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Mixed Virtual Elements for discrete fracture network
simulationsI
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bCONICET - INTECIN, Grupo LMNI. Buenos Aires, Argentina.

cDipartimento di Scienze Matematiche, Politecnico di Torino
Corso Duca degli Abruzzi 24, Torino, 10129, Italy

Abstract

The present work deals with the simulation of the flow in Discrete Fracture
Networks (DFN), using the mixed formulation of the Virtual Element Method
(VEM) on polygonal conforming meshes. The flexibility of the VEM in handling
polygonal meshes is used to easily generate a conforming mesh even in the case
of intricate DFNs. Mixed virtual elements of arbitrary polynomial accuracy
are then used for the discretization of the velocity field. The well posedness of
the resulting discrete problem is shown. Numerical results on simple problems
are proposed to show convergence properties of the method with respect to
known analytic solutions, whereas some tests on fairly complex networks are
also reported showing its applicability and effectiveness.

Keywords: Mixed Virtual Elements, Discrete Fracture Networks, Mixed
formulation, Fracture flows, Darcy flows
2010 MSC: 65N30, 65N50, 68U20, 86-08

1. Introduction

Effective flow simulations in underground fractured media are strategic in
several practical contexts: protection of water resources, geothermal applica-
tions, Oil&Gas enhanced production and geological waste storage. All these
applications share two possibly conflicting common characteristics: a high ac-
curacy and reliability is required, whereas the uncertainty on the geometry and
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on the data demands for a huge number of simulations in order to provide
probability distributions of the target quantities.

This work considers the problem of simulating the hydraulic head distribu-
tion in the subsoil, modeled as a Discrete Fracture Network (DFN) [1, 2, 3, 4, 5,
6], which is a randomly generated set of intersecting planar polygons resembling
the fractures in a surrounding porous medium. DFNs are usually characterized
by enormous geometrical complexities and by the presence of a large number
of fractures forming an intricate network of intersections. Many novel numeri-
cal approaches have been recently developed, in order to circumvent problems
arising in efficient flow simulations in realistic DFNs. One of the main diffi-
culties consists in the meshing process, since conventional approaches rely on
the conformity of the mesh at fracture intersections in order to enforce suitable
matching conditions. The generation of a mesh conforming to fracture intersec-
tions might have a high computational cost, or even fail, as a consequence of the
number of geometrical constraints, and could result in poor quality triangula-
tions for the presence of distorted elements. Furthermore, as already mentioned,
input data for DFN simulations are derived from probability distribution of soil
properties, thus requiring a large number of costly simulation to derive reliable
statistics on the quantity of interest.

Recently, a novel code for the simulation of the flow in DFNs with stochas-
tic input data was proposed in [7, 8, 9]. In [10, 11] the complexity of DFN
flow simulations is tackled resorting to dimensional reduction of the problem,
removing the unknowns in the interior of the fractures and rewriting the prob-
lems at the interfaces. In [12, 13] the authors use the eXtended Finite Ele-
ment Method (XFEM) in order to allow for the presence of interfaces in the
domain not conforming to the mesh. The XFEM is also used in [14, 15]. In
[16, 17, 18, 19, 20] the authors suggest the use of an optimization-based approach
on non-conforming meshes to avoid any problem related to the generation of the
mesh. The proposed optimization approach also provides a scalable resolution
algorithm [21], and is used in conjunction with different discretization choices,
ranging from standard finite elements, to the XFEM, [22, 23], or to the new
virtual element method [24]. Recently, techniques as the Mimetic Finite Dif-
ference method (MFD, [25, 26]) have been used for flow simulations in DFNs,
by [27, 28], as an example, and also the new Virtual Element Method (VEM,
[29, 30, 31, 32, 33, 34]) was proposed, in addition to the already mentioned ref-
erence [24], also in [35, 36]. In these last two works, in particular, the authors
take advantage of the flexibility of virtual elements to easily generate a polygo-
nal mesh of the fracture network that satisfies certain conformity requirements
with fracture intersections.

The use of mixed formulation in DFN simulations is a widely common choice,
for the possibility of a direct computation of the Darcy velocity; see among
others [12, 27, 28, 37, 38, 39, 40, 41, 42]. This improves the accuracy for
simulations in which the velocity is to be used as the transport field of an
advection-diffusion process of a passive scalar, as in the case of the evolution of
the concentration of a pollutant in the subsoil.

In the present work, the framework proposed in [35] is extended to the use
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of mixed virtual elements, thus combining the reliable meshing process used
therein to the mentioned advantages of the mixed formulation. The continuous
advection-diffusion-reaction problem in a DFN is presented in mixed form, in-
troducing suitable matching conditions at fracture intersections for the pressure
and velocity fields. The discrete formulation with mixed virtual elements of
arbitrary polynomial accuracy is then derived, and a proof of well posedness is
also provided. Numerical results on simple DFN configurations are first pro-
posed, showing convergence rates of the numerical solution to the known exact
solutions. Polynomial accuracy values ranging from k = 0 to k = 5 are con-
sidered. Afterwards, other numerical tests are shown on increasingly complex
networks, in order to highlight the viability and the effectiveness of the method
in dealing with realistic DFN configurations.

The presentation follows this outline: in Section 2 we describe the domain
of interest, establish some notations and write the continuous model that de-
scribes the hydraulic head distribution within the DFN. In Section 3 the discrete
formulation of the problem based on the mixed VEMs on each fracture is dis-
cussed and suitable coupling conditions at intersections are introduced. Well
posedness of the discrete problem is shown. Some notes on the implementa-
tion are given in Section 4. Finally, in Section 5 validation tests are shown on
advection-diffusion-reaction problems written on simple domains, together with
an analysis of the performances of the method in solving pure diffusion problems
on realistic DFNs.

We use the notation ‖·‖k,ω to indicate the Hk (ω)-norm of vectors or scalar

functions, on some set ω ⊂ R2. In the case of a vector v = (v1, v2), we intend,

e.g., ‖v‖20,ω =
∫
ω

(
v1(x, y)

2
+ v2(x, y)

2
)

dxdy. Moreover, the symbol Jv · nσKσ
denotes the jump (v · n+

σ ) − (v · n−σ ) across a segment σ, being n+
σ , n−σ the

unit normal vectors to σ with opposite directions. We have that nσ is the unit
normal vector to σ with one fixed orientation, and we observe that the definition
of the jump is independent from the choice of nσ.

2. The continuous problem

The geometrical setting for the problem of interest is a Discrete Fracture
Network Ω, that is a finite set of planar polygonal fractures intersecting in the 3D
space. Each fracture in Ω is denoted by Fi, for some index i = {1, . . . , N} = I,
whereas intersections between fractures are called traces and indicated by Γ`,
for ` = {1, . . . , L} = L. We assume, for simplicity, that each intersection occurs
between exactly two fractures, and we define, for each ` ∈ L, I` = (i, j), with
i < j, as the ordered couple of indices of those fractures meeting at Γ`, i.e.
Γ` = F̄i ∩ F̄j . For each fracture Fi, Li is the set of indices of those traces that
Fi shares with other fractures.

The boundary of Ω, ∂Ω is split in a Dirichlet part ΓD 6= ∅ and a Neumann
part ΓN with ∂Ω = ΓD∪ΓN and ΓD∩ΓN = ∅. Let us denote by h the hydraulic
head in Ω and by hi its restriction to Fi for i ∈ I. Let further Fi be subdivided
in a set of sub-domains Fi,j , j ∈ {1, . . . , Ni}, such that the traces lying on Fi are
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now part of the boundary of some of these sub-domains. Then, the hydraulic
head h in Ω is the solution of the following system of equations, which, for i ∈ I
and j ∈ {1, . . . , Ni} reads as:

div (−Ki∇hi + bi hi) + γi hi = fi in Fi,j ,

hi = hDi on ΓDi ∩ ∂Fi,j ,
(−Ki∇hi + bihi) · nΓNi = hNi on ΓNi ∩ ∂Fi,j ,

(1)

where Ki is a uniformly positive definite tensor expressing the transmissivity of
fracture Fi, whereas ∂Fi,j is the boundary of Fi,j , and ∂Fi is the boundary of
Fi which is split in a Dirichlet part ΓDi = ΓD ∩ ∂Fi on which the value hDi is
prescribed and a Neumann part ΓNi = ΓN ∩ ∂Fi. Across ΓNi a total (diffusive
and advective) flux is imposed equal to hNi. Finally nΓNi

is the outward unit
normal vector to the Neumann boundary.

Problems on the fractures are coupled together by natural matching condi-
tions expressing the continuity of h at traces and the balance of fluxes: for all
` ∈ L, if I` = (i, j),

hi|Γ` − hj |Γ` = 0 , (2)

∂hi
∂niΓ`

+
∂hj

∂njΓ`
= 0 . (3)

where niΓ` is the unit normal vector to Γ` with a fixed orientation on Fi.
In order to introduce the variational formulation of problem (1), let us set

the following functional spaces: for i ∈ I and j = 1, . . . , Ni,

H (div, Fi,j) :=
{
v ∈

[
L2 (Fi,j)

]2
: div(v) ∈ L2 (Fi,j)

}
,

H0 (div, Fi,j) :=
{
v ∈ H (div, Fi,j) : (v · nΓNi)

∣∣
∂Fi,j

= 0
}
.

We define

Vi,0 := {vi := (vi,j)j=1,...,Ni : vi,j ∈ H0 (div, Fi,j) ∀j ∈ {1, . . . , Ni}} ,
Vi := {vi := (vi,j)j=1,...,Ni : vi,j ∈ H (div, Fi,j) ∀j ∈ {1, . . . , Ni}} ,
V := {v := (vi)i=1,...,N : vi ∈ Vi,0 ∀i ∈ I} ,
Q :=

{
q = (qi)i=1,...,N : qi ∈ L2 (Fi) ∀i ∈ I

}
,

G :=
{
µ = (µ`)`=1,...,M : µ` ∈ H

1
2 (Γ`) ∀` ∈ L

}
,
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endowed with the following natural norms:

‖v‖Vi :=

‖v‖20,Fi +

Ni∑
j=1

‖div(v)‖20,Fi,j

 1
2

∀i ∈ I,v ∈ V ,

‖v‖V :=

(∑
i∈I
‖v‖2Vi

) 1
2

∀v ∈ V ,

‖q‖Q :=

(∑
i∈I
‖q‖20,Fi

) 1
2

∀q ∈ Q ,

‖µ‖G :=

(∑
`∈L
‖µ`‖21

2 ,Γ`

) 1
2

∀µ ∈ G ,

in which ‖v‖`,ω denotes, as usual, the norm of function v in H` (ω).
By defining νi := K−1

i , βi := K−1
i bi, ∀i ∈ I, and introducing, on each

fracture Fi, i ∈ I the new variables ui := −Ki∇hi + bihi and for each ` ∈ L
formally defining λ` = h|Γ` , we can recast (1) in the following dual variational
form:

Find u = u0 + uN , with u0 ∈ V, h ∈ Q and λ ∈ G such that
ai (u0,v)− di (v, h)− bi (h,v) + gi (λ,v) =

= −〈vi · n, hDi〉± 1
2 ,ΓDi

− ai (uN ,v) ∀v ∈ V ,

di (u0, q) + ci (h, q) = (f, qi)Fi − di (uN , q) ∀q ∈ Q,

(4)

where uN is any function such that, being ui,N = uN |Fi ∈ Vi, it is ui,N ·nΓNi
=

hNi and we have defined

ai (w,v) := (νwi,vi)Fi ∀w,v ∈ V ,
bi (q,v) := (qi, βi · vi)Fi ∀q ∈ Q,v ∈ V ,
ci (p, q) := (γipi, qi)Fi ∀p, q ∈ Q , (5)

di (v, q) := (div(vi), qi)Fi ∀v ∈ V, q ∈ Q , (6)

gi (µ,v) :=
∑
`∈Li

〈q
vi · niΓ`

y
Γ`
, µ`

〉
± 1

2 ,Γ`
∀µ ∈ G, v ∈ V .

Problems (4) on the fractures are coupled by the following variational equations,
which follows from (3):〈

{{u}}Γ` , λ`
〉
± 1

2 ,Γ`
= 0 ∀λ` ∈ H

1
2 (Γ`) , ∀` ∈ L , (7)
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where, if I` = (i, j), {{u}}Γ` :=
q
ui · niΓ`

y
Γ`

+
r
uj · njΓ`

z

Γ`
. After denoting by:

a (w,v) :=
∑
i∈I

ai (w,v) ∀w,v ∈ V,

b (q,v) :=
∑
i∈I

bi (q,v) ∀q ∈ Q, v ∈ V,

c (p, q) :=
∑
i∈I

ci (p, q) ∀p, q ∈ Q,

d (v, q) :=
∑
i∈I

di (v, q) ∀v ∈ V, q ∈ Q,

g (µ,v) :=
∑
i∈I

gi (µ,v) ∀µ ∈ G, v ∈ V,

problem (4)-(7) can be re-stated as the following system of equations on the
whole network: find u = u0 + uN , with u0 ∈ V, h ∈ Q and λ ∈ G such that

a (u0,v)− b (h,v)− d (v, h) + g (λ,v) =

= − (hD,v · n)ΓD
− a (uN ,v) ∀v ∈ V ,

d (u0, q) + c (h, q) = (f, q) − d (uN , q) ∀q ∈ Q ,

g (µ,u0) = −g (µ,uN ) ∀µ ∈ G .

(8)

Notice that in the above problem, h is in general discontinuous at fracture
intersections, and λ is playing the role of its trace. By classical arguments and
assumptions on the regularity of the data, (see e.g. [43]), it can be proven that,
if problem (1)-(3) is well posed, (8) has a unique solution, which coincides with
the one of (1)-(3) [32, 43].

3. The discrete problem with the Mixed Virtual Element Method

The mixed formulation for the Virtual Element Method (VEM) has been
recently presented in [30], with a followup work generalizing the method in [32],
and, due to its recent introduction, the only work regarding its application,
at the time of writing, is [44], which deals with Stokes flow. Here, we use a
Mixed VEM space to discretize the velocity space V, while the pressure and
trace spaces Q and G are discretized in a standard way.

After a brief presentation of the mesh generation process proposed for the
present work, a description of the mixed Virtual Element in the context fo DFN
flow simulation is provided. The reader is, however, referred to [30, 32] for most
of the theoretical results concerning the VEM.

3.1. Meshing process

Let i ∈ I be fixed and let us consider a generic fracture Fi in Ω with traces
Γ`, ` ∈ Li. The local mesh on the fracture is obtained starting from a regular
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Fi
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Figure 1: Detail of the VEM conforming mesh at two intersecting fractures

triangular mesh, that is not required to be geometrically conforming with the
traces. The triangular elements of this mesh that intersect the traces are then
cut into polygons that do not cross the traces. This process is performed in-
dependently on each of the fractures in Ω, thus providing a polygonal mesh on
each fracture that is locally conforming to the traces, i.e. with elements that
do not cross any of the traces Γ`, ` ∈ Li of Fi, but instead cover them with
edges of the triangulation. A globally conforming mesh of the whole network is
finally obtained adding, on each trace Γ` on fracture Fi the vertexes on Γ` of
the mesh of fractures Fj , with i, j ∈ I`: this increases the original number of
edges of the mesh elements neighboring Γ`, forming polygons with flat angles at
some vertexes. This discretization technique is the same proposed in [35] and
exploits the flexibility of virtual elements in handling arbitrary polygonal ele-
ments. An example is proposed in Figure 1, where two intersecting fractures are
shown. The shadowed regions on both fractures represent the original triangles
that are subsequently cut into polygons. The trace segment is prolonged up to
meeting the first edge in the mesh and new polygons are created not crossing
the prolonged segment. The numbers in some of the new elements on Fi repre-
sent the number of edges of the new polygonal mesh elements, whereas the red
dots indicate mesh vertexes on the trace, shared by the two fractures. It can
be noticed that in most cases a red dot corresponds to a polygon vertex with a
flat angle.

After the generation of the globally conforming mesh, each trace Γ`, ` ∈ L
is split by mesh vertices into nΓ`

e segments, each denoted by σ`t , t = 1, . . . , nΓ`
e .

In order to ease the presentation of the method it is convenient to assume that
to each segment σ`t correspond two identical mesh edges on each fracture, thus
having, in the global conforming mesh, a total of four copies of each trace edge,
with their own outward unit normal vector. An example is shown in Figure 2,
where a generic fracture Fi in Ω is shown, with a single trace Γ1 perpendicular
to the horizontal boundary edges, and passing through their midpoints. As
shown, the original trace segment σ1

1 ≡ Γ1 generates two mesh edges, e1,i,+
1 and
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Γ1 ≡ σ1
1

e1,i,+1 e1,i,−1

n+n−
1

2
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Figure 2: Schematic of the mesh on a selected fracture with the degrees of freedom of the
discrete spaces for Virtual Elements of order k = 1

e1,i,−
1 each endowed with an outward unit normal vector, n+, n−, with opposite

direction.
Let us denote by Tδ,i the mesh obtained in such a way on each fracture, Eδ,i

being the set of its edges, and we also set Tδ = ∪∈ITδ,i and Eδ = ∪i∈IEδ,i. For
each mesh element E ∈ Tδ, we set (xE , yE) to be the barycenter of E, and hE
to be the diameter of E.

3.2. Virtual spaces

Let i ∈ I and E ∈ Tδ,i. The local VEM space for the velocity variable on
each element E is

VEδ,i = {vδ ∈ H (div, E) : vδ · ne ∈ Pk(e) ∀e ∈ ∂E,
div(vδ) ∈ Pk(E) , and rot(vδ) ∈ Pk−1(E)} , (9)

in which Pk(ω) is the space of polynomials of maximum order k, and e ⊂ ∂E is
one of the edges of the boundary of E, and ne is the unit outward normal vector
to edge e. The condition on the rotor in (9) is required to fix the dimension of
VEδ,i. The global discrete space on each element E is then:

Vδ,i :=
{
vδ ∈ Vi : vδ|E ∈ VEδ,i ∀E ∈ Tδ,i

}
. (10)

We remark that functions in Vδ,i have a continuous normal component in sub-
fractures, whereas we have in general

q
vδ,i · niΓ`

y
6= 0, ∀` ∈ Li. There are

many choices for the degrees of freedom (DOFs) of functions in Vδ,i, see, e.g.
[30, 32, 45]. In order to describe the DOFs used for the present work, let us
introduce the following set of scaled monomials on each mesh element E, that
span the space Pk(E) of dimension nk = (k + 1)(k + 2)/2:

Mk (E) =

{
mα(x, y) =

(x− xE)α1(y − yE)α2

hα1+α2

E

, |α| = α1 + α2 ≤ k
}
.
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Then let us introduce also the space

∇Pk+1(E) :=
{
p ∈ [Pk(E)]

2
: p = ∇p̂ for some p̂ ∈ Pk+1(E)

}
.

This space has dimension nk+1 − 1. Moreover, let (∇Pk+1(E))
⊥

be the

L2 (E) orthogonal complement of ∇Pk+1(E) in (Pk(E))
2
, so that

(Pk(E))
2

= (∇Pk+1(E))⊕ (∇Pk+1(E))
⊥
.

We remark that, in what follows, the space (∇Pk+1(E))
⊥

could be replaced
by any other space (∇Pk+1(E))

?
satisfying (∇Pk+1(E)) ⊕ (∇Pk+1(E))

?
=

(Pk(E))
2
. The space (∇Pk+1(E))

⊥
is here used only for presentation purposes,

whereas for the implementation of the method the choice described in [46] is
used, which is computationally less expensive.

The dimension of the space (∇Pk+1(E))
⊥

is

dim
[
(∇Pk+1(E))

⊥
]

= dim
[
(Pk(E))

2
]
− dim [∇Pk+1(E)] =

= 2nk − nk+1 + 1 = 2
(k + 1)(k + 2)

2
− (k + 2)(k + 3)

2
=

(k + 2)(k − 1)

2
+ 1 ,

from which we deduce that (∇Pk+1(E))
⊥

is not empty when k ≥ 1. The space
∇Pk+1(E) is spanned by

∇Mk+1 (E) :=
{
m ∈ [Mk (E)]

2
: m = ∇m̂ for some m̂ ∈Mk+1 (E) , m̂ 6= 1

}
,

whose orthogonal component in [Pk(E)]
2

is denoted by (∇Mk+1 (E))
⊥

.
As degrees of freedom on VEδ,i we choose, ∀vδ ∈ Vδ,i,

• the value of vδ · ne at k + 1 internal points on e, for each edge e ⊂ ∂E;

• if k ≥ 1 , the nk − 1 products (vδ,m)E for all m ∈ ∇Mk (E);

• if k ≥ 1, the (k + 2)(k − 1)/2 + 1 products
(
vδ,m

⊥)
E

for all m ∈
(∇Mk+1 (E))

⊥
;

thus leading to the following number of degrees of freedom, nEdof for a polygonal
element E ∈ Tδ with nEe vertices:

• if k = 0, nEdof = nEe ;

• if k ≥ 1, nEdof = (k + 1)nEe + k(k + 2).

A schematic of the degrees of freedom for the discrete VEM space is reported
in Figure 2, in the case of a polynomial accuracy k = 1. According to the selected
polynomial accuracy, two degrees of freedom are associated to each mesh edge
and are marked with red dots and a consecutive numbering (the location of
the DOFs in the picture is only indicative). Two DOFs are associated to each
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copy of the edge lying on the trace and we remark that this allows for a velocity
solution with discontinuous normal component across the traces of each fracture.
The set of DOFs for the velocity is completed by the two moments with respect
to the monomials in ∇M1 (E), denoted with a star shaped blue marker inside

the element, and the moment with respect to (∇M2 (E))
⊥

, marked with green
squares inside the element.

When building the global velocity space Vδ,i on each fracture Fi, continuity
of the normal component of vδ ∈ Vδ,i is enforced across each mesh element
edge that does not lie on any of the traces Γ`, ` ∈ Li, thus allowing jumps of
the normal component of the velocity across fracture intersections both on each
fracture and across intersecting fractures.

As in the case of the primal VEM formulation, the shape functions in the
local VEM space are not explicitly known in general except for their DOFs,
and thus computability of operators on the VEM functions is one of the key
aspects in the VEM framework. Let us observe that the divergence of each
VEM function can be exactly computed, by means of the set of DOFs. Indeed,
since div(vδ)|E ∈ Pk(E), we can exactly compute its components in the basis
Mk (E) since, by Green’s formula we have:

(div(vδ),m)E = − (vδ,∇m)E + (vδ · ne,m)∂E ∀m ∈Mk (E) , (11)

and the right-hand side is computable using the first two sets of degrees of
freedom. Having computed div(vδ), we can also compute the component-wise
L2 (E)-projection of vδ ∈ VEδi on the space of polynomials of order k: Π0

k : VEδi →
[Pk(E)]

2
, defined by(

Π0
kvδ,m

)
E

= (vδ,m)E ∀m ∈ [Mk (E)]
2
.

The right-hand side of this latter equation can be computed observing that,
for any given m ∈ Mk (E), we can decompose m = m∇ + m⊥, where m∇ ∈
∇Mk+1 (E) and m⊥ ∈ (∇Mk+1 (E))

⊥
. Let m̂ ∈ Mk+1 (E) be such that ∇m̂ =

m∇; then

(vδ,m)E =
(
vδ,m

∇)
E

+
(
vδ,m

⊥)
E

= (vδ,∇m̂)E +
(
vδ,m

⊥)
E

=

= − (div(vδ), m̂)E + (vδ · n∂E , m̂)∂E +
(
vδ,m

⊥)
E
,

and all terms on the last line are computable knowing div(vδ) and the first and
last set of degrees of freedom of vδ.

Concerning the pressure variable, we define the set of DOFs on each mesh el-
ement E as the nk moments with respect to the monomial basis Mk (E), and the
global discrete space for the pressure is Qδ =

{
qδ : qδ|Fi ∈ Qδ,i, i = 1, . . . , N

}
,

with

Qδ,i :=
{
qδ ∈ L2(Fi) : qδ|E ∈ Pk(E) ∀E ∈ Tδ,i

}
.

Note that no requirements of continuity are made for this space.
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Let us now callM` = {µ`δ,ξ ξ = 1, . . . , nΓ`
dof} the set of the degrees of freedom

introduced on all the (duplicated) mesh edges e ∈ Eδ lying on trace Γ`, ` ∈ L,
and then let us set the space Gδ as:

Gδ =
⋃
`∈L
M`.

3.3. Mixed VEM discrete formulation

Let us fix i ∈ I and let us define

aδi : Vδ,i × Vδ,i → R, bδ,i : Qδ,i × Vδ,i → R

such that, ∀vδ,wδ ∈ Vδ,i, qδ ∈ Qδ,i:

aδ,i (wδ,vδ) :=
∑
E∈Tδ,i

(
νΠ0

kwδ,Π
0
kvδ
)
E

+ SE
((
I −Π0

k

)
wδ,

(
I −Π0

k

)
vδ
)
,

(12)

bδ,i (qδ,vδ) :=
∑
E∈Tδ,i

(
qδ, β ·Π0

kvδ
)
E
, (13)

where SE : Vδ,i × Vδ,i → R is a bilinear form such that ∀vδ ∈ Vδ,i:

∃α∗, α∗ > 0: α∗a
E
i (vδ,vδ) ≤ SE (vδ,vδ) ≤ α∗aEi (vδ,vδ) ∀vδ ∈ ker Π0

k ,

in which aEi (·, ·) is the restriction of the bilinear form ai(·, ·) to element E ⊂ Tδ,i.
Then, setting ∀vδ,wδ ∈ Vδ, and qδ ∈ Qδ

aδ (wδ,vδ) :=
∑
i∈I

aδ,i
(
wδ|Fi , vδ|Fi

)
, bδ (qδ,vδ) :=

∑
i∈I

bδ,i
(
qδ|Fi , vδ|Fi

)
,

we write the following discrete problem: find u0δ ∈ Vδ, hδ ∈ Qδ, λδ ∈ Gδ such
that:

aδ (u0δ,vδ)− bδ (hδ,vδ)− d (vδ, hδ) + g (λδ,vδ) =

= − (hδD,vδ · n)ΓD
− aδ (uδN ,vδ) ∀vδ ∈ Vδ ,

d (u0δ, qδ) + c (hδ, qδ) = (f, qδ) − d (uδN , qδ) ∀qδ ∈ Qδ ,
g (µδ,uδ0) = −g (µδ,uδN ) ∀µδ ∈ Gδ .

(14)

3.4. Well-posedness of the discrete problem

In order to prove the well posedness of (14), let us observe that according
to the definition of the space Gδ an inf-sup condition holds for the operator
g : Gδ × Vδ 7→ R. Indeed we have:

∀µδ ∈ Gδ,∃v∗δ ∈ Vδ :
|g (µδ,v

∗
δ)|

‖v∗δ‖Vδ
= 1 (15)
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choosing v∗δ as the basis function of the VEM space corresponding to the degree
of freedom µδ, and recalling that basis functions in Vδ have discontinuous normal
components across the traces on each fracture.

Then we place ourselves in the space Vδ = Vδ ∩ ker (g), having the same
local approximation properties of Vδ, and we re-write (14) as: find u0δ ∈ Vδ,
hδ ∈ Qδ such that:

aδ (u0δ,vδ)− bδ (hδ,vδ)− d (vδ, hδ) =

= g (µδ,uδN )− (hδD,vδ · n)ΓD
− aδ (uδN ,vδ) ∀vδ ∈ Vδ ,

d (u0δ, qδ) + c (hδ, qδ) = (f, qδ) − d (uδN , qδ) ∀qδ ∈ Qδ ,

whose well-posedness is proven in [32].

4. Implementation

This section is aimed at proving practical details of the algorithm, from the
discretization strategy to the assembly of matrices that have to be computed.

For every fracture Fi, with i ∈ I, let us denote by nvdof,i the number of

DOFs for the velocity space and npdof,i the number of DOFs for the pressure

space on fracture Fi and let ndof,i := nvdof,i+npdof,i. It is also nvdof =
∑
i∈I n

v
dof,i

and npdof =
∑
i∈I n

p
dof,i defined as the total number of DOFs throughout the

whole network for the velocity and pressure spaces, respectively. We collect the
degrees of freedom for the velocity space in a vector ū ∈ Rnvdof , and the degrees
of freedom for the pressure in a vector h̄ ∈ Rn

p
dof .

Let us introduce matrix Ai ∈ Rn
v
dof,i×nvdof,i defined as

(Ai)jk = aδi (ϕi,k,ϕi,j)

representing the discrete operator aδ,i on each fracture Fi, i = 1, . . . , N , defined
as in (12), and in which ϕi,j , j = 1, . . . , nidof,i are the VEM basis functions of the
finite-dimensional discrete space Vδ,i for the velocity on Fi. The computation of
the projection operator is as in (11), whereas the stabilization term SE(vδ,wδ),
for vδ,wδ ∈ Vδ,i is defined as the euclidean scalar product of the degrees of
freedom of vδ,wδ multiplied by a factor νE := h2

Eν(xE , yE). Furthermore, being
χi,k ∈ Qδ,i, for k = 1, . . . , npdof,i, the basis functions of the finite-dimensional
space for the pressure variable on Fi, we denote by:

(Bi)jk = bδ,i (ϕi,k, χi,j) (Ci)jk = ci (χi,k, χi,j) (Di)jk = di (ϕi,k, χi,j)

the matrices associated with the bilinear forms bδ,i in (13), ci in (5) and di
in (6), respectively. It is then possible to write an independent saddle point
problem on each fracture Fi of the network, expressing the advection diffusion
problem on each fracture and corresponding to the first two equations in (14).
The structure of the saddle point matrix Ki ∈ Rndof,i×ndof,i , i ∈ I is:

Ki =

[
Ai −Bi −Di

Di
ᵀ Ci

]
. (16)
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We then construct column vectors fi ∈ Rndof,i , i ∈ I, as the vector of load
values and boundary condition terms. Assembling matrices on the whole DFN
we have:

K =


K1 0 · · · 0

0 K2 · · ·
...

...
...

. . .
...

0 · · · · · · KN

 and f =


f1
...
...
fN

 .
We remark that matrices Ki are singular for fractures Fi, i ∈ I with pure

Neumann boundary conditions, the uniqueness of the solution deriving from
the matching among all the fractures on the network, which is given by the last
equation in (14), not yet enforced here.

To this end, let us recall that each trace Γ`, ` ∈ L is given by the union
of segments σ`t , t = 1, . . . , nΓ`

e . To each segment σ`t of Γ` four mesh edges are

associated, denoted by {e`,i,+t , e`,i,−t , e`,j,+t , e`,j,−t } := E`δ,t ⊂ Eδ, with i, j ∈ I`
and the + or − sign is chosen depending if the mesh edge belongs to the element
on the right or left side of σ`t , respectively, after fixing an orientation for σ`t on
Fi and Fj , independently. On a trace Γ`, for a given polynomial accuracy k,

we associate k + 1 DOFs to each edge e`,i,?t ∈ E`δ,t, with ? = + or − and we

denote by u`,i,?t,ξ , ξ = 1, . . . , k+ 1 each of these DOFs. It is possible to introduce

a function κ, such that, for ` ∈ L, i ∈ I`, ? ∈ {+,−}, t = 1, . . . , nΓ`
e , and

ξ = 1, . . . , k+1, the number κ(`, t, ξ, i, ?) ⊂ 1, . . . , nvdof corresponds to the index

of the degree of freedom u`,i,?t,ξ in the global numbering. For each trace Γ`, for

each t = 1, . . . , nΓ`
e it is possible to write k+ 1 conditions enforcing the balance

of the normal component of the velocity at fracture intersections, by simply
setting to zero the sum of the basis functions on the edges in E`δ,t as follows: for
ξ = 1, . . . , k + 1:

Λ`,t,ξū = 0,

being Λ`,t,ξ ∈ Rnvdof defined as:

Λ`,t,ξ :=
( κ1 κ2 κ3 κ4

0 · · · 1 · · · 1 · · · 1 · · · 1 · · · 0

)
,

and, for i, j ∈ I`, (κ%)%=1,...,4 is the ordered set of the values:

{κ(`, t, ξ, i,+), κ(`, t, ξ, i,−), κ(`, t, ξ, j,+), κ(`, t, ξ, j,−)}.
Then it is possible to collect column-wise row vectors Λ`,t,ξ for ` ∈ L, t =

1, . . . , nΓ`
e , and ξ = 1, . . . , k + 1 as to form matrix Λ ∈ R

(
(k+1)

∑
`∈L n

Γ`
e

)
×nvdof ,

and then matrix L = [Λ,0p], with 0p ∈ Rn
p
dof×n

p
dof being the null matrix. Finally,

if we let λ be the vector of values of the Lagrange multipliers of the system, and
setting s = [ūᵀ, h̄ᵀ]ᵀ we have that the final linear system corresponding to the
discrete problem (14) is: [

K Lᵀ

L O

] [
s
λ

]
=

[
f
0

]
. (17)
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F1

F2

F3

Figure 3: BP1: spatial distribution of fractures

This type of system is in the standard form that arises when applying domain
decomposition methods. We refer the reader to [47, 48, 49, 50].

5. Numerical results

Let us now show some numerical tests performed on networks of increasing
complexity. Approximation spaces with polynomial accuracy up to order k = 5
are considered: the mixed discrete VEM space is used for the space of the
velocity and the space of element-wise polynomials of the same order is used for
the pressure space.

The first two considered problems take into account simple networks of up to
three fractures, for which an analytic solution is known, and convergence curves
are presented to compare the obtained convergence rates with the optimal ones
reported in [32]. Subsequently some simulations on more complex DFNs are
proposed, aimed at showing the applicability of the method, and also to provide
some qualitative insight on the behaviour of the method.

5.1. Benchmark problems

As a first example, a 3 fracture, 3 trace network is analyzed, labeled BP1.
The domain is the same as the one in [35], and is shown in Figure 3. Here
an advection-diffusion-reaction problem is considered, with non constant coeffi-
cients and it is solved in mixed formulation.

The computational domain Ω is given by the union of fractures F1, F2 and
F3, defined as follows:

F1 =
{

(x, y, z) ∈ R3 : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, z = 0
}
,

F2 =
{

(x, y, z) ∈ R3 : −1 ≤ y ≤ 1, −1 ≤ z ≤ 1, x = 0
}
,

F3 =
{

(x, y, z) ∈ R3 : −1 ≤ z ≤ 0, −1 ≤ x ≤ 1, y = 0
}
,
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with three intersections:

Γ1 =
{

(x, y, z) ∈ R3 : −1 ≤ x ≤ 1, y = 0, z = 0
}
,

Γ2 =
{

(x, y, z) ∈ R3 : −1 ≤ y ≤ 1, z = 0, x = 0
}
,

Γ3 =
{

(x, y, z) ∈ R3 : −1 ≤ z ≤ 0, x = 0, y = 0
}
.

Introducing a fracture-local reference system (x̂, ŷ) we define, on each fracture
Fi, i = 1, . . . , 3:

Ki(x̂, ŷ) =

(
1 + ŷ2 −x̂ŷ/2
−x̂ŷ/2 1 + x̂2

)
,

bi(x̂, ŷ) =
(
x̂− ŷ, ŷ − 1

)
,

γi(x̂, ŷ) = x̂3 + ŷ ,

and the problem is formulated as in (1), being the load terms fi, i = 1, . . . , 3
such that the exact solution on each fracture is:

h1(x, y) = |x|(1 + x)(1− x)y(1 + y)(1− y),

h2(y, z) = y(1 + y)(1− y)|z|(1 + z)(1− z),
h3(z, x) = z(1 + z)(1− z)x(1 + x)(1− x),

which is shown in Figure 3 interpolated on an example mesh, with coloring
proportional to the hydraulic head values. The problem is solved on meshes
with a number of degrees of freedom ranging from about 1 × 102 to about
6×104 and the following error norms are considered to evaluate accuracy of the
numerical solution:

herr =

(∑
E∈Tδ

‖h− hδ‖2E

) 1
2

,

uerr =

(∑
E∈Tδ

∥∥u−Π0
kuδ
∥∥2

E

) 1
2

,

(∇ · u)err =

(∑
E∈Tδ

‖∇ · (u− uδ)‖2E

) 1
2

.

Figure 4 shows convergence rates of the above quantities against the number of
DOFs when the computational mesh is refined. The various considered polyno-
mial accuracy orders, ranging from k = 0 to k = 5 are reported in different plots.
In all cases the expected convergence rates are obtained, with some instances of
superconvergence for the pressure variable for coarser meshes. Figure 5 displays,
instead, convergence curves of herr, uerr and (∇ · u)err against DOF numbers
when the polynomial accuracy order is increased from k = 0 to k = 5. Four
different fixed geometrical meshes are reported. In all cases it is possible to
observe exponential convergence rates.
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Figure 4: BP1: convergence curves of the computed error norms against the number of DOFs
at refining the mesh
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Figure 5: BP1: convergence curves of the computed error norms against the number of DOFs
at increasing values of the polynomial accuracy on four meshes
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Figure 6: BP2: spatial distribution of fractures

Table 1: BP2: experimental convergence rates against DOF number

Order herr uerr (∇ · u)err
0 0.5210 0.5144 0.5015
1 1.0376 0.9989 0.6021
2 1.5171 1.1006 0.5135
3 1.5540 1.1569 0.5550
4 1.4054 1.1267 0.5329
5 1.4794 1.1592 0.4907

The second benchmark problem, labeled BP2, revisits a 2 fracture DFN, also
studied in [35]. This problem is interesting as it allows us to test the method
when applied to geometrical configurations with the presence of a trace ending
in the interior of some fracture, which causes a loss of regularity in the solution,
also away from the traces. The computational domain Ω = F1 ∪F2 is displayed
in Figure 6, and the two fractures, F1 and F2 are defined as:

F1 =
{

(x, y, z) ∈ R3 : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, z = 0
}
,

F2 =
{

(x, y, z) ∈ R3 : −1 ≤ x ≤ 0, −1 ≤ z ≤ 1, y = 0
}
,

intersecting in the trace Γ =
{

(x, y, z) ∈ R3 : y = 0, z = 0 and − 1 ≤ x ≤ 0
}

,
whose tip is in the interior of F1.

The problem is as follows:
−∆h = f1 in F1 \ Γ,

−∆h = f2 in F2 \ Γ,

h = 0 on ∂Ω \ Γ∗D,

h = (z2 − z4) cos(π/4) on Γ∗D,

being Γ∗D the portion of the boundary of Ω with a non-null Dirichlet boundary
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Figure 7: BP2: discrete solutions for fracture 1 and orders k = 0 and k = 2 on two different
geometrical meshes with approximately the same number of DOFs
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Figure 8: BP2: convergence curves of the computed error norms against the number of DOFs
at increasing values of the polynomial accuracy on four meshes
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condition, as shown in Figure 6. The forcing terms fi, i = 1, 2 are such that the
exact solution for this problem is:

h1(x, y, z) = − cos

(
1

2
arctan2(x, y)

)
(x2 − 1)(y2 − 1)(x2 + y2),

h2(x, y, z) = cos

(
1

2
arctan2(z, x)

)
(z2 − 1)(x2 − 1)(z2 + x2),

where arctan2(x, y) is the inverse tangent function with 2 arguments, that re-
turns the appropriate quadrant of the angle whose tangent is y/x. We re-
mark that the regularity of the solution is such that h1 ∈ H2 (F1 \ Γ) but
h1 /∈ H3 (F1 \ Γ). The exact solution is reported in Figure 6, where the col-
oring is proportional to the hydraulic head, and an example mesh is also shown.
The computed numerical solution hδ is reported in Figure 7(a)-(b) for orders of
polynomial accuracy k = 0 and k = 2, respectively, on fracture F1. A finer mesh
is used for the lower order approximation in order to have a similar number of
DOFs for the two reported solutions (3109 and 3071 DOFs respectively).

Convergence rates against DOFs for approximation spaces of polynomial ac-
curacy of orders from 0 to 5 are shown in Table 1, whereas convergence curves
for the error norms herr, uerr and (∇·u)err against DOF numbers for increasing
polynomial order k = 0, . . . , 5 are displayed in Figure 8, for four different fixed
polygonal meshes. As expected, given the low regularity of the solution, con-
vergence rates for the error in the pressure variable does not improve increasing
the accuracy of the approximation space from order 2 onward, whereas the con-
vergence rates concerning the velocity field and its divergence do not improve
from approximation orders k = 1 and k = 0 onward, respectively. It can be
noticed that in practical DFN configurations, a high regularity of the solution
should not be expected due to the presence of traces ending in the interior of
the fractures.

5.2. DFN simulations

This subsection is devoted to the description of results obtained applying the
method to the study of bigger networks. Throughout this subsection a maximum
level of polynomial accuracy k = 2 is used. At first, a small-sized 6 fracture and
6 trace DFN is considered, labeled DFN6. Despite its simplicity, it serves to give
a clear description on how the method performs, and the insight it provides can
be easily carried over to more complex problems. The geometrical domain Ω for
this experiment is shown in Figure 9, along with an example computed solution
in which the grading colors are proportional to hydraulic head values. The
Laplace problem in mixed form is solved in Ω and, with reference to Figure 9, a
unitary Neumann boundary condition is imposed on the edge marked with ΓN1

on F1 (also called source fracture), whereas a zero Dirichlet boundary condition
is imposed on the edge marked by ΓD5 on F5 (the sink fracture). All other
fracture edges are insulated. Three different meshes are considered, as detailed
in Table 2, in which the mesh parameter δ corresponds to the maximum element
diameter of the original triangular mesh.
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The results reported in Figures 10-12 are obtained on the finest mesh con-
sidered. Figure 10 displays the velocity field on fracture F2 for a solution with
a polynomial accuracy k = 1; the velocity fields obtained for values of k = 0
and k = 2 are practically indistinguishable. Fracture F2 has four traces Γ`,
` = 1, . . . , 4 given by the intersections of F2 with fractures F1, F3, F4 and F6,
respectively. As expected, flow enters F2 through trace Γ1 that is shared by
F2 and the source fracture, and leaves the fracture through traces Γ2 and Γ4.
Trace Γ3 connects F2 to F4, which is an insulated fracture: indeed it can be seen
that there is both flux entering trace Γ4 and leaving it, with a net balance of
zero flux (see the following Table 4). Figures 11(a)-(c) show the solution hδ on
fracture F2 for the three different polynomial accuracy values. It can be noticed
that pressure head values are quite similar among the three pictures and, even
though there is no condition for pressure head continuity imposed by problem
formulation (the functions in the pressure space are discontinuous across mesh
elements), the solutions for orders 1 and 2 nevertheless exhibit a practically
continuous behavior.

We introduce a quantity ∆h defined as:

∆2
h =

1

L2

∑
`∈L
‖hav,i,` − hav,j,`‖20

with i, j ∈ I`, and L is the number of traces in the network. The quantity
hav,i,` is the average of the discrete pressure on the two sides of trace Γ` on
fracture Fi, for i ∈ I, ` ∈ Li, and thus ∆h is a measure of how discontinuous
the pressure head is in the obtained solution across the traces, averaged by the
number of traces. Since the discrete solution is discontinuous across each mesh
edge, it is not possible to attain a zero value for ∆h, but it is expected that its
value decreases when the approximation space is increased. The obtained values
of ∆h are shown in Table 3 for the various meshes and the different orders of
accuracy k. It can be seen that, as expected, the quantity ∆h decreases both
when the mesh is refined and when the order of polynomial accuracy is increased,
showing a desired converging behavior towards a solution that is continuous at
the traces.

In Figure 12 the flux along trace Γ4 = F2 ∩ F6 is presented for the finest
mesh (δ = 0.26), with a comparison among the different accuracy orders. In all
cases the approximations are similar and, as expected, second order elements
are able to better reproduce details in the flux function, such as larger variations
over small distances, while lower order elements are capable at capturing the
mean value of the flux exchange. Practically the same net flux is obtained when
integrating the complete profile in all cases.

Table 4 details the flux exchange in fractures and traces for the finest consid-
ered mesh and a polynomial accuracy k = 0: rows correspond to traces, whereas
columns to fractures. The last row contains the sum of all the incoming and
outgoing flux for each fracture, while the last column shows, for each trace,
the balance in flux exchange between the two fractures that share the trace.
An almost exact flux balance is obtained, both within fractures and in trace
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Table 2: DFN6: number of DOFs for the considered mesh parameters δ and polynomial
accuracy levels k

XXXXXXXXXOrder
Mesh

δ = 1.09 δ = 0.70 δ = 0.26

0 975 2039 8458
1 3190 6798 29304
2 6335 13597 59441

F1
F2

F3

F4

F6

F5

ΓN1

ΓD5

Figure 9: DFN6: spatial geometry with source(F1) and sink (F5) fracture

Figure 10: DFN6: velocity field on fracture F2, δ = 0.26, k = 1
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(a) Order 0 - F2 (b) Order 1 - F2

(c) Order 2 - F2

Figure 11: DFN6: solution hδ on fracture F2 for orders 0 to 2, δ = 0.26

Table 3: DFN6: values of ∆h for the various considered meshes and polynomial accuracy
orders XXXXXXXXXOrder

Mesh
δ = 1.09 δ = 0.70 δ = 0.26

0 5.2× 10−1 2.9× 10−1 1.1× 10−1

1 1.4× 10−1 9.4× 10−2 2.5× 10−2

2 9.5× 10−2 5.5× 10−2 1.4× 10−2

0 0.5 1 1.5 2 2.5 3 3.5
-2

-1

0

1

2
Order 0 - Fracture 2

Order 0 - Fracture 6

Order 1 - Fracture 2

Order 1 - Fracture 6

Order 2 - Fracture 2

Order 2 - Fracture 6

Figure 12: DFN6: normal velocity on the trace Γ4 for orders 0 to 2, δ = 0.26
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Table 4: DFN6: flux data and flux mismatches across traces (last column) and flux balance
on fractures (last row) for order k = 0, δ = 0.26

F1 F2 F3 F4 F5 F6 balance

Γ1 -5.3174 5.3174 0 0 0 0 0
Γ2 0 -3.4141 3.4141 0 0 0 0
Γ3 0 6.5e-12 0 -6.5e-12 0 0 -6.9e-17
Γ4 0 -1.9032 0 0 0 1.9032 -4.4e-16
Γ5 0 0 -5.3174 0 5.3174 0 8.9e-16
Γ6 0 0 1.9032 0 0 -1.9032 0

balance -5.3174 4.7e-10 4.4e-16 -6.5e-12 5.3174 1.7e-11 4.4e-16

exchanges, for all orders of accuracy. The incoming flux from fracture F1 is per-
fectly balanced with the outgoing flux in F5: fracture F1 acts as a source that
provides a total flux of 5.3174 to the system from the Neumann edge (negative
values represent flux leaving the fracture through the traces), which leaves the
system at fracture F5 with a practical 0 unbalance reported in the bottom-right
cell of the table. All other fractures show an almost null net flow, which agrees
with the homogeneous Neumann boundary condition. As already mentioned,
the flux exchange in trace T3 is almost zero since fracture F4 is neither a source
nor a sink fracture and since it has only one intersection with another fracture
(F2).

According to the previous analysis it can be concluded that the mixed for-
mulation shows a very high accuracy when computing flux exchange between
fractures. The flux balance is almost exact for any order of accuracy of the
method. Low order elements also show a very good performance with much less
computational demand.

The last proposed example considers a larger network consisting of 134 frac-
tures and 604 traces that more closely resembles a real network. This problem is
labeled DFN134 and its geometry is shown in Figure 13. In this network there
is a wider range of fracture sizes and it has fractures intersecting at varying
angles that originate several geometrical difficulties such as almost parallel and
very close traces, small angles, small edges and badly shaped elements. Bound-
ary conditions are imposed, with a homogeneous Dirichlet boundary condition
on one edge of a sink fracture (labeled Si in the picture) and three prescribed
incoming flux values of 100, 200 and 200 on one edge of three different source
fractures (So in the picture). The Laplace problem is solved in mixed form with
approximation spaces of orders 0, 1 and 2 on four different meshes, as detailed
in Table 5.

An example solution on the whole network is shown in Figure 13, in which
the coloring is proportional to hδ values. In Figure 14 results for hδ and orders
k = 0, 1, 2 for a selected fracture are presented on the mesh with δ = 3.68,
whereas the velocity field is shown in Figure 15 on the same mesh and a order
k = 2. There are 18 traces present in the fracture generating a complex geometry
that nevertheless is handled smoothly by the Virtual Element discretization.
In Table 6 the quantity ∆h is reported for the various meshes and orders of
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Table 5: DFN134: Number of DOFs for the considered meshes and polynomial accuracy
values XXXXXXXXXOrder

Mesh
δ = 11.34 δ = 8.09 δ = 5.95 δ = 3.68

0 43630 53080 65149 98353
1 125020 153764 190742 295594
2 234730 290151 361668 567001

So

So

So

Si

Figure 13: DFN134: spatial geometry
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Figure 14: DFN134: solution hδ for a selected fracture for different various of polynomial
accuracy and δ = 3.68

Table 6: DFN134: values of ∆h for the various considered meshes and polynomial accuracy
orders XXXXXXXXXOrder

Mesh
δ = 11.34 δ = 8.09 δ = 5.95 δ = 3.68

0 1.81 1.44 1.15 0.83
1 1.01 0.70 0.54 0.32
2 0.67 0.45 0.42 0.22

accuracy considered, showing again a clear convergent trend towards a solution
continuous at the traces, when either the mesh is refined or the polynomial
accuracy is increased. In Table 7 results for flux balance are presented, on
the mesh with δ = 3.68 and for various polynomial accuracy levels. It can
be seen that the right order of magnitude of the flux at the traces is seized
already with the lowest order of accuracy. The flux balance results for all orders
show again a perfect match between the total incoming flow through the source
fractures (equal to a total flux of 400, given by the boundary conditions) and
the flux entering the sink fracture through its traces, with a mismatch near to
the machine-error order of magnitude.
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Figure 15: DFN134: velocity field for the 134 fracture network on a selected fracture with
order 2, δ = 3.68

Table 7: DFN134: flux entering the sink fracture through its traces for various polynomial
accuracy levels, δ = 3.68

Local trace Order 0 Order 1 Order 2

Γ1 7.7695 8.7141 7.9296
Γ2 22.6830 22.7356 22.6577
Γ3 44.1668 45.9451 41.8777
Γ4 20.9764 25.6750 31.8235
Γ5 4.2227 3.3396 3.0034
Γ6 1.2128 1.1298 1.5661
Γ7 141.0733 142.6016 142.8069
Γ8 97.4382 90.4480 89.2446
Γ9 43.0454 45.2085 44.6129
Γ10 17.4119 14.2027 14.4776

Balance 400.0000 400.0000 400.0000
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6. Conclusions

In the present work a numerical method for the resolution of the advection-
diffusion-reaction problem in mixed form in network of fractures is proposed.
The method exploits the flexibility of virtual elements in handling almost general
polygonal meshes to easily generate a conforming mesh of the network. Suitable
approximation spaces are introduced, and the well posedness of the resulting
numerical scheme is shown.

Benchmark problems are proposed on simple networks with known analytic
solutions, showing optimal convergence properties for the method for discrete
spaces of increasing polynomial accuracy ranging from 0 to 5. Qualitative results
on more complex networks show good approximation performances already for
the lower polynomial accuracy levels. The direct computation of the velocity
variable allows for a very accurate description of the flux, which is of paramount
importance in view of the use of such velocity field as an input for simulations
of dispersion phenomena.
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mulation for discrete fracture network flows, SIAM J. Sci. Comput. 35 (2)
(2013) B487–B510. doi:http://dx.doi.org/10.1137/120865884.

[17] S. Berrone, S. Pieraccini, S. Scialò, On simulations of discrete fracture
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