
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Complex Event Processing for City Officers: A Filter and Pipe Visual Approach / Bonino, Dario; De Russis, Luigi. - In:
IEEE INTERNET OF THINGS JOURNAL. - ISSN 2327-4662. - STAMPA. - 5:2(2018), pp. 775-783.
[10.1109/JIOT.2017.2728089]

Original

Complex Event Processing for City Officers: A Filter and Pipe Visual Approach

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/JIOT.2017.2728089

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2676507 since: 2018-04-11T11:24:52Z

IEEE

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2017 1

Complex Event Processing for City Officers: A
Filter and Pipe Visual Approach

Dario Bonino and Luigi De Russis, Member, IEEE

Abstract—Administrators and operators of next generation
cities will likely be required to exhibit a good understanding of
technical features, data issues, and complex information that, up
to few years ago, were quite far from day-to-day administration
tasks. In the smart city era, the increased attention to data
harvested from the city fosters a more informed approach to
city administration, requiring involved operators to drive, direct,
and orient technological processes in the city more effectively.
Such an increasing need requires tools and platforms that can
easily and effectively be controlled by non-technical people. In
this paper, an approach for enabling “easier” composition of
real-time data processing pipelines in smart cities is presented,
exploiting a visual and block-based design approach, similar
to the one adopted in the Scratch programming language for
elementary school students. The proposed approach encompasses
both a graphical editor and a sound methodology and workflow,
to allow city operators to effectively design, develop, test, and
deploy their own data processing pipelines. The editor and the
workflow are described in the context of a pilot of the ALMANAC
European project.

Index Terms—Complex Event Processing, Block-based pro-
gramming, Filter and Pipe, Big Data Analysis, Smart City, Visual
Programming

I. INTRODUCTION

Cities are playing an increasingly important role, world-
wide. They are currently inhabited by nearly half the world’s
population [1] (68% in Europe1), consume 80% of the world’s
energy production and roughly produce 70% of the total
carbon dioxide [2]. Urban-related challenges encompass, for
example, (a) the adoption of information and sensing tech-
nology for better understanding the city dynamics [3]; (b)
the increasing engagement of citizens in administrative and
management processes, possibly leveraging the power of the
crowds [4]; (c) the environmental sustainability of cities,
fostering virtuous behaviors for better consuming energy and
goods, and for better handling waste and pollutants [5]. In
this extremely complex context, innovative city-wide ICT
platforms are deemed as crucial elements for improving city
management [6], [7] and, in the long term, city life quality.
Several research efforts tackle the issues and challenges [8],

Dario Bonino is with the Pervasive Technologies Research Area of the Isti-
tuto Superiore Mario Boella, 10138 Torino, Italy. email: dario.bonino@ismb.it

Luigi De Russis is with the Department of Control and Com-
puter Engineering at Politecnico di Torino, 10129 Torino, Italy. email:
luigi.derussis@polito.it

Manuscript received December 29, 2016; revised June 14, 2017.
Copyright (c) 2012 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

1According to Eurostat, http://ec.europa.eu/eurostat/documents/3217494/
5728777/KS-HA-11-001-EN.PDF, last visited on June 14, 2017.

[9] related to these “smart cities” [10], e.g., for handling huge
amounts of sensors deployed in the city territory [11], [12], to
manage administrative processes through open-data exchanges
[13], to establish common layers of interoperability between
city functions through semantic modeling [14], etc.

Among these challenges, data-handling is particularly inter-
esting. On one hand, it requires technology capable of handling
thousands of data points, continuously captured from the field.
On the other hand, it requires new programming patterns and
paradigms which shall be accessible to persons that were
previously not exposed to hard technological aspects, e.g.,
city administrators. While many researchers are investigating
methods and tools for Complex Event Processing (CEP) [15],
[16] and Big Data [17], [18] in the context of smart cities,
few approaches explore interaction patterns, programming
languages and/or interfaces for enabling non-experts to define
on-line data processing pipelines, as it will likely be needed
in next generation cities.

In this paper we explicitly target this challenge by proposing
a block-based and visual language for defining complex event
processing pipelines through composition of simple processing
stages, namely blocks. We exploit the proven paradigm of
block-based programming, e.g., adopted by the MIT Scratch
programming language [19] to enable elementary school stu-
dents to approach computer science. This paradigm, integrated
with the well known pipe and filter pattern [20], permits
to design a language composed by simple, easy to under-
stand, processing blocks that composed together can generate
complex and articulated processing pipelines. Along with a
graphical editor to define complex event processing pipelines,
the paper presents a sound methodology and workflow to allow
city operators to effectively design, develop, test, and deploy
the pipelines they would like to define. Both the editor and
the workflow presented here are described in the context of
a pilot of the ALMANAC European project, in particular the
pilot held in the city of Turin, in Italy.

II. RELATED WORKS

Complex Event Processing and techniques for handling
high-cardinality, high-frequency data streams typical of the
Big Data domain have been widely investigated in research.
With the advent of Smart Cities, these topics gained an in-
creased momentum related to the inherent challenges brought
by the city scenario, from large-scale deployment to interoper-
ability between stream formats, etc. Ganz et al. [21] present a
survey of techniques and methods to process and transform
raw sensor data into higher level abstractions, which are

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2017 2

human and/or machine understandable with clear references
to Internet of Things and Smart Cities scenarios. Among the
available approaches and techniques, a rather evident trend
emerges which, on one side recognize that CEP languages are
too complex for non-expert users that are required to define
processing tasks, and on the other side considers semantic
characterization and matching of events a viable solution to ad-
dress smart city scenarios. Anicic et al. [22], define two high-
level languages for specifying event patterns named “ETALIS
Language for Event” and “Event Processing SPARQL” which
aim at bridging the gap between domain-expert knowledge and
CEP query technicalities. Their approach is similar to the one
proposed in this paper as it aims at defining more “effective”
and “easy-to-adopt” languages for CEP, with semantic-based
definition of events. The proposed DFL moves, in fact, in the
same direction and foresees the adoption of SPARQL-based
identification of device tuples, in background, to speed-up the
process of instantiating CEP pipelines (chains). In the work
of Taylor et al. [23] ontologies are used as a basis for the
definition of contextualized complex events of interest which
are translated to selections and temporal combinations of
streamed messages. Supported by description logic reasoning,
the event descriptions defined by Taylor et al. are translated
to the native language of a commercial CEP engine, and
executed under the control of the CEP. This approach shares
with the DFL the underlying idea of hiding the complexity of
CEP under a more suitable language, exploiting semantics for
achieving stream format interoperability and stream matching.
However, it targets a different community of experts able to
successfully understand, and master description logic specifi-
cation of event processing patterns. The Data Fusion Language
(DFL) exploited by the block-based approach, on the contrary,
targets persons which are not skilled in CEP or Big Data
analysis but in city administration and organization. As such,
its main goal is to trade-off expressiveness and flexibility of
CEP languages with easier composition and understandability
by non-experts. Stream matching in large scale scenarios is
a widely recognized issue, also shared by the DFL. Hasan et
al. [24] examine the requirement of event semantic decoupling
and discuss approximate semantic event matching and the
consequences it implies for event processing systems. They,
in particular define a semantic event matcher and evaluate the
suitability of an approximate hybrid matcher based on both
thesauri-based and distributional semantics-based similarity
and relatedness measures. This approach might be considered
for semantic stream matching required by the DFL for wild-
card instantiation of chains involving multiple devices.

III. THE “BAD SMELL” USE CASE

To demonstrate the functionality and test the feasibility
of the block-based and visual approach for data processing
pipelines, we present a use case named Bad Smell. This
use case will be widely used in the remainder of the paper,
especially for describing and contextualizing the proposed
workflow for city officers. The realization of the Bad Smell
use case will be contextualized in a pilot of the ALMANAC
project (briefly described in Section IV). To realize the use

case, no specialized code or external tool will be used. A
secondary purpose of the use case is to demonstrate the type of
processing chains that city operators may realize in a smart city
context. Although this and similar use cases can be built with
other methods (e.g., CEP languages), these include knowledge
on specific domains and other advanced skills that many city
officers do not possess.

The Bad Smell use case arises from a real need of an
ALMANAC pilot: to know when waste bins, distributed in
the entire smart city, are full and need to be emptied. This
information is useful to provide a more efficient and precise
waste management service. Such an information is, further-
more, particularly important if we consider organic waste bins:
they can generate a “bad smell” even if they are not totally full.
Therefore, a city officer could express the following processing
need: define a processing pipeline that generates alerts when
organic waste bins in the entire city might generate unpleasant
smell in the roads.

The city officer, obviously, needs to better formalize her
need in a series of conditions to be checked. For the purpose
of this paper, the city officers might define the rule to generate
“Bad Smell” alerts if a given waste bin is nearly full (e.g., its
fill level is greater than 80% of its capacity) and the outside
temperature is higher than 15◦C.

IV. BACKGROUND

Before diving in the details of the block-based approach and
the proposed methodology and workflow, some background
information could be useful to better understand the previous
and related works employed in this work. In particular, the
spChains framework, the Data Fusion Language adopted by
the ALMANAC project, and a reference ontology will be
introduced.

A. The ALMANAC project

The approach presented in this paper is contextualized and
exemplified within the pilot held in Turin, Italy of the AL-
MANAC project. ALMANAC is a EU-funded project which
aims at designing and developing a Smart City Platform [25]
that integrates technologies and paradigms typical of the
Internet of Things with edge networks, by exploiting a cloud-
based, federated services approach. The project tackles the full
stack of challenges involving smart city platforms, from low-
level sensor interfacing and data capture, to high-level support
to city processes and policies.

B. SpChains

SpChains [26] is a block-based stream processing frame-
work, which represents monitoring (and alerting) tasks as
reusable and modular “processing chains” built atop of a
set of 14 standard, and extensible, stream processing blocks
(Figure 1 reports a sample “smell-detection” chain).

Each block encapsulates a single (parametrized) stream
query (see Figure 2), e.g., a windowed average or a threshold
check, and can be cascaded to other blocks to obtain com-
plex elaboration chains using a pipes-and-filter composition
pattern [20].

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2017 3

Th1

Th2

And

inLevel

inTemperature

smell

>35 °C

>80%

Fig. 1. Bad smell detection.

-- sub-query 1

Q1: Select Rstream(srcIP, Count(*) as num)

 From Packets [Range 1 Minute

 Slide 1 Minute]

 Group By srcIP

-- sub-query 2

Q2: Select Rstream(srcIP, ExpDecAvg(num))

 From Q1 [Range 10 Minute

 Slide 1 Minute]

 Group By srcIP

Q1 => Count

Q2 => ExpDecAvg

range = 1 minute

slide = 1 minute

range = 10 minute

slide = 1 minute

direct CEP query processing chain

(spChains)

Fig. 2. Direct CEP query mapped on processing blocks.

SpChains is suitable for small deployments, with few sen-
sors, as it requires to manually define each single processing
chain (i.e., by composing JSON documents). However, when
moving to smart city scenarios, where the number of sensors
is huge and possibly unknown, defining chains becomes a
daunting task, almost impossible to effectively accomplish. In
particular, three main obstacles in adopting spChains in a smart
city scenario can be identified: 1) single chain instantiation,
2) exact and explicit source matching, 3) verbosity of the
chain definition language (Figure 3 shows the bad smell chain
instantiation). The first obstacle requires the chain developer
to fully specify every chains, even if they apply the same
elaboration to different data sources. The second, requires a
chain to explicitly and uniquely identify target data-sources,
at design time. The third issue makes chain instantiation an
error-prone, and annoying task, which might prevent adoption
of the block-based stream processing paradigm.

{
” c h a i n s ” : [{ ” i d ” : ” bad sme l l 1 ” ,

” b l o c k s ” : [
{” i d ” : ” Th1 ” , ” f u n c t i o n ” : ” t h r e s h o l d ” , ” params ” : [
{”name ” : ” t h r e s h o l d ” , ” v a l u e ” : ” 8 0 ” , ”uom”:”%”} ,
{”name ” : ” mode ” , ” v a l u e ” : ” r i s i n g ”}]} ,

{” i d ” : ” Th2 ” , ” f u n c t i o n ” : ” t h r e s h o l d ” , ” params ” : [
{”name ” : ” t h r e s h o l d ” , ” v a l u e ” : ” 3 5 ” , ”uom ” : ” C e l s i u s ”} ,
{”name ” : ” mode ” , ” v a l u e ” : ” r i s i n g ”}]} ,

{” i d ” : ” And ” , ” f u n c t i o n ” : ” and”}
] ,
” c o n n e c t i o n s ” : [
{”from ”:{” b l o c k I d ” : ” Th1 ” , ” i o I d ” : ” o u t ”} ,

” t o ”:{” b l o c k I d ” : ” And ” , ” i o I d ” : ” i n 1 ”}} ,
{”from ”:{” b l o c k I d ” : ” Th2 ” , ” i o I d ” : ” o u t ”} ,

” t o ” : {” b l o c k I d ” : ” And ” , ” i o I d ” : ” i n 2 ”}}] ,
” i n p u t s ” : [
{” b l o c k I d ” : ” Th1 ” , ” p o r t ” : ” i n ” , ” i o I d ” : ” i n L e v e l ”} ,
{” b l o c k I d ” : ” Th2 ” , ” p o r t ” : ” i n ” , ” i o I d ” : ” i n T e m p e r a t u r e ”}] ,

” o u t p u t s ” : [
{” b l o c k I d ” : ” And ” , ” p o r t ” : ” o u t ” , ” i o I d ” : ” s m e l l ”}]}] ,

” b i n d i n g s ” : [
{” f romSource s ” : [{” s o u r c e I d ” : ” WasteBin36754 ” , ” d a t a S t r e a m ” : [
{” s t r e a m I d ” : ” T em p e r a t u r e a c d 4 5 37 f d ” , ” i o I d ” : ” i n T e m p e r a t u r e ”} ,
{” s t r e a m I d ” : ” F i l l L e v e l c g a j h 7 4 6 2 9 ” , ” i o I d ” : ” i n L e v e l ”}]}] ,

” t o D r a i n s ” : [{” d r a i n I d ” : ” bad smel l 36754 ” , ” i o I d ” : ” s m e l l ”}]}]
}

Fig. 3. Bad smell chain definition and binding to WasteBin36754, in the
updated JSON syntax.

C. ALMANAC Data Fusion Language

To overcome the spChains issues, Bonino et al. [25]
proposed the adoption of a new modeling primitive, namely
the template, and of a new, metadata-based, template
instantiation algorithm named wild-card template binding.
The resulting block-based CEP definition language is called
ALMANAC Data Fusion Language (DFL).

Template
In the ALMANAC DFL, the single chain instantiation issue

is tackled, for smart city scenarios, by means of the new
template modeling primitive. Templates are special classes of
stream processing chains whose inputs and outputs are left
open by exploiting syntactical place-holders, and can be later
matched to different sources, and drains (Figure 4).

Th1

Th2

And

inlevel

inTemperature

Smell

>35 °C

>80%

Bad-Smell

$inLevel

$inTemperature

$smell

Fig. 4. The Template concept. On the left, the original processing chain. On
the right, the corresponding template.

Templates define “prototypes” of processing chains (which
can also be seen as a virtual and complex blocks) that can
be instantiated in same way of any other processing block.
Templates ease the processing pipeline instantiation task by
reducing the amount of blocks that need to be specifically
described in each elaboration chain. The more complex, and
the more similar are chains to instantiate, the higher is the
gain in terms of time and reduced error rate.

Wild-card template binding
The term wild-card template binding, introduced with the

ALMANAC DFL, refers to a more flexible specification of
input and output streams for the designed templates. While
in the original spChains approach (shown in Figure 3), chain
inputs and outputs were tightly bound to uniquely identified
data streams, i.e., to specific sources and drains, in the DFL
this requirement has been relaxed, and a stream-type matching
mechanism is employed to permit deployment-time binding of
different data streams to the same chain structure. Chains can
be defined to be valid for classes of devices of the same kind,
generating the same types of data, thus improving the overall
instantiation effectiveness.

With wild card binding (whose syntax is exemplified in
Figure 5), the chain specification is enriched by:

1) a sourceType “matcher”, which identifies the type of
device, e.g., referred to a well known domain ontology
(briefly described in Section IV-D), generating the needed
data streams;

2) a streamType “matcher”, which identifies the type of
stream “suitable” for a given chain input.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2017 4

” b i n d i n g s ” : [
{

” f romSources ” : [{ ” sourceType ” : ” s m a r t c i t y : WasteBin ” , ” d a t a S t r e a m ” : [
{”s t reamType ” : ” s m a r t c i t y : Tempera tu r e ” , ” i o I d ” : ” i n T e m p e r a t u r e g e n i d ”} ,
{”s t reamType ” : ” s m a r t c i t y : F i l l L e v e l ” , ” i o I d ” : ” i n L e v e l g e n i d ”}
]}] ,

” t o D r a i n s ” : [{” d r a i n I d ” : ” bad smel l 36754 ” , ” i o I d ” : ” s m e l l g e n i d ”}]
}]

Fig. 5. Wild-card template binding syntax example, only the “bindings” sec-
tion is affected. The “ genid” subfix identifies runtime-generated identifiers.
Source and stream types are referred to the ALMANAC smart city ontology.

Currently, the DFL only supports the case of templates
attached to a single device instance, which is reasonably
straightforward. The corresponding pseudo-code is reported
in Algorithm 1.

Algorithm 1 wild-card template binding - simple case
1: procedure SWC-INSTANTIATION
2: let D be the set of “selected” devices
3: for each device d in D do
4: ch = template.instantiate()
5: for each stream in device.streams do
6: /*get the only source available*/
7: s = getSource(ch)
8: /*get the source stream matching the device stream */
9: sstream = getMatchingSourceStream(stream,s)

10: attach(sstream, stream)
11: end for
12: end for
13: end procedure

For templates involving multiple sources, the binding algo-
rithm requires the definition of queries C, possibly matching
tuples T of devices. Resulting device tuples are associated
to the actual chain inputs by means of the “matcher” fields
specified in the wild-card template binding. A preliminary,
rough version of a suitable wild-card binding algorithm for
multiple devices is still in progress but it is reported in
Algorithm 2 where constraints are matched against device
tuples, that can be identified, e.g., by means of SPARQL-based
queries sent to the platform device catalog.

Algorithm 2 wild-card template binding
1: procedure WC-INSTANTIATION
2: /*constraints on devices*/
3: let C be (c1, . . . , ci)
4: /*tuples of devices satisfying C*/
5: let T be (d11, . . . , d1i), . . . , (dn1, . . . , dni)
6: for each tuple t in T do
7: ch= template.instantiate()
8: for each device d in t do
9: /*get the source matching the current device*/

10: s = getMatchingSource(ch,d)
11: for each stream in d.streams do
12: /*get the source stream matching the device stream */
13: sstream = getMatchingSourceStream(stream,s)
14: attach(sstream, stream)
15: end for
16: end for
17: end for
18: end procedure

In summary, the process of instantiating same-structured
chains reduces to a wild-card template binding specification
integrated by a source search and match process, which can,
for example, exploit native features of the smart city platform
in which the language is employed.

D. The ALMANAC smart city ontology

One of the main advantages introduced by the DFL is
the ability to instantiate templates by attaching data sources
identified through queries, in particular SPARQL queries over
a specific, yet interchangeable, domain ontology.

In ALMANAC, a smart city ontology defines the set of
sensors and devices deployed in a city, and empowers effective
selection of data sources for DFL templates instantiation.
The ALMANAC smart city ontology2 is built atop of the
W3C SSN3, enriched with smart city specific concepts, i.e.,
the notion of administrative boundaries. The overall ontology
structure encompasses three layers:

1) The Smart City Layer, building on SSN and adding smart
city concepts;

2) The Sensor Layer, defining specific classes of devices and
sensors employed in cities;

3) The Instance Layer, hosting A-Boxes only, i.e., defining
concrete individuals involved in modeled cities (e.g., in
Turin).

The Smart City Layer mainly focuses on the waste and
water management domain and adds contextual information
on the kind of “waste bins” available in the city, the type of
waste collected and the waste generation patterns and relations
characterizing city quarters, administrative districts, and the
municipality as a whole.

The Sensor layer defines classes (and few instances) for rep-
resenting specific devices / platforms / systems corresponding
to real objects deployed in a smart city (see Figure 6). In
ALMANAC, such a layer includes detailed representations of
both real sensors employed in the project pilots and simulated
sensors adopted for scalability testing purposes. In a more
generic deployment this layer will contain the representations
of all sensors deployed in a smart city, in compliance with
SSN.

Fig. 6. Sample sensor model, in the ALMANAC smart city ontology.

Finally, the Instance layer hosts definition of individuals
representing the actual devices deployed in the city. In the
ALMANAC project case, for example, it contains the models
of over 40k waste bins distributed on the city territory and

2http://www.almanac-project.eu/ontologies/smartcity.owl, last visited on
November 20, 2016.

3https://www.w3.org/TR/vocab-ssn/, last visited on June 10, 2017.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2017 5

over 20k water meter connected to houses and building in the
city.

The layered structure of the ontology has two main ad-
vantages. On one side, it supports very detailed description of
sensing device properties and features, accounting for correctly
expressed physical quantities and measures. On the other
hand, it extremely simplifies the later process of individual
specification as most device features are modeled as classes
and relationships.

V. WORKFLOW OVERVIEW

To fully support the design of processing pipelines based on
the ALMANAC DFL language and to address their deploy-
ment in smart cities, a clear methodology and workflow shall
be defined and tailored to target users, i.e., city officers. This
target user group is typically heterogeneous and might involve
both people with humanistic and economics background, and
persons with technical education, e.g., engineers. It is therefore
safe to assume that typical users of the workflow are not expert
in complex event processing and that they would be more
comfortable with a possibly visual, well defined procedure to
define, test, deploy, and replicate processing pipelines accord-
ing to their city “administration” and “monitoring” needs.

We tackle this challenge with a full-stack approach, covering
all aspects involved in the work-flow. More precisely, we
define the activity of designing big-data processing pipelines
for smart cities as composed by three main phases (the overall
workflow organization is depicted in Figure 7):

• a Design phase, where the pipeline is conceived, and for-
mulated in terms of a concatenation of simple processing
blocks, as defined in spChains;

• a Development phase in which the pipeline is tested by
attaching its input to real data sources, i.e., city sensors,
and possibly refined to achieve the desired processing
goals;

• a final Deployment phase where the prototypical pipeline
developed in the former phase is wrapped as template
and deployed over thousands of sensors thanks to the
DFL wild-card binding algorithm, and exploiting the
ALMANAC smart city ontology to select the subset of
devices to be connected.

Fig. 7. The DFL overall workflow.

VI. DESIGN PHASE

In the design phase, one or more processing needs, e.g.,
emerging from some city-specific scenario, are formalized and
decomposed in sequences of primitive blocks defined in the
DFL. To perform this first step, some basic knowledge of
the required operators is needed, as well as the capability

to decompose a processing need into simple, consecutive
operations based on the DFL blocks. To aid the city officer
in the design phase, we customized NodeRED4, a widely
adopted message processing framework and visual editor, by
including a new library of nodes matching the DFL basic
building blocks, summarized in Table VI, and published under
the CEP category in NodeRED.

TABLE I
NODERED CUSTOM NODES IMPLEMENTING THE DFL PRIMITIVE BLOCKS

DFL block NodeRED library node
time-guard node-red-contrib-time-guard
threshold node-red-contrib-threshold
sum node-red-contrib-sum
scale node-red-contrib-scale
range node-red-contrib-range
last node-red-contrib-last
delta node-red-contrib-delta
average node-red-contrib-average
and node-red-contrib-and
abs node-red-contrib-abs
time filter node-red-contrib-time-filter
hysteresis threshold node-red-contrib-hysteresis-threshold

NodeRED already implements the pipes and filter paradigm
and provides a huge number of modules (a.k.a., nodes) ready
to be exploited by end users, through its block-based visual
interface. Given the high popularity of the tool, and the proven
easiness to compose complex message processing pipelines
(see Figure 8, for an example), NodeRED is the ideal candidate
for the DFL design and development phase.

To better understand the initial design of a DFL pipeline, let
us consider the “Bad Smell” use case described in Section III.
In the scenario definition, the processing need is expressed
as “define a processing pipeline that generates alerts when
organic waste bins might generate unpleasant smell in the
city roads”. This has been formalized into a set of conditions
to be checked, i.e., a rule to generate “Bad Smell” alerts if
a given waste bin is nearly full (fill level greater than 80%
of the capacity) and the outside temperature is higher than
15◦C. In turn, this “rules” can be represented by connecting
primitive blocks of the DFL: two threshold-crossing blocks,
and one logic AND condition. The final results, using the DFL
library of nodes is rendered in the NodeRED visual interface as
shown in Figure 8. The design of such a pipeline took around
2-3 minutes to a computer engineer with no knowledge about
NodeRED or CEP languages.

Fig. 8. The “Bad Smell” chain design in the NodeRED visual editor.

4https://nodered.org/, last visited on June 14, 2017.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2017 6

VII. DEVELOPMENT AND DEPLOYMENT

In the development phase, a “seminal” DFL chain for-
malized as a set of connected NodeRED nodes (a “flow”
in the NodeRED jargon), is tested against trial data and
finely tuned to achieve the desired behavior. Once reached
a satisfying configuration, the NodeRED flow is packed as a
template (“subflow”, in NodeRED jargon) and deployed on the
ALMANAC Data Fusion Manager (DFM) through the DFL
REST APIs (see [25] for further details).

A. DFL chain testing and tuning

To support the trial and tuning operations, the DFL
NodeRED library has been extended by including a config-
urable random data generator able to provide events with
real-valued payloads and uniformly distributed within a user-
configurable range. The event values might have any unit
of measure, as specified by the chain designer (i.e., the city
officer), and might be generated at a configurable frequency in
Hz. This last feature also allows to stress test the chain under
development, once the main processing blocks are connected
and tuned-up. Figure 9 shows the NodeRED configuration
interface for the event generator, and its connection to an input
block in a DFL chain.

Fig. 9. Random test data generator configuration.

In every instant, the chain can be deployed locally and the
outputs of its processing nodes debugged to check that they
behave as expected. This test phase can also employ real-
data from the smart city as input. Such an option permits
to devise trial deployments where the designed processing
pipeline is tested on-line for a relatively long time before being
deployed in production. Figure 10, for example, reports a bad
smell chain connected to two real sensors deployed in the
ALMANAC pilot5, in Turin (Italy).

It is important to emphasize that even if the development
process might require a certain degree of test and trial steps,
no code-digging is required as processing blocks are provided
as packaged entities with tuneable parameters. Moreover,
at the NodeRED level, blocks are designed to work on a
parametrized payload format. In other words, since NodeRED
is designed to be agnostic with respect to format of messages
handled by blocks, the proposed CEP blocks comply with the
same paradigm and let the user adopt whatever data format
they prefer. This possibility is further enhanced by message
payload manipulation primitives part of the basic NodeRED

5http://www.almanac-project.eu/newsletters/no7 September 2016.html,
last visited on December 20, 2016.

blocks. While for the deployment phase, specific data formats,
e.g., the OGC Sensor Things API, are required, the NodeRED-
based implementation of the development phase is data-format
independent and can indeed be deployed in production, thus
avoiding any concern that might arise regarding adherence to
specific data formats.

Availability of new processing blocks is dependent upon
the community of NodeRED developers, at the design and
development phases, and on the ALMANAC community at
the deployment phase. This on one hand allows exploiting
the sound and proven extension mechanism of NodeRED to
improve the set of supported processing primitives and to
minimise the need to code new CEP operators at the end-
users side. On the other hand, it allows a two pass integration
mechanism were new operators are firstly introduced and
shared with the wide NodeRED community and then, after
a certain evaluation window, transferred to the ALMANAC
platform. In this process, less used or lower quality blocks are
likely to be filtered out, thus improving the overall quality of
provided primitives at the smart city platform level.

B. DFL chain deployment

The final step in the DFL chain workflow involves packing
the developed processing pipeline in a template and deploying
the results into to the ALMANAC platform [27]. To pack
the pipeline in a template, NodeRED sub-flow definition
capabilities are exploited. The template operator permits, on
one hand, to define a “complex” block which can be exploited
in other processing pipelines, on the other hand it allows to
obtain a JSON-based template description which can be easily
translated into a DFL chain definition. To better understand the
sub-flow packing process, let us consider the Bad Smell chain
example. In the chain deployment step, the NodeRED flow
defined in Figure 8 is wrapped into a sub-flow, e.g., named
“bad-smell” (Figure 11).

Such a sub-flow is represented by the JSON description
reported in Figure 12. It must be noted that without the visual
editing environment of NodeRED, the process of defining such
a JSON representation (or the equivalent DFL syntax) would
become error prone and difficult to achieve by any human
being. This gets even worse if the process shall be repeated
for several chain definitions or, in case the DFL binding is not
available, if it shall be applied to the huge number of, e.g.,
waste bins (in Turin they amount to 48000) distributed in a
smart city.

Once defined the template to deploy, e.g., the bad-smell
template, the deployment to the actual smart city platform,
and wild-card binding to the “right” set of resources is
done through a dedicated deploy procedure we designed and
integrated in the NodeRED visual interface. Similarly to the
normal local deployment, instantiation and binding of tem-
plates in the ALMANAC platform is done trough a dedicated
“Deploy to ALMANAC” item in the top-right “Deploy” menu
of the NodeRED interface (Figure 13).

Upon selecting this additional option, the city officer is of-
fered a simple, form-based interface to select: the ALMANAC
platform to which the template shall be deployed and the type

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2017 7

Fig. 10. Bad Smell chain test with real data from the ALMANAC Turin pilot.

Fig. 11. The bad-smell template.

[{” i d ” : ” 3 c e 6 e c c c . 2 e47b4 ” , ” t y p e ” : ” sub f low ” , ” name ” : ” bad−s m e l l ” , ” i n f o ” : ” ” , ” i n ” : [{” x
” : 2 5 , ” y ” : 8 3 , ” w i r e s ” : [{” i d ” : ”975425 aa .46484”}]}] , ” o u t ” : [{” x ” : 7 4 2 , ” y ” : 7 5 , ”
w i r e s ” : [{” i d ” : ” 9 e08c0bc . e1ddb ” , ” p o r t ”:0}]}]} ,

{” i d ” : ” 2 9 5 1 3 3 0 1 . 9 4 7 aec ” , ” t y p e ” : ” t h r e s h o l d ” , ” z ” : ” 3 c e 6 e c c c . 2 e47b4 ” , ” name ” : ” F u l l
b i n ” , ” t h r e s h o l d ” : ” 8 0 ” , ” th r e sho ldMode ” : ” r i s i n g ” , ” v a l u e F i e l d ” : ” v a l u e ” , ” x
” : 4 1 6 . 8 8 3 3 0 0 7 8 1 2 5 , ” y ” : 2 8 . 8 8 3 3 3 1 2 9 8 8 2 8 1 2 5 , ” w i r e s ” : [[” 9 e08c0bc . e1ddb ”]]} ,{”
i d ” : ” 3 3 0 ed138 . 5 7 cee6 ” , ” t y p e ” : ” t h r e s h o l d ” , ” z ” : ” 3 c e 6 e c c c . 2 e47b4 ” , ” name ” : ”
High t e m p e r a t u r e ” , ” t h r e s h o l d ” : ” 2 5 ” , ” th r e sho ldMode ” : ” r i s i n g ” , ” v a l u e F i e l d ” : ”
v a l u e ” , ” x ” : 4 3 9 . 8 8 3 3 3 1 2 9 8 8 2 8 1 , ” y ” : 1 3 2 . 8 8 3 2 7 0 2 6 3 6 7 1 8 8 , ” w i r e s ” : [[” 9 e08c0bc .
e1ddb ”]]} ,

{” i d ” : ” 9 e08c0bc . e1ddb ” , ” t y p e ” : ” and ” , ” z ” : ” 3 c e 6 e c c c . 2 e47b4 ” , ” name ” : ” ” , ” timeWindow
” : 3 0 , ” t i m e R e s o l u t i o n ” : 1 0 0 0 , ” i g n o r e S y n c h ” : t r u e , ” numberOfFlows ” : 2 , ”
v a l u e F i e l d ” : ” v a l u e ” , ” x ” : 6 3 4 . 8 8 3 3 0 0 7 8 1 2 5 , ” y ” : 7 4 . 2 5 , ” w i r e s ” : [[]]} ,

{” i d ” : ”975425 aa . 4 6 4 8 4 ” , ” t y p e ” : ” s w i t c h ” , ” z ” : ” 3 c e 6 e c c c . 2 e47b4 ” , ” name ” : ” t e m p e r a t u r e
/ f i l l−l e v e l ” , ” p r o p e r t y ” : ” p a y l o a d . m e t a d a t a . t y p e ” , ” p r o p e r t y T y p e ” : ” msg ” , ”
r u l e s ” : [{” t ” : ” eq ” , ” v ” : ” h t t p : / / almanac−p r o j e c t . eu / o n t o l o g i e s / s m a r t c i t y . owl#
F i l l L e v e l S e n s o r ” , ” v t ” : ” s t r ”} ,{” t ” : ” eq ” , ” v ” : ” h t t p : / / almanac−p r o j e c t . eu /
o n t o l o g i e s / s m a r t c i t y . owl# T e m p e r a t u r e S e n s o r ” , ” v t ” : ” s t r ”}] , ” c h e c k a l l ” : ” t r u e
” , ” o u t p u t s ” : 2 , ” x ” : 1 8 1 . 1 0 0 0 0 6 1 0 3 5 1 5 6 2 , ” y ” : 8 3 . 2 1 6 6 5 9 5 4 5 8 9 8 4 4 , ” w i r e s
” : [[” 2 9 5 1 3 3 0 1 . 9 4 7 aec ” , ”330 ed138 . 5 7 cee6 ”] , []]} ,

{” i d ” : ” 5 1 9 a b 1 c f . a00c08 ” , ” t y p e ” : ” sub f low : 3 c e 6 e c c c . 2 e47b4 ” , ” z ” : ” cba5b984 . 6 0 fd4 ” , ” x
” : 4 4 1 . 1 0 0 0 0 6 1 0 3 5 1 5 6 , ” y ” : 1 5 1 . 2 5 , ” w i r e s ” : [[]]}]

Fig. 12. The bad-smell template in the NodeRED syntax

of binding to be applied (simple vs. generalized). Depending
on the latter, some additional information is required: the type
of sensors (data streams) to bind in the simple case or a set
of constraints (e.g., expressed in SPARQL) in the generalized
version (Figure 14).

The actual deployment takes place when the “Confirm
deploy” button is selected; the button causes the submission
to the chosen ALMANAC DFM service (whose APIs are
documented in [25]). The deployment operation may generate
errors, e.g., due to wrong SPARQL syntax. Currently, these
errors are simply reported back as textual error messages,
however future works will tackle the issue of effectively
specifying and validating constraints on possible sources for
the wild-card binding algorithms.

Fig. 13. Deploy to ALMANAC menu item.

Fig. 14. Deployement on ALMANAC with Wildcard Binding.

VIII. RESULTS

The visual language described in this paper has been
adopted in the ALMANAC project as a mean to specify com-
plex event processing chains to be executed by the ALMANAC
DFL component. The platform, including the language and
the deployment techniques described in previous sections, has
been tested on a real-world pilot located in 2 sites in the
city of Turin, Italy. Each site hosts a Underground Ecological
Island (UEI) equipped with 4 waste containers6 collecting the
organic, glass, paper and not-recyclable fractions (Figure 15).

Fig. 15. One of the UEIs involved in the ALMANAC pilot, located in Via
Porta Palatina

All containers were equipped with commercial-grade wire-
less fill-level sensors provided by EcoTec7 and kindly funded
by Amiat. Non-recyclable containers carry an RFID-based
access control system which allows waste disposal from au-
thorized citizens only. All sensors communicate with a central,
legacy, data collection service also provided by EcoTec. This
setting reflects quite well the typical smart city scenario, where
administrative constraints and commercial aspects are strictly
intertwined, often leading to deployment of heterogeneous

6Funded by Amiat, the Turin Waste utility, and partly supported by Nor-
dEngineering, a third party provider, see http://www.nordengineering.com/en/,
last visited on June 10, 2017

7http://www.ecotecsolution.com/, last visited on June 10, 2017

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2017 8

data collection infrastructures that shall be coordinated and
operated as a single complex smart city platform.

The legacy data collection system gathering data from the
pilot UEIs was integrated into the ALMANAC platform thanks
to a dedicated device manager, part of the platform Resource
Adaptation Layer. Data collected every hour and at every
waste disposal (for the non-recyclable fraction) is fed into
the platform and processed through DFL primitives defined
by exploiting the proposed visual language. Deployed chains
involve alerting, generating dedicated alert e-mails for both the
waste utility operator and the pilot technical staff, bad-smell
detection, out of range waste density estimation, collection
truck deviation from expected routes, etc. Alerting chains, for
example, allowed the pilot to run continuously in the last 2
years, with less then 24 hours of cumulative downtime (over
690k measures collected). A dedicated data dashboard allows
getting a global overview on both raw and processed data, and
is currently adopted for day-to-day monitoring of the pilot site
(Figure 16).

Fig. 16. The ALMANAC dashboard showing data collected on the Turin
pilot.

IX. DISCUSSION AND LIMITATIONS

The presented approach is composed by a workflow for
city officers and a companion block-based visual tool for
creating data processing pipelines. The workflow is linear and
easy to adopt for every smart city platforms like ALMANAC.
The visual tool inherits from NodeRED the easiness to use
and has a graphical interface that could be familiar for
persons accustomed to work with IoT devices and services.
The proposed workflow encompasses three phases: 1) design,
2) development (and test), 3) deployment.

The design phase requires more “creativity” and the capa-
bility of formalizing a data processing need in a block-based
chain. This step could be challenging for some city officers,
especially the ones without any technical background. Even if
this issue is difficult to quantify without a proper user study
with a quite wide range of city officers, the visual tool in the
design phase helps to limit its possible negative effect. For
this phase, in fact, the visual editor has been designed not to
be linked to the smart city platform, thus it is totally robust
to errors and allows novice users to freely experiment in the
pipeline creation.

The next phase, development is more straightforward: the
pipelines designed in the previous phase could be tested either
with synthetic data or real data, coming from the smart city

platform (in real time or from stored data). Possible problems
in the designed pipeline could be edited and amended easily
and without consequences. Misconfiguration of the smart city
platform can be a problem for novice users of the visual
editor, but they can be easily identified and reported by using
synthetic, local, data.

The third and last phase of the proposed workflow could be
probably the most problematic. We identified two main obsta-
cles in the deployment phase, also thanks to the ALMANAC
pilots:

1) the need to define additional information and constraints
in SPARQL (i.e., in the form depicted in Figure 14);

2) possible errors thrown by the smart city platform (e.g.,
misconfiguration, errors in the pipeline definition, etc.).

Future works will tackle the issue of effectively specifying
and validating constraints on possible sources for the wild-
card binding algorithms, to ease the definition of additional
constraints and help in solving related errors. In particular,
the usage of SPARQL in the current form is critical since
we are requiring city officers to possess this domain-specific
knowledge. Our approach should not depend upon it.

We are aware that ontology-based modeling of sensors
might generate concerns on the actual re-usability of the
proposed approach, as they sometimes tend to be strictly
bound to a specific knowledge domain, modeled with specific
and somewhat restricting assumptions. For this reason, the
entire system here presented is capable of working without
ontologies and semantically annotated data, at the cost of
increased deployment time8. A specific data format for sensory
data is, however, required for deploying designed chains on the
smart city platform. In the case of ALMANAC, the project
consortium selected a well-known, standard OGC representa-
tion, namely the OGC Sensor Things API to limit the issues
related to handling of new sensors or data.

It must be noted that in the entire workflow and, specifically
in this last phase, the process of defining the needed pipeline
(in the format of a JSON representation or DFL syntax)
without the proposed visual editor is error prone, almost
impossible to test, and difficult to achieve by any human being.
This gets even worse if the process shall be repeated for several
chain definitions, as expected in a smart city platform.

X. CONCLUSION

In a smart city context, city administrator and operators
needs to be able to handle large amount of data coming from
sensors distributed in the environment, and should take deci-
sions and formulate strategies upon the analysis of such data.
However, this require to exhibit a good understanding of tech-
nical features, data analysis, and complex information that are
quite far from contemporary day-to-day administration tasks.
The paper proposed a block-based and visual approach to
tackle this problem. It presented a workflow designed for city
officers and a visual tool, based on the NodeRED platform, for
creating, developing, testing, and deploying data processing
pipelines. The entire approach has been contextualized and

8Applying template binding algorithms without a uniform sensor represen-
tation is a research challenge not yet addressed.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2017 9

demonstrated through a use case for waste management for an
ALMANAC project pilot held in Turin, Italy. The presented
approach is linear and easy to adopt for smart city platform
like ALMANAC.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n.609081.

REFERENCES

[1] “State of world population 2007, unleashing the potential of urban
growth,” U.N. Population Fund (UNFPA), Tech. Rep. [Online].
Available: http://www.unfpa.org/public/publications/pid/408

[2] “Sustainable smart cities - building sustainable business value in chang-
ing cities,” KPMG Asset Management Competence Centre, Tech. Rep.,
2012.

[3] R. Petrolo, V. Loscr, and N. Mitton, “Towards a smart city based on
cloud of things, a survey on the smart city vision and paradigms,”
Transactions on Emerging Telecommunications Technologies, 2015.

[4] D. Doran, S. Gokhale, and A. Dagnino, “Human sensing for smart
cities,” in Advances in Social Networks Analysis and Mining (ASONAM),
2013 IEEE/ACM International Conference on, Aug 2013, pp. 1323–
1330.

[5] A. Medvedev, P. Fedchenkov, A. Zaslavsky, T. Anagnostopoulos, and
S. Khoruzhnikov, Internet of Things, Smart Spaces, and Next Generation
Networks and Systems: 15th International Conference, NEW2AN 2015,
and 8th Conference, ruSMART 2015, St. Petersburg, Russia, August 26-
28, 2015, Proceedings. Cham: Springer International Publishing, 2015,
ch. Waste Management as an IoT-Enabled Service in Smart Cities, pp.
104–115.

[6] I. Vilajosana, J. Llosa, B. Martinez, M. Domingo-Prieto, A. Angles, and
X. Vilajosana, “Bootstrapping smart cities through a self-sustainable
model based on big data flows,” Communications Magazine, IEEE,
vol. 51, no. 6, p. 128134, June 2013.

[7] D. Bartlett, W. Harthoorn, J. Hogan, M. Kehoe, and R. J. Schloss,
“Enabling integrated city operations,” IBM Journal of Research and
Development, vol. 55, no. 1.2, pp. 15:1–15:10, Jan 2011.

[8] A. Ojo, Z. Dzhusupova, and E. Curry, “Exploting the nature of the
smart cities research landscape,” Public Administration and Information
Technology, vol. 11, 2016.

[9] M. Batty, K. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani,
M. Wachowicz, G. Ouzounis, and Y. Portugali, “Smart cities of the
future,” UCL Centre for Advanced Spatial Analysis, Tech. Rep., October
2012.

[10] “Smart cities. intelligent information and communications technology
infrastructure in the government, buildings, transport, and utility
domains.” Pike Research, Tech. Rep., 2011. [Online]. Available:
http://www.navigantresearch.com/research/smart-cities

[11] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1,
pp. 22–32, Feb 2014.

[12] S. K. Datta and C. Bonnet, “Internet of things and m2m communications
as enablers of smart city initiatives,” in Next Generation Mobile Appli-
cations, Services and Technologies, 2015 9th International Conference
on, Sept 2015, pp. 393–398.

[13] A. Cenedese, A. Zanella, L. Vangelista, and M. Zorzi, “Padova smart
city: An urban internet of things experimentation,” in World of Wire-
less, Mobile and Multimedia Networks (WoWMoM), 2014 IEEE 15th
International Symposium on a, June 2014, pp. 1–6.

[14] M. D’Aquin, J. Davies, and E. Motta, “Smart cities’ data: Challenges
and opportunities for semantic technologies,” IEEE Internet Computing,
vol. 19, no. 6, pp. 66–70, Nov-Dec 2015.

[15] D. C. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2001.

[16] O. Etzion and P. Niblett, Event Processing In Action. Manning
Publications and co., 2010.

[17] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs, “Building a big
data platform for smart cities: Experience and lessons from santander,”
in 2015 IEEE International Congress on Big Data, June 2015, pp. 592–
599.

[18] Z. Khan, A. Anjum, and S. L. Kiani, “Cloud based big data analytics
for smart future cities,” in Utility and Cloud Computing (UCC), 2013
IEEE/ACM 6th International Conference on, Dec 2013, pp. 381–386.

[19] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
scratch programming language and environment,” ACM Transactions on
Computing Education, vol. 10, no. 4, pp. 16:1–16:15, Nov. 2010.

[20] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-oriented Software Architecture Volume 1. John Wiley & Sons,
1996.

[21] F. Ganz, D. Puschmann, P. Barnaghi, and F. Carrez, “A practical
evaluation of information processing and abstraction techniques for the
internet of things,” IEEE Internet of Things Journal, vol. 2, no. 4, pp.
340–354, Aug 2015.

[22] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, “Stream reasoning
and complex event processing in etalis,” Semantic Web, vol. 3, no. 4,
pp. 397–407, 2012.

[23] K. Taylor and L. Leidinger, “Ontology-driven complex event processing
in heterogeneous sensor networks,” in Proceedings of the 8th Extended
Semantic Web Conference on The Semantic Web: Research and Appli-
cations - Volume Part II, ser. ESWC’11. Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 285–299.

[24] S. Hasan, S. O’Riain, and E. Curry, “Approximate semantic matching
of heterogeneous events,” in Proceedings of the 6th ACM International
Conference on Distributed Event-Based Systems, ser. DEBS ’12. New
York, NY, USA: ACM, 2012, pp. 252–263.

[25] D. Bonino, F. Rizzo, C. Pastrone, J. A. C. Soto, M. Ahlsen, and
M. Axling, “Block-based realtime big-data processing for smart cities,”
in 2016 IEEE International Smart Cities Conference (ISC2), Sept 2016,
pp. 1–6.

[26] D. Bonino and F. Corno, “spChains: A Declarative Framework for
Data Stream Processing in Pervasive Applications,” Procedia Computer
Science, vol. 10, pp. 316 – 323, 2012.

[27] D. Bonino, M. T. D. Alizo, A. Alapetite, T. Gilbert, M. Axling,
H. Udsen, J. A. C. Soto, and M. Spirito, “Almanac: Internet of things for
smart cities,” in Future Internet of Things and Cloud (FiCloud), 2015
3rd International Conference on, Aug 2015, pp. 309–316.

Dario Bonino received his PhD in Computer En-
gineering from Politecnico di Torino in 2006, and
his Master Degree in Electronics from Politecnico
di Torino in 2002. From 2006 to 2014, he was a
post-doctoral researcher at the Politecnico di Torino.
He pursued research and development on Semantic
Web, complex event processing applied to home and
industrial automation systems, and on state chart
modeling and simulation of smart environments.
From September 1st, 2014, he works as researcher
in the Pervasive Technologies (PerT) Research Area

of the Istituto Superiore Mario Boella.

Luigi De Russis received his PhD in Computer and
Control Engineering from Politecnico di Torino in
2014, and his Master Degree in Computer Engineer-
ing from Politecnico di Torino in 2010. Currently,
he is a postdoc in the e-Lite research group at the
Department of Control and Computer Engineering of
Politecnico di Torino. His current research focuses
on Human Computer Interaction, with a particular
interest on interaction techniques applied to complex
settings, like IoT and smart environments. He is
member of IEEE and ACM.

