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A

De-anonymizing clustered social networks by percolation graph
matching

CARLA-FABIANA CHIASSERINI, Politecnico di Torino
MICHELE GARETTO, Universitá di Torino
EMILIO LEONARDI, Politecnico di Torino

On-line social networks offer the opportunity to collect a huge amount of valuable information about billions of users. The
analysis of this data by service providers and unintended third parties are posing serious treats to user privacy. In particular,
recent work has shown that users participating in more than one on-line social network can be identified based only on
the structure of their links to other users. An effective tool to de-anonymize social network users is represented by graph
matching algorithms. Indeed, by exploiting a sufficiently large set of seed nodes, a percolation process can correctly match
almost all nodes across the different social networks. In this paper, we show the crucial role of clustering, which is a relevant
feature of social network graphs (and many other systems). Clustering has both the effect of making matching algorithms
more prone to errors, and the potential to greatly reduce the number of seeds needed to trigger percolation. We show these
facts by considering a fairly general class of random geometric graphs with variable clustering level. We assume that seeds
can be identified in particular sub-regions of the network graph, while no a-priori knowledge about the location of the other
nodes is required. Under these conditions, we show how clever algorithms can achieve surprisingly good performance while
limiting the number of matching errors.

CCS Concepts: •Mathematics of computing → Random graphs; Probabilistic algorithms; •Networks → Network
privacy and anonymity; On-line social networks;

Additional Key Words and Phrases: Graph matching, bootstrap percolation, de-anonymization

1. INTRODUCTION
On-line social networks have recently emerged as one of the most influential innovations brought
by information and communication technologies, with an enormous impact on social and economic
aspects. Due to their popularity, the companies running these on-line services can acquire a huge
amount of valuable information that can be extracted from the traces of activities performed by
users. Such information can be exploited to construct user profiles, which may serve for targeted
advertisements as well as marketing and social surveys. In this scenario, user privacy is clearly
at stake. In particular, accurate user profiles can be obtained when users are members of different
social networks and data extracted from different systems are combined together.

This paper is specifically concerned with the case of an ‘attacker’ trying to identify users be-
longing to different on-line social networks (without their consent). Recently, security experts have
made the dramatic discovery that user privacy cannot be guaranteed when traces of communication
activities are made available after applying the simple anonymization procedure which replaces real
ID’s by random labels [Narayanan and Shmatikov 2009]. Indeed, the traces of user activities over a
social network can be represented by a ‘contact graph’ in which nodes represent anonymized users,
and edges denote who has come in contact with whom. Then, an attacker can execute a graph-
matching algorithm on the contact graphs generated by different systems, and identify which labels
correspond to the same user. In the hardest case, this is feasible by using only the topologies of
the contact graphs [Pedarsani et al. 2013]. The majority of algorithms proposed so far to achieve
this goal, however, exploit an initial set of already matched nodes (called seeds) [Narayanan and
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Shmatikov 2009; Peng et al. 2014; Korula and Lattanzi 2014; Kazemi et al. 2015a]. This is actually
a realistic case, since some users explicitly link their accounts in different systems ‘for free’.

Significant progress has also been made towards theoretical understanding of the feasibility of
network de-anonymization (in the first place), and of the asymptotic performance of graph match-
ing algorithms applied to large systems. Specifically, when the social network is modeled as an
Erdös–Rényi random graph, it has been shown in [Pedarsani and Grossglauser 2011] that, under
mild conditions, users participating in two different social networks can be successfully matched by
an attacker with unlimited computation power, even without seeds. Still in the case of Erdös–Rényi
contact graphs, in [Yartseva and Grossglauser 2013] the authors have proposed an identification
algorithm, named PGM, based on bootstrap percolation [Janson et al. 2012], and they have deter-
mined the critical seed set size required to successfully trigger the de-anonymization process. Using
a similar approach, more recently the work in [Chiasserini et al. 2016; Bringmann et al. 2014] has
derived the critical seed set size for network de-anonymization when the contact graph exhibits a
power-law degree distribution.

Another essential feature of real social networks, namely, clustering, has not been investigated
so far. Interestingly, in [Yartseva and Grossglauser 2013] authors attempted to apply PGM also to
highly clustered random geometric graphs, observing almost total failure (error rates above 50%).
This preliminary finding has been the starting point of our work. In this paper, we consider a fairly
general model of random geometric graphs that allows us to incorporate various levels of cluster-
ing in the underlying social network, without concurrently generating a scale-free structure. By so
doing, we separate the (unknown) impact of clustering from the (known) impact of power law de-
gree, going back to the original case of Erdös–Rényi graphs and moving along a totally different,
‘orthogonal’ direction.

The main contributions of this work can be summarized as follows.

— Networks characterized by dense clusters may be largely prone to matching errors when we
naively apply the method proposed in [Yartseva and Grossglauser 2013]. Such errors can be mit-
igated and asymptotically eliminated by an improved matching algorithm still based on bootstrap
percolation.

— Once errors are removed, clustering turns out to have a surprising beneficial effect on the perfor-
mance of graph matching, thanks to a wave-like propagation phenomenon that allows to progres-
sively identify all nodes starting from a very small, compact set of seeds.

— In contrast with previous results derived for Erdös–Rényi [Yartseva and Grossglauser 2013] and
power-law graphs [Chiasserini et al. 2016], we show that the number of seeds required for network
de-anonymization can increase with the average node degree of the graph.

Our results are qualitatively validated via experiments with synthetic and real social network
graphs. We emphasize that, although we focus on network de-anonymization, we do not confine
our work exclusively to this problem. Indeed, the results derived here have much broader applica-
bility, since graph matching is a general problem arising in many different domains, ranging from
computer graphics (e.g., [Egozi et al. 2013]) to bioinformatics (e.g., [Singh et al. 2008]).

2. RELATED WORK
Many proposed matching strategies for network de-anonymization are based on heuristic algorithms
and work by progressively expanding the set of already matched nodes, trying to identify all of
the other nodes [Narayanan and Shmatikov 2009; Peng et al. 2014; Korula and Lattanzi 2014;
Kazemi et al. 2015a]. In particular, in their seminal paper Narayanan and Shmatikov [Narayanan
and Shmatikov 2009] were able to identify a large fraction of users having account on both Twitter
and Flickr (with only 12% error ratio). Algorithms based on supervised learning have been pro-
posed to de-anonymize social networks by exploiting semantic information (e.g., name, location
and image of users) [Nunes et al. 2012; Abel et al. 2010]. Structure-based similarity (e.g., neighbor-
hood structure) has been recognized to be the most important feature in the graph-matching process
[Henderson et al. 2011; Backstrom et al. 2007].
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Theoretical studies on the asymptotic performance of graph matching algorithms applied to large
systems have appeared in [Pedarsani and Grossglauser 2011; Yartseva and Grossglauser 2013;
Kazemi et al. 2015a; Chiasserini et al. 2016; Bringmann et al. 2014; Onaran et al. 2016]. Specifi-
cally, [Yartseva and Grossglauser 2013; Kazemi et al. 2015a] have addressed the case where users
are members of two different social networks and the networks are modeled as Erdös–Rényi ran-
dom graphs. In [Yartseva and Grossglauser 2013; Kazemi et al. 2015a] the authors propose practical
identification algorithms based on bootstrap percolation [Janson et al. 2012], which exploit an initial
seed set. It is worth mentioning that [Yartseva and Grossglauser 2013] shows an interesting phase
transition phenomenon in the number of seeds that are required for network de-anonymization. The
algorithm in [Kazemi et al. 2015a] instead can deal with only partial overlapping between the nodes
in the two social network graphs and with moderate errors in the initial seed set.

While the above works all exploit the availability of a seed set, [Pedarsani and Grossglauser 2011;
Kazemi et al. 2015b; Onaran et al. 2016] show that an attacker with unlimited computation power
can perform de-anonymization even without seeds. In addition, [Kazemi et al. 2015b] considers the
case where there is only partial overlap between the node sets of the two network graphs while
[Onaran et al. 2016] generalizes the case of [Pedarsani and Grossglauser 2011] to graphs with
community structure. The approach first proposed in [Pedarsani and Grossglauser 2011], which
relies on the graphs structural information, has been also exploited [Ji et al. 2016] to quantify the
full or partial de-anonymizability of general and real-world graphs.

The results in [Yartseva and Grossglauser 2013], related to a practical identification algorithm
based on bootstrap percolation, have been recently extended to a more realistic case in which contact
graphs are scale-free (power-law) random graphs. In particular, by modeling them as Chung-Lu
graphs, [Chiasserini et al. 2016] and [Bringmann et al. 2014] have independently shown that a
much smaller set of seeds is sufficient to trigger the percolation-based matching process originally
studied in Erdös–Rényi graphs.

Finally, an early version of this work has appeared in the conference paper [Chiasserini et al.
2015b]. Also, it is worth mentioning that the identification problem is general and spans over dif-
ferent application fields [Leordeanu and Hebert 2005; Melnik et al. 2002; Motahari et al. 2013].

3. NOTATION AND PRELIMINARIES
The network de-anonymization problem under study can be formulated as follows. Consider two
social networks, represented by the graphs G1(V1, E1) and G2(V2, E2), respectively. Both graphs
are considered to be sub-graphs of an inaccessible ground-truth graph, GT(V, E), representing the
underlying true social relationships among people.

Without loss of generality, we assume that GT(V, E), G1(V1, E1) and G2(V2, E2) have the same set
of nodes (or vertices) with cardinality n, i.e., V1 = V2 = V . This assumption can be easily released
by seeking to match only the intersection of vertices belonging to G1 and G2 (see [Kazemi et al.
2015a] for an analysis with no-coincident node sets in Erdös–Rényi graphs). Similarly to previous
works [Korula and Lattanzi 2014; Pedarsani and Grossglauser 2011; Yartseva and Grossglauser
2013; Chiasserini et al. 2016; Bringmann et al. 2014] we assume that edges in G1 and G2 are obtained
by independently sampling each edge of GT with probability1 s. Specifically, each edge in GT is
assumed to be (independently) sampled twice, the first time to determine its presence in E1, the
second time to determine its presence in E2. This model is a reasonable, first-step approximation
of real systems and permits obtaining fundamental analytical insights [Yartseva and Grossglauser
2013; Bringmann et al. 2014; Kazemi et al. 2015a; Kazemi et al. 2015b]. Moreover, by looking
at temporal snapshots of an email network, authors in [Pedarsani and Grossglauser 2011; Ji et al.
2014] have experimentally found that the above assumption of independent edge sampling is largely
acceptable in their scenario.

1Two different sampling probabilities s1 and s2, respectively for G1 and G2, could be considered as well. In Figure 16, we
show some results for s1 = 0.75 and s2 = 0.5.
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Fig. 1. An example of G1 and G2 obtained from GT by independent edge sampling, and of the pairs graph P(GT). There
is a single seed, highlighted in blue. In P(GT), good pairs are highlighted in white and bad pairs in grey.

To match G1 and G2, we build the pairs graph, P(V ,E), as the tensor product of G1 and G2. Note
that, by definition of tensor product, V = V1 × V2 and in P(V ,E) there exists an edge between
[i1, j2] and [k1, l2] iff edge (i1, k1) ∈ E1 and edge (j2, l2) ∈ E2. We will slightly abuse the notation
and denote the pair graph associated to a generic ground-truth graph GT simply as P(GT). Fig. 2
shows the pairs graph built from a toy example.

We will refer to pairs [i1, i2] ∈ P(GT), whose vertices correspond to the same vertex i ∈ GT, as
good pairs, and to all others (e.g., [i1, j2]) as bad pairs. Also, we will refer to pairs such as [i1, j2]
and [i1, l2], or to pairs such as [i1, j2] and [k1, j2], as conflicting. Finally, two adjacent pairs on
P(GT) will be referred to as neighbors. The seeds set, i.e., the initial set of already matched nodes,
will be denoted by A0(n) ⊂ V , and by a0 its cardinality.

We now briefly describe the Percolation Graph Matching (PGM) algorithm originally proposed
in [Yartseva and Grossglauser 2013]. The PGM algorithm maintains an integer counter (initialized
to zero) for any pair of P(GT) that may still be matched. It exploits a set At, indexed by time step
t, which is initialized at t = 0 with the seed pairs. At any given time t ≥ 0, the PGM algorithm
extracts at random one pair from At matching the corresponding nodes, and increases by one the
counter associated to each of its neighbor pair in P(GT). Then the algorithm adds to At+1 all pairs
whose counter has reached a threshold r at time t, with the exception of those pairs that are in
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conflict with either any of the already matched pairs or any of the pairs in At. The algorithm stops
when At = ∅. It is straightforward to see that PGM takes at most n steps to terminate.

Critical seed set size for Erdös-Rényi graphs [Yartseva and Grossglauser 2013].
In the case where GT is an Erdös–Rényi random graph2, previous work [Yartseva and Grossglauser
2013] has obtained the following result on the critical seed set size ac. We recall that ac is such that:
if a0/ac < 1, then only o(n) nodes can be matched, while if a0/ac < 1 + δ, for some δ > 0, almost
all nodes can be correctly identified.

LEMMA 3.1. Let GT be an Erdös-Rényi random graph G(n, p). Let r ≥ 4. Denote by ac the
critical seed set size:

ac =

(
1− 1

r

)(
(r − 1)!

n(ps2)r

) 1
r−1

. (1)

For n−1 � ps2 ≤ s2n−
3.5
r , we have that, if a0/ac < 1 + δ, the PGM algorithm matches w.h.p. a

number of good pairs equal to n − o(n) (i.e., all vertex pairs except for a negligible fraction) with
no errors.

In our analysis we assume that s is a positive finite constant (it does not scale with n), thus we omit
it whenever we report asymptotic expressions in order sense. Our approach could be extended also
to the case of vanishing s, but this is out of the scope of this work.
Critical seed set size for random graphs bounded by Erdös-Rényi graphs.
Let H(V, EH) and K(V, EK) be two random graphs insisting on the same set of vertices V , where
EH ⊆ EK . We define the following partial order relationship:H(V, EH) ≤st K(V, EK).

Then, consider a vertex property R satisfied by a subset of vertices, and denote with R(H) ⊆ V
the set of vertices of H that satisfy property R. We say that R is monotonically increasing with
respect to the graph ordering relation “≤st” ifR(H) ⊆ R(K) wheneverH ≤st K.

Given that, we present the following results, which complement Theorem 2 and Corollary 3 in
[Chiasserini et al. 2016]:

Theorem 1. Consider a subgraph G′T ⊆ GT, which comprises a subset of vertices of GT,
whose number is denoted by m, and all the edges between the selected vertices. Assume that
G(m, pmin) ≤st G′T ≤st G(m, pmax) with pmin ≤ pmax. Applying the PGM algorithm to P(G′T)
guarantees that m− o(m) good pairs are matched with no errors w.h.p., provided that:

(1) m→∞;
(2) pmin = Θ(pmax) and pmin � m−1;
(3) pmax ≤ m−

3.5
r , with r ≥ 4;

(4) lim infm→∞ ao/ac > 1, with ac computed from (1) by setting p = pmin.

PROOF. The proof can be found in Appendix C.

Corollary 1. Under the same conditions as in Theorem 1, the PGM algorithm can be success-
fully applied to a pairs graph P̂ ⊂ P(G′T) comprising a finite fraction of the pairs in P(G′T) and
satisfying the following constraint: a bad pair [i1, j2] ∈ P(G′T) is included in P̂ only if either [i1, i2]

or [j1, j2] are also in P̂ .

PROOF. The proof of can be found in [Chiasserini et al. 2016], for completeness a sketch is also
reported in Appendix D.

2Given a positive integer n and a probability value 0 ≤ p ≤ 1, the Erdös-Rényi graph G(n, p) is defined as the undirected
graph on n vertices whose edges are chosen as follows. For all pairs of vertices v, w there is an edge (v, w) with probability
p.
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The above results provide the basic building blocks to perform the asymptotic analysis of the
number of seeds that are sufficient to de-anonymize clustered networks described by the model
presented next.

4. CLUSTERED NETWORK MODEL
To incorporate different degrees of clustering in the ground-truth social network GT, we have
adopted the following geometric random graph model.

We assume that nodes are located in a k-dimensional space corresponding to the hyper-cube3

H = [0, 1]k ⊂ Rk, where the k dimensions could correspond to different attributes of the users. We
consider n nodes independently and uniformly distributed over H. Notice that the node density in
the space is n. Given any two vertices i, j ∈ V , with i 6= j, edge (i, j) exists in GT with probability
pij that depends only on the Euclidean distance dij between i and j. We consider the following
generic law for pij :

pij = K(n)f(dij) . (2)

In (2), f is a non-increasing function of the distance, and K(n) is a normalization constant in-
troduced to impose a desired average node degree D(n), which is assumed to be the same for all
nodes4. It is customary in random graph models representing realistic systems to assume that the
average node degree is not constant, but it increases with n due to network densification [Leskovec
et al. 2007]. Also, although a common choice is to assume D(n) = Θ(log n), in our model we
consider more general conditions: D(n) = Ω(log n) and D(n) = O(n1/2−δ) with 0 < δ < 1/2.
Note that, since D(n)→∞ as n grows large, the graph is connected with high probability.

Since we are interested in the order-sense asymptotic performance of network de-anonymization
as n grows large, we further characterize the shape of function f as follows. Considering that the
average distance between neighboring nodes is equal5 to n−1/k, define C(n) = Ω

(
n−1/k

)
. We

assume that f(d) equals 1 for all distances 0 < d < C(n), where C(n) is a parameter of the model
(possibly scaling with n). Note that this implies that K(n) must be less than or equal to 1, in order
to obtain a proper probability function. For distances larger than C(n), we assume that f decays
according to a power-law with exponent β, with β > 0. In summary,

f(dij) = min

{
1,

(
C(n)

dij

)β}
. (3)

thus pij = K(n) min
{

1, (C(n)/dij)
β
}

. The above characterization of the shape of f(d) is fairly
general and allows accounting for different levels of node clustering. In particular, our random-
graph model degenerates into a standard Erdös–Rényi graph when either β → 0, with arbitrary
C(n), or C(n) approaches 1, with arbitrary β. For β → ∞, instead, edges can be established only
between nodes whose distance is smaller than or equal to C(n).

The average node degree is:

D(n) = Θ

(
nK(n)

(
Ck(n) + Cβ(n)

∫ 1

C(n)

ρk−1−β dρ
))

.

From the above equation it follows that for β > k the dominant fraction of the neighbors of a given
node lie at distance Θ(C(n)) from it, while for β < k only a marginal fraction of the neighbors of

3To avoid border effects, we assume wrap-around conditions (i.e., a torus topology).
4Note that the node degree distribution is a sum of Bernoulli functions, conditioned on the node position.
5We remark that n−1/k is the inverse of the k-th root of the node density in the regionH.
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a node lie at distance o(1) from it. Thus, we can write:

D(n) =


Θ
(
nK(n)Ck(n)

)
β > k

Θ
(
nK(n)Ck(n) log 1

C(n)

)
β = k

Θ
(
nK(n)Cβ(n)

)
β < k

(4)

Next, we compute the scaling order of the clustering coefficient6 χ. As shown in Appendix B, we
have:

χ =



Θ (K(n)) β > k

Θ
(

K(n)
log2[1/C(n)]

)
β = k

Θ
(
K(n)C(n)2(k−β)

)
2k
3 < β < k

Θ
(
K(n)C(n)β log[1/C(n)]

)
β = 2k

3

Θ
(
K(n)C(n)β

)
β < 2k

3 .

(5)

Looking at χ, we note that in all cases the clustering coefficient of the graph is upper-bounded by
K(n) (actually it equals K(n) for β > k). In essence, in our model K(n), C(n) and β provide
the three knobs that allow us to directly control the both the average node degree and clustering
coefficient of the graph. We underline that many real-world networks exhibit a fairly large clustering
coefficient, as it occurs in our model when β > k.

We remark that, unlike specifically tailored graph models such as stochastic block-models, our
geometric random graphs do not directly capture the community-based structure exhibited by so-
cial networks. However, they successfully represent the clustering effect, which is the main feature
investigated in this paper.

Note: In the following, we will slightly abuse the language and define as clusters (not to be con-
fused with the clustering coefficient) sub-regions including nodes whose maximum mutual distance
is Θ(C(n)).

5. OVERVIEW AND MAIN RESULTS
Our goal is to characterize the seed set necessary for de-anonymization. To this end, we identify two
different regimes depending on K(n), which provides the graph density of clusters 7:

1) K(n) = o([nCk(n)]−γ), for some 0 < γ < 1, which will be referred to as low-density cluster
case;
2) K(n) = ω([nCk(n)]−γ) for any γ > 0, which will be referred to as high-density cluster case.

In the first case, the graph density within a cluster goes to zero “relatively” fast as the number of
nodes within a cluster, nCk(n), goes to infinity. In the second case, the graph density within a
cluster either is bounded away from zero or asymptotically decreases very slowly. It comprises the
particularly relevant sub-case in which K(n) = Θ(1). Within each of the above cases, different
operational sub-regimes can be identified based on the value of β/k and B(n) = nK(n)Ck(n).
Note that B(n) can be interpreted as the average number of neighbors of a given node within a
cluster centred at the considered node.

In order to analyze the performance achievable in different cases, we will consider three different
matching strategies. Note that for all strategies we will assume that seeds can be identified in par-
ticular sub-regions ofH, while no knowledge on the location of the other nodes is required to carry
on the node identification process.

(i) The simplest approach consists in applying PGM directly to the original pairs graph by using
seeds in an opportunely defined sub-region ofH, and by selecting a proper threshold r. We point out

6Roughly speaking, the clustering coefficient is the probability that two neighbors of a node are neighbors of each other.
7Given a generic graph G(V, E), the graph density is defined as 2|E|

|V|(|V|−1)
. It can be interpreted as the probability that an

edge exists between two randomly selected nodes of the graph.
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that, in this case, r may scale to infinity as n grows large, as shown in Section 6. Such an approach
will be used when the product B(n) · K(n) is small, for either low or high-density clusters (see
Sections 7.2, 7.3, 7.4 and 8.2). Indeed, in these cases, the edge density within a cluster is small
enough to safely apply the PGM algorithm without incurring matching errors.

(ii) The second approach implies that initially only a small sub-region of H of size Θ(C(n)) is
considered. Then the PGM algorithm can be applied to this sub-region8, provided that a sufficiently
large seed set is available therein and an opportune threshold r is selected. At the end of this first
‘trigger phase’ almost all nodes located in the considered region are correctly identified. The set of
matched pairs is then iteratively expanded, using as seed set the good pairs identified at the previous
stage (representing a discretized version of a wave-like expansion). Note that, in this second phase,
we do not apply PGM any more, but a simpler direct strategy, matching at each step those pairs
having a sufficiently large number of neighboring pairs matched at the previous steps. Fig. 2 depicts
this approach. This matching procedure will be used to de-anonymize nodes pairs in the case of low-
density clusters when B(n) ·K(n) is sufficiently large (Sec. 7.1).

already de-anonimized

to be de-anonymized

next to be de-anonymized

Fig. 2. Graphical representation of matching strategy based on wave-like expansion.

(iii) A more complex de-anonymization procedure is required for high-density clusters and large
values of B(n), i.e., when the graph may have many cliques or quasi-cliques of nodes (Sec. 8.1).
Indeed, in this case, if we try to identify nodes using only the local structure of a cluster (as in
the previous cases), an intolerable amount of matching errors may occur disrupting the entire iden-
tification process. In order to prevent this, all edges whose length is too short should be ignored,
and nodes should be identified only on the basis of the ‘fingerprint’ provided by their longer edges.
Thus, we first devise a ‘trigger phase’ using two sub-regions of H of size Θ(C(n)), which are
sufficiently far from each other, i.e., they are separated by a minimum distance ω(C(n)). Fig. 3
illustrates the two sub-regions in the case in which both are square shaped with generic side length
h(n). We assume that a suitable number of seeds is available within each of these sub-regions. To
identify all of the other nodes therein, we modify the PGM algorithm so that only the edges between
nodes belonging to different sub-regions are used. We then exploit the fact that, in the high-density
cluster regime, the distance between two nodes inH can be estimated quite precisely. Therefore we
can select a set of compact nodes that are sufficiently far from a matched sub-region, and re-apply
the direct strategy. The procedure can be iterated until almost all nodes throughout the network are
correctly identified.

8Note that no a-priori knowledge on the position of the nodes (other than seeds) is required. Indeed, it is needed only the
relative distance of the nodes from the seeds, which can be estimated as shown Sec. 7.1.
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H1 H2

ω(h(n))

h(n) h(n)

Fig. 3. Graphical representation of trigger phase based on two separated sub-regions of side h(n).

Table I. Main parameters

n Number of nodes H(n) Hyper-cube where nodes are located

k No. of dimensions of the hyper-cubeH(n) β Decaying factor of the connectivity probability with distance

C(n) Size of a cluster K(n) Probability of two nodes being connected within a cluster

B(n) Average no. of neighbors of a node within h(n) Size of a subregion ofH
a cluster centered at the tagged node

GT(n) Ground-truth graph G1,G2 Graphs obtained from GT by independent edge sampling

s Edge sampling probability g(n) Distance between two subregions ofH

P(G) Pairs graph induced by nodes in G G(n, p) Erdös–Rényi graph with n nodes and edge probability p

A0 Seed set ao Seed set cardinality

r Threshold value on no. of edges µ Average no. of good pairs neighbor of a tagged pair

Our main findings on the seed set size required for successful network de-anonymization are
summarized below. The main used notations are reported in Table I.

— The required number of seeds heavily depends on all network parameters: K(n), B(n) (or C(n))
and β/k.

— For high-density clusters and β > k/2, the number of necessary seeds can be simply expressed
in terms of the average number of nodes falling within a cluster, [nCk(n)]. In particular, a seed
set whose size is equal to [nCk(n)]ε, for any ε > 0, is enough to guarantee an almost complete
successful network de-anonymization.

— In the relevant case in which K(n) = Θ(1) and B(n) = Θ(1) (i.e., nCk(n) = Θ(log n) and the
average degree of the graph D(n) = Θ(log n)), the above expression reduces to (log n)ε, with
arbitrarily small ε > 0. This result strikingly shows the beneficial impact of clustering on network
de-anonymization. To grasp this fact, consider that, in the case of a G(n, p) ground-truth graph
with average degreeD(n), the PGM algorithm requires Θ

(
n

D(n)r/(r−1)

)
seeds, which, in the case

of log n degree, is just a poly-log factor less than n.
— Somehow surprisingly, the required seed set size increases when we increase the average degree

of the nodes while keeping K(n) constant (i.e., when we increase C(n) and consequently B(n)).
This is in sharp contrast with previous results derived for Erdös–Rényi and Chung-Lu graphs
[Yartseva and Grossglauser 2013; Chiasserini et al. 2016]. The intuition behind this result is that,
when clusters are very highly connected, it becomes very hard to distinguish nodes within the
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A:10 C.F. Chiasserini et al.

same cluster. Therefore, by increasing the cluster size, we make the identification intrinsically
more challenging.

— In the low-density cluster case, our de-anonymization techniques become less effective, and the
required seed set size turns out to be roughly inversely proportional to K(n).

— In both the high-density cluster and low-density cluster cases, for a fixed value of average node
degree and β > k/2, the required seed set size increases as β decreases. Observe that the clustering
coefficient decreases as we decrease β, while keeping the average degree constant.

— For low-density clusters, a fixed value of average node degree and β < k/2, by decreasing β
the graph tends to a G(n, p), thus our results tend to those derived in [Yartseva and Grossglauser
2013] for G(n, p) graphs.

6. RELATIONSHIP BETWEEN PGM THRESHOLD AND MATCHING DYNAMICS
Let us consider a bad pair [i1, j2] and that vertices i and j are placed at xi and xj , respectively. We
want to investigate the number of good pairs that are neighbors of [i1, j2] on the pairs graph P(GT).

Let [l1, l2] be a generic good pair and X[i1,j2],[l1,l2] be the indicator function associated to the
event that {[i1, j2] and [l1, l2] are neighbors on P(GT)}. By using (2) and recalling that i) G1 and G2

have been obtained via independent edge sampling with probability s, and ii) nodes are uniformly
distributed overH, we have:

E[X[i1,j2],[l1,l2]] =

∫
H
E[X[i1,j2],[l1,l2] | xl] dxl =

s2K(n)2

∫
H
f(‖xl − xi‖)f(‖xl − xj‖) dxl . (6)

Since (6) holds for any good pair, the average number of good pairs that are neighbors of [i1, j2] is
given by:

µ = E

[∑
l

X[i1,j2],[l1,l2]

]
= (n− 2)E[X[i1,j2],[l1,l2]] ≥ (n− 2)s2K(n)2

∫
H
f2(‖x‖) dx

=


Θ(B(n)K(n)) β > k

2

Θ
(
B(n)K(n) log 1

C(n)

)
β = k

2

Θ(nC2β(n)K2(n)) β < k
2

(7)

where in the order sense expressions we have neglected the constant factor s2. Then we can apply
standard concentration inequalities (see App. A) to bound the probability that the number of good
pairs that are neighbors of the bad pair [i1, j2] exceeds a threshold r, i.e.,

P(
∑
l

X[i1,j2],[l1,l2] ≥ r) ≤ e−
r
2 log r

µ (for e2µ < r).

If we consider jointly all possible wrong pairs, we have:

P(there exists a wrong pair with at least r neighboring good pairs) ≤ n2e−
r
2 log r

µ (for e2µ < r)

= exp

(
2 log n− r

2
log

r

µ

)
which goes to zero as n→∞ as long as 2 log n− r

2 log r
µ →∞. Such a condition is satisfied when:

µ = o(log1−ξ n) ∧ r = Θ

(
log n

log log n

)
for some 0 < ξ < 1 (8)
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or,

µ = o(n−ξ) ∧ r = Θ(1) for some 0 < ξ < 1 . (9)

Observe that the condition µ = o(log1−ξ n) includes the case µ = o(n−ξ); in other words, the
condition on µ in (9) is a sub-case of that in (8). When either (8) or (9) hold, bad pairs can be
ignored during the whole percolation process since w.h.p none of them will reach the threshold r at
any stage of the algorithm. Indeed, by induction, it can be proved that only good pairs are matched,
thus only good pairs contribute to the increase of the pairs marks. The following theorem therefore
holds. It states that if PGM can match almost all good pairs in G0 ⊆ GT, it can also match them
when it is applied to the whole graph GT. Although intuitive, the result is not trivial to prove.

Theorem 2. Consider a subgraph of GT(V, E), denoted by G0(V0, E0) with V0 ⊆ V and E0 ⊆ E .
Assume that, applying PGM to G0, we can successfully match (almost) all good pairs inP(G0) using
as seed set A0 ∈ V0. Then, whenever either (8) or (9) hold, applying PGM to GT using the same
seed set A0 successfully matches at least (almost) all good pairs corresponding to the vertices in
V0.

PROOF. See Appendix E.

Finally, we show the following important result. Theorem 3 identifies the conditions on the seed
set size and on the relation between the average node degree and the PGM threshold, under which
good pairs can be successfully matched in any subgraph G0 ⊆ GT.

Theorem 3. Consider a subgraph of GT(V, E), denoted by G0(V0, E0), as before. Assume that
G(m, pmin) ≤st G0, with G(m, pmin) being an Erdös–Rényi graph. Under (8), applying the PGM
algorithm to P(GT) (with r = Θ( logn

log log n )) guarantees that m−o(m) good pairs are matched with
no errors w.h.p., provided that:

(1) m→∞;
(2) mpmin � r;
(3) a0 >

r
pmins2

(1 + δ) for any δ > 0

PROOF. See Appendix F.

7. LOW-DENSITY CLUSTERS
In this case, we consider clusters with low graph density, i.e., with K(n) = o

(
[nCk(n)]−γ

)
, for

some 0 < γ < 1. Also, we assume that there exists a set of seeds A0 (|A0| = a0) such that the
maximum mutual distance between seed nodes is ds = O(C(n)), i.e., that seeds are concentrated
within a k-dimensional space of radius C(n). Below, we further distinguish four cases, according
to (i) the average number of neighbors that a node has within distance C(n) and (ii) the relationship
between β and k. For each of such cases, we derive the number of seeds a0 that are necessary in
order to successfully de-anonymize our social graph. Specifically, we obtain the following results:

— Case B(n) = Ω(logn), β ≥ k/2 (Sec. 7.1): a0 = Ω
(

log(nCk(n))
K(n)

)
. In this case each node within

a cluster has got a number of neighbors that, although limited, is still significant. Thus we consider
a small sub-region ofH of side Θ(C(n)) and initially apply the PGM algorithm to this sub-region.
In this way, by selecting an opportune threshold r, we are able to match almost all nodes within
a cluster. The set of matched pairs is then iteratively expanded, using as seed set the good pairs
identified at the previous stage and matching those pairs having a sufficiently large number of
already matched neighboring pairs.

— Case B(n) = o (log n) and B(n) = ω(n−ξ) ∀ξ > 0 , β > k/2 (Sec. 7.2): a0 =

Θ

(
logn

log logn

K(n)Cβ(n)h−β(n)

)
. In this case, given any node, its number of neighbors within the cluster is
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small. We therefore apply PGM directly to the whole pairs graph by selecting a proper threshold r.
Indeed, the edge density within a cluster is so small that the PGM algorithm can be safely adopted
without incurring a significant number of errors.

— Case B(n) = o(n−ξ) for some 0 < ξ < 10 , β > k/2 (Sec. 7.3) and Case β ≤ k/2 (Sec.

7.4): a0 = Θ

([
(nhk(n))

1
r−1 (h−β(n)K(n)Cβ(n))

r
r−1

]−1
)

. Here the number of neighbors of a

node within a cluster vanishes fast as n increases. The result is thus obtained by using the same
methodology as before, i.e., applying PGM to the whole pairs graph.

Algorithm 1 De-anonymization algorithm used in Section 7.1

Require: G1, G2, A0 with a0 = Ω
(
log[nCk(n)]/K(n)

)
1: Choose α ≥ 0, δ > 0
2: N 1(α)← ∅, N 2(α)← ∅,M← ∅
3: for i ∈ G1 do
4: if No. of seeds that are neighbor of i in G1 > αsK(n)a0 then
5: N 1(α)← N 1(α) ∪ {i}
6: for i ∈ G2 do
7: if No. of seeds that are neighbor of i in G2 > αsK(n)a0 then
8: N 2(α)← N 2(α) ∪ {i}
9: Build the pairs graph P(N ) induced by nodes in N 1(α) and N 2(α)

10: Set r to a sufficiently large value
11: Apply PGM to P(N ) using r as above % Trigger phase
12: M← {matched pairs}
13: whileM 6= ∅ do % Wave-like expansion
14: A0 ← A0 ∪M
15: Update r as in Theorem 5
16: Match all pairs with at least r already-matched neighboring pairs
17: M← {newly matched pairs}
18: return Set of matched pairs

7.1. Case B(n) = Ω(logn), β ≥ k/2
We first focus on the case in which B(n) = nK(n)Ck(n) = Ω(log n). Here we have µ =
B(n)K(n) for β > k/2 and µ = B(n)K(n) log 1

C(n) for β = k/2. Thus, in general in both
cases we cannot guarantee that µ meets at least one of the conditions in (8)–(9). We therefore
proceed as summarized in Alg. 1.

Specifically, our steps are as follows. Since K(n) = o(1), by construction nCk(n) � log n,

i.e., C(n) = ω

([
logn
n

] 1
k

)
. As a first step, we show how nodes in H lying sufficiently close to the

seeds can be identified. To this end, we start by defining two sub-regions, Hin ⊂ H and Hout ⊂ H.
Intuitively,Hin (Hout) can be seen as the set of points whose distance from any seed vertex is lower
(higher) than a given threshold. More formally, denote by x a generic point in H and by xσ the
position inH of a generic seed vertex σ.

Hin(α, δ) =
{
x s.t. max

σ∈A0

‖x− xσ‖ ≤ f−1((1 + δ)α)
}

Hout(α, δ) =
{
x s.t. min

σ∈A0

‖x− xσ‖ > f−1((1− δ)α)
}
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where f is the non-increasing function defined in Section 4. The two sub-regions are depicted in
Fig. 4. Note that, by construction, the area |Hin| = Θ(Ck(n)).

f−1((1 + δ)α)

Seeds

Hin(α, δ)

Hout(α, δ)

f−1((1 − δ)α)

Fig. 4. Graphical representation ofHin(α, δ) andHout(α, δ).

The theorem below proves that, given graph G1 (G2), it is possible to correctly distinguish nodes
inHin(α, δ) from nodes inHout(α, δ) by counting the number of their neighboring seeds. Note that
the theorem holds under quite general conditions, specifically, for both low-density and high-density
clusters.

Theorem 4. Provided that nCk(n)
log(nCk(n))

= Ω
(

1
K(n)

)
and nCk(n) > log n, given a node i ∈ G1

(i ∈ G2), let Si be the number of seeds that are neighbors of i on G1 (G2). We tag a node i as
“accepted” if Si > αsK(n)a0. If ds = O(C(n)) and a0 = Θ

(
log(nCk(n))

K(n)

)
, then for an arbitrary

δ > 0, the above procedure accepts all nodes located inHin(α, δ), while it rejects all nodes located
inHout(α, δ).

PROOF. See Appendix G.

Next, we denote byN 1(α) andN 2(α), respectively, the set of nodes from G1 and G2 that are clas-
sified as located inHin(α, δ). By construction, |N 1(α)| = Θ(nCk(n)) and |N 2(α)| = Θ(nCk(n)).
We build the pairs graph P(N ) induced by the nodes of G1 and G2 that belong to, respectively,
N 1(α) andN 2(α). While doing this, we make sure that a bad pair [i1, j2] is included in P(N ) only
if either [i1, i2] or [j1, j2] are also included in P(N ). This is accomplished as follows. We apply the
previous classification procedure twice, using two different values α1 and α2, with α1 > α2, chosen
in such a way that Hout(α1, δ) ⊆ Hin(α2, δ). Then we insert in P(N ) all pairs whose constituent
nodes have been selected by at least one of the classification procedures, adding the constraint that
at least one of the nodes must have been selected by both. Since, by construction, no good pair
[i1, i2] exists s.t. i1 falls in Hin(α1, δ) and i2 in Hout(α2, δ) (or vice-versa), the above condition is
ensured.

We then apply the PGM algorithm on P(N ). Our goal is now to verify that the conditions in
Theorem 1 hold so that, applying Corollary 1, we can claim that all good pairs in P(N ) can be
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matched without errors. To this end, let us define m = Θ(nCk(n)), which in order sense equals
the number of nodes in N 1(α) and N 2(α). Then note that pmin = Θ(pmax), pmax = K(n) and
K(n) = o(m−γ). Thus, for a sufficiently large r = Θ(1) , pmax � m−

3.5
r . Since by assumption

nK(n)Ck(n) = Ω(log n), we have mK(n) = Ω(log n) and, hence, mpmin = Ω(log n). It follows
that pmin � m−1. At last, it is easy to see that ao/ac → ∞. Indeed, consider (1) where p is
replaced with pmin, and recall that pmin = Θ(K(n)) and mpmin = Θ(B(n)), then we have:

ac = Θ

(
1

[B(n)]
1
r−1K(n)

)
.

I.e., ac = o(1/K(n)) while, by assumption (see Theorem 4),

a0 = Ω

(
log(nCk(n))

K(n)

)
.

In conclusion, we have that all good pairs, whose nodes fall inHin(α1, δ), can be correctly matched.
To further expand the set of identified pairs, we pursuit the following simple approach. Starting

from the pairs already matched in the first phase, which act as seeds, we consider a larger region that
includes the previous one. By properly setting a threshold r, we can match all pairs in this larger
region having at least r neighbors among the seeds. So doing, we successfully match w.h.p. all good
pairs in the region with no errors. More formally, the following theorem allows us to claim that our
approach can be successfully employed.

Theorem 5. Under the assumption B(n) = Ω(log n), consider a circular region D(0, ρ) ⊆
H centered at 0, of radius ρ, with ρ ≥ C(n). Assume that all (or almost all) good pairs whose
constituent nodes lie within D(0, ρ) have been correctly matched. Then, it is possible to correctly
match (almost) all good pairs whose constituent nodes are in D(0, ρ1) \ D(0, ρ) with probability
1− o(n−1), for ρ1 = ρ+C(n)/2, when K(n) = o([nCk(n)]−γ) for some 0 < γ < 1. In addition,
none of the bad pairs formed by nodes in H − D(0, ρ) will be matched, again with probability
1 − o(n−1). This is done by setting threshold r = n

2 |D(0, ρ) ∩ D(x, C(n))|K(n)
2 , with |x| = ρ1,

and identifying as good pairs those inH \D(0, ρ) that have at least r neighbors among good pairs
with vertices in D(0, ρ).

PROOF. The proof is based on the application of standard concentration results, namely, Cher-
noff bound and inequalities in Appendix A. The detailed proof is given in [Chiasserini et al.
2015a].

Almost all good pairs can be matched w.h.p. by iterating the matching procedure of Theorem 5 a
number of steps equal to Θ(1/C(n)). Indeed, each time the PGM algorithm successfully matches all
good pairs whose constituent nodes lie within distance C(n)/2 from the set of previously matched
pairs. Note that Theorem 5 also guarantees that, jointly over all steps, no bad pair is matched w.h.p.

7.2. Case B(n) = o (logn) and B(n) = ω(n−ξ) ∀ξ > 0 , β > k/2

In this case, since in general nCk(n) is not guaranteed to be greater or equal to log n, we can-
not apply Theorem 4. However, given that B(n) = nK(n)Ck(n) = o(log n) and K(n) =
o([nCk(n)]−γ) for some 0 < γ < 1, it follows that µ = nCk(n)K2(n) = o(log1−γ n) (under
the assumption β > k/2). Thus we can fix r = Θ

(
logn

log logn

)
and apply a standard PGM on the

whole graph GT. In this way, condition (8) holds and w.h.p. no wrong pairs are ever matched at any
stage of the algorithm. However, we have to show that, by applying PGM, the process of matching
good pairs successfully percolates over the all pairs graph. To this end, we need to apply Theorems
2 and 3, and, in particular, to show that the conditions in Theorem 3 hold for an opportunely selected
subgraph of GT, G0.
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We then consider the subgraph G0 induced by the m vertices residing in a square box of side
h(n). Observe that, since the percolation process over good pairs is monotonically increasing, then
the percolation process over G0 is faster than a percolation process over G(m, pmin), where pmin is
the minimum connectivity probability among vertices in G0.

Consider that m = nhk(n) and f(d) = Θ(Cβ(n)h−β(n)), thus

mpmin = nhk(n)K(n)Cβ(n)h−β(n)
(a)
= Γ(n)r

were Γ(n) is an arbitrarily slow function such that (i) Γ(n) → ∞ and (ii) (a) guarantees that the
condition mpmin � r in Theorem 3 is satisfied. We then derive h(n) as:

h(n) =

(
rΓ(n)

nCβ(n)K(n)

) 1
k−β

(10)

where C(n)� h(n)� 1, by construction. Thus we can successfully apply Theorem 3 by choosing
a number of seeds:

a0 = Θ

(
r

pmin

)
= Θ

(
logn

log logn

K(n)Cβ(n)h−β(n)

)
and obtain that PGM successfully matches all good pairs within a distance Θ(h(n)) from the seed
set.

To further expand the set of good pairs that are matched, conceptually we can apply again the
PGM algorithm by employing all good pairs that have been previously matched as new seed set.
Then all good pairs whose constituent nodes lie within a distance Θ(C(n)) from this new seed set
will be matched. Iterating the argument, we can match almost all good pairs in the graph. In practice,
however, iterating PGM is not necessary as the matching procedure does never stop until almost all
good pairs in the graph have been matched. This because PGM naturally uses previously matched
pairs as adjoint seeds to match new pairs (when PGM matches a pair and places it in Z(t), it adds
one mark to all its neighbors).

The above de-anonymization procedure is summarized in Alg. 2.

Algorithm 2 De-anonymization algorithm used in Section 7.2, 7.3, 7.4, 8.2
Require: G1, G2

1: if µ = o(n−ξ) then % As in Secs. 7.3-7.4
2: Set r to an arbitrary constant value
3: else if µ = o(log1−ξ n) then % As in Secs. 7.2-8.2
4: r ← Θ(log n/ log log n)

5: Select a subregion ofH of size h(n) % As in (10) for Sec. 7.3, (11) for Secs. 7.2-7.4
6: % and (14) for Sec. 8.2
7: A0 ← {seeds inH}
8: Apply PGM to P(GT) using r and A0 as above
9: return Set of matched pairs

7.3. Case B(n) = o(n−ξ) for some 0 < ξ < 1 , β > k/2

This case immediately implies that µ = nCk(n)K2(n) � B(n) = o(n−ξ). Thus condition (9)
holds and, for an arbitrarily chosen r = Θ(1) we can again apply a standard PGM on the whole
graph so as to ensure that w.h.p no wrong pairs are ever matched at any stage of the algorithm. The
procedure reported in Alg. 2 therefore holds also for this case.
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Specifically, as before we have to show that it is possible to apply Theorems 2 and 3 to an oppor-
tune subgraph G0 ⊆ GT. We then consider the subgraph G0 induced by the m vertices residing in a
square box of side h(n). By defining pmin as before, we have again that the matching process over
G0 is faster than the matching process over G(m, pmin). However, since r = Θ(1), now we have:

mpmin = nhk(n)K(n)Cβ(n)h−β(n) = Γ(n)

with Γ(n) being an arbitrarily slow function such that Γ(n)→∞ so that condition pmin > m−1 is
automatically satisfied. Deriving h(n), we obtain:

h(n) =

(
Γ(n)

[nCβ(n)K(n)]

) 1
k−β

. (11)

Note that condition pmin � m
3.5
r can be easily met by selecting a sufficiently slow Γ(n). Also,

we have to impose:

a0 = Θ

(
1

(mprmin)
1
r−1

)
= Θ

(
1

[nhk(n)]
1
r−1 [h−β(n)K(n)Cβ(n)]

r
r−1

)
(12)

so as to guarantee a successful matching over G(m, pmin), hence G0, and, by Theorem 2, over the
corresponding subset in GT. Finally, a successful matching of good pairs on GT can be achieved
following the same rationale described in Section 7.2.

7.4. Case β ≤ k/2
Since we assume D(n) = Θ(nK(n)Cβ(n)) = O(n1/2−δ) with δ > 0, necessarily we have µ =
nC2β(n)K2(n) = O(n−2δ). Thus, again we can properly fix a finite r and apply PGM to match
almost all good pairs within a range Θ(h(n)) (with h(n) defined as in (11)) under the same condition
on a0 as in (12). (See Alg. 2 for a summary of the procedure to be applied.)

8. HIGH-DENSITY CLUSTERS
We now consider clusters with high graph density, i.e., with K(n) = ω([nCk(n)]−γ) ∀γ > 0. We
first focus on the case where β > k/2 and analyze the seed set size that is required for successful
graph de-anonymation. Specifically, we consider the following two cases:

— Case B(n) = Ω(log1−ξ n), ∀ξ > 0 (Sec. 8.1): a0 = O([max{nCk(n), log n}]ε), for any ε > 0.
In this case (large values of B(n)), the graph may have many cliques or quasi-cliques of nodes.
Thus, matching nodes using only the local structure of a cluster, may lead to a high number of
errors. For a successful graph de-anonymization we therefore match nodes only on the basis of the
‘fingerprint’ provided by their longer edges. In particular, we first trigger the matching procedure
using two sub-regions of side Θ(C(n)), which are sufficiently far from each other and include
a suitable number of seeds. To identify the nodes therein, we apply a modified version of PGM
algorithm, which considers only edges spanning between the two sub-regions. Then, by exploiting
the fact that in the high-density cluster regime the distance between two nodes can be estimated
quite precisely, we select a set of compact nodes that are sufficiently far from a matched sub-
region, and re-apply the direct matching strategy with a properly chosen r. The procedure can be
iterated until almost all nodes are matched.

—B(n) = o(log1−ξ n), for some 0 < ξ < 1 (Sec. 8.2): a0 =

(
logn

log logn

K(n)Cβ(n)h−β(n)

)
. Here the edge

density within a cluster is not very large, thus we safely apply PGM directly on the original pairs
graph, using seeds in an opportunely defined sub-region and by selecting a proper threshold r.

At last (Sec. 8.3), we note that β ≤ k/2 does not represent a meaningful case for high-density
clusters, since it cannot be matched with the above condition on K(n).
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8.1. Case B(n) = Ω(log1−ξ n), ∀ξ > 0, and β > k/2

First, observe that B(n) = Ω(log1−ξ n) (for any ξ > 0) implies nCk(n) = Ω(log1−ξ n) ∀ξ >
0, given that K(n) ≤ 1. Second, since µ = B(n)K(n), and K(n) = ω([nCk(n)]−γ), ∀γ >
0 (or, equivalently K(n) = ω(log−γ n), ∀γ > 0), µ does not meet conditions (8)–(9), and we
cannot exploit the corresponding values of r to guarantee a successful matching process. Indeed,
as mentioned in Section 5, this case is significantly different from low-density clusters, and the
de-anonymization algorithm should disregard all edges whose length is too short (shorter than a
properly defined threshold ω(C(n))) so as to avoid errors (i.e., matching bad pairs).

In order to provide a clear outline of the de-anonymation procedure that we adopt for high-density
clusters, we provide the pseudocode in Algorithm 3. We present the details and prove our analytical
results in the following sections. In particular, since our approach relies on some results on bipartite
graphs, we introduce them in Sec. 8.1.1. Then we apply such results to our clustered social network
model (Sec. 8.1.2), and derive the seed set size that is required to trigger the identification process
(Sec. 8.1.3).

Algorithm 3 De-anonymization algorithm used in Section 8.1
Require: G1, G2, A0, ε > 0

1: Identify two squared regions,H1,H2 ⊂ H, of side h(n) = Ω(C(n)) and g(n) = ω(C(n))
apart from each other, including a0 = O([max{nCk(n), log n}]ε) seeds each

2: r ← 4/ε
3: Build the pairs graph P(H12) induced by nodes inH1 andH2

4: Apply PGM to P(H12) using r as above and only inter-region edges % Trigger phase
5: while No. of newly matched pairs > 0 do % Expansion phase
6: H2 ← compact set of nodes sufficiently apart fromH1 and within Θ(C(n)) from each other
7: Build the pairs graph P(H12) induced by nodes inH1 andH2

8: Update r as in Theorem 7 and use matched nodes inH1 as seeds
9: Consider inter-region edges only and match all pairs in P(H12), whose constituent nodes lie in

H2, with at least r already-matched neighboring pairs, whose constituent nodes lie inH1

10: return Set of matched pairs

8.1.1. Results on bipartite graphs. Let GT be an m1 ×m2 bipartite graph. LetM1 denote the set
of vertices on the left hand side (LHS), with |M1| = m1, andM2 the set of vertices on the right
hand side (RHS), with |M2| = m2. We assume that for any pair of vertices i ∈ M1 and j ∈ M2

an edge (i, j) exists in the graph with probability pij , with pmin ≤ pij ≤ pmax and pmax = ηpmin

for some constant η > 1. Our goal is to identify the required number of seeds a0 located in either
side of the graph, i.e., with a0 = |Al0| inM1 and a0 = |Ar0| inM2, such that vertices inM1 and
M2 can be correctly matched.

Let us first consider the case where m1 = m2 = m, for which the theorem below holds.

Theorem 6. Assume that GT is an m ×m bipartite graph and that two sets of seeds, Al0 and
Ar0, both of cardinality a0 > ac, are available on, respectively, the LHS and the RHS of the graph.
Then the PGM algorithm with threshold r ≥ 4 correctly identifies m − o(m) good pairs w.h.p.
on the RHS and the LHS of graph P(GT), with no errors, under the same four conditions listed in
Theorem 1.

PROOF. See Appendix H.

Theorem 6 can be extended to the general case where m1 6= m2, as stated in the corollary below.

Corollary 2. Assume that GT is an m1 ×m2 bipartite graph and define m = min(m1,m2).
Under the same assumptions of Theorem 6, the PGM algorithm with threshold r ≥ 4 successfully
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identifies w.h.p. m − o(m) good pairs on both the LHS and the RHS of P(GT), with no errors.
Furthermore, the PGM algorithm can be successfully applied to a pairs graph P̂(GT) ⊂ P(GT)
comprising a finite fraction of pairs on both the LHS and the RHS of P(GT) and satisfying the
following constraint: a bad pair [i1, j2] ∈ P(GT) is included in P̂(GT) only if either [i1, i2] or
[j1, j2] are also in P̂(GT).

PROOF. The assertion can be proved by following the same arguments as in Theorem 6 and
applying Corollary 1.

Finally, we prove the following result, which shows that all good pairs can be matched with no
errors w.h.p.

Theorem 7. Consider that GT is an m1 ×m2 bipartite graph with m1 = ω(
√
m2) and that a

seed setAl0 is available on the LHS of the graph, with |Al0| = a0 = Θ(m1). With probability larger
than 1 − e−

m1√
m2 , all the m2 good pairs on the RHS can be successfully identified with no errors,

provided that:

(1) 1√
m2
� pmin ≤ pmax � 1

(2) pmin = Θ(pmax)
(3) a matching algorithm is used on P(GT) that matches all pairs on the RHS that have at least r

adjacent seeds on the LHS, with r = a0
pmin

2 .

The same result holds in case of pairs graph comprising a finite fraction of all possible pairs on the
RHS.

PROOF. Without loss of generality, we assume a0 ≥ cm2 for some c > 0. First, observe that,
given a good pair [j1, j2] on the RHS of the pairs graph, the number of its adjacent seeds on the LHS
is E[Ng] ≥ a0pmin = 2r. Thus, by applying concentration results in App. A and union bound, we
have:

P(all good pairs on the RHS have at least r adjacent seeds) ≥ 1−m2e
−cm1pminH( 1

2 )

≥ 1− e−
m1√
m2

which imply that all good pairs on the RHS are successfully matched since m1 = ω(
√
m2). Sim-

ilarly, considering a bad pair [j1, k2] on the RHS, the number of its adjacent seeds on the LHS is
E[Nb] ≤ cm2(pmax)2 � r. Thus, by applying concentration results in App. A and union bound,
we have:

P(all bad pairs on the RHS have less than r adjacent seeds) ≥ 1−m2
2e
−cm1

pmin
4 log

(
pmin

(pmax)2

)
≥ 1− e−

m1√
m2 .

8.1.2. The de-anonymization procedure. We now outline how our proposed matching algorithm
for high-density clusters works. We start by focusing on single vertices in H so as to identify re-
gions in H where PGM can be successfully applied. Specifically, we consider two hyper-cubic
regions, H1,H2 ⊂ H, whose side is h(n) = Ω(C(n)) and whose distance is g(n) = ω(C(n))
(see Fig. 3). Note that, by construction, given two vertices i ∈ H1 and j ∈ H2, pmin =
K(n)f(g(n) +

√
kh(n)) ≤ pij ≤ K(n)f(g(n)) = pmax. Let us assume pmax = ηpmin for

some constant η > 1.
We then extract vertices in H1 and H2 from the rest of vertices so that we can focus on the

bipartite graph induced by the nodes in the two sub-regions, along with the edges between them.
To this end, we assume that two sufficiently large sets of seeds are available in H1 and H2 so
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that Theorem 4 given in Section 7.1 can be applied (or Corollary 4 given in Appendix E when
Ck(n) = o

(
logn
n

)
).

At this point, we consider the pairs graph originated from the above bipartite graph. In this regard,
observe that we can use the same procedure as in Section 7, to make sure that a bad pair [i1, j2] is
included in the pair graph only if either [i1, i2] or [j1, j2] are also included in it. We can then apply
Corollary 2.

It follows that the execution of the PGM algorithm ensures that almost all of the good pairs
in either the LHS or the RHS of the pairs graph are correctly de-anonymized. Without lack of
generality, we assume that almost all pairs on LHS are de-anonymized, i.e., m1 < m2, and that
a non-negligible fraction of the good pairs on the RHS have still to be identified. Then the rest of
good pairs on the RHS can be matched by applying Theorem 7.

To further expand the set of good pairs that are matched, we first show how it is possible to
estimate (at least in order sense) the length of the edges between two nodes, again by exploiting the
high-density structure of the clusters.

Proposition 1. Assume nCk(n)K2(n) = ω(1), given two nodes in region H, it is possible to
estimate with arbitrary precision their mutual distance d as far as

d� C(n)
(
nCk(n)K2(n)

) 1
β .

xi

xj

x

sK
(n

)f
(||x

i
− x||)

sK(n)f(||x− x
j ||)

Fig. 5. Computation of E[Nij ].

PROOF. Let us consider two nodes i and j on G1 (G2) whose mutual distance is dij . Let Nij be
the variable that represents the number of their common neighbors. By construction, we have:

E[Nij ] = (n− 2)s2K2(n)

∫
H
f(||x− xi||)f(||x− xj ||)dx = Θ(nCk(n)K2(n)f(dij)) .

Observe that E[Nij ] is continuous and strictly decreasing with dij , and thus invertible. Now, apply-
ing Chernoff bound we can show that for any 0 < δ < 1

P

(
|Nij − E[Nij ]|

E[Nij ]
> δ

)
≤ e−c(δ)E[Nij ]

for a proper constant c(δ) > 0. Since E[Nij ] → ∞ as long as d � C(n)
(
nK2(n)Ck(n)

) 1
β , the

assertion follows.

We can therefore use the number of common neighbors between two given nodes as an estimator
of their distance. We then set two thresholds,

dL = Θ
(

max
{
C(n) log[n

1
kC(n)], log

1
k n
})

dH = λdL with λ > 1
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and we leverage the above result to correctly classify the edges going out of previously matched
nodes into three categories: edges that are shorter than dL, edges that are longer than dH and edges
of length comprised between dL and dH . In particular, we are interested in the latter, for which the
following result holds.

Proposition 2. AssumeK(n) = ω([nCk(n)]−γ) ∀γ > 0, and nCk(n) = Ω(log1−ξn) ∀ξ > 0.
Consider a set comprising a finite fraction of the nodes in G1 (G2) lying in a region of side Θ(C(n)),
and the edges incident to them. For an arbitrarily selected δ > 0, w.h.p (i.e., with a probability
larger than 1 − [C(n)]k) we can select all edges whose length d is (1 + δ)dL ≤ d ≤ (1 − δ)dH .
Furthermore, no edges whose length d < (1− δ)dL and d > (1 + δ)dH are selected.

The proof follows the same lines as the proof in Appendix G (see [Chiasserini et al. 2015a] for
further details).

At this point, we consider a bipartite graph whose LHS is still represented by H1, and whose
RHS is given by the nodes that are connected with those in H1 through edges of length comprised
between dL and dH . Again, we consider the pairs graph originated from them and apply Theorem
7 so as to match w.h.p. all good pairs on the RHS, with no errors. The procedure is then iterated so
as to successfully de-anonymize the entire network. Note that, at every step we apply the following
proposition to extract a group of matched nodes whose mutual distance is Θ(C(n)).

Proposition 3. Assume K(n) = ω([nCk(n)]−γ) ∀γ > 0 and nCk(n) = Ω(log1−ξn), ∀ξ > 0.
Given a node i, we can set a threshold dT = Θ(C(n)) and select all nodes in G1 (G2) whose
estimated distance from i is less than dT . So doing, for an arbitrarily selected δ > 0, we successfully
select with a probability larger than 1 − [C(n)]k all nodes whose real distance is d ≤ (1 − δ)dT .
Furthermore, no nodes whose distance from i is d > (1 + δ)dT are selected by our algorithm.

The proof is similar to that of Proposition 2 (see also [Chiasserini et al. 2015a]).

8.1.3. Seed set size. To explicitly derive the required seed set size, we need to further specify
h(n) and g(n), which are to be carefully selected so as to minimize the resulting critical size ac in
Theorem 6 and Corollary 2.

First, recalling (1) and Theorem 1, we have:

ac =

(
1− 1

r

)(
(r − 1)!

m(pmins2)r

) 1
r−1

≤

(
r − 1

(mpmins2)
1
r−1 pmins2

)
≤ r

pmins2
. (13)

Thus, ac can be minimized by maximizing pmin, i.e., by minimizing g(n) (recall that pmin =

K(n)f(g(n) +
√
kh(n))). However, g(n) and h(n) must also be selected in such a way that condi-

tion 1) of Theorem 6 is met. Additionally, as mentioned, it must be ensured that h(n) = Ω(C(n)).
At last, by standard concentration results, m1 and m2 turn out to be both Θ(nhk(n)) provided that
h(n) ≥ (log n/n)1/k.

Previous considerations suggest to fix:

h(n) = Θ(max{C(n), (log n/n)1/k}) ≥ (log n/n)1/k

(i.e., the minimum possible value in order sense), which corresponds to having m =
Θ(max{nCk(n), log n}) (recall that m = min(m1,m2)). We then derive g(n) by forcing pmax ≈
m−

α
r , with 3.5 < α < 4 and r ≥ 4. Note that condition 1) of Theorem 6 is met since pmax and

pmin are both Θ(m−
α
r ). Hence, we have:

pmax = Θ([max{nCk(n), log n}]−αr )

g(n) = Θ
(
C(n)[max{nCk(n), log n}]

α
β [K(n)]

1
β

)
Given the above expression for pmax, considering that pmax = ηpmin and using (13), the seed

set size can be made as small as a0 = O([max{nCk(n), log n}]ε), for any ε > 0, by choosing
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r > 4
ε . Finally, we remark that the obtained a0 is in order sense greater than the number of seeds

needed to apply Theorem 4 while selecting nodes in regionsH1 anH2, thus the whole construction
is consistent.

8.2. Case B(n) = o(log1−ξ n), for some 0 < ξ < 1, and β > k/2

First, we observe thatB(n) = o(log1−ξ n) implies nCk(n) = o(log1−ξ n). On its turn, this implies
β < k so as to guarantee that D(n) = Ω(logn). In this case, µ = o(log1−ξ n), thus we can select r
as in (8) and apply the PGM directly on the pairs graph P(GT), without worrying about errors. The
same procedure outlined in Alg. 2 holds in this case.

The idea is to show that PGM successfully matches almost all good pairs on an opportune bipartite
subgraph of GT. To show this, we have to extend Theorem 3 to bipartite graphs, as done in Corollary
3.

Corollary 3. Consider a subgraph of GT(V, E) denoted by G0(V0, E0), which is an m1 ×m2

bipartite graph with m1 = Θ(m2). Assume that, for any pair of vertices i ∈ M1 and j ∈ M2, an
edge (i, j) exists in the graph with probability pij , with pmin ≤ pij ≤ pmax and pmax = ηpmin for
some constant η > 1.

Under (8), applying the PGM algorithm to P(GT) (with r = Θ( logn
log log n )) guarantees that

m− o(m) good pairs are matched with no errors, if a0 randomly chosen seeds among vertices
inM1 and inM2 are available, provided that

(1) m1 →∞;
(2) m1pmin � r;
(3) a0 = Θ( r

pmin
) .

PROOF. The proof follows the same lines as the proof of Theorem 3.

It follows that we can trigger percolation on GT, whenever we can find two boxes of side h(n)
separated by g(n) so that the induced bipartite graph satisfies the assumptions of Corollary 3, i.e.,
we place a sufficiently large number of seeds a0 in each of the boxes.

In particular, we select:

h(n) = g(n) ≥ max [C(n), log n/n] (14)

obtaining m1 = Θ(nhk(n)), m2 = Θ(m1) and

pmin = Θ(K(n)Cβ(n)h−β(n))

pmax = Θ(pmin)

Now, to satisfy condition 2 of Corollary 3, we must impose m1pmin � r. By following the same
steps as in Section 7.2, we obtain a condition on the number of seeds a0 to be placed in each box:

a0 =

(
logn

log logn

K(n)Cβ(n)h−β(n)

)
.

Note that Corollary 3 ensures that, after the execution of PGM, almost all nodes in the boxes
of side h(n) are correctly identified. Similarly to the procedure reported in Section 7.2, to ensure
that we can further expand the set of identified nodes, we can invoke Theorems 2 and 7 by setting
h(n) = g(n).

8.3. Case β ≤ k/2
This case is impossible. Indeed the assumptions i) β ≤ k

2 and ii)K(n) = ω([nCK(n)]−γ) for every
γ > 0 contrast with the assumption that D(n) = O(n

1
2−δ) for some δ > 0. Indeed, by i) and ii) and

given that C(n) = Ω(n−
1
k ), we have D(n) = Θ(nK(n)Cβ(n)) = Ω(nK(n)n−

1
2 ) = ω(n

1
2−δ).
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Table II. Main results on seed set size for sample cases of low-density and high-density clusters and for
different conditions on B(n) and β/k

Scenario

Low-density
Conditions

B(n) = nζ−α B(n) = Θ(1) B(n) = o(nζ−α)

β ≥ k/2 k/2 < β < k
(
ζ < α < 1− β 1−ζ

k

)
∧ β < k

K(n) = n−α, α > 0 Required seed set size

Θ (nα logn) ω

(
nα
[

logn
log logn

] k
k−β

)
n
α(1+r)−2
r−1

+
β(1−ζ)
k−β

High-density
Conditions

B(n) = nζ B(n) = 1 β ≤ k/2
ζ > 0 ∧ β > k/2 k/2 < β < k

K(n) = 1 Required seed set size

nε, ∀ε > 0 ω
(

logn
log logn

)1+
β
k−β Impossible

9. EXPERIMENTAL VALIDATION
A summary of our analytical results obtained when K(n) = n−α and B(n) = nζ−α (α, ζ ≥ 0)
is reported in Table II. The table highlights the trend of the required seed set size, in some special
cases that will be explored in our experimental validation. Although our results hold asymptotically
as n → ∞, we can expect to qualitatively observe the main effects predicted by the analysis also
in finite-size graphs. We will first investigate the performance of graph matching algorithms in
synthetic graphs generated according to our model of clustered networks, allowing us to assess the
validity of our results for the different considered regimes. Next, we consider real social network
graphs, exploring also variants and improvements of matching algorithms.

9.1. Synthetic graphs
In this section we consider bi-dimensional graphs having n = 10, 000, the sampling probability s =
0.8 and, unless otherwise specified, the average node degree in the ground-truth graph D(n) = 30.

Fig. 6 reports the average number of correctly matched nodes across 1, 000 runs of the PGM
algorithm (using r = 5) in various cases, as function of the number of seeds. In each run, seeds
are either chosen uniformly at random among all nodes (label ‘uniform seeds’), or as a compact set
around one randomly chosen seed (label ‘compact seeds’). In our model of clustered graphs, we
have fixed β = 3 (the decay exponent of the edge probability beyond C(n)), and we consider either
K(n) = 0.05 or K(n) = 0.2. As reference, in the plot we also show the phase transition occurring
(at about 600 seeds) when GT is a G(n, p) graph having the same average node degree. The plot
confirms the wave-like nature of the identification process as predicted by our analysis, namely: i)
clustered networks (largerK(n)) can be matched starting from a much smaller seed set as compared
to G(n, p); ii) such huge reduction requires seeds to be selected within a small sub-region ofH.

What the plot in Fig. 6 does not clearly show (except for a rough estimate based on the maximum
number of correctly matched nodes) is the error ratio incurred by the PGM algorithm, which is
expected to become larger and larger as we increase the level of clustering in the network. This
phenomenon is confirmed by Fig. 7, which reports the average error ratio (bad matches over all
matches) incurred by PGM as a function of K(n), starting from a compact set of seeds. In Fig. 7
we have considered also different values of β. The little circle denotes the operating point already
considered for the left-most curve in Fig. 6 (K(n) = 0.2), having an error ratio of about 5%. The
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Fig. 6. Comparison of PGM performance (with r = 5) in different networks with n = 10, 000. Number of good matches
(averaged over 1,000 runs) as a function of the number of seeds, chosen either uniform or compact.

plot reveals that the error ratio increases dramatically when K(n) tends to 1, confirming that PGM
cannot be safely applied in highly clustered networks. The effect of β is more intriguing: smaller
β’s produce fewer errors since generated network graphs tend to become more similar to G(n, p),
where PGM is known to generate very few errors. As side-effect, smaller values of β tend to slightly
increase the percolation threshold (not shown in the plot). For example, for K(n) = 0.4, the critical
number of seeds (estimated from simulations) corresponding to β = 4, 3, 2.5, 2.2, 2.0, 1.8, are
respectively, 11, 15, 24, 45, 78, 138. Recall that the percolation threshold in a G(n, p) with the
same average node degree and the same value of r is about 600.
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Fig. 7. Error ratio of PGM as a function of K(n) for different values of β, starting from compact seeds.

Next, we focus on the ‘hard’ case corresponding to the little square shown in Fig. 7, i.e., K(n) =
0.8, β = 3. This case corresponds to networks having high-density clusters, where the performance
of the original PGM algorithm is rather poor (error ratio about 50%). Fig. 8 shows the average
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Fig. 8. Average number of good and bad pairs matched by different algorithms for K(n) = 0.8, β = 3, starting from
compact seeds.

number of nodes matched by different algorithms as a function of the number of seeds: thick lines
correspond to good matches, whereas thin lines (with the same line style) refer to bad matches
produced by the same algorithm. For sake of simplicity, network de-anonymization is performed
by applying a simplified version of the algorithm proposed and analyzed in Section 8. This simple
algorithm consists in adopting PGM after having removed all graph edges shorter than x · C(n). In
the following, we will call this algorithm ‘filtered PGM’ and we will label the corresponding curves
in the plots by ‘f =<x>’. We stress that filtered PGM approaches the performance that can be
obtained by the algorithm in Section 8.

Looking at Fig. 8, it is important to remark that in this scenario the performance of the various
algorithms is highly sensitive to the location of the set of seeds (in each run we uniformly select one
seed among all nodes, and choose all of the other seeds among its neighbors). Since we average the
results over 1,000 runs, this explains why all curves do not exhibit a sharp transition9. An average
number of matched nodes equal to, say, 2,000, must be given the following probabilistic interpreta-
tion: about 1/5 of (uniformly chosen) initial locations allow us to match almost all nodes (10,000),
while 4/5 of initial locations do not trigger the percolation effect.

Also, we note that the poor performance of standard PGM cannot be fixed by just increasing
the threshold r: using r = 7, PGM still produces about 12% error ratio, while also requiring a dis-
proportionally larger number of seeds (only about 2,000 nodes are matched on average starting from
100 seeds). Instead, filtered PGM, with f = 1 and r = 4, requires very few seeds to match almost
all nodes, incurring about 3.7% error ratio. Using f = 1, r = 5, filtered PGM requires more seeds,
but achieves as low as 0.3% error ratio.

Next, we fix r and increase the filtering factor f so as to diminish the number of errors while,
however, reducing the average number of matched nodes (i.e., the probability to trigger percolation
from a given seed set). Fig. 9 illustrates this effect for r = 4, in the case of two different seed set
sizes, 30 and 60. Having 60 seeds one could, for example, employ f = 1.1 obtaining very high
chance of percolation (almost 100%) and small error ratio (around 1%).

Alternately, we can fix a desired error ratio and average number of matched nodes (i.e., the prob-
ability to trigger large-scale percolation), and look for the filtering factor and number of seeds that
let us achieve the desired goals. Table III reports an example of this numerical exploration, in which

9We verified that, if we instead fix the very first seed across all runs, a sharp transition appears. However, the transition
threshold changes as we vary the initial seed (results not shown here).
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Fig. 9. Effect of varying the filtering factor f for fixed r = 4 (scenario with K(n) = 0.8).

Table III. Combinations of parameters
achieving error ratio 3%, percolation
probability 50%

average node degree f # seeds
36 1.1 22
45 1.2 24
53 1.3 28
64 1.4 32

we vary the average degree of the nodes in GT corresponding to each examined scenario (the aver-
age degree can be increased, for fixed K(n) = 0.8, by increasing C(n)). The results in Table III
validate, at least qualitatively, the counter-intuitive theoretical predictions in Table II: as we increase
C(n) (and thus the average node degree), the seed set size necessary to achieve a desired matching
performance increases as well.
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Fig. 10. Effect of varying r for fixed filtering factor f = 1 (scenario with K(n) = 0.5, β = k = 4).

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 C.F. Chiasserini et al.

At last, we considered a higher dimensional ground-truth graph with k = 4 dimensions. Here,
we selected β = k, corresponding to the especially interesting case where neighbors of a node are
equally distributed at all distance scale, a condition that allows efficient navigability by decentralized
algorithm [Kleinberg 2000]. For this experiment, we chose K(n) = 0.5, f = 1. Fig. 10 shows the
impact of using different thresholds r = 3, 4, 5. We clearly see a trade-off between critical number
of seeds and error ratio: r = 3 requires few tens of seeds, but produces about 14% error ratio; r = 5
requires hundreds of seeds, but lowers the error ratio to 0.2%.

9.2. Real social graphs
We first experimented with a rather small (n = 2539) network representing adolescent friendship,
created from a survey that took place in 1994/1995. In the survey, students of an American high-
school were asked to list their best 10 friends (5 female and 5 male) [hea 1995]. Hence, students’
answers are expected to describe the real ground-truth of their friendship relationship. From this data
we generated an undirected network in which an edge between two students is present if at least one
of them indicated the other in his/her list. We obtained a graph with two desirable properties for
our purposes: i) a significant clustering coefficient (0.14); ii) a rather peaked degree distribution
around the mean (equal to 8.23), so as to isolate the impact of clustering from that related to highly
skewed distributions. Given the small size of the graph, we have used s = 0.9, r = 3. Fig. 11
shows the performance of two algorithms: the original PGM starting from compact seeds, and the
filtered PGM in which we removed the edges connecting each node to its ‘nearest’ 4 neighbors,
estimated using the number of common neighbors. As reference, we show also the performance of
PGM in aG(n, p) graph with the same n and average degree as our real-world graph (but negligible
clustering). We observe that clustering helps PGM to percolate with fewer seeds as compared to the
reference G(n, p) graph, but producing 10% error ratio. By filtering out 4 neighbors for each node,
we require more seeds, but we incur only 5% of errors.
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Fig. 11. Performance of matching algorithms in an adolescence friendship network of 2539 students.

We next considered a much larger graph derived from the Slovak social network Pokec. The
public data set, available at [pok 2015], is a directed graph with 1,632,803 vertices, where nodes are
users of Pokec and directed edges represent friendships. Since the original graph contains too many
vertices for our computational power, and since we would like to isolate the impact of clustering
from the effect of long-tailed degree distributions, we considered only vertices having: i) in-degree
larger than 20; ii) out-degree smaller than 200. We ended up with a reduced graph having n =
133, 573 nodes, average (in or out) degree 40.8 and clustering coefficient 0.11. We use this graph
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as our ground-truth, and employ an edge sampling probability s = 0.8. Notice that we maintain the
direct nature of the edges, since all considered algorithms immediately apply to direct networks as
well 10.
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Fig. 12. Performance of matching algorithms in a subset of the friendship graph of the social network Pokec.

Fig. 12 shows the performance of the different algorithms using threshold r = 6. As before,
curves labeled ‘uniform’ refer to the PGM algorithm in which seeds are selected uniformly at ran-
dom among the nodes. Curves labeled ‘compact’ refer to the PGM algorithm in which seeds are
chosen among the closest neighbors of a uniformly selected node. Curves labeled ‘filter 10’ differ
from the previous one in that the edges connecting each node to its nearest 10 neighbors are not
used by the algorithm. We emphasize that a G(n, p) having the same number of nodes and average
degree would require ac = 5, 783 seeds, according to (1). In contrast, all considered algorithms
require much fewer seeds to match almost all nodes, confirming that real social networks are much
simpler to de-anonymize thanG(n, p). In particular, the uniform variant requires about 400 seeds to
match on average 100,000 nodes, but incurs a quite large error ratio (about 17%). The compact vari-
ant reduces this number roughly by a factor 3, but produces the same error ratio. At last, the filtered
variant requires a bit more seeds than the compact one, but it allows to lower down the error ratio to
about 4%. The above results confirm the crucial performance improvement that can be obtained by
jointly: i) starting from a compact set of seeds (to exploit the wave-propagation effect), ii) carefully
discarding edges connecting nodes to their local clusters (to limit the errors).

At last, we take as ground-truth graph an early snapshot of Facebook, first analyzed in [Viswanath
et al. 2009], containing 63,731 nodes, with average node degree 25.64, maximum node degree
1,098. This snapshot exhibits a quite large clustering coefficient (14.8%), making careless matching
algorithms particularly prone to errors. This is confirmed by the results in Fig. 13, obtained for
s = 0.75. The PGM algorithm (curves labelled uniform) results into an intolerable error ratio with
r = 6 (40%). Increasing the threshold to r = 12 brings down the error ratio of PGM to about 20%,
but requires quite a large number of seeds (above 1000).

We then experimented with the ‘compact’ variant of PGM in which seeds are chosen among the
closest neighbors of a uniformly selected node (as before, closeness between nodes is estimated by
counting the number of common neighbors). Moreover, edges connecting each node to its nearest
30 neighbors are not used. As shown by the leftmost curves on Fig. 13, this variant of PGM reduces
the number of seeds necessary to trigger wide-scale percolation by roughly an order of magnitude,

10In direct networks, counters of matchable pairs are incremented only by using outgoing edges from matched pairs.
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Fig. 13. Performance of matching algorithms on the Facebook graph, in the case of s = 0.75, for r = 6, 12.

confirming the great benefit achieved by starting from a compact set of seeds. Errors are also re-
duced, but even by filtering quite a large number of neighbors (30) the error ratio is still quite high,
equal to about 20% (10%) with r = 6 (r = 12).
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Fig. 14. Performance of HCF variants of matching algorithms on the Facebook graph, in the case of s = 0.75, r = 6.

A simple approach to reduce the error ratio, adopted in many proposed algorithms [Korula and
Lattanzi 2014; Yartseva and Grossglauser 2013], is to select the next pair of nodes to match as
the candidate pair with the highest mark count, rather than uniformly at random among the pairs
with counter larger than or equal to r. This strategy is called deferred matching variant of PGM
in [Yartseva and Grossglauser 2013], and a similar idea is exploited by the algorithm proposed in
[Korula and Lattanzi 2014]. In the following, we will refer to this strategy as HCF (Highest Count
First). Note that, while it is significantly difficult to precisely characterize the gain achievable by
HCF with respect to the case in which a random candidate pair is selected, the scaling order of
the critical number of seeds does not change, as argued in [Yartseva and Grossglauser 2013]. In
Fig. 14 we compare the performance of different algorithms employing HCF, in the same scenario
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considered in Fig. 13, with r = 6. We observed a dramatic reduction of the error ratio: the deferred
PGM algorithm (curves labelled ‘uniform, HCF’) achieves an error ratio of about 1%, while its
compact variant with filtering further reduces the error ratio to 0.3%. Moreover, similarly to what
we obtained in Fig. 13, the compact variant requires just a few seeds (say a few tens) to achieve its
maximum performance.
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Fig. 15. Performance of HCF variants of matching algorithms on the Facebook graph, in the case of s = 0.5, r = 6.

Matching performance is particularly sensitive to the thinning probability s, which, however,
does not affect the scaling order of the critical number of seeds. In Fig. 15 we show what happens
on the Facebook graph when we reduce s from 0.75 to 0.5, again fixing r = 6. Besides requiring
many more seeds (knee at about 1500 seeds), deferred PGM incurs significant errors (12% at the
knee), which however tend to diminish as we further increase the number of seeds. The compact,
filtered PGM requires much fewer seeds (knee at about 300 seeds), incurring an error ratio around
3% (at the knee). We also show the performance achieved by the algorithm proposed in [Korula
and Lattanzi 2014], shown by dots labelled KL. In [Korula and Lattanzi 2014], the authors report
results for a quite large number of seeds (several thousands of seeds), resulting into an error ratio
comparable to the one obtained by our compact variant (around 1%). Note that, using fixed r = 6,
our algorithm cannot match nodes with small degree, which explains why the KL algorithm is able
to correctly match more nodes.

At last, in Fig. 16 we show the results of an experiment in which we have used different sampling
probabilities for G1 and G2. For a direct comparison with what we obtained in the case of equal
sampling probabilities, we selected s1 = 0.75, s2 = 0.5. As expected, we get results lying between
those obtained with equal s = 0.75 (Fig. 14) and those achieved for s = 0.5 (Fig. 15).

10. CONCLUSIONS
We focused on the effect of node clustering on social network de-anonymization. We defined a
flexible model of geometric random graphs that can incorporate different levels of clustering. Then
we designed de-anonymization algorithms and analyzed their performance by using bootstrap per-
colation. Our theoretical results highlight that clustering significantly helps to reduce the number
of seeds required to trigger the identification process, and that our algorithms can correctly match
almost all nodes while making errors negligible (asymptotically as the network grows large). Our
findings were confirmed by numerical experiments on synthetic and real social graphs.
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Fig. 16. Performance of HCF variants of matching algorithms on the Facebook graph, in the case of s1 = 0.75, s2 = 0.5,
r = 6.

Our work can be extended along several directions, including the effect of erroneously selected
seeds, more general graph models and partially overlapping node sets, as done in [Kazemi et al.
2015a; Kazemi et al. 2015b] for Erdös–Rényi graphs.

APPENDIX
A. DEVIATION BOUNDS FOR THE BINOMIAL DISTRIBUTION
In this paper we frequently use some classical deviation bounds for the binomial distribution (see
e.g. Lemma 1.1 p. 16 in [Penrose 2003]), which we report here for the reader’s convenience. Define
the function H(x) := 1 − x + x log x, for x > 0. Suppose n ∈ N, p ∈ (0, 1) and 0 < k < n. Let
µ = np. If k ≥ µ then

P (Bin(n, p) ≥ k) ≤ exp

(
−µH

(
k

µ

))
(15)

and if k ≤ µ then

P (Bin(n, p) ≤ k) ≤ exp

(
−µH

(
k

µ

))
. (16)

Finally, if k ≥ e2µ then

P (Bin(n, p) ≥ k) ≤ exp

(
−
(
k

2

)
log

(
k

µ

))
. (17)

B. CLUSTERING COEFFICIENT
We focus on a single vertex, which, for the sake of simplicity, is assumed to be placed at the origin
of regionH. Then, we compute the average number of its neighbor pairs that are connected, i.e.,

T (n) =
(n− 1)(n− 2)

2
K3(n)

∫ ∫
f(||x1||)f(||x2||) · f(||x2 − x1||) dx1 dx2 .

The clustering coefficient is then given by 2T (n)
D(n)(D(n)−1) .
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T (n) can be evaluated as follows11:

T (n) ∼ n2K3(n)

∫ ∫
||x1||<||x2||

f(||x1||)f(||x2||) · f(||x2 − x1||) dx1 dx2 .

To compute (in order sense) the above integral, we partition the integral domain in two regions
distinguishing the following two cases: i) ||x1 − x2|| ≥ δ||x2|| for an arbitrarily chosen δ > 0 and
ii) the complementary case ||x1 − x2|| < δ||x2||. In the first case, by triangular inequality we have
δ||x2|| ≤ ||x1 − x2|| ≤ ||x2|| + ||x1|| ≤ 2||x2||, and thus f(||x2 − x1||) is in order sense equal to
f(||x2||) over the considered domain. As a consequence, for the integral over the first region, we
get:

T1(n) ∼ n2K3(n)

∫ ∫
||x1||<||x2||

||x1−x2||>δ||x2||
f2(||x2||)f(||x1||) dx1 dx2

∼ n2K3(n)

∫ 1

0

ρk−1
2 max

(
1,

(
C(n)

ρ2

)−2β
)∫ ρ2

0

ρk−1
1 max

(
1,

(
C(n)

ρ1

)−β)
dρ1 dρ2 .

It is easy to see that a similar expression is obtained when the integral extends over the domain
for which ||x2 − x1|| < δ||x2||. In particular, considering that in this case f(||x1||) ∼ f(||x2||) by
construction, and denoting with ρ3 = ||x1 − x2||, we have:

T2(n) ∼ n2K3(n)

∫ 1

0

ρk−1
2 f2(||ρ2||)

∫ δρ2

0

f(||ρ3||) dρ1 dρ3

In conclusion, we obtain:

T (n) = T1(n) + T2(n) =


Θ
(
n2K3(n)C(n)2k

)
β > 2k

3

Θ
(
n2K3(n)C(n)2k log 1

C(n)

)
β = 2k

3

Θ
(
n2K3(n)C(n)3β

)
β < 2k

3 .

Recalling (4), for β > k the clustering coefficient turns out to be Θ(K(n)). Similarly, for β =

k, it is Θ
(

K(n)
log2[1/C(n)]

)
. For 2k

3 < β < k, it is Θ
(
K(n)C(n)2(k−β)

)
, while for β = 2k

3 it is

Θ
(
K(n)C(n)β log[1/C(n)]

)
. Finally, for β < 2k

3 , the clustering coefficient is Θ
(
K(n)C(n)β

)
.

C. PROOF OF THEOREM 1
The theorem assumes pmin � m−1. In Theorem 2 in [Chiasserini et al. 2016], we considered
the case pmin �

√
m−3/r−1, with r ≥ 4. Here, instead, we consider the complementary case

pmin = O
(√

m−3/r−1
)

. With reference to PGM algorithm reported in Algorithm 4, we define:

— Bt(GT) as the set of pairs in P(GT) that at time step t have already collected a least r marks. It is
composed of good pairs B′t(GT) and bad pairs B′′t (GT);

—At(GT) as the set of matchable pairs at time t. Similarly to Bt(GT), it comprises good pairsA′t(GT)
and bad pairs A′′t (GT). In general, At(GT) and Bt(GT) do not coincide as Bt(GT) may include
conflicting pairs that are not present in At(GT);

—Zt(GT) as the set of pairs that have been matched up to time t. By construction, |Zt| = t, ∀t.

Next, we define

TGpmin
= min{t s.t. |At(G(m, pmin)| = t}; TGpmax

= min{t s.t. |At(G(m, pmax)| = t}

11Given f and g, f ∼ g denotes that f = Θ(g)
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Algorithm 4 The PGM algorithm
1: A0 = B0 = A0(n), Z0 = ∅, t = 0
2: while At \ Zt 6= ∅ do
3: t = t+ 1
4: Randomly select a pair [∗1, ∗2] ∈ At−1\Zt−1 and add one mark to all neighbor pairs of [∗1, ∗2]

inM(GT).
5: Let ∆Bt be the set of all neighbor pairs of [∗1, ∗2] inM(GT) whose mark counter has reached

threshold r at time t.
6: Construct set ∆At ⊆ ∆Bt as follows. Order the pairs in ∆Bt in an arbitrary way, select them

sequentially and test them for inclusion in ∆At:

7: if the selected pair in ∆Bt has no conflicting pair in At−1 or ∆At then
8: Insert the pair in ∆At
9: else

10: Discard it
11: Zt=Zt−1∪[∗1, ∗2], Bt=Bt−1∪∆Bt, At=At−1∪∆At
12: return T = t, ZT = AT

By Lemma 3.1, we have that both TGpmin
and TGpmax

are equal to m− o(m). Then inductively on
t, ∀t < min(TGpmin

, TGpmax
), w.h.p.:

|B′′t (GT )| ≤ |B′′t ((G(m, pmax))| = ∅ . (18)

In (18), the inequality descends by monotonicity of sets B′′t with respect to “≤st”. The following
equality descends from Corollary 1 in [Chiasserini et al. 2016] applied to Gpmax

. We remark that,
under our assumption on pmin and pmax, we have t0 = T in Corollary 1 in [Chiasserini et al. 2016],
along with:

|At(GT )| (a)
= |B′t(GT )|

(b)

≥ |B′t(G(m, pmin))| (c)
= |At(G(m, pmin))|

(d)
> t. (19)

In (19), equality (a) is an immediate consequence of (18), inequality (b) holds by monotonicity of
sets B′t with respect to “≤st”, while equality (c) descends from Lemma 3.1. Inequality (d) descends
from the fact that we assume t < TGpmin

.
Thus, necessarily, AT (GT ) = T ≥ min(TGpmin

, TGpmax
) = m− o(m) and B′′T (GT ) = ∅.

D. PROOF OF COROLLARY 1
Essentially the scheme of Theorem 1 can be repeated to show that there exists t1 < T such that
Bt1(P̂) comprises all good pairs in P̂ and no bad pairs. First observe that P̂ can always be trans-
formed intoP(G′′T ), being G′′T a proper subgraph of G′T (and therefore of GT), by adding and removing
only bad pairs.

Second, from Theorem 1 we know that, denoted by N̄ the number of vertices in G′′T , for a t1 =
(N̄)−3/r−ε

(pmins)2
= o(N̄), it holds: B′t1(P(G′′T )) = N̄ (equal, by construction, to the number of good pairs

in P̂). Third, again from Theorem 1, it holds that B′′t1(P(G′′T )) = ∅.
Hence, if we prove that B′′t1(P̂) = ∅, we can conclude that B′t1(P̂) = N̄ since condition

B′′t1(P(G′′T )) = ∅ necessarily implies B′t(P(G′′T )) = B′t(P̂) for every t ≤ t1. Indeed, by construction,
the subgraphs of P(G′′T ) and P̂ induced by their good pairs are identical.

To prove that B′′t1(P̂) = ∅, we can upper-bound the number of marks collected at time t by
every bad pair [i1, j2] ∈ P̂ with a binomial r.v. Bi(t, p2

maxs
2) and, then, proceed exactly as in the

proof of Corollary 1 in [Chiasserini et al. 2016] to show that P{B′′t1(P̂) 6= ∅} → 0. Given that, by
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construction, a bad pair [i1, j2] can be included in P̂ only if either [i1, i2] or [j1, j2] are also in P̂ ,
then, none of the bad pairs in P̂ can be matched for t > t1, because it will be necessarily blocked
by a previously matched good pair.

E. PROOF OF THEOREM 2 AND COROLLARY 4
First we assume that PGM G0(V0, E0) successfully matches all good pairs. Consider the evolution
of PGM over GT(V, E) and G0(V0, E0). Since (8) holds we can assume that no bad pairs reach the
threshold at any stage of the process, and restrict our analysis to good pairs. With abuse of notation
we say that a good pair belongs to V0 if the corresponding vertex belongs to V0.

First, observe that if we assume that at time t ZGT(t) = ZG0(t), necessarilyAG0(t) = AGT(t)∩V0

and, thus, |AGT(t)| ≥ |AG0(t)| > 0. However, in general, we cannot assume ZGT(t) = ZG0(t) at
every t. Indeed, PGM operating over GT can select and match at some point some good pairs not
belonging to V0, which have already reached the threshold, while the PGM operating over V0 cannot.
We conclude that in general ZGT(t) 6= ZG0(t).

Let us consider t ≤ |V0|. Since |ZGT(t)| ≤ |ZG0(t)| = t by construction, necessarily ZG0(t) \
ZGT(t) 6= ∅. Let τ = mint′≤t zG0(t′)) 6∈ ZGT(t). Note that zG0(τ) must be in AG0(τ − 1) and thus
also inAGT(t)∪ZGT(t). Indeed, since by construction ZG0(τ −1) ⊂ ZGT(t), we have ZG0(τ −1)∪
AG0(τ − 1) ⊆ ZGT(t) ∪ AGT(t). This implies that zG0(τ) ∈ AGT(t), i.e., AGT(t) 6= ∅. By induction
over t, we can then prove that AGT(t) 6= ∅ for any t ≤ V0, hence TGT ≥ |V0|. Now, consider
t > |V0|. Since ZG0(t) = ZG0(TG0) = V0 by construction, we have that either V0 ⊆ ZGT(t) or,
necessarily, ZG0(t) \ ZGT(t) 6= ∅. In the latter case, we can repeat the previous argument to show
that AGT(t) 6= ∅. It follows that V0 ⊆ ZGT(TGT). The extension to the more general case in which
PGM over G0(V0, E0) matches almost all good pairs, can be proved along the same lines.

A more general version of the previous theorem is given below for the case where the threshold
α is a function of n.

Corollary 4. Assume that a target distance D(n) � C(n) can be found, with D(n) ≥(
logn
n

) 1
k

, satisfying the following condition:

nDk(n) = Ω

(
log(nDk(n))

K(n)f(D(n))

)
.

Given a node i ∈ G1 (i ∈ G2), let Si be the number of seeds that are neighbors of i on G1 (G2).
We say that node i is tagged as “accepted” if Si > f(D(n))sK(n)a0. If ds = O(D(n)) and

a0 = Θ
(

log[nDk(n)]
K(n)f(D(n))

)
, then, for an arbitrary δ > 0, the above procedure accepts all nodes located

inHin(f(D(n)), δ), while it rejects all nodes located inHout(f(D(n), δ).

PROOF. The proof follows exactly the same lines as the proof of Theorem 4.

Note that, in the above statement sK(n) is the probability that a node in G1 (G2) is connected with a
seed node at distanceC(n) or shorter. Thus, αsK(n)a0 provides a suitable threshold for the number
of connections between a node and the a0 seed vertices.

F. PROOF OF THEOREM 3
Assume that r = logn

log logn , i.e., (8) holds. This implies that we can disregard bad pairs and the graph
de-anonymization process corresponds to a pure bootstrap percolation process on the subgraph of
P(GT) induced by good pairs.

Also, it is straightforward to see that the percolation probability over a graph is monotonically
increasing with respect to the graph ordering relation “≤st” (see Section 3 for the ordering relation
definition). This because at every t we have A(t) = A′(t) = B′(t), in light of (8), and B′(t) is
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obliviously monotonic with respect to ≤st. Thus, since by construction G(m, pmin) ≤st G0, if
percolation successfully occurs on G(m, pmin), then it takes place successfully also over G0.

To prove that the matching process is successful on G(m, pmin), we follow an approach similar
to that in [Janson et al. 2012]. Consider the evolution of At; it is clear that percolation stops when
A(t) becomes empty. Since A(t) includes the seed set, clearly it cannot be empty till t = a0. Then,
recalling that a0 >

r
pmins2

(1 + δ), we should consider t > r
pmins2

(1 + δ).
We first observe that the probability that a good pair has a number of matched neighbors greater

than or equal to r at time t is Bin(t, pmins
2). For t1 = d r(1+δ)

pmins2
e,

P
(
Bin(t1, pmins

2) ≥ r
)
≥ 2c

with c being a suitable small positive constant. This holds because the expectation of the Binomial
is by construction equal to d r(1+δ)

pmins2
epmins

2 > r. Thus, using concentration results in App. A, we
can easily show that w.h.p. A(t1) > cn, hence A(t) > A(t1) > cn ≥ t ∀t ∈ [t1, cn]. Now,
consider t ∈ [cn, n (1− e−r)] and define t2 = bcnc. Observe that, given our choice of r, we have
n (1− e−r) = n− o(n). Moreover, applying again inequalities in App. A, we have:

P
(
Bin(t2, pmins

2) < r
)
≤ exp

(
−t2pmins

2H

(
r

t2pmins2

))
≤ exp

(
−t2pmins

2

[
1− δ

2

])
where H(b) = 1 − b + b log b. The above probability tends to 0 faster (in order sense) than
e−r. It follows that E[n − A(t)] ≤ E[n − A(t2)] < e−t2pmins

2(1−δ), thus, by Markov inequal-
ity n−A(t) ≤ n−A(t2) < ne−r w.h.p. In conclusion, w.h.p. the percolation process does not
stop for t ∈ [cn, n (1− e−r)].

G. PROOF OF THEOREM 4
Without loss of generality, let us focus on G1 and consider a node i ∈ Hin(α, δ). By construction,
the number of seeds that are neighbors of i on G1 is given by Si =

∑
σ∈A0

XiσS
1
iσ ≥st Yi ≥st Y

where

Yi = Bin(a0, sK(n)f(max
σ∈A0

||xi − xσ||))

and Y = Bin(a0, sK(n)(1+δ)α), with E[Y ] = sK(n)(1+δ)αa0. Now, using inequalities in App.
A, we can bound:

P (Yi < αsK(n)a0) ≤ exp

(
−E[Yi]H

(αsK(n)a0

E[Yi]

))
≤ exp

(
−(1 + δ)αsK(n)a0H

( 1

1 + δ

))
(20)

with H(b) = 1− b+ b log b.
If we consider jointly all nodes inHin(α, δ) and we denote with Nin their number, we can bound

the probability that every node inHin(α, δ) is accepted:

P (all nodes inHin are accepted | Nin) ≤ 1−Nin exp

(
−(1 + δ)αsK(n)a0H

( 1

1 + δ

))
, (21)

with (21) that tends to 1 if logNin − (1 + δ)αsH
(

1
1+δ

)
K(n)a0 → −∞. This can be en-

forced by opportunely setting a0 = Ω
(

logNin
K(n)

)
. Since by construction |Hin| > Ck(n) ≥ logn

n ,
we have w.h.p. Nin ≤ 2n|Hin| by standard concentration results in App. A. As a consequence,
P (all vertices inHin are accepted)→ 1 provided that a0 = Ω

(
log[nCk(n)]

K(n)

)
.
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Then we focus on the nodes in Hout(α, δ) and we show that all those nodes are jointly rejected.
Conceptually we repeat the same approach as before, however, the argument is made slightly more
complex by the fact that, in order to obtain tight bounds on the probability that all nodes inHout(α, δ)
are jointly rejected, we need to partitionHout(α, δ) into smaller sub-regions containing nodes which
lie at similar distance from the seeds.

Assuming δ < e2−1
e2 , we define H1

out = H1(α, e
2−1
e2 ) ⊂ Hout(α, δ) and H0

out(α, δ) =

Hout(α, δ) \ H1
out. Furthermore, we partition H1

out into disjoint sub-regions, i.e., H1
out = ∪h≥1H1,h

out ,

with H1,h
out = Hout(

α,hβe2−1
hβe2

) \ Hout(α,
(h+1)βe2−1

(h+1)βe2
). Now, given a vertex i in H0

out (H1,h
out ), the

number of its neighbor seeds Si on G1 can be bounded from above by a Bin(a0, sK(n)(1 − δ)α)(
Bin(a0,

sK(n)
hβe2

α)
)

. Furthermore, by elementary geometrical arguments, it can be shown that: i)

|H0
out| = Θ(Ck(n)), ii) |H1,1

out | = Θ(Ck(n)) and iii)H1,h
out = Θ(hk−1H1,1

out ).
Denoted with N0

out and N1,h
out the number of nodes in H0

out and H1,h
out , respectively, by exploiting

again inequalities in App. A, w.h.p. we have:

P
(
all nodes inH0

out are rejected
)
≤ 1 − N0

out exp
(
−(1− δ)αsK(n)a0H

(
1− δ

))
→ 1 .

The above expression holds under the assumption that a0 = Ω
(

log[nCk(n)]
K(n)

)
. Indeed, we remark

that N0
out ≤ 2n|H0

out| = Θ(nCk(n)) w.h.p. At last,

P
(
all nodes inH1

out are rejected
)
≤ 1−

∞∑
h=1

N1,h
out exp

(
−αsK(n)a0

2
[β log h+ 2]

)
.

For every h, N1,h
out ≤ 2n|H1,h| = Θ(nhk−1Ck(n)); also, the number of sub-regions of H1

out is
O(n/Ck(n)). Thus, w.h.p. we have that jointly on all h’s, the number of nodes in these sub-regions
can be bounded by 2n|H1,h|. Under the assumption that a0 = Ω

(
log[nCk(n)]

K(n)

)
, it can be easily

shown that P
(
all nodes inH1

out are rejected
)
→ 1.

H. PROOF OF THEOREM 6
For any two vertices i ∈M1 and j ∈M2, let Xij be the Bernoulli random variable that represents
the presence of an edge (i, j) ∈ E . By construction, Ber(pmin) ≤st Xij ≤st Ber(pmax). I.e., two
variables Xij and Xij , with distribution, respectively, Ber(pmin) and Ber(pmax), can be defined on
the same probability space as Xij such that Xij ≤ Xij ≤ Xij point-wise.

We consider the corresponding pairs graph P(GT), which is, by construction, composed of all the
pairs of vertices residing inM1 andM2 and of the edges connecting pairs of vertices inM1 with
pairs of vertices in M2. We denote by P1 and P2, respectively, the set of pairs of P(GT), whose
vertices lie inM1 andM2. Observe that, given two good pairs [i1, i2] ∈ P1 and [j1, j2] ∈ P2, the
presence of an edge in P(GT) is associated with the random variable:

Y[i1,i2],[j1,j2] = XijXijS
1
ijS

2
ij = X2

ijS
1
ijS

2
ij

where S1
ij and S2

ij are mutually independent Ber(s) r.v’s, which are in turn independent of Xij .
By construction, pmins

2 ≤ E[Y[i1,i2],[j1,j2]] ≤ pmaxs
2. Instead, given two bad pairs [i1, k2] ∈ P1

and [j1, l2] ∈ P2, Y[i1,k2],[j1,l2] = XijXklS
1
ijS

2
kl, with p2

mins
2 ≤ E[Y[i1,k2],[j1,l2]] ≤ p2

maxs
2.

Finally, if we consider one good pair and one bad pair (e.g., [i1, i2] ∈ P1 and [j1, k2] ∈ P2),
Y[i1,i2],[j1,k2] = XijXikS

1
ijS

2
ik, with p2

mins
2 ≤ E[Y[i1,i2],[j1,j2]] ≤ p2

maxs
2.

Recall that we assume that two seed sets, Al0 ∈ P1 and Ar0 ∈ P2 (with |Al0| = |Ar0|), are avail-
able. On P(GT) we run the PGM algorithm [Yartseva and Grossglauser 2013], opportunely modi-
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fied, as follows. At every time step t, we extract uniformly at random one pair zl(t) = [zl1, z
l
2]t ∈

Alt−1 \ Z lt−1 and zr(t) = [zr1 , z
r
2 ]t ∈ Art−1 \ Zrt−1, adding a mark to all the neighbor pairs in P2

and P1, respectively. In other words, matched pairs in P1 contribute to the mark of pairs in P2 and
vice versa. Thus, for a generic node pair [i1, j2] ∈ P2 \ Zrt , marks are updated according to the
iteration: Mr

[i1,j2](t) = Mr
[i1,j1](t− 1) + Yzl(t),[i1,j2]. Similarly, for [i1, j2] ∈ P1 marks are updated

according toM l
[i1,j2](t) = M l

[i1,j2](t−1)+Y[i1,j2],zr(t). For the rest, the algorithm proceeds exactly
as described in Section 3.

Now, it is important to observe that marks of pairs on the RHS of the graph evolve exactly as
the marks of a coupled PGM that operates over a pairs graph PR defined as follows. Denote the
generic pair by [∗1, ∗2]; then PR is a graph insisting on the set of nodes M2 and in which the
presence of edge (zr(t), [∗1, ∗2]), for any [∗1, ∗2] ∈ P2 \ Zrt , is dynamically unveiled at time t by
observing variableXzl1(t)∗1Xzl2(t)∗2S

l
zl1(t)∗1

Sr
zl1(t)∗2

. In other words, the edges originated from zl(t)

are replaced by the edges originated from zr(t) and vice-versa.

zl(t)

zr(t)

zL(t)

zR(t)

PL PR

P1 P2

Fig. 17. Graphical representation of the PGM evolution over coupled graphs.

Furthermore, we make the following observations.
(i) We assume that the sequence of matched pairs {zRt }t ∈ P(R) exactly corresponds to the

sequence of matched pairs {zr(t)}t ∈ P2, i.e., zr(t) = zR(t) at every t. This is made possible by
the fact that given Zrt−1 = ZRt−1, marks collected by every unmatched pair in the two graphs at time
t exactly correspond.

(ii) Our construction is consistent since edges between pairs are unveiled only once, specifically
at the time at which the first between the two edge endpoints in PR is placed in ZRt = Zrt . Since
then, the edge is replaced with an edge between two pairs that are both in PR, hence it will not be
used again.

(iii) PR is isomorphic to a pairs graph originated by a generalized Erdös–Rényi graph GRT , in
which the presence of every edge (zr(t), ∗) can be represented by a Bernoulli r.v. and the probability
that the edge is added to the graph takes values in the range [pmin, pmax] and is independent of other
edges. Indeed, observe that the presence of an edge in PR deterministically corresponds to the
presence of the corresponding edge in P(GT). Furthermore, by construction, different edges in PR
correspond to different edges in P(GT).

The same observations hold when we consider the evolution of the marks of the pairs on the left
hand side and a pairs graph PL, which is originated from a coupled generalized Erdös–Rényi graph
GLT with same properties as GRT .
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Now, clearly G(m, pmin) ≤st GRT ≤st G(m, pmax) and G(m, pmin) ≤st GLT ≤st G(m, pmax),
i.e., GRT (GLT ) can be obtained by opportunely thinning a graph G(m, pmax), while a graph
G(m, pmin) can be obtained by opportunely thinning GRT (GLT ). Then we invoke Theorem 1 to con-
clude our proof and show that our algorithm correctly percolates over GRT and GLT and, thus, over
the bipartite graph GT.
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