
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Semi-automated Model-Based Generation of Enterprise Architecture Deliverables / Saenz, JUAN PABLO; Cárdenas,
Steve; Sánchez, Mario; Villalobos, Jorge. - STAMPA. - (2017), pp. 59-73. (Intervento presentato al convegno 20th
International Conference on Business Information Systems tenutosi a Pozna, Poland nel 28-30 June 2017)
[10.1007/978-3-319-59336-4_5].

Original

Semi-automated Model-Based Generation of Enterprise Architecture Deliverables

Publisher:

Published
DOI:10.1007/978-3-319-59336-4_5

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2676280 since: 2017-07-28T21:28:07Z

Springer International Publishing

Semi-Automated Model-Based Generation of
Enterprise Architecture Deliverables

Juan Pablo Sáenz??, Steve Cárdenas, Mario Sánchez, and Jorge Villalobos

Systems and Computing Engineering Department
Universidad de los Andes, Bogotá, Colombia

{jp.saenz79,sx.cardenas10,mar-san1,jvillalo}@uniandes.edu.co

Abstract. As part of Enterprise Architecture projects, models are built
using different languages and tools to document and analyze the state
of business and IT. However, models are just intermediate assets: deliv-
erables are the actual outputs, but they are typically hand built using
information from the models, and following the structures specified in
EA methods. This requires manual effort, is error-prone, and results in
artifacts that might be out-of-date very quickly. This paper addresses
this by making a proposal to support the semi-automated generation
of EA deliverables using a scripting Domain Specific Language for the
creation of deliverable templates.

Key words: Enterprise Architecture, Enterprise Modeling, Domain
Specific Modeling Languages, Architecture Deliverable

1 Introduction

A fundamental element to Enterprise Architecture (EA) are Enterprise Mod-
els: they provide a method to structure, abstract, and analyze the complexity
inherent to each organization. Besides, they largely satisfy visualization and
communication needs and contribute to the effective understanding of the or-
ganization in terms of its domains (typically they are categorized as business,
application, technology and information [1]). By means of Enterprise Models,
the enterprise as a whole is represented through various models [2], each one
structured according to some meta-model. Additionally, each model intends to
describe, as accurately and completely as possible, some particular aspect of the
organization that is of concern to some stakeholder.

Enterprise Modeling refers to the use of a modeling language to coherently
specify and describe components of an organization along with their relationships
[3]. Each Enterprise Model has its own audience, purpose, scope and level of
detail. Also, there may be various modeling tools available to build them, ranging
from mere drawings to sophisticated web-based Enterprise Modeling tools [4].

However, these models are not completely disjoint. There are always com-
mon concepts shared between them, and having integrated or global Enterprise

?? The author is currently a Ph.D. student at the Politecnico di Torino

2 Juan Sáenz et al.

Models would represent a definitive advantage by means of offering a unifying
perspective. This would lead to improved cross-cutting analysis offering more
valuable findings. Unfortunately, in today’s state of the art, this is not typically
possible because the different notations, meta-models, and tools used to create
the models keep them from being integrated.

In fact, models are just an intermediate asset in Enterprise Architecture
projects: deliverables are the actual outputs containing architects’ findings, ob-
servations, and analyses, and typically serve to present the current, intermedi-
ate, or desired state of the enterprise as a whole or in part. Deliverables are thus
supposed to be concrete but partial views of the models, containing the same
information but presented in more manageable ways that may vary according
to their purpose, scope, and their level of granularity. However, the construction
of deliverables normally requires extensive human intervention to extract the
necessary information from the models and to build the corresponding artifacts.
On top of that, the fact that models are fragmented make this work even harder
and limits the possibility of doing cross-cutting analyses.

This situation motivated the development of the proposal described in this
paper, in which the information of several Enterprise Models (built across dif-
ferent modeling tools) is gathered, integrated and analyzed, in a cross-cutting
manner, to automatically generate EA deliverables. To face the problem of tool
heterogeneity, in this proposal the holistic view of the Enterprise Models is
achieved through meta-model mapping instead of using a deep weaving. To face
the problem of the lack of automation, we propose a set of functions to describe
deliverable templates, and a set of functions for using analysis methods whose re-
sults are embedded in the deliverables. All those functions are invoked by means
of a DSL.

The rest of the paper is structured as follows. Section 2 discusses Enterprise
Architecture deliverables. Section 3 describes the strategy employed in our pro-
posal, including the template language and the analysis language. This section
also presents the mapping between the three meta-models that we used for our
experiments. Then section 4 presents a case study to demonstrate the applicabil-
ity of the proposal, section 5 describes the related works, and section 6 concludes
the paper.

2 Enterprise Architecture deliverables

The creation of Enterprise Architecture deliverables relies on Enterprise Models
and typically spans infrastructure components, business applications, business
processes, information models, and the many relationships among them [5]. En-
terprise Models’ purpose is to accurately capture and represent the current,
intermediate, or desired state of the Enterprise, in order to support analysis and
decision-making processes. However, building these models is not a trivial task.
On the contrary, it faces major challenges due to the high complexity of the
today’s organizations.

Semi-Automated Generation of EA Deliverables 3

Figure 1 illustrates the typical process for creating Enterprise Architecture
deliverables. It stems from the selection of specific perspectives of the enter-
prise that are of interest and should be included in the deliverables. For each
one, some meta-models are selected (e.g., BPMN, ArchiMate, SysML) and it
is possible for these to share concepts and relationships. Then, some tools that
support the selected meta-models are used to build the corresponding models.
Once these are built, they are expressed in the form of artifacts (catalogs, dia-
grams, text or matrices), that are finally integrated into Enterprise Architecture
deliverables. The format and structure of said deliverables depend on the needs
of stakeholders, the specific concerns of the enterprise, and the specifics of the
Enterprise Architecture Framework in use.

Tooling Enterprise Models
Artifacts

(catalog, diagram,
text, matrix)

DeliverablesMeta-models

are supported by
a set of...

expressed in the
form of...

used to build
several...

that are finally
embedded into...

Fig. 1: Enterprise Architecture documentation process

Existing Enterprise Architecture documentation approaches struggle with
the information volume and rapidly changing requirements within organizations
[6]. Moreover, they rely on a high degree of manual work with very little au-
tomation during the documentation and maintenance of Enterprise Models [7].
As a result, Enterprise Architecture documentation endeavors are regarded as
time-consuming, cost intensive, and error-prone [8]. For example, analysts may
make mistakes when copying information from the models to the deliverables,
may omit information, or may not update the deliverables as fast as models are
updated.

The context outlined above has motivated various research efforts oriented to
automation mechanisms that would improve Enterprise Architecture documen-
tation process [9]. In [10], based on the application of a practitioner survey and a
literature review, challenges regarding EA documentation automation were iden-
tified and grouped into four high-level categories: data challenges, transformation
challenges, business and organizational challenges, and tooling challenges.

The transformation challenges that they identified are the following: the need
to consolidate ambiguous concepts imported from the productive systems in the
organization; the need to ensure actuality and consistency of collected data from
the productive systems; and the need to avoid duplication of EA elements im-

4 Juan Sáenz et al.

ported from different productive systems of the organization. Meanwhile, tooling
challenges are mainly related to the fact that available tools do not support im-
porting, editing, and validating model data for automated EA documentation.

Moreover, attention should be drawn to the fact that Enterprise Architecture
documentation occurs within an EA framework. On these frameworks, a set of
deliverables (the contractual or formal work products of an architecture project)
is specified, in accordance with the methodology proposed.

The TOGAF Architecture Development Method (ADM) [11] for instance, is
a generic method that can be used by enterprises in a wide variety of industry
types for developing and managing the life-cycle of an EA. When following the
ADM, the first step is to modify or extend the proposed generic methodology
in order to suit the specific needs of each organization, considering its architec-
ture discipline maturity, its architecture principles, and the previously adopted
enterprise-frameworks, among other factors.

The ADM establishes a Preliminary Phase whose purposes include doing
any necessary work to initiate and adapt the generic method by defining an
organization-specific framework that could be using either the TOGAF deliv-
erables or the deliverables of another framework, depending on the needs of
a specific Enterprise. In other words, the Preliminary Phase is about defining
“where, what, why, who, and how we do architecture” of the enterprise con-
cerned. Moreover, the level of granularity addressed in this phase depends on
the scope and goals of each organization.

Among the deliverables produced at the Preliminary Phase, there is the Tai-
lored Architecture Framework, whose purpose, as its name suggests, is to derive
a tailored architecture method, together with a set of expected deliverables and
artifacts, as well as its deployed tools, and interfaces with governance models
and other frameworks. This is why each EA project follows their customized
methodology with its own set of deliverables and artifacts; each one of which is
built through the meta-models, the models, the viewpoints and the tools that
better satisfy the stakeholder’s visualization and analysis needs.

Adherence to an EA framework adds complexity to the whole EA documen-
tation process. It implies that the set of deliverables and their content varies
among enterprises, architecture projects, and methodologies. Which also means
that the set of Enterprise Models is variable too, and the artifacts to be included
in the deliverables are not predefined.

3 Automated Generation of Enterprise Architecture
Deliverables

Taking into account the challenges mentioned in the previous section, the pro-
posal presented in this paper aims to automate the generation of EA deliverables
from diverse and complementing Enterprise Models. The core of the proposal are
the methods to gather information from said models, map common entities and
relationships, perform cross-cutting queries and analyses, construct artifacts, and

Semi-Automated Generation of EA Deliverables 5

finally output all of these results in deliverables that follow precise structures.
For experimentation purposes, we selected three modeling tools with their cor-
responding meta-models: Bizagi Business Process modeler, which is based on
BPMN and XML Process Definition Language (XPDL); the Iteraplan Enter-
prise Architecture Management tool, which has its own meta-model; and Archi,
an open source ArchiMate modeling tool. These tools were chosen because they
target aspects of the organization which are present in typical Enterprise Ar-
chitecture projects, and because they share some common concepts that make
cross-cutting analysis useful and interesting.

Our approach for generating EA deliverables is illustrated in Figure 2 and
comprises the following steps: (a) The meta-modeler composes a set of functions
intended to perform queries and analysis over the Enterprise Models, and to
create artifacts based on these analyses. These functions are invoked through
a DSL that we developed and named Pollux. (b) Then, the enterprise archi-
tect defines a deliverable template in terms of chapters, sections, and artifacts.
This is done through a different DSL that we named Castor. The architect also
embeds query and analysis functions invocations into the deliverable template.
(c) The resulting deliverable template, along with its embedded functions, is
then inputted into the Enterprise Architecture Deliverables Generator (EADG)
engine which executes the corresponding queries and analysis over the models.
(d) Subsequently, the EADG builds the artifacts (catalogs, matrices, and dia-
grams) that are represented as texts, tables and images. Finally, (e) based on
the deliverable template and the artifacts produced by the engine, the document
generator composes the deliverable and exports it in several formats, depending
on the stakeholder’s visualization requirements.

We now describe the four main components of our approach: the template
language (Castor), the query language (Pollux), the mapping procedure between
meta-models, and the EADG.

Enterprise
Architect

Bizagi BPM Modeler

Bizagi users

Bizagi models

Iteraplan EAM

Iteraplan users

Iteraplan models

Archi ArchiMate Modelling

ArchiMate users

ArchiMate models

execute
queries

execute
queries

execute
queries

EADG

Document
template [Castor]

Query
functions [Pollux]

imports and embeds

Meta-modeler

defines writes

Artifact
repository

generates

Document PDF HTML

EA Deliverables

Fig. 2: EA deliverable generation process

6 Juan Sáenz et al.

3.1 Castor: the template language

Castor is a set of functions along with a Domain Specific Language intended
to define the structure of deliverables based on information extracted from En-
terprise Models. The actual content for the deliverable is also extracted from
the models through the usage of query and analysis functions (Pollux set of
functions).

The main function of Castor is to specify deliverables’ structures in terms of
chapters and sections. Castor also has a set of directives for: importing external
files, such as text and images; invoking the query and analysis functions; building
concrete EA artifacts with the data brought from the EA models; including
template fragments to favor reuse; and embedding control flow directives. Table
1 presents the whole set of instructions available in the Castor DSL, along with
their description.

Table 1: Castor DSL instructions

General functions

importFunction Imports the functions of a given library, which is associ-
ated to a certain Enterprise Modeling tool.

importSource Defines the set of Enterprise Models to be included into
the Enterprise Architecture Deliverables generation.

template Defines the name of the resulting output file, which cor-
responds to the generated deliverable.

Text functions

chapter - section - text Inserts a new chapter (into the deliverable), section (into
the chapter) or text fragment, into the deliverable.

Artifact functions

catalog - matrix - image Displays the corresponding artifact with data gathered
from one or several models. Images typically correspond
to Enterprise Modeling diagrams.

Flow control functions

forEach Allows the execution of a set of instructions in an itera-
tive way.

if - else - else if Allows the execution of a set of instructions according to
conditional statements.

Listing 1 presents an example of the usage of Castor. First of all, it is neces-
sary to load a set of models that will provide the information for the deliverable
(line 1), as well as the set of query and analysis functions to pull content from the
previously models (line 2). In the example, a library of functions to communicate
with Archi Modeler is imported along with a model called archisurance (corre-
sponding the ArchiSurance case study from Archi). Line 1 also defines an alias

Semi-Automated Generation of EA Deliverables 7

for the model: $mArchi. Finally, in line 4 some basic features for the template
are defined (title and output directory).

In the ensuing lines, the structure of the deliverable is specified by means of
containers which can be primary, for chapters and sections, or secondary for the
case of tables and lists. In Listing 1, line 5 defines a new Chapter in the template
by providing its name, and line 6 defines a Section within that chapter also with
a given title.

Within the containers, artifacts of different kinds can be included by means of
specific directives. These serve to include text, images, and template fragments,
or to embed artifacts (matrix, catalogs, and diagrams). In the listing, lines 7 and
8 demonstrate the inclusion of text content by means of the invocation of the
function getInformationView() and getDocumentation() on the Archi model.

1 importModel "archisurance" as $mArchi
2 importFunction "./ archi.jar" as $fArchi
3

4 template {name:"Archisurance deliverable", output_dir: "./ deliverable"}
5 chapter {title:"Target Business Architecture"}
6 section {title:"Business goals and objectives"}
7 text {contents:
8 $fArchi.getInformationView($mArchi ,"Goal and Principle View").

getDocumentation ()}
9

10 forEach $fArchi.GetProcess () as $process:
11 text {contents: $process.name}
12 if($fBpm.ProcessExists($process.name) == true)
13 catalog {function: $fBpm.GetActivities($process.name)}
14 else:
15 text {contents: "The process does not contains activities"}
16 end
17 /forEach
18

19 catalog {function: $fArchi.getViewElements($mArchi , "Goal and Principle View"
)}

Listing 1: Castor sample code

On top of the above, there is an additional kind of directives intended to pro-
vide a more dynamic control over the elements in the deliverable, based on the
contents of the EA models. These directives are expressed through conditionals
and cycles. Cycles allow the composition of instructions such as “create a section
in the document for each business process brought from Bizagi BPM Modeler,
including its name and description” (Listing 1, lines 10 to 17). Using condition-
als, it becomes possible to express statements such as “embed into the document
the name of a business process and, in case it has activities, their names and
descriptions. Otherwise, if the process does not have activities associated, display
a message informing the situation” (Listing 1, lines 12-16).

8 Juan Sáenz et al.

3.2 Pollux: the query language

Pollux is both a language and a set of functions to communicate with EA mod-
eling tools to perform queries and analysis over the models, and to generate
artifacts using their results. These functions are classified into query and analy-
sis functions, and artifact generation functions. The first ones are responsible for
extracting information from the models and applying filters based on any criteria
specified by the user; the second group of functions is responsible for building ar-
tifacts. This means generating matrices, catalogs or diagrams based on the infor-
mation extracted by the query and analysis functions. Lines 20 and 21 of Listing
1 illustrate this by invoking the function to create a catalog and giving this in-
formation the result of querying the Archi model using the getViewElements()

function.
Through the use of these functions, it is possible to build artifacts by gather-

ing and integrating information from different models that might be built across
different tools. This feature enables the recognition of relationships between the
elements of several models, that otherwise would go unnoticed. For instance, to
determine which server supports a given business process. Therefore, this feature
significantly supports and enhances the analysis tasks of the enterprise architect.

Analysis functions are generally related to quantitative analysis over the el-
ements of a model when there is enough information into it to perform the
function [12]. For instance, the response times of the business processes and
applications.

It is important to mention that all the functions were developed as imple-
mentations of a common interface. This means that the current libraries can be
extended to incorporate new functions or to support communication with new
tools that may be incorporated in the future. These functions are packaged into
a JAR (Java ARchive) that later will be imported into the deliverable template.
Table 2 exemplifies the basic set of functions available to gather and deal with
Archi Enterprise Models.

3.3 Mapping between meta-models

In order to be able to perform queries and analysis in a cross-cutting manner
and generate meaningful artifacts, it is necessary to be able to find relationships
between models built with different tools. To support this, it was necessary to
identify common concepts between the meta-models by means of establishing
a mapping between equivalent elements. In the case of the sample tools that
we selected, this included a mapping between ArchiMate and BPMN, one be-
tween BPMN and Iteraplan, and one between Iteraplan and ArchiMate. Table
3 describes, at first, the mapping that was made between entities in ArchiMate
and entities in BPMN. It is important to highlight that beyond those entities
that are specific to the meta-models, other entities belonging to the tool, were
included. That is the case of the Bizagi element called Entity, which does not
belong to BPMN.

Semi-Automated Generation of EA Deliverables 9

Table 2: Pollux DSL instructions for Archi

Views

getViewInformation Gets the information (properties) of a certain view.
getViews Gets a list of all the views into the Archi Enterprise

Model.
getViewImage Gets the graphical representation (diagram) associated

to a certain view.
getViewElements Gets the elements present in a certain view.

Layers

getElement Gets an element along with its attributes, properties, and
relationships.

getElementsByType Gets the set of elements of a certain type.
getElementsByLayer Gets the elements belonging to a certain layer. For

instance, Business layer, Application layer, Technology
layer.

getProcess Gets the elements whose type is process.

Canvas

getContainersFromView Delivers a list of the containers present in a certain En-
terprise model.

getViewElementsByContainerDelivers a list of elements or notes that are placed inside
a certain container.

Further on, the mapping between the entities from ArchiMate and Iteraplan
is presented. In this regard, it is noticeable that the mapping between the entities
does not always comply a one-to-one correspondence. In fact, several Iteraplan
business concepts do not have any associated entity in the ArchiMate business
layer meta-model.

Finally, the last section of the table presents the mapping between Iteraplan
and Bizagi meta-models. There are few mappings as the Iteraplan meta-model
is more focused on project management at a lower level of detail while Bizagi
offers a high level of detail over the business process. In the Case Study section,
an example of a cross-cutting query and analysis function that depends on this
mapping proposal is presented.

3.4 Generation of the Enterprise Architecture deliverables

Once the deliverable template is defined along with the Pollux functions and
the external files, the EADG engine generates the document which is consistent
with a meta-model, proposed by us, to represent the different kind of compo-
nents that might be present in a text processing tool. Entities such as document,
document body, container element, content element, table, list, image, text, ta-
ble row, table cell and list item are included into this meta-model. Lastly, the
document generator composes the deliverable, and according to the stakeholder’s
visualization preferences, exports it in Microsoft Word, PDF or HTML format.

10 Juan Sáenz et al.

Table 3: Mapping between modeling tools meta-models

ArchiMate business layer Bizagi element

Business process Business process diagram, Pools, Lanes
Function Task, Sub-Process
Business event Event
Business Object Entity
Business Role Lane, Organizational role

ArchiMate application layer

Application function Service, Task, Script task
Data object Entity

ArchiMate technology layer

Device
Artifact

ArchiMate business layer Iteraplan (business)

Business domain
Information system domains
Architectural domains

Business Process Business process
Business Role Business unit
Product, Business service Product

Business mapping
Business function Business function
Business object Business object

ArchiMate application layer Iteraplan (application)

Relation, Application Interface Interface
Application component, Application collaboration Information system
Application service, Application function IT service

ArchiMate technology layer Iteraplan (technology)

Technical component System software, Artifact
Infrastructure element Node, Device, Network

ArchiMate (implementation/migration)

Gap Project

Iteraplan (business) Bizagi element

Business process Business process diagram, Pools, Lanes
Business function Task, Sub-process
Business object Entity

Iteraplan (application)

Business object Entity

Semi-Automated Generation of EA Deliverables 11

4 Case Study

To illustrate the proposal presented in this paper, a case study was developed on
the basis of three inputs: an EA academic project; an EA framework specifically
tailored for this project; and the set of three different Enterprise Modeling tools,
mentioned in the previous section (Bizagi BPM Modeler, Iteraplan EAM, and
Archi ArchiMate modeling).

The experimentation consisted in generating Enterprise Architecture deliv-
erables for Editorial de los Alpes (EDLA), an academical exercise to simulate
a publishing house that is responsible for carrying out the complete textbook
production process, from the selection of the author to the distribution to the
points of sale. The main organizational goals of the publishing house are to break
into the digital market, lower the operational costs and increase the annual sales.

The meta-model of EDLA is composed of 13 domains: applications, busi-
ness motivation model, business process architecture, business partners, financial
structure, human resources, information, infrastructure, business assets, organi-
zational structure, products, services, and technology. There are 109 entities
modeled into these domains and the model built upon this meta-model, has
about 1000 elements and more than 1500 relationships.

A deliverable of 48 pages was produced and EADG was able to generate
and insert 26 customized artifacts (catalogs, matrices, diagrams, and texts), by
executing query and analysis functions, some of them in a cross-cutting manner,
over several models built on Bizagi BPM Modeler, Iteraplan EAM, and Archi
ArchiMate modeling, as shown in Figures 3 and 4.

The Enterprise Models built on each tool were the following. In Archi, our
Enterprise Architecture research group developed all the models regarding busi-
ness motivators, business canvas, business capabilities, competitors, infrastruc-
ture, value chain, and stakeholders. In Bizagi all the business process were mod-
eled. And in Iteraplan, the landscape diagram, cluster diagram, nesting cluster,
information flow, and portfolio flow were generated based on the information
corresponding to the 14 building blocks.

The sample code in Listing 2 illustrates the capability of our tool to perform
cross-cutting queries and analysis by extracting certain information from several
models built across different tools. In this example, at first, a query is performed
over the projects registered in Iteraplan and their information is embedded as
text into the deliverable (Listing 2, lines 15-21). Then, their business processes
are taken from Bizagi, embedding the corresponding diagram and catalog of
tasks (Listing 2, lines 24-32). Finally, the application services that support each
task are gathered from Archi and embedded into the deliverable as a catalog
(Listing 2, line 35).

The cross-cutting query involves elements that belong to different models and
were built in different tools. By means of the meta-model mapping presented
above, it is possible to move across the elements and their relationships.

12 Juan Sáenz et al.

1 importFunction "./ archi.jar" as $fArchi
2 importModel "archisurance" as $mArchi
3

4 importFunction "./ process.jar" as $fBizagi
5 importModel "process" as $mBizagi
6

7 importFunction "./ iteraplan.jar" as $ fIteraplan
8 importModel "http :// eadg.edu.net/iteraplan/" as $mIteraplan
9

10 template { name :"EDLA deliverable", output_dir : "./ deliverable"}
11 chapter { title :"Project Management"}
12 section { title :"Key projects"}
13

14 /* Iterate over the projects in Iteraplan */
15 <forEach $mIteraplan.getElementsByType($mIteraplan , "project" as $project:$>
16

17 Project name: $<text{contents:$project.name}$>
18 Description: $<text{contents:$project.description}$>
19 Strategic drivers: $<text{contents:$project.strategicDrivers}$>
20 Total cost: $<text{contents:$project.costs}$>
21 Accountability: $<text{contents:$project.accountability}$>
22

23 /* Iterate over the business process of the current project in Bizagi */
24 <forEach $project.businessProcess as $bp:$>
25

26 Process name: $<text{contents:$bp.name}$>
27

28 /* Display the diagram of the current business process */
29 <image{id:"bpImg", uri:$bp.getDiagram($mBizagi , $bp.name)}$>
30

31 /* Embed a catalog with the tasks of the current business process */
32 <catalog{function:$bp.getTasks(mBizagi)}$>
33

34 /* Embed a catalog with the Application services (modeled in Archi) that
supports the business process */

35 <catalog{function:$mArchi.getRelatedElements("businessProcess", bp.name ,"
applicationService")}$>

36

37 </forEach$ >
38 </forEach$ >

Listing 2: Cross-cutting function over the three tools code sample

Fig. 3: Project information from Iteraplan and Business Process diagram from
Bizagi

Semi-Automated Generation of EA Deliverables 13

Fig. 4: Catalog with tasks from Bizagi and Application services from Archi

5 Related Work

Jackson et al. [13] state that a review document or any other paper artifact
can be interpreted as a view of the system or engineering model. Based on this
premise, they document the development of a tool and a method to produce
sophisticated artifacts as views and by-products of integrated models. In their
proposal, any paper artifact is assumed as a serialized model that describes and
narrates a set of views of the main engineering model. The document structure
is completely designed and modeled as in UML, using a custom profile, while
the content is provided through query and analysis functions whose inputs are
pointers to the main engineering model. Then, the software produces a DocBook
XML file, which may be used to generate the final document in PDF or HTML
format.

A methodology for automatic software documentation generation is proposed
in [14]. In this, the automatic generation is achieved through the design of a
documentation model and the definition of mapping relationships between its
elements and the system model. Based on this artifacts, the mapping process
is able to extract graphical and textual information from UML and SmartC
models, organizes them according to the documentation model and generates
the software documentation into a Microsoft Word document.

Buschle et al. [15] focused in automating the collection of the data used to
build the organization-wide models. The paper illustrates how a vulnerability
scanner can be utilized for data collection aimed to automatically create Enter-
prise Architecture models, mainly covering infrastructure aspects (Application
and Technology layer of the organization). Moreover, the outcomes from the
vulnerability scanner are taken by an EA analysis tool, responsible for asserting
certain system quality attributes. Scanners do not deliver complete EA models
(especially those regarding Business Layer)

A particular Enterprise Service Bus (ESB) implementation can be used to
extract EA relevant information according to [16] and [17]. This statement is
motivated by the idea that an ESB can be considered “the nervous system of an
enterprise interconnecting business applications and processes as an information
source”. Moreover, based on the application of a survey, the paper concludes

14 Juan Sáenz et al.

that the SAP PI ESB seems to be suitable and a reasonable start point for an
automated EA documentation endeavor.

All the proposals outlined above share concerns regarding the time consum-
ing, cost intensive and error prone nature of EA documentation and maintenance.
Their solution approaches mainly focus on the automatic generation of Enter-
prise Models based on the execution of scanning tools over IT systems that are
already deployed. Likewise, in [10] transformation challenges and tooling chal-
lenges are related to the need to ensure actuality and consistency of collected
data from the productive systems, as well as the inability of the available tools
to support importing, editing and validating model data for automated EA doc-
umentation.

On the contrary, our proposal focuses on automating EA deliverables gener-
ation based on a set of Enterprise Models that are already built using different
tools and according to several meta-models. Moreover, in addition to the possibil-
ity to automatically gather information from these models in order to compose
the deliverables, our proposal allows the integration between them through a
meta-model mapping, which enables, as well, cross-cutting analysis over differ-
ent kinds of Enterprise Models. These Enterprise Models are not restricted to
Application and Technology layers, they also represent business logic that may
not be gathered from the productive systems of the organization.

6 Conclusions

This paper presents an approach for automatically generating Enterprise Ar-
chitecture deliverables by integrating multiple Enterprise Models built across
different tools. A Domain Specific Language was developed to invoke the query
and analysis functions that are embedded into a deliverable template. Likewise, a
set of query and analysis functions were developed in order to communicate and
gather information from the Enterprise Models. The information extracted from
these models is embedded into the deliverables in the form of artifacts, such as
catalogs, matrices, and diagrams. Nevertheless, the value-added of this proposal
does not completely lie on the capability to automatically generate the Enterprise
Architecture deliverables by embedding information extracted from many En-
terprise Models. Besides that, there is the opportunity to perform cross-cutting
queries and analysis by means of a mapping proposal between common entities
and relationships from several meta-models. To illustrate our approach, Bizagi
Business Process modeler, Iteraplan Enterprise Architecture Management tool,
and Archi ArchiMate modeler meta-models were mapped, and an Enterprise Ar-
chitecture deliverable was generated. We think that the Enterprise Architecture
documentation may substantially benefit from our proposal, given the fact that
currently this process relies on a high degree of manual work, and is regarded
as time-consuming, cost intensive, and error-prone. Moreover, the cross-cutting
queries and analysis enable the recognition of relationships between the elements
of several models, that otherwise would go unnoticed.

Semi-Automated Generation of EA Deliverables 15

References

1. M. Lankhorst, Enterprise Architecture at Work, vol. 10. 2009.
2. M. M. Lankhorst, “Enterprise architecture modelling—the issue of integration,”

Advanced Engineering Informatics, vol. 18, no. 4, pp. 205 – 216, 2004. Enterprise
Modelling and System Support.

3. H. Jonkers, M. M. Lankhorst, R. van Buuren, S. Hoppenbrouwers, M. M. Bon-
sangue, and L. van der Torre, “Concepts for modeling enterprise architectures,”
International Journal of Cooperative Information Systems, vol. 13, pp. 257–287,
2004.

4. F. Matthes, S. Buckl, J. Leitel, and C. M. Schweda, “Enterprise Architecture Man-
agement Tool Survey 2008,” tech. rep., 2008.

5. S. Buckl, F. Matthes, S. Roth, C. Schulz, and C. M. Schweda, “A Conceptual
Framework for Enterprise Architecture Design,” in Interface, vol. 3, pp. 1–4, 2008.

6. S. Roth, M. Hauder, M. Farwick, R. Breu, and F. Matthes, “Enterprise Architec-
ture Documentation: Current Practices and Future Directions.,” 11th International
Conference on Wirtschsftsinformatik, no. March 2013, pp. 1–15, 2013.

7. K. Winter, S. Buckl, F. Matthes, and C. M. Schweda, “Investigating the State-of-
the-Art in Enterprise Architecture Management Methods in literature and Prac-
tice.,” Mcis, 2010.

8. S. Kaisler, F. Armour, and M. Valivullah, “Enterprise Architecting: Critical Prob-
lems,” Proceedings of the 38th Annual Hawaii International Conference on System
Sciences, vol. 00, no. C, pp. 1–10, 2005.

9. C. Lucke, S. Krell, and U. Lechner, “Critical Issues in Enterprise Architecting
– A Literature Review,” in 16th Americas Conference on Information Systems
(AMCIS) 2010, pp. 1–11, 2010.

10. M. Hauder, F. Matthes, and S. Roth, “Challenges for automated enterprise ar-
chitecture documentation,” in Lecture Notes in Business Information Processing,
vol. 131 LNBIP, pp. 21–39, 2012.

11. The Open Group, TOGAF Version 9. 2009.
12. H. Florez, M. Sánchez, and J. Villalobos, “A catalog of automated analysis methods

for enterprise models,” SpringerPlus, vol. 5, no. 1, p. 406, 2016.
13. M. Jackson, C. Delp, D. Bindschadler, M. Sarrel, R. Wollaeger, and D. Lam, “Dy-

namic gate product and artifact generation from system models,” in Aerospace
Conference, 2011 IEEE, pp. 1–10, March 2011.

14. C. Wang, H. Li, Z. Gao, M. Yao, and Y. Yang, “An automatic documentation gen-
erator based on model-driven techniques,” in Computer Engineering and Technol-
ogy (ICCET), 2010 2nd International Conference on, vol. 4, pp. V4–175–V4–179,
April 2010.

15. M. Buschle, H. Holm, T. Sommestad, M. Ekstedt, and K. Shahzad, “A Tool for
Automatic Enterprise Architecture Modeling,” Is Olympics: Information Systems
in a Diverse World, vol. 107, pp. 1–15, 2012.

16. S. Grunow, F. Matthes, and S. Roth, “Towards automated enterprise architec-
ture documentation: Data quality aspects of SAP PI,” in Advances in Intelligent
Systems and Computing, vol. 186 AISC, pp. 103–113, 2013.

17. M. Buschle, M. Ekstedt, S. Grunow, M. Hauder, F. Matthes, and S. Roth,
“Automating Enterprise Architecture Documentation using an Enterprise Service
Bus,” Americas conference on Information Systems, vol. 6, pp. 4213–4226, 2012.

