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Abstract  

The standard Single Null (SN) divertor is currently expected to be installed in DEMO. However, a number of 

alternative configurations are being evaluated in parallel as backup solutions, in case the standard divertor 

does not extrapolate successfully from ITER to a fusion power plant. We used the SOLPS code to produce a 

preliminary analysis of two such configurations, the X-Divertor (XD) and the Super X-Divertor (SX), and 

compare them to the SN solution. Considering the nominal power flowing into the SOL (PSOL = 150 MW), we 

estimated the amplitude of the acceptable DEMO operational space. The acceptability criterion was chosen 

as plasma temperature at the target lower than 5 eV, providing low sputtering and at least partial 

detachment, while the operational space was defined in terms of the electron density at the outboard mid-

plane separatrix and of the seeded impurity (Ar only in the present study) concentration. It was found that 

both the XD and the SXD extend the DEMO operational space, although the advantages detected so far are 

not dramatic. The most promising configuration seems to be the XD, which can produce acceptable target 

temperatures at moderate outboard mid-plane electron density (𝑛𝑜𝑚𝑝 = 4.5 × 1019 m-3) and 𝑍𝑒𝑓𝑓= 1.3. 

Keywords: 

DEMO, advanced divertor, numerical modeling, detachment 

Introduction  

The power exhaust problem in DEMO is anticipated to be considerably more challenging than in ITER. In 

fact, while the heating power (in DEMO mostly given by the fusion reactions) increases with the plasma 

volume, the available exhaust surface depends only linearly on the major radius, resulting in an unfavorable 

trend of the ratio 𝑃𝑆𝑂𝐿/𝑅0 of the power entering the SOL to the plasma major radius. An optimal solution 

would be to reduce the power flowing to the targets by radiating as much as possible from the core by 

means of one (or more) intentionally seeded impurity. Radiation would then distribute the exhausted 

power more or less uniformly over the whole first wall (FW) surface, resulting in acceptably low loads on 

the plasma-facing components. However, the power crossing the separatrix (PSOL) cannot fall below H to L 

mode back transition threshold [1], to guarantee H-mode operation. For DEMO the corresponding limit is 

estimated to be 𝑃𝑆𝑂𝐿 ≥ 150 MW [2]. A large fraction of this power should be further radiated in the SOL, 

but the power to be handled by the divertor will still be considerable, of the order of several tens of MW [3] 

The current baseline DEMO design expects to exhaust this power by means of a conventional divertor, as 

derived from ITER. However, alternative divertor configurations, such as the Snow Flake (SF) [4], X Divertor 

(XD) [5], and the Super X (SX) divertor [6] are also explored, as a backup in case the standard SN does not 

extrapolate favorably to a DEMO class machine. All the mentioned configurations have a potential for 

helping to mitigate the power exhaust problem, at the cost of increasing difficulty in engineering a proper 

coil system or employing efficiently the in-vessel available volume, and are under careful scrutiny during 

the current DEMO pre-conceptual design phase. 

In this paper we perform a first comparison of the XD and SX with respect to the baseline SN (geometries 

are all shown in Figure 1), by means of the SOLPS5.1 package [7], excluding SF due to limitations in the 

current meshing capabilities of the code. The 5.1 version was preferred over the somehow most popular 

5.0 because (i) it is the standard version adopted by the people who actually performed most of the 

modelling and (ii) even if version 5.1 and 5.0 are equivalent as far as neutral-fluid modeling is concerned, 

the 5.1 one includes a more advanced kinetic-neutral model. Although, as we will discuss in the next 

section, for the current study we adopt a fluid model for the neutrals, we plan in the future to switch to a 
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kinetic one, at least for some of the cases under consideration. We evaluated that starting the activity with 

the most recent code version would likely easier this later planned task.  

One of the consequences of the fluid model choice is that SOLPS does not see the actual shape of the FW, 

with the exception of the target plate: as far as our modelling is concerned, the wall dome region is 

collapsed to the private flux mesh boundary, while the main chamber wall is collapsed to the outer wall 

mesh boundary, every other detail of the actual wall shape being at present irrelevant. As a consequence, 

we decided not to show the complete wall shape in Figure 1. At this preliminary stage of the project we 

want to single-out only the major differences among the configurations, so we shall concentrate on the 

outer target, where usually the heat exhaust problem is more dramatic. We take the outboard mid-plane 

separatrix electron density 𝑛𝑜𝑚𝑝  and the core-averaged 𝑍𝑒𝑓𝑓 (describing the amount of impurities needed 

to operate under given conditions) as free parameters, and try to draw the subset of the resulting 

operational space corresponding to acceptable plasma conditions. This choice mimics the experimental 

control on the plasma density usually obtained through gas puff. As acceptability criterion, we take 𝑇𝑒 < 5 

eV, which should guarantee low W (the DEMO wall material) sputtering level and at least partial 

detachment. 

Numerical modeling 

Given the early stage of the DEMO project, it is important to produce reasonably accurate estimates of the 

more relevant physical quantities to guide general design decisions, as opposed to obtaining precise 

extensive predictions, which would depend on currently unknown machine details. Following the above 

considerations, the so-called reduced model approach [8] was adopted, as a compromise between accuracy 

and computational requirements. The major peculiarities of the approach are:  

I. treating the neutral atoms with the fluid approximation, as opposed to the more demanding Monte 

Carlo (MC) EIRENE approach [7]; 

II. bundling the impurity charge states to limit the total number of simulated fluid species [9]; 

III. neglecting drifts in the plasma model, 

IV. adopting not excessively refined (96x36) numerical meshes, based on previous extensive testing 

[8]; with the possible minor exception of the region very close to the targets (see e.g. Figure 9), this 

mesh provides smooth profiles for every quantity we checked. So we expect our results to be 

reasonably close to mesh independence, although we did not perform a full grid convergence 

analysis [10]. 

Although in principle W could penetrate the plasma and contribute to radiation, at the low temperatures 

considered acceptable in our model it is not expected to produce any appreciable effect. As a consequence, 

we consider here Ar as the only impurity present in the model, with three fluid species corresponding to 

neutrals (Ar0), all ionization levels but stripped ions (Ar(1-17)+), and fully stripped ions (Ar18+). Due to lack of 

detailed physical information, the most critical boundary condition for the impurity was at the core. We 

decided to have zero core radial particles flux for the partially ionized states, while we fixed the density for 

the fully stripped ion. It should be noted that this was done purely to obtain a stable and simple numerical 

setup, and does not imply any hypothesis on the actual location of the impurity injection in the machine: 

we simply inform the code that for a given case the Ar18+ level at the core boundary should have a certain 

value. The major drawback of our choice is that, in case the desired level of core Ar18+ were physically 

consistent with a non-zero radial flux of partially ionized atoms, this should generate unphysically gradients 

in the Ar profiles near the core boundary. However, this is an intrinsic problem of any possible chosen 
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setup, and should be confined to the very first few cells near the core, not invalidating the modelling results 

elsewhere.  As for discussing our results, we think the quantity technically used to set the impurity 

boundary condition to bear little physical meaning with regard to the actual plasma contamination, which is 

usually expressed in terms of 𝑍𝑒𝑓𝑓. Since the latter is easy to obtain as a model output, and is strongly 

correlated with the core impurity density, we will show our results using the more experimentally relevant 

𝑍𝑒𝑓𝑓 averaged over the plasma core (where by “core” we always mean that fraction of the confined plasma 

actually included in the SOLPS mesh which, for our cases, covers roughly the pedestal region.  

The operational space covered by our modeling spans approximately the region 𝑛𝑜𝑚𝑝 = [2 × 1019 − 6 ×

1019] m-3, and 𝑍𝑒𝑓𝑓 = [1 − 2.6]. This extends previous TECXY calculations, stopped at 𝑛𝑜𝑚𝑝 = 4 × 1019 m-

3 due to code convergence problems [11]. Further TECXY analysis is discussed in [3], showing general 

qualitative agreement with our findings, which is not obvious since TECXY has much lower geometrical 

flexibility with respect to SOLPS. The upper limit for the density corresponds to about 70% of the 

Greenwald density or, assuming a pedestal top limit of 0.85 𝑛𝐺𝑊 [2], 82% of the pedestal density limit. 

Assumed particle and heat diffusivities in the SOL are (𝐷⊥, 𝜒⊥) = (0.42, 0.18) m2/s, providing an e-folding 

length 𝜆𝑞 ≈ 3 mm under attached conditions, compatible with predictions from the scaling presented in 

[12].  

The neutral fluid approximation adopted should be at least marginally acceptable over the whole range of 

parameters explored; as a check we compared the D charge exchange and ionization mean free path for a 

number of cases obtained by our simulations. In the less favorable case tested (𝑛𝑜𝑚𝑝 = 2 × 1019 m-3, 

𝑇 = 10 eV at the target) we get 𝜆𝐶𝑋 ≈ 3.3 cm and 𝜆𝑖𝑜𝑛 ≈ 6.5 cm. Since charge-exchange processes are 

effective at thermalizing the neutral distribution, this shows that the fluid approximation should be at least 

marginally acceptable over the whole range of parameters explored. 

 

Results and discussion 

Our main result is presented in Figure 2, which compares data from about 160 simulations for the three 

alternative divertor configurations here scrutinized. Each simulated shot is represented by a point in the 

(𝑛𝑜𝑚𝑝, 𝑍𝑒𝑓𝑓) parameter space, and is further classified according to the maximum outer target 

temperature (blue marks show target temperature < 5 eV). Figure 3 shows the outer target to outboard 

mid-plane total pressure ratio for two different densities in the LSN configuration. By detecting detachment 

with the onset of strong pressure drops, we see that our chosen temperature level is about 2 eV higher 

than the detachment threshold. On the other hand, since the 𝑇𝑒 < 5 𝑒𝑉 condition refers to the maximum 

target temperature, in most accepted cases we will have at least partial detachment. The peak target 

power flux density is strongly sensitive to the temperature near the selected threshold. On the higher 𝑇 

side, peak heat fluxes on target can still be as large as ~ 20 MW/m2, dropping quickly with the temperature. 

We see that, at low density, temperatures are always too high, without some amount of impurity injection. 

For example, for 𝑛𝑜𝑚𝑝 = 2.5 × 1019 m-3 both SN and SX require at least 𝑍𝑒𝑓𝑓 = 2 In the case of XD we have 

too few points available at low density to make a committal statement about the minimum impurity 

required, although, considering that at higher densities the SX and XD behavior are not dramatically 

different, we extrapolate that at  𝑛𝑜𝑚𝑝 = 2.5 × 1019 the required impurity level for XD would be not 

smaller than ~ 2. . Looking at higher densities, both SX and XD show indeed some advantage over SN. In 
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fact, while SN needs either very large densities or high 𝑍𝑒𝑓𝑓, both SX and XD show low temperature at less 

extreme values. For example, we detected the first case for 𝑛𝑜𝑚𝑝 = 5 × 1019 m-3 (SX) or even 𝑛𝑜𝑚𝑝 =

4.5 × 1019 m-3 (XD), provided we take 𝑍𝑒𝑓𝑓 = 1.3.  

The previous discussion suggests that the difference among different configurations is more apparent at 

large densities. This is confirmed by Figure 4, which shows the fraction of the heat flux entering the outer 

divertor region (approximately defined as the inner/outer regions below the X-point) as a function of 𝑍𝑒𝑓𝑓 

for two different density levels. Data are distinguished according to the temperature (below or above 5 eV) 

and geometry. At 𝑛𝑜𝑚𝑝 = 2.5 × 1019 m-3, increasing the impurity content decreases the power fraction 

reaching the outer divertor independently of the considered divertor configuration (only SN and SX cases 

are available at this density). At higher 𝑛𝑜𝑚𝑝, however, XD and SX clearly differentiate from SN. Starting 

from low impurity content levels, these advanced configurations detach almost immediately and 

correspondingly the power enters the divertor region preferentially from the outer side. This is because, 

with the general temperature lowering with increasing 𝑍𝑒𝑓𝑓 values, substantial radiation develops from the 

SOL above the X point on the inner side, so that the power amount actually entering the divertor region 

reduces. For the impurity levels scanned so far, we did not observe a similarly pronounced increase of the 

radiation from above the X-point on the outer side   

We now investigate in some detail the different detachment properties of XD and SX at moderate density 

levels. As already noticed, for 𝑛𝑜𝑚𝑝 = 4.5 × 1019 m-3 a 𝑍𝑒𝑓𝑓 windows exists, in which XD detaches, while SX 

does not. This is made apparent also by Figure 5, comparing the electron temperatures for the two 

geometries at 𝑍𝑒𝑓𝑓 ≈ 1.3. Table 1 details the distribution of cooling rate (including the total contribution 

from all processes leading to electron cooling), given for a reference density value of 1019 m-3 in the Outer 

Divertor (OD) between D and Ar. This makes it that the different Ar losses in the two cases play a significant 

role in XD reaching detachment.  

Figure 6 compares the electron temperature profiles along the separatrix in the two cases. Although SX 

starts from a slightly lower upstream value, this is more than compensated by the longer XD connection 

length, so that 𝑇𝑒 drops below 1 eV at the target for XD, while it stays above 10 eV for SX. From the 

previous discussion it appears that, at least near the separatrix, the length measured along the magnetic 

field from the divertor region entrance up to the target is larger for XD than for SX. Figure 7 compares the 

distance between the divertor entrance and the target for the three configurations. We see that, close to 

the X-point, XD shows values larger than SX, which favors local detachment. The relation is reversed far 

from the strike point (SX parallel distance larger than XD). It should also be mentioned that not always 

temperatures are observed to decrease monotonically far from the strike point along the targets. Such 

behavior is sensitive to the exact neutral dynamics, and our observations are possibly influenced by the 

choice of the fluid neutral mode. However, since we expect for DEMO a quite short power e-folding length, 

little power is expected to be deposited on the target on this region anyway, so that this is less relevant for 

our analysis.   

To reinforce this effect, Figure 8 shows the electron cooling rate, i.e. the power density extracted from the 

electrons, due to interaction with the different ionic species, divided by the electron and ion density, 

including the total contribution from radiation, bremsstrahlung and ionization. It is shown for the different 

fluid species as a function of the electron temperature, for the reference density 𝑛 = 1019m-3, while Figure 

9 shows the density of the different ionic species from the outer target progressing towards outer divertor 

entrance along the separatrix. Instead of the perhaps more familiar distance along the separatrix, in Figure 
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9 we take, as independent coordinate, the electron temperature, because this gives a more direct idea 

about which regions are important for the cooling effects. The two configurations differ considerably in the 

divertor Ar(1-17)+ density which, for SX, is smaller by about an order of magnitude. Moreover, it is clear from 

Figure 8 and Figure 9 that the super-charge state Ar(1-17)+ is substantially responsible for all the Ar cooling 

effect (the neutral and fully ionized Ar have a density so low near outer target that they do not appear on 

the scale represented in Figure 9). We can observe from Figure 8  that most of the Ar radiation comes from 

a relatively narrow window centered around 𝑇𝑒  ≈ 10 eV. Figure 6 shows that XD, covering the whole range 

of temperatures down to ~ 1 eV, benefits of the whole high cooling-rate window, while SX misses about 

half of it, so reducing the overall cooling.  

Apart from the different connection length the other factor, depending on the magnetic configuration, 

which might influence detachment, is the magnetic flux expansion. It is somehow difficult to clearly 

disentangle this effect from the one previously discussed, because the expansion is obtained by a local 

decrease of the poloidal magnetic field, which also contributes to increase the connection length. We can 

still try to measure the flux expansion with the divertor index (𝐷𝐼) metrics proposed by [5]. Taken at the 

separatrix (outboard side), this gives 𝐷𝐼𝑆𝑁 ≈ 1.0, 𝐷𝐼𝑆𝑋 ≈ 3.7 and 𝐷𝐼𝑋𝐷 ≈ 4.0 for the SN, SX and XD 

configurations, respectively. We can see that both SX and XD have a similar level flux expansion, slightly 

larger (by less than 10%) in the XD case. As a consequence, we tend to believe that the different connection 

length has a larger influence on the effects we observed. 

If we let the upstream density increase by about 10%, the picture changes considerably. Figure 10 shows 

the outer target 𝑇𝑒 profiles for both SX and XD for almost pure D plasma, with 𝑍𝑒𝑓𝑓 ≈ 1.03. As we can see, 

in this case SX is clearly detached, while XD is not. Some light on the mechanism which produces 

detachment in this case is shed by Figure 11 and Figure 12, showing the behavior of the separatrix outer 

target density and temperature as a function of 𝑛𝑜𝑚𝑝 for the two considered configurations. Figure 11 

shows that SX presents a larger sensitivity of the downstream density to the upstream value, resulting in a 

jump of more than a factor 5 when 𝑛𝑜𝑚𝑝 increases from 4.5 × 1019 m-3 to 5.0 × 1019 m-3. Correspondingly, 

by looking at Figure 12 we see the electron temperature at the target dropping by about a factor 20. The 

behavior of XD is qualitatively similar, but the corresponding jump in density is smaller, and delayed at 

values 𝑛𝑜𝑚𝑝 > 5.0 × 1019 m-3. Within the frame of the model adopted, this difference can be explained by 

the different target geometries. In fact, as shown in Figure 1, SX presents a more closed configuration in 

comparison to XD, at least as far as the wall seen by the fluid model is concerned (blue lines in figure Figure 

1); as a consequence, recycling neutrals are directed in a region nearer to the strike point and colder in SX 

than in XD, so enhancing the recycling effect itself. However, we should be aware that the fluid model 

adopted for the neutrals throughout this work implies a relatively poor representation of the divertor 

geometry. As a consequence, the appearance of effects strongly depending on such details should be 

confirmed by further simulations adopting the full MC model for neutral transport, which enjoys the 

advantage of a much more detailed divertor representation. For the time being, observations of the 

previously mentioned effect in favor of early SX detachment should then be taken as preliminary. 

Conclusions and perspective 

In this paper we presented a first, preliminary discussion of the SX and XD divertor configurations, as 

possible alternative solutions to the power exhaust problem in DEMO, and compared them to the baseline 

SN. The study was performed with the SOLPS 5.1 code and fluid neutrals, which allows including a wealth of 

details of the magnetic equilibrium geometry, while accepting some simplifications in terms of wall 

geometry and physics details.  
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Our results suggest that the examined advanced divertor configurations can indeed perform better than 

the baseline SN, although none of them could detach the outer divertor plate at low 𝑛𝑜𝑚𝑝 without some 

impurity seeding (the Ar impurity in bundled charge states has been considered in the present study). At 

medium densities, the outer divertor detaches with some residual impurity injection (XD first), while at 

higher 𝑛𝑜𝑚𝑝 values outer target detachment is finally obtained even for almost pure plasma (SX first). 

However, the highest densities considered in this study might be too large if the currently expected 

pedestal top density limit is confirmed [2]. Consequently, we believe that at least some level of impurity 

injection will be mandatory in DEMO.  

The different behavior of XD and SX has been explained with differences in the connection length (at 

medium density) and wall shape (at higher density). However, while the magnetic field structure is fully 

included in our model, the finest details of the divertor geometry are not, so that the existence of effects 

relying on it should be confirmed in the future by more comprehensive simulations, including the EIRENE 

MC model for neutral transport. 
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Figure 12 

Tables 

 SX XD 

OD cooling (total) 39 MW 50 MW 

Cooling due to D  37 MW 35 MW 

Cooling due to Ar  2 MW 15 MW 
Table 1 

 

Captions 

Figure 1: Comparison of the divertor geometries considered in the paper. Left: SN, center: XD, right: SX. The 

red dotted line is the separatrix, the black line is the core boundary and the blue line joins the targets and 

wall boundaries 

Figure 2: Representation of the operational space for the three geometrical configurations analyzed. Points 

corresponding to temperatures lower and higher than 5 eV are distinguished. 

Figure 3: Outer target-to-midplane pressure ratio at the separatrix as a function of the strike point electron 

temperature. Two different outer mid-plane densities are considered, showing a relative independence on 

this parameter. 
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Figure 4: Fraction of the heat flux to the targets that actually reaches the outer one, as a function of the 

impurity seeding level. Two different outer mid-plane densities are considered. 

Figure 5: Electron temperature profiles at the outer target for XD and SX. In this case XD is detached while 

SX is not. 

Figure 6: Electron temperature profiles along the separatrix from X-point to target. XD has a much larger 

connection length, which favors radiation losses and detachment. 

Figure 7: Connection length from the outer mid-plane to the target at various radial positions for all the 

considered divertor configurations. 

Figure 8: Electron cooling rates for the various species considered in our study, as a function of the electron 

temperature. 

Figure 9: Density of various ionic species along the separatrix from the outer strike point towards the outer 

mid-plane. The electron temperature is used on the X-axis instead of the distance from the target to 

highlight which species can radiate more and where. Colder temperatures correspond to the target-side of 

the profiles. 

Figure 10: Electron temperature profiles at the outer target for a low-Z, high density case. In this case SX 

detaches more easily than XD. 

Figure 11: Electron density at the target as a function of the outer mid-plane density. 

Figure 12: Electron temperature at the target, as a function of the outer mid-plane density. 

Table 1: Distribution of the power volumetric losses in the outer divertor among the different atomic 

species for the SX and XD configurations 
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