emulator and virtualizer” 2017,
WWW.qgemu. org/.

“rkt - the pod-native container engine” 2017, https://github.com/rkt/rkt.
P.England, J.Loeser, “Para-Virtualized TPM Sharing”, TRUST’08: 1st Inter-
national Conference on Trusted Computing and Trust in Information Tech-
nologies, Villach, Austria, March 11-12 2008, pp. 119-132, doi:10.1007/978-3-
540-68979-9_9.

S.Hosseinzadeh, S.Laurén, V.Leppéanen, “Security in Container-based Virtu-
alization Through vITPM”, UCC’16: 9th International Conference on Utility
and Cloud Computing, Shanghai, China, December 6-9 2016, pp. 214-219,
doi:10.1145/2996890.3009903.

S.Berger, “Virtual TPM Proxy Driver for Linux Containers” https://www.
kernel.org/doc/html/v4.10/security/tpm/tpm_vtpm_proxy.html.

“rkt and the Trusted Platform Module” 2017, https://github.com/rkt/
rkt/blob/master/Documentation/devel/tpm.md.

Intel Corporation, “Intel Software Guard Extensions Programming Reference”
2015, https://software.intel.com/sites/default/files/managed/48/
88/329298-002. pdf.

V.Costan, S.Devadas, “Intel SGX explained” https://pdfs.
semanticscholar.org/2d7f/3f4ca3fbb15ae04533456e5031e0d0dc845a.
pdf.

M.Shih, M.Kumar, T.Kim, A.Gavrilovska, “S-NFV: Securing NFV States
by Using SGX”, SDN-NFV Security’16: ACM International Workshop
on Security in Software Defined Networks & Network Function Virtu-
alization, New Orleans, Louisiana, USA, March 11 2016, pp. 4548,

138

http://dx.doi.org/10.1109/MINES.2012.82
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0067
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0067
http://dx.doi.org/10.1109/SECURWARE.2008.23
http://dx.doi.org/10.1109/MC.2005.163
https://clearlinux.org/features/intel-clear-containers/
https://clearlinux.org/features/intel-clear-containers/
www.qemu.org/
https://github.com/rkt/rkt
http://dx.doi.org/10.1007/978-3-540-68979-9_9
http://dx.doi.org/10.1007/978-3-540-68979-9_9
http://dx.doi.org/10.1145/2996890.3009903
https://www.kernel.org/doc/html/v4.10/security/tpm/tpm_vtpm_proxy.html
https://www.kernel.org/doc/html/v4.10/security/tpm/tpm_vtpm_proxy.html
https://github.com/rkt/rkt/blob/master/Documentation/devel/tpm.md
https://github.com/rkt/rkt/blob/master/Documentation/devel/tpm.md
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://pdfs.semanticscholar.org/2d7f/3f4ca3fbb15ae04533456e5031e0d0dc845a.pdf
https://pdfs.semanticscholar.org/2d7f/3f4ca3fbb15ae04533456e5031e0d0dc845a.pdf
https://pdfs.semanticscholar.org/2d7f/3f4ca3fbb15ae04533456e5031e0d0dc845a.pdf

Bibliography

doi:10.1145/2876019.2876032.

[157] M.Coughlin, E.Keller, E.Wustrow, “Trusted Click: Overcoming Secu-
rity Issues of NFV in the Cloud”, SDN-NFVSec'17: ACM International
Workshop on Security in Software Defined Networks & Network Func-
tion Virtualization, Scottsdale, Arizona, USA, March 24 2017, pp. 31-36,
doi:10.1145/3040992.3040994.

[158] S.Arnautov, B.Trach, F.Gregor, T.Knauth, A.Martin, C.Priebe, J.Lind,
D.Muthukumaran, D.O’Keeffe, M. L.Stillwell, D.Goltzsche, D.Eyers,
R.Kapitza, P.Pietzuch, C.Fetzer, “SCONE: Secure Linux Containers with In-
tel SGX”, OSDI'16: 12th USENIX Symposium on Operating Systems Design
and Implementation, Savannah, GA, USA, November 2-4 2016, pp. 689-703.

[159] F.Brasser, U.Miiller, A.Dmitrienko, K.Kostiainen, S.Capkun, A. R.Sadeghi,
“Software Grand Exposure: SGX Cache Attacks Are Practical” 2017.

[160] M.Schwarz, S.Weiser, D.Gruss, C.Maurice, S.Mangard, “Malware Guard Ex-
tension: Using SGX to Conceal Cache Attacks” 2017.

[161] J.Sulinski, “Docker Image Vulnerability Research” 2017, https://www.
federacy.com/docker_image_vulnerabilities.

[162] N.Kuntze, C.Rudolph, J.Paatero, “Establishing Trust between Nodes in
Mobile Ad-Hoc Networks”, INTRUST’12: 4th International Conference
on Trusted Systems, London, UK, December 17-18 2012, pp. 48-62,
doi:10.1007/978-3-642-35371-0_4.

[163] Datadog, “8 surprising facts about real Docker container adoption” 2016,
https://www.datadoghq.com/docker-adoption/.

[164] Business Cloud News, “Deutsche Telekom experimenting with NFV
in Docker” 2016, http://www.businesscloudnews.com/2015/02/09/
deutsche-telekom-experimenting-with-nfv-in-docker/.

[165] “Docker User in Google group” https://groups.google.com/forum/#!msg/
docker-user/k5hqpNg8gwQ/00mvrB2nTkJ.

[166] “Lingering processes (and containers) when writing to stdout” https://
github.com/docker/docker/issues/1320.

[167) A.Atzeni, T.Su, T.Montanaro, “Lightweight Formal Verification in Real
World, A Case Study”, WISSE’14: 4th International Workshop on Infor-
mation Systems Security Engineering, Thessaloniki, Greece, June 17 2014,
pp. 335-342, doi:10.1007/978-3-319-07869-4_31.

[168] T.Su, J.Lyle, A.Atzeni, S.Faily, H.Virji, C.Ntanos, C.Botsikas, “Continu-
ous Integration for Web-Based Software Infrastructures: Lessons Learned on
the webinos Project”, HVC’13: 9th International Haifa Verification Confer-
ence: Verification and Testing, Haifa, Israel, November 5-7 2013, pp. 145-150,
doi:10.1007/978-3-319-03077-7_10.

[169] B.Gregg, “Linux Enhanced BPF (eBPF) Tracing Tools” 2017, http://www.
brendangregg.com/ebpf.html.

139

http://dx.doi.org/10.1145/2876019.2876032
http://dx.doi.org/10.1145/3040992.3040994
https://www.federacy.com/docker_image_vulnerabilities
https://www.federacy.com/docker_image_vulnerabilities
http://dx.doi.org/10.1007/978-3-642-35371-0_4
https://www.datadoghq.com/docker-adoption/
http://www.businesscloudnews.com/2015/02/09/deutsche-telekom-experimenting-with-nfv-in-docker/
http://www.businesscloudnews.com/2015/02/09/deutsche-telekom-experimenting-with-nfv-in-docker/
https://groups.google.com/forum/#!msg/docker-user/k5hqpNg8gwQ/00mvrB2nIkJ
https://groups.google.com/forum/#!msg/docker-user/k5hqpNg8gwQ/00mvrB2nIkJ
https://github.com/docker/docker/issues/1320
https://github.com/docker/docker/issues/1320
http://dx.doi.org/10.1007/978-3-319-07869-4_31
http://dx.doi.org/10.1007/978-3-319-03077-7_10
http://www.brendangregg.com/ebpf.html
http://www.brendangregg.com/ebpf.html

	Summary
	List of Figures
	List of Tables
	Introduction
	Background of Trusted Computing
	Trusted Platform
	Protected Capabilities
	Roots of Trust

	Integrity Measurement
	Trusted Computing Base

	Integrity Reporting
	Key Hierarchy
	Configuration-based Remote Attestation

	Virtualisation
	Hypervisor-based Virtualisation
	Operating-System-Level Virtualisation

	Remote Attestation Framework
	State of the Art and The Way Forward
	Contribution

	Requirement Analysis
	Security Requirements
	Functional Requirements
	Possible Attacks

	General Architecture
	Attesting Platform
	Integrity Verifier

	Remote Attestation Workflow
	Registration Phase
	Remote Attestation Phase

	Details of the Framework
	Trusted Boot
	Service Load-time Integrity Measurement
	Integrity Report
	Analysis Customisation

	Application of Remote Attestation Framework in Network Policy Validation Scenario
	Motivations of A Trusted Network Policy Validator
	Contribution
	Architecture

	Discussion

	Trusted Channel
	State of the Art and The Way Forward
	Contribution

	Requirement Analysis
	Security Requirements
	Functional Requirements
	Possible Attacks

	Trusted Channel Architecture
	Creating Trusted Channel
	Extension to IPsec Authentication
	Extension to Remote Attestation Verifier

	Discussion

	Trusted Network
	Softwarised Network
	Security and Trust in Softwarised Networks
	Contribution

	Requirement Analysis
	Security Requirements
	Functional Requirements

	Remote Attestation in Lightweight Virtualisation Environments
	General Architecture
	Extension of Linux IMA
	Extension of Remote Attestation Framework
	Extension of IMA Verification Procedure

	Discussions

	Implementation Details and Performance
	Remote Attestation Framework
	OpenAttestation SDK
	Enhancements to OpenAttestation
	Performance Evaluation

	Trusted Channel
	strongSwan
	Extension of strongSwan
	Extension of verifier
	Performance Evaluation

	Trusted Networks
	Docker
	Enabling Remote Attestation in Docker containers
	Performance Evaluation

	Conclusion
	Acronyms
	Bibliography

