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Abstract. There have been many recent developments in the application of data-based
methods to machine condition monitoring. A powerful methodology based on machine learning
has emerged, where diagnostics are based on a two-step procedure: extraction of damage-
sensitive features, followed by unsupervised learning (novelty detection) or supervised learning
(classification). The objective of the current pair of papers is simply to illustrate one state-of-
the-art procedure for each step, using synthetic data representative of reality in terms of size
and complexity. The first paper in the pair will deal with feature extraction.

Although some papers have appeared in the recent past considering stochastic resonance
as a means of amplifying damage information in signals, they have largely relied on ad hoc
specifications of the resonator used. In contrast, the current paper will adopt a principled
optimisation-based approach to the resonator design. The paper will also show that a discrete
dynamical system can provide all the benefits of a continuous system, but also provide a
considerable speed-up in terms of simulation time in order to facilitate the optimisation
approach.

1. Introduction
The aim of machine condition monitoring is to detect incipient damage in (usually rotating)
machinery before it grows to the point where a failure of the machine occurs. This entails
detecting the signature of small damage in a component from signals which may be strongly
corrupted by the presence of noise from other elements of the machine or environment. When
the components of interests are gears or bearings, the ‘signature’ of damage in vibration data
can take the form of a train of impulses. In a gearbox, a crack in a tooth may cause increased
flexibility of that tooth, which can manifest as an impulse when the tooth comes into mesh; the
period of the impulse train will then be associated with the meshing frequency. In a bearing, a
crack or spall in a race will cause an impulse when a ball runs over the damage; the period of the
impulse train is then associated with one of the bearing characteristic fault frequencies. There
is clearly some benefit in being able to detect the presence of impulses in a noisy background;
establishing the period of the impulse train can then give information about which gear in a
system, or which race in a bearing, is damaged.

One approach to the problem described above might be to selectively increase the effect of
the impulse in the signal relative to the noise background, and this is where the phenomenon of
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stochastic resonance becomes of interest. The phenomenon was first demonstrated in [1] in the
context of climatology, although applications in various fields followed [2]. In the context of the
problem here, stochastic resonance can be used as a signal processing tool to increase the signal-
to-noise ratio (SNR) of a mixture of deterministic signal and noise. This is accomplished by
passing the noisy signal through a nonlinear system; for carefully tuned nonlinear systems, the
response can show amplification of the deterministic component relative to the noise. Although
the technique is most often applied in order to amplify a small harmonic signal in noise, it can also
be used for the impulse trains of the condition monitoring context [3, 4, 5]. In a previous article
by some of the authors [6], the approach was illustrated on a number of condition monitoring
data sets and was shown to be effective, if the parameters of the nonlinear oscillator could be
tuned appropriately. Although the results were very good, it was found that parameter tuning
required care and expertise on the part of the analysts. The objective of the current paper is
to introduce an optimisation based tuning scheme, independent of the user, and to validate it
via application to two synthetic data sets. (While this paper was in preparation, the authors
became aware of the reference [7], which also explores some of the concepts discussed here.)

The layout of the paper is as follows: the following section briefly explains how stochastic
resonance can amplify the effect of an impulse train in noise, and how the oscillator parameters
might be tuned using an optimisation scheme. Section Three outlines the background theory
for the optimisation scheme chosen for this paper - Self Adaptive Differential Evolution (SADE).
Section Four describes how the synthetic data for the case studies were constructed, and results
for the data are presented in Section Five. The paper ends with brief conclusions.

2. Stochastic Resonance
Rather than describe stochastic resonance in general, the discussion here will motivate the
approach via the explicit nonlinear oscillator considered in this paper, which, in its simplest
form, is a first-order cubic oscillator of the form,

ẏ − ay + by3 = p(t) (1)

which is a system with a cubic internal restoring force, driven by a mixture of a single impulse
component and noise. In the context of stochastic resonance, the amplitude of the impulsive
component will usually be small compared to the noise. Now, the potential V (y) associated
with the internal force is,

V (y) = −a
2
y2 +

b

4
y4 (2)

which is for a > 0 and b > 0, a twin-well oscillator as illustrated in Figure 1 (for the values
a = 40, b = 1).

Now, consider a particle moving in this potential. If the level of forcing is low, the particle
will remain very close to one of the stable equilibria at ±

√
2a/b. Without loss of generality,

consider the particle to be in the negative well. Suppose that the noise signal is a zero-skewness
process; the mixture of the impulse and noise will have a small degree of skewness because of
the impulse, however this will usually be imperceptible because A0 is small compared to X. If
one ‘turns up’ the level of forcing the particle will begin to move between the limits given by
V (y), but corresponding to a higher value of y. At the limit where the particle has maximum
amplitude, yet remains within the well, the oscillations will be skewed - the signal will be ’drawn
out’ at the side towards the origin. This ’drawing out’ will amplify the skewing effect of the
impulse, those indicating the presence of the impulse. By tuning the parameters a and b, one is
able to amplify the skewing effect and increase detectability of the impulse; however, one must
take care not to choose parameters which allow the particle to pass into the positive well, or the
effect will be lost.
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Figure 1. Twin-well potential for the oscillator in equation (1) with a = 40 and b = 1.

A previous paper by some of the authors here [6], carried out a careful tuning of the
parameters in order to demonstrate how effectively impulses could be detected in a noise
background. It was clear from the paper that an automated tuning procedure, requiring less
intervention from the user, was desirable. The current study will show that this is possible
using an optimisation framework. The idea will be to optimise the parameters according to
some measure of the ‘drawing out’ effect, while constraining the particle to a single well. The
drawing out or asymmetry could in principle be optimised by maximising the skewness of the
oscillator response; however, in [6], it was preferred to use the kurtosis. This approach makes
sense because the kurtosis of a signal is a measure of its ‘spikiness’, and this is increased by
emphasising the impulses. A simple penalty term can be used to prevent the particle crossing
the origin, or to rule out candidate parameters which make the oscillator unstable1. So, the
objective function for optimisation involves forcing the nonlinear oscillator with the signal of
interest and then computing the kurtosis of the response. Unfortunately, this is time-consuming
because it requires solving an initial value problem for each evaluation of the objective function.
The solution to this problem is quite simple; rather than using a continuous-time oscillator, one
passes to a discrete-time variant. For this case, forward predictions using the oscillator model
will be much faster.

Starting from the oscillator model of equation (1), one can approximate the derivative using
the discrete difference (yi+1 − yi)/∆t, yielding,

yi+1 = (1 + a∆t)yi − b∆ty3i + ∆tp(t) (3)

1 In fact, the kurtosis of the response signal will be increased if the particle occasionally crosses between wells;
however, if this happens too often, the desired effect is lost, especially as jumps can occur that are not caused by
impulses. For this reason, the well-crossing constraint is applied here.
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Incorporating the rescaling ratio R = ∆tr/∆t, discussed in [6], then gives,

yi+1 = (1 +
a∆tr
R

)yi −
b∆t

R
y3i +

∆t

R
p(t) (4)

So, with a little relabelling, the discrete oscillator takes the form,

yi+1 = αyi − βy3i + γp(t) (5)

And the stochastic resonance problem is now to maximise the kurtosis of the response, by
varying the parameter vector θ = (α, β, γ).

3. SADE
The standard Differential Evolution (DE) algorithm of reference [9] attempts to transform a
randomly generated initial population of parameter vectors into an optimal solution through
repeated cycles of evolutionary operations, in this case: mutation, crossover and selection. In
order to assess the suitability of a certain solution, a fitness function is needed; the kurtosis
of the oscillator response is used here. Figure 2 shows a schematic for the DE procedure for
evolving between populations. The following process is repeated with each vector within the
current population being taken as a target vector; each of these vectors has an associated fitness
(kurtosis). Each target vector is pitted against a trial vector in a competition which results in
the vector with highest fitness advancing to the next generation.

The mutation procedure used in basic DE runs as follows. Two vectors A and B are randomly
chosen from the current population to form a vector differential A − B. A mutated vector is
then obtained by adding this differential, multiplied by a scaling factor F , to a further randomly
chosen vector C to give the overall expression for the mutated vector: C + F (A − B). The
scaling factor, F , is often found have an optimal value between 0.4 and 1.0.

The trial vector is the child of two vectors: the target vector and the mutated vector, and
is obtained via a crossover process; in this work, uniform crossover is used. Uniform crossover
decides which of the two parent vectors contributes to each chromosome of the trial vector by
a series of D − 1 binomial experiments. Each experiment is mediated by a crossover parameter
Cr (where 0 ≤ Cr ≤ 1). If a random number generated from the uniform distribution on [0,1]
is greater than Cr, the trial vector takes its parameter from the target vector, otherwise the
parameter comes from the mutated vector.

This process of evolving through the generations is repeated until the population becomes
dominated by only a few high fitness solutions, any of which would be suitable. Like the vast
majority of optimisation algorithms, convergence to the global maximum is not guaranteed;
however, one of the benefits of the evolutionary approach is that it more resistant to finding a
local maximum.

A potential weakness of the standard implementation of the DE algorithm as described above
is that it requires the prior specification of a number of hyperparameters (parameters which need
to be specified before the algorithm can run). Apart from the population size, maximum number
of iterations etc., the algorithm needs a priori specification of the scaling factor F and crossover
probability Cr. The values used are not guaranteed to work as well in all situations and an
algorithm which establishes ‘optimum’ values for these parameters during the course of the
evolution is clearly desirable. Such an algorithm is available in the form of the Self-Adaptive
Differential Evolution (SADE) algorithm [10, 11]; the description and implementation of the
algorithm here largely follows [11].

The development of the SADE algorithm begins with the observation that Storn and Price,
the originators of DE, arrived at five possible strategies for the mutation operation [12]:

(i) rand1: M = A+ F (B − C)
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Figure 2. Schematic for the standard DE algorithm.

(ii) best1: M = X∗ + F (B − C)

(iii) current-to-best: M = T + F (X∗ − T ) + F (B − C)

(iv) best2: M = X∗ + F (A−B) + F (C −D)

(v) rand2: M = A+ F (B − C) + F (D − E)

where T is the current trial vector, X∗ is the vector with (currently) best cost and (A,B,C,D,E)
are randomly-chosen vectors in the population distinct from T . F is a standard (positive) scaling
factor. The SADE algorithm also uses multiple variants of the mutation algorithm as above;
however these are restricted to the following four:

(i) rand1

(ii) current-to-best2: M = T + F (X∗ − T ) + F (A−B) + F (C −D)

(iii) rand2

(iv) current-to-rand: M = T +K(A− T ) + F (B − C)

In the strategy current-to-rand, K is defined as a coefficient of combination and would
generally be assumed in the range [-0.5,1.5]; however, in the implementation of [11] used here,
the prescription K = F is used to essentially restrict the number of tunable parameters. The
SADE algorithm uses the standard crossover approach, except that at least one crossover is
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forced in each operation on the vectors. If mutation moves a parameter outside its allowed
(predefined) bounds, it is pinned to the boundary. Selection is performed exactly as in DE; if
the trial vector has higher (or equal) fitness to the target, it replaces the target in the next
generation.

The adaption strategy must now be defined. First, a set of probabilities are defined:
{p1, p2, p3, p4}, which are the probabilities that a given mutation strategy will be used in forming
a trial vector. These probabilities are initialised to be all equal to 0.25. When a trial vector is
formed during SADE, a roulette wheel selection is used to choose the mutation strategy on the
basis of the probabilities (initially, all equal). At the end of a given generation, the numbers of
trial vectors successfully surviving to the next generation from each strategy are recorded as:
{s1, s2, s3, s4}; the numbers of trial vectors from each strategy which are discarded are recorded
as: {d1, d2, d3, d4}. At the beginning of a SADE run, the survival and discard numbers are
established over the first generations, this interval is called the learning period (and is another
example of a hyperparameter). At the end of the learning period, the strategy probabilities are
updated by,

pi =
si

si + di
(6)

After the learning period, the probabilities are updated every generation, but using survival
and discard numbers established over a moving window of the last NL generations. The
algorithm thus adapts the preferred mutation strategies. SADE also incorporates adaption
or variation on the hyperparameters F and Cr. The scaling factor F mediates the convergence
speed of the algorithm, with large values being appropriate to global search early in a run and
small values being consistent with local search later in the run. The implementation of SADE
used here largely follows [10] and differs only in one major aspect, concerning the adaption of F .
Adaption of the parameter Cr is based on accumulated experience of the successful values for
the parameter over the run. It is assumed that the crossover probability for a trial is normally
distributed about a mean Cr with standard deviation 0.1. At initiation, the parameter Cr is
set to 0.5 to give equal likelihood of each parent contributing a chromosome. The crossover
probabilities are then held fixed for each population index for a certain number of generations
and then resampled. In a rather similar manner to the adaption of the strategy probabilities, the
Cr values for trial vectors successfully passing to the next generation are recorded over a certain
greater number of generations and their mean value is adopted as the next Cr. The record of
successful trials is cleared at this point in order to avoid long-term memory effects. The version
of the algorithm here adapts F in essentially the same manner as Cr but uses the Gaussian
N(0.5, 0.3) for the initial distribution. At this point, the reader might legitimately argue that
SADE has simply replaced one set of hyperparameters (F , Cr) with another (duration of the
learning period etc.). In fact, because DE and SADE are heuristic algorithms, there is no
analytical counter to this argument. However, the transition to SADE is justified by the fact
that the algorithm appears to be very robust with respect to the new hyperparameters.

4. Data
The optimisation algorithm will be benchmarked here on the two synthetic data sets examined
in [6]. The first set represents a single impulse submerged in noise, while the second considers
an impulse train in noise.

4.1. Single Impulse
The first data set was generated by summing a single impulse response function and Gaussian
noise, as follows,

p(t) = s(t) + n(t) = Ae−D(t−Ti) sin(2πf0[t− Ti]) +N(0, σ) (7)
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The parameters used were as follows: A = 0.15, D = 12, Ti = 1.0, f0 = 16 Hz and σ = 0.07.
A sampling frequency of 500 Hz was adopted and 1000 samples were generated; this placed
the impulse in the centre of the record. As the resampling ratio R is absorbed in the discrete
parameters, its value is not important, although it was set at 200 in [6].

4.2. Impulse Train
This is a more realistic simulation, as real machine faults can manifest as impulse trains
embedded in noise. For example, faults in bearings can manifest in several ways due to
different causes, such as fatigue, wear, poor installation, improper lubrication and occasionally
manufacturing faults. As mentioned in the introduction, the period of the impulse train can give
indications of the type of fault e.g. different characteristic frequencies arise: ball pass frequency
of the outer race, ball pass frequency of the inner race, fundamental train frequency, ball spin
frequency.

In order to simulate an impulse train, the individual impulses were set as the impulse
responses of an SDOF system with a resonance frequency of 5000 Hz and a damping ratio
of 5%; their amplitude was set as A = 0.30. The noise was defined as a Gaussian white noise
sequence with zero-mean and standard deviation σ = 0.07. In [6], the resampling factor was set
at R = 20000. The signal was sampled at a frequency of 96000 Hz and a second of data was
collected.

5. Results
The optimisation problem was now investigated on the two data sets. The initial ranges for the
SADE algorithm are important so they were initially set here by consideration of equations (3)
and (4) which suggest that α will be a number a little greater than unity, and β and γ will be
small positive numbers. There is usually a small trial and error exercise with SADE, where one
tunes the initial ranges by making a small number of runs and expanding the ranges until no
final estimates are pinned at either end of the range. The tuning phase led to inital ranges of
[1.0, 1.4], [0.001, 2], [0.001, 1] for α, β and γ respectively. In all runs, the population size was set
at 30 individuals, and the number of generations was set at 1000.

The results for the single impulse case will be presented first. Because SADE is a stochastic
algorithm based on a randomly-generated initial population, it is usual to make several runs and
save the results from the best one. In this case, 10 runs of the algorithm were made and the
optimum kurtosis obtained was 13.0. This is not as high as the result in [6]; however, one should
bear in mind, that a different oscillator model is being used here. The fitness curves over the 10
runs are shown in Figure 3, with the maximum fitness for each run in red, and the average fitness
in blue. The average fitnesses in each run are much lower than the maximum fitnesses because
many of the candidate solutions generated in each generation cross the oscillator potential barrier
at the origin and are automatically assigned low fitness. The input and ouput signals for the
optimum oscillator are given in Figure 4; the impulse is very clearly amplified in the output.

For the second case study - the impulse train, only 5 runs on the SADE algorithm were
carried out because the signal comprised 96000 points. The best solution arrived at a kurtosis
of 19.3, which is only slightly worse than the 19.5 reported in [6]. The fitness curves for the runs
are given in Figure 5, and the input and output signals for the optimised oscillator are given in
Figure 6.

The results are very encouraging. During the multiple SADE runs carried out, there were
still instances of parameter estimates being pinned to the ends of the initial ranges, so it is
possible that improvements can still be made by expanding the initial ranges.
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Figure 3. Average and maximum fitness values for 10 SADE runs on example 1: a single
impulse in noise.
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Figure 4. Input and output to SR oscillator for example 1: input kurtosis = 2.83; output
kurtosis = 13.0.

6. Conclusions
The paper presents two new ideas in terms of using stochastic resonance for the detection of
impulses in background noise. The first is simply to use an evolutionary optimisation scheme
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Figure 5. Average and maximum fitness values for 5 SADE runs on example 2: a train of
impulses in noise.
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Figure 6. Input and output to SR oscillator for example 2: input kurtosis = 3.38; output
kurtosis = 19.3.

to set the oscillator parameters. Because optimisation uses forward prediction through the
oscillator model in order to evaluate the objective, it is very slow if one uses the ‘traditional’
continuous-time representation of the oscillator, so this has been replaced with a discrete-time



10

1234567890

12th International Conference on Damage Assessment of Structures   IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 842 (2017) 012058  doi :10.1088/1742-6596/842/1/012058

variant here. The initial results on simulated data are promising, and the next stage will be to
evaluate the approach on experimental data. It is anticipated that some small adaptations to
the SADE hyperparameters may occur then, so the simulated data may be re-evaluated. The
ultimate aim is to freeze all parameters of the algorithm so that it provides a universal solution,
independent of problem.

This paper has been concerned with the process of feature extraction for condition monitoring;
the next paper in the (short) series will consider anomaly or novelty detection.
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