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Abstract

The Global Navigation Satellite Systems (GNSS) applications are growing and
more pervasive in the modern society. The presence of multi-constellation GNSS
receivers able to use signals coming from different systems like the american
Global Positioning System (GPS), the european Galileo, the Chinese Beidou
and the russian GLONASS, permits to have more accuracy in position solution.
All the receivers provide always more reliable solution but it is important to
monitor the possible presence of problems in the position computation. These
problems could be caused by the presence of impairments given by unintentional
sources like multipath generated by the environment or intentional sources like
spoofing attacks.

In this thesis we focus on design algorithms at signal processing level used
to assist Integrity operations in terms of Fault Detection and Exclusion (FDE).
These are standalone algorithms all implemented in a software receiver without
using external information. The first step was the creation of a detector for
correlation distortion due to the multipath with his limitations. Once the
detection is performed a quality index for the signal is computed and a decision
about the exclusion of a specific Satellite Vehicle (SV) is taken. The exclusion
could be not feasible so an alternative approach could be the inflation of the
variance of the error models used in the position computation. The quality signal
can be even used for spoofing applications and a novel mitigation technique is
developed and presented. In addition, the mitigation of the multipath can be
reached at pseudoranges level by using new method to compute the position
solution.

The main contributions of this thesis are: the development of a multipath,
or more in general, impaiments detector at signal processing level; the creation
of an index to measure the quality of a signal based on the detector’s output; the



vii

description of a novel signal processing method for detection and mitigation of
spoofing effects, based on the use of linear regression algorithms; An alternative
method to compute the Position Velocity and Time (PVT) solution by using
different well known algorithms in order to mitigate the effects of the multipath
on the position domain.
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Introduction

The research topic addressed in this PhD thesis is part of the research activities
of Ansaldo STS, member of the Joint Undertaking (JU) shift2rail [1], for the
renewal of the European rail signaling system. Ansaldo STS fully funded this
PhD with the aim of investigating innovative techniques to ensure the integrity
of position information provided by GNSS. In fact, it is known that the
Innovation Programme 2 of shift2railI includes the innovative use of the GNSS
for train localization. It is therefore vital to ensure that this data is reliable.
This same subject has been investigated for many years in aviation, but it is
known that the techniques developed in that environment cannot be applied
to the rail environment, which is very different, especially for the presence of
multipath typical of land applications. In addition, the techniques described
in the literature generally relate to the data provided by a commercial GNSS
receiver, while in this thesis we want to explore the possibility of performing
signal integrity checks at the correlation stage of a GNSS receiver by using
signal processing methods. The funding of Ansaldo STS is specifically devoted
to this kind of innovative methods of integrity, in view of the future development
of GNSS ad hoc receivers for rail applications. An important contribution
to this work has been done during a study period in GPS Research Lab in
Stanford University, which cooperates with Ansaldo in topics related to train
localization. In the remainder of the thesis we have considered a generic land
environment affected by multipath and the main topic has been to investigate
integrity techniques especially tailored to degraded environment.

GNSS systems were developed to provide positioning information to the
users. These information, due to several impairments given by the environments,
interference etc. could not be accurate. This thesis describes the work done
during my PhD program, in the context of signal processing used to assist
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Integrity operations in terms of FDE. Usually the problem of the faults
detection is faced by specific algorithms called Receiver Autonomous Integrity
Monitoring (RAIM). These algorithms work, for example, by searching possibles
biases between the set of the satellites pseudoranges, verifying the consistency
of the measurements. Another kind of measurements used for the detection
purpose is in the position domain. In that case, several navigation solutions
are computed by excluding different satellites from the solution to identify the
possible bias so finding the fault free set of satellites.

The first step of this work has been the analysis of the RAIM algorithms
proposed in literature and presented in the thesis. The second step consisted
in the the adaptation or creation of signal processing techniques tailored to
impairment detection. To approach this problem, different aspects of the GNSS
receiver have been studied during the PhD.

The context considered in my work is for applications where the presence
of environmental effects, like the MP, could affect the receiver in terms of
accuracy, integrity, continuity or availability of the service. The considered
architecture is a specific software receiver focused on the peculiarity of the land
environment so, to have several rays coming from different directions to the
receiver.

To provide better information for FDE, the output of the detector was
integrated with others information to build a sort of quality index for the
incoming signals. The exclusion is another important aspect investigated
after the definition of a signal quality metric. The exclusion after the fault
identification could give problems with lower number of SVs in view. The
exclusion of a SV has always effect on the quality of the geometry. Especially
in case of weak geometry, the exclusion of SVs from the navigation solution
could be a source of error greater than the error given by possible detected
distortions. A proposed solution is given.

The use of a quality metric based on correlation measurements can be useful
in other contexts, for instance, scenarios where a spoofing attack is present.
For this reason, the purpose of a part of the work is to use the metric that can
be helpful to detect the spoofer and permit to exclude spoofed satellites. A
detection scheme is also supported by a mitigation mechanism.
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As already mentioned, MP can affect the navigation solution by providing a
bias on the position. In this work, a comparison between the RAIM consistency
tests based on Kalman Filter (KF) and LS in a MP environment was done. An
algorithm is proposed to mitigate the effect of MP on the position solution.

Thesis outline

The thesis is organized as follows:

• The Chapter 1, a brief history of the GNSS technologies is given. Then,
the chapter presents the working principles of the positioning systems,
the signal structure of the GPS and Galileo systems and the general
architecture of the GNSS receivers.

• In the Chapter 2 a general overview on the integrity concepts is provided.
What is the integrity and main terms are introduced.

• The Chapter 3 is devoted to the presentation of the theory of the signal
processing techniques used in this thesis for distortions detection. Then,
the algorithm for the detection of MP is shown.

• In the Chapter 4, by using the output of the detector, a metric that
evaluates the quality of the received signals is given. Potentially, this
metric is used to perform exclusion of satellites with signals strongly
degraded.

• In Chapter 5 the previous metric is used for the detection in case of
a spoofing attack scenario. After the detection, a complete mitigation
algorithm is presented.

• Chapter 6 shows some results about the comparison of the positioning
and fault detection based on RAIM algorithm, computed by LS and KF
in harsh environments. A hybrid approach is proposed.



List of Tables 9

Publications arising from this thesis

• M. Berardo and L. Lo Presti. "GNSS multipath detector based on
linear adaptive filter". In Proceedings of the 28th International Technical
Meeting of The Satellite Division of the Institute of Navigation (ION
GNSS+ 2015), Tampa, Florida, pages 3077–3083, 2015.

• M. Berardo and S. Ugazio. "Multipath distance detector algorithm
(MPDD): Enhancement and application to Galileo signals". In 2016 IEEE
Metrology for Aerospace (MetroAeroSpace), pages 579–584, June 2016.

• M. Berardo and L. Lo Presti. "On the use of a signal quality index
applying at tracking stage level to assist the RAIM system of a GNSS
receiver". Sensors, 16(7):1029, 2016.

• M. Berardo, E. G. Manfredini, F. Dovis and L. Lo Presti, "A spoofing
mitigation technique for dynamic applications," 2016 8th ESA Workshop
on Satellite Navigation Technologies and European Workshop on GNSS
Signals and Signal Processing (NAVITEC), Noordwijk, 2016, pp. 1-7.
doi: 10.1109/NAVITEC.2016.7849353

• H. Trung Tran , M. Berardo , G. Belforte , L. Lo Presti, "Hybrid method
for multipath-resiliant PVT determination using Kalman filter based
algorithms", under review.



Chapter 1

Overview on GNSS systems

In the recent history, the concept of GNSS was born. GNSS is a term denoting
a system based on the use of satellites for navigation purposes. Typically,
GNSS indicates systems having a 24 hours coverage over the globe. GNSS
is a fundamental part of the space industries of the world. The use of these
systems is getting more important in the modern life from Safety of Life (SoL)
applications to simple smartphone applications. The first and most famous
satellite system is the American one: GPS. During the time other navigation
systems were born around the world: the Russian GLONASS, the European
Galileo, the Chinese Beidou etc. There are also regional systems which have
not a global coverage but only specific geographical part of the planet.

1.1 History of Global Navigation Satellite Sys-
tems

In the early 1960s, U.S. Department of Defense (DoD), the National Aeronautics
and Space Administration (NASA) and the Department of Transportation
(DoT) were interested in building a satellite system for position determination.
They needed a global, all-weather, 24-hour coverage and accuracies positioning
and navigation system [2]. The NAVSTAR GPS was the answer to those
requirements, the successor of other positioning system: US TRANSIT. It was
realized with four to seven satellites in low-altitude polar orbits. It became
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operational in 1964. However, due to its limitation, it has been necessary to
develop another satellite navigation system. Before arriving to GPS, the U.S.
Navy worked on a project to enhance the performance of TRANSIT and, at the
same time, the U.S Air Force worked on a new satellite based positioning system
called 621B [3]. 621B proposed for the first time the use of PRN modulation for
ranging with digital signals. The GPS inherits the idea to use the PRN code.
The main differences between some of these systems are shown in Table 1.1 [4].
The GPS program was approved in December 1973 and it was developed by the

Characteristic Timation 621B GPS

N. of SV 27 3 or 4 groups of 5
24 satellites
and
3 spares

Orbits

12875 km
(8 hour orbit,
though the 12 hour orbit
was also proposed

Geosynchronous or near
geosynchronous or
high altitude
about 40000 km

20300 km,
12 hour orbits

Signal sidetone range Pseudo random
sequence

Pseudo random
sequence

Time
settings
of SV

Atomic clocks on
each satellite -
periodic updates
from ground stations

No clocks on satellites
- time transmitted
from seven ground stations

Atomic clocks on
each satellite -
periodic updates
from ground stations

Table 1.1 The basic configuration of Timation, 621B, and GPS [4]

GPS Joint Program Office (JPO) that is the responsable of the management of
the contellation. GPS is a passive ranging system, that means, the users can not
interact with the system, they simply receive broadcasted signals to determine
their position. In this way the system can serve an unlimited number of users.
The positioning method used by GPS and other modern GNSS system is the
trilateration (see Section 1.1.1). GPS satisfies the requirement established in
1960 for an optimum positioning and it was declared fully operational on 27
april 1995 [5].

GPS is not the only GNSS system. In the meanwhile that U.S developed his
system, Soviet Union worked at own system: GLONASS. GLONASS consists
of 24 satellites on three inclined orbital planes and uses a Frequency Division
Multiple Access (FDMA) technique.
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Thanks to the experiences of american and russian, Europe decided to build
own system, a new generation of GNSS. In 1999 the European Commission
started the Galileo Project. The goal of Europe is to have own system able
to provide worldwide coverage with higher accuracy to all users, advanced
navigation signal. GPS and GLONASS were born as military-oriented systems,
instead Galileo is the first system intended primarily for civilian use. The full
precision is provided both to civil and military users. In this moment Galileo
is in advanced stage of realization but not completed.

1.1.1 Trilateration in GNSS

The satellite navigation is based on the concept of trilateration. This method
is based on measurements of distances to estimate the position. The user can
compute his position by knowing the distances (or geometric range) between
him and the position of three locations. The trilateration in the radionavigation
use a physical principle that, in vacuum, the propagation of an electromagnetic
wave has a constant and known speed that is the speed of light c = 299792458
m/s. Therefore, if the the time of flight or the Time Of Arrival (TOA) of the
signal from known locations to the user can be measured, the distances can be
calculated by multiplying that time with the speed of light. The main GNSS
systems, like GPS or Galileo, are TOA systems. Once obtained the distances,
the position, with trilateration technique, is computed by solving the system of
equations



√
(x1 −x)2 +(y1 −y)2 +(z1 − z)2 = r1√
(x2 −x)2 +(y2 −y)2 +(z2 − z)2 = r2√
(x3 −x)2 +(y3 −y)2 +(z3 − z)2 = r3

(1.1)

The unknowns of the system in (1.1) are the coordinates of the user (x,y,z).
The (xk,yk, zk) with k = 1,2,3 are the coordinates of the known locations. The
system represents the intersection of spheres in a 3D space with 3 equations
and 3 unknowns. In case of positioning in a plane (2D case), 2 equations are
needed and the problem of intersection of circles has to be solved. In case of
GNSS systems, the satellites constellation is the set of locations with known
positions, because it is possible to extract this information from the ephemeris.
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Fig. 1.1 Trilateration with four satellites [6].

Furthermore, as said, the distances are given by time measurements. This
leads to hidden assumption in (1.1): the perfect synchronization between clock
onboard the satellite and user clock. This situation is not real at all. To solve
correctly the system it is necessary to have an additional equation to take into
account the unknown referred to the clock difference (see Section 1.4).

In the real case, the signals propagate through the atmosphere (e.g iono-
sphere), they are affected by interference, reflections by the ground and other
surfaces. All of these impairments have an impact on the estimation of the
TOA, hence the distances (see Section 1.5).

1.2 System architecture

The signals transmitted by every GNSS satellite allow the users to determine
his position on the earth surface. These systems are passive. Both GPS and
Galileo satellite systems are based on the TOA concept, and users determine
their position evaluating the time interval between the signal transmission and
the signal reception.

Every single GNSS system is composed by three main segments:

• space segment (satellite constellation)

• control segment (also referred to as the ground segment)

• user segment (GNSS receivers)
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1.2.1 Space segment

The space segment is composed by the satellites positioned in different orbital
planes. The satellites are devoted to transmit signals, store and broadcast the
navigation message keeped update by the control segment. The GNSS system
is built to ensure to the user the minimum number of the satellites in view for
positioning, from any point of the Earth’s surface. The required number of
satellites in view is at least four (see Section 1.1.1 and 1.4).

For example, in case of GPS, the nominal constellation is composed by
24 satellites, as in Fig. 1.2. The satellites are arranged in six orbital planes
equally spaced and they are placed in a Medium Earth Orbit (MEO) orbit at
an altitude of 20200 km and an inclination of 55° respect to the equator. The
satellites have nearly circular orbits and a period of 11 hours, 58 minutes and
2 seconds [7]. The MEO orbit gives the possibility to have one satellite visible
for several hours in each pass and the constellation has an adequate number of
satellite to have a fully coverage of the Earth.

Galileo, in the Full Operational Capability (FOC) phase of the project, will
consist of 24 satellites, in addition, 6 in-orbit spares intended to prevent any
interruption in service [8]. The satellites are in MEO orbit at an altitude of
23222 km. Galileo has three orbital planes inclined at 56◦ with respect to the
equator. The period is about 14 hours, 4 minutes and 45 seconds and guarantee
at least six satellites in view from any point on the Earth. At the time of
writing (end of 2016), Galileo constellation has 18 operative satellites in orbit,
the last four have been launched in November 2016. The FOC is planned to
be reached by 2020.

1.2.2 Control segment

The control, or ground, segment is the part responsible to keep correctly update
the space segment (see Section 1.2.1). In particular the ground stations are
devoted to control and maintain the configuration of the satellites. The ground
stations are enabled to send messages to the satellites to correct possible drift
on their orbit and keep update the navigation message for all the satellites.
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Fig. 1.2 Picture of GPS satellite constellation.

For example, in case of GPS, the control segment is a network of Monitoring
Station (MS), a Master Control Station (MCS) and the Ground Antennas (GA).
The MS are stations spread around the world which collect GPS data from
all the satellites. The MCS is the core of the network, it collects all the data
coming from the MS to estimate the ephemeris and clock errors. In Fig. 1.3 the
Alternate Master Control Station (AMCS) is also shown, that is a functional
backup station for the MCS. Finally, the GA uplink data to the satellites. The
transmitted data include ephemerides and clock correction, so the navigation
message is updated.

The positions of the ground stations around the world of the GPS control
segment are shown in Fig. 1.3.

1.2.3 User segment

The user segment consists of GNSS receivers. A GNSS receiver is composed of
an antenna, front-end, electronic part to elaborate the incoming signals and
the data storage. The receiver has to be able to compute the PVT from the
signals coming from the satellites. The receivers are used in many applications
in different fields like agriculture, gaming, navigation, SoL, etc. applications.
The applications discriminate the type of the receiver to be used. There are a
lot of receivers available in the market from the most cheap and simple to very
complex and performing.

Nowadays, several mass-market receivers are present in the smartphones
with the possibility to integrate other position information from other sensors
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Fig. 1.3 The map of the ground stations for the GPS control segment. Figure taken
from [9].
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Fig. 1.4 Allocation of the frequencies for several GNSS systems [11].

and maps. The increasing number of new applications in GNSS fields leads to
have a huge market and justify the recent choice of big company like Google to
open the access to the pseudorange data estimated by the smartphone [10].

1.3 GNSS Signals

This section will describe the signals structure of the considered GNSS systems:
GPS and Galileo.

The GNSS signals are transmitted continuously by the satellites at different
frequencies in the L band that covers frequencies from 1 GHz to 2 GHz of the
Ultra High Frequency (UHF) band [2]. Fig. 1.4 shows the current situation of
the L band for GNSS systems. The signals contain the PRN codes, which are
used to estimate the travel time from satellite to the receiver, and navigation
data to get satellites coordinates.

1.3.1 GPS Signal structure

GPS satellites transmit two Binary Phase Shift Key (BPSK) modulated carriers
on the L band. These frequencies are referred to as Link 1 (L1) and Link 2
(L2) and are derived from a common frequency, f0 = 10.23 MHz [12]. L1 at
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fL1 = 154 f0 = 1575.42 MHz and L2 at fL2 = 120 f0 = 1227.6 MHz. Each signal
has a bandwidth approximately equal to 20.46 MHz. The Coarse/Acquisition
(C/A) code occupies 2.046 MHz of L1 band. For civil use, the satellites transmit
two other signals in addition to the C/A code on L1: L2C on L2 frequency
(1227.6 MHz) and L5 on L5 frequency (1176.45 MHz). The encrypted signals
transmitted by each satellite are four on both L1 and L2. In this thesis we
consider only GPS L1 C/A. The signal is composed by two PRN spreading
sequences modulated with a sinusoidal carrier and can be written as following:

y(t) = A C(t)d(t)cos(2πfL1t)+A C(t)p(t)sin(2πfL1t) (1.2)

where:

• A is the amplitude of the signal;

• C(t) is the PRN spreading code of GPS L1 C/A [13, 14]

• d(t) is the bit navigation data;

• p(t) is the Precise (P) code which has a rate of 10.23 MHz and only
repeats once a week [13]. The P code is encrypted (P(Y)) and it is used
essentially for DoD-authorized users applications;

• fL1 is the radiofrequency of the signal carrier at 1575.42 MHz;

The minimum received power level of the GPS signal into a 3 dB gain linear
polarized antenna is specified to be -160.0 dBW for satellites with an elevation
angle greater than five degrees [15]

GPS has two navigation services available:

• Standard Positioning Service (SPS), it is an open service, available for
worldwide users. It is operative in single frequency in the frequency band
L1.

• Precise Positioning Service (PPS), it is restricted to military and au-
thorised users. The signals are encrypted and they are provided in two
different frequency bands, L1 and L2.
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Fig. 1.5 Frequency bands used by the different GNSS systems [11].



20 Overview on GNSS systems

Spreading codes for satellites navigation

The spreading sequence used in GPS L1 C/A is a Gold code, originally pre-
sented in [16]. The GPS signals are designed to look random. Each C/A code
transmitted is generated using a Linear Feedback Shift Register (LFSR). The
register generates a maximal length sequence of length N = 2n − 1 elements.
In case of GPS C/A code uses n = 10 so N = 1023. A Gold code is obtained
by means of the summation of two maximum-length sequences. Every 1 ms
the code is repeated, so the chip length is 1/1023 = 977.5 ns ≈ 1µs , in meters
corresponds to a length of 300 m in ideal transmission conditions.

The time difference between the local code and the incoming code is com-
puted by autocorrelation. This permits to maintain the receiver locked to the
satellite code.

When the two signals are not matched in time, the ideal result of autocor-
relation is zero. If the signals are matched in time, the correlation is at the
maximum peak in module.

The Gold codes have the property that the autocorrelation is constant until
we get to within one chip of the correct answer. In ideal case assuming no
noise, within the window of ±1 chip, the autocorrelation function looks like an
equilateral triangle and, If it is normalized, its peak has value 1. For further
details on the generation of the Gold codes, see [12].

1.3.2 Galileo Signal structure

The Galileo signal plan will provide five navigation service:

• Open Service (OS), similar to SPS service of GPS. It is free of charge
and has up to three signal frequencies offered to the users worldwide.

• Public Regulated Service (PRS), is the service under governmental con-
trol, reserved for security authorities. The two transmitted signals are
encrypted and more robust against jamming and spoofing attacks.

• Commercial Service (CS), provides two additional signals protected by
commercial encryption and with higher data rates.
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• Search And Rescue (SAR), Galileo supports this service for international
COSPAS-SARSAT effort on humanitarian search and rescue activities

• SoL, contains integrity information. It improves the OS performance
by providing timely warnings to the user when it fails to meet certain
integrity requirement.

When Galileo systems will be full operative, Each satellites will transmit
10 signal in four frequency bands, namely on E1, E6, E5a and E5b, shown in
Fig. 1.4. The carrier frequencies are 1575.420 MHz (E1), 1278.750 MHz (E6),
1176.450 MHz (E5a), 1207.140 MHz (E5b), 1191.795 MHz (E5=E5a+E5b),
respectively [17]. The E5a and E5b signals are part of the E5 signal in its full
bandwidth.

The Galileo system use a Code Division Multiple Access (CDMA) technique,
as in case of GPS. The main difference from GPS is the use of Binary Offset
Code (BOC) modulation and longer spreading code, so integration time. The
OS of Galileo has a period of 4092 chips, that means an integration time of 4
ms. The idea of a BOC modulation is to multiply the PRN code by a digital
sub-carrier obtained by take the sign of a sine or cosine waveform

bBOCs(t) = C(t) sign [sin(2πfst)]

bBOCc(t) = C(t) sign [cos(2πfst)]

where C(t) is the PRN code at frequency fc and fs is the frequency of the
sub-carrier. Typically, the BOC is defined as BOC(m,n) where m = fs/fcref ,
n = fc/fcref and fcref = 1.023 Mcps The use of a BOC modulation changes the
shape of the Galileo correlation with respect to GPS. An example of Galileo
correlation is shown in Fig. 3.39. For example, the BOC(1,1) has a narrower
peak than the BPSK and has two side lobes. The signals can contain data and
pilot channels. The pilot channels are data free signals and their purpose is to
help the tracking of weak signals for data channels.

• E1 signal. E1 is a signal transmitted in the L1 band. E1b is the data
signal and E1c is the data-free signal and it is also called a pilot signal.
On the pilot signal a secondary code of length 25 chips extends the
repetition interval to 100 ms. E1b contains unencrypted ranging codes
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and navigation data accessible to all users. On E1 is used a Composite
BOC CBOC(6,1,1/11) modulation. The E1 frequency band also contains
a PRS signal (E1a).

• E6 signal. E6 is used for CS and it contains a data channel E6b and a
pilot channel E6c. The ranging codes and data are encrypted. the E6
frequency band also contains a PRS signal component (E6a).

• E5a signal. E5a is a signal transmitted in the E5 band. E5a contains a
data channel and a pilot channel. It has unencrypted ranging codes and
navigation data which are accessible by all users.

• E5b signal. E5b is a signal transmitted in the E5 band. E5b contains a
data channel and a pilot channel.It has unencrypted ranging codes and
navigation data accessible to all users.

• E5 (composite) signal. The E5a and E5b signals are modulated onto a
single E5 carrier using a technique known as Alternative BOC (AltBOC).
The AltBOC is a modified version of a BOC with code rate of 10.23 MHz
and a sub-carrier frequency of 15.345 MHz. AltBOC(15,10) is a wideband
signal that is transmitted at 1191.795 MHz [17]. The composite of the
E5a and E5b signals is denoted as E5 signal.

Galileo E1 OS

The signal model of Galileo E1 is described as a sum of E1a and E1b each
one modulated with a CBOC scheme. The Galileo E1 OS is generated with 2
ranging codes and one data signal, the signal model can be written as following:

xE1 (t) = 1√
2

eE1B (t)
(√

10/11bBOCs,fb
(t)

)
+

(√
1/11bBOCs,fc (t)

)
−

1√
2

eE1C (t)
(√

10/11bBOCs,fb
(t)

)
−

(√
1/11bBOCs,fc (t)

)

with fc = 1.023 MHz and fb = 6.138 MHz, and with

eE1B (t) = cE1B (t)dE1 (t) ,

eE1C (t) = cE1C (t) .
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where cE1B and cE1C are the ranging codes and dE1 is the data signal.

1.4 Position, velocity and time

In Sec. 1.1.1, we introduced the concept of trilateration used in the main GNSS
systems. Previous Eq. (1.1) is modified to take into account several factors to
get the user position u = (xu,yu, zu) in Earth-Centered Earth Fixed (ECEF)
coordinates.

First of all, we define the coordinates of the generic satellite s = (xk,yk, zk).
The geometric range, in vectorial notation, between the k-th satellite and the
user is rk = ∥sk −u∥.

As already discussed, the GNSS systems are based on TOA concept. Hence,
the distance is computed by measuring the propagation time between satellite
and user of the transmitted ranging code.

The user coordinates are unknown, while the satellites coordinates are
contained in the navigation message. The geometric range rk is the measurement
in case of perfect synchronization between clocks. In Eq. (1.3) is shown the
basic system of four equations (called navigation equations) that allows to get
a solution for the user position, taking into account the receiver clock bias δb.



√
(x1 −xu)2 +(y1 −yu)2 +(z1 − zu)2 + c ∆b = ρ1√
(x2 −xu)2 +(y2 −yu)2 +(z2 − zu)2 + c ∆b = ρ2√
(x3 −xu)2 +(y3 −yu)2 +(z3 − zu)2 + c ∆b = ρ3√
(x4 −xu)2 +(y4 −yu)2 +(z4 − zu)2 + c ∆b = ρ4

(1.3)

This non linear system can be solved analytically [18] or, the solution can involve
iterative methods like Least Mean Squares (LMS) or more complex like KF.
Before to solve the system, it is applied a linearization of the equations. The idea
of the linearization is, if we know approximately the user position û = (x̂u, ŷu, ẑu),
we can get the offset ∆u = (∆xu,∆yu,∆zu) from the true position (xu,yu, zu).
Every single pseudorange is approximated as a Taylor expansion around the
approximate position. It is possible to obtain (∆xu,∆yu,∆zu) as linear function
of known coordinates, bias and pseudoranges measurements. Therefore, using
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the approximate position
√

(xk − x̂u)2 +(yk − ŷu)2 +(zk − ẑu)2 + c ∆b̂ ≃ ρk

the system in (1.3) becomes

ax1∆xu +ay1∆yu +az1∆zu − c ∆b = ∆ρ1

ax2∆xu +ay2∆yu +az2∆zu − c ∆b = ∆ρ2

ax3∆xu +ay3∆yu +az3∆zu − c ∆b = ∆ρ3

ax4∆xu +ay4∆yu +az4∆zu − c ∆b = ∆ρ4

where ∆ρk = ρk − ρ̂k. The vector ak is the Line Of Sight (LOS) direction of the
unit vector pointing from the approximate user position to the k-th satellite:

ak = sk − û
∥sk − û∥

Then by collecting all the equation and quantity in the matrix notation, we
have

∆ρ =


∆ρ1

∆ρ2

∆ρ3

∆ρ4


then, the so-called geometry matrix

H =



ax1 ay1 az1 1
ax2 ay2 az2 1
ax3 ay3 az3 1
ax4 ay4 az4 1

 (1.4)

and the vector of the increment

∆x =


∆xu

∆yu

∆zu

−∆b
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Furthermore, the system can be rewritten as

∆ρ = H∆x

In case of four satellites, the simplest solution is an inversion matrix problem

∆x = H−1∆ρ

Generally we have more than four satellites in view so, in this case, to solve
the system, we could use LMS. LMS is used to solve overdetermined systems
with more equations than unknown and the solution is given by

∆x = (HT H)−1HT ∆ρ (1.5)

1.4.1 Carrier-Phase Measurement

Carrier phase measurements is another way to compute the pseudorange without
exploiting the code phase measurements. The carrier phase measurements
consist on the estimation of the difference between the phase of the receiver local
carrier and the carrier received from a satellite at the instant of the measurement.
It is an indirect and ambiguous measurement of the signal transit time [2].
The measurement is expressed in units of cycles. This measurement has higher
precision than code phase, but the whole number of cycles between satellite
and receiver is unknown and it needs to be estimated, this is called Integer
ambiguity.

The counting mechanism is based on the Doppler frequency shift, this
because the variation in carrier phase, between two consecutive time instants,
can be derived by integrating over the interval of the epoch.

For each epoch, the phase of the carrier is accumulated following the model
in (1.6) [3].

ϕn = ϕn−1 +
∫ tn

tn−1
fD(τ) dτ +ϕf (1.6)
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where n is the discrete time epoch, ϕn is the accumulated phase at epoch n,
fD is the Doppler frequency of the carrier, ϕf is the fractional part of the
accumulated phase given by the carrier-phase tracking loop of the receiver.

It is possible to have very high precision on the navigation solution be-
cause the resolution depends on the wavelength λ of the carrier. In case of
GPS L1 C/A λ ≈ 19 cm.

Without taking into account the code, the main problems of the carrier
phase solution are given by the Integer ambiguity, that makes ambiguous the
measurements (maybe precise but presence of bias in the solution) and the
cycle slips (presence of jumps in the solution).

In the thesis, in particular in Chapter 6, we are not interested in carrier
phase measurements but to another concept: carrier smoothing.

Carrier-smoothing solution

The solution given by the pseudorange computed with the code measurements
are noisy but unambiguous thanks to the characteristics of the code. Thanks
to the carrier measurements, which are precise but ambiguous, it is possible to
smooth the code measurements. The algorithm proposed in literature is the
Hatch filter expressed as follows [7, 2]:

ρ̂i(k) = 1
n

ρi(k)+ n−1
n

[ ˆρi(k −1)+(ϕi(k)−ϕi(k −1))] (1.7)

where the index i is referred to the SV and k is the generic discrete time
instant. The ρi(k) and ϕi(k) are the code-based pseudorange and the carrier
measurements in meters. Then, ρ̂i(k) is the smoothed pseudorange in output
of the filter.

The filter, at the beginning, has a transient and it has to be initialized, so
ρ̂i(1) = ρi(1) where n = k when k < n and n = N when k ≥ N . N is the length
of the filter.

The algorithm suffers the problem of the cycle slips. Cycle slips are errors in
the cycle counting given by the problems on the incoming signal like scintillation,
MP etc. Therefore, the Hatch filter in (1.7) needs to be reset at the initial
state every time a cycle slip occurs.
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Segment Source Error Source 1 σ Error (m)

Space/control
Broadcast clock 1.1
L1 P(Y)-L1 C/A group delay 0.3
Broadcast ephemeris 0.8

User

Ionospheric delay 7.0
Tropospheric delay 0.2
Receiver noise and resolution 0.1
Multipath 0.2

System UERE Total (RSS) 7.1
Table 1.2 Typical values for UERE budget [3].

1.5 Error budget

By using the measurement of the time of flight of a signal, the position and
consequently the speed can be estimated. After the presentation of the system
and how to estimate the receiver position, it’s essential to have an idea of
the several error sources which affect the accuracy of the position estimation.
In Tab. 1.2 are collected the main error sources on the different segment of
the GPS for SPS. It’s remarkable to remind that the errors on the position
depend on both pseudorange error (UERE) and the geometry factor, Dilution
of Precision (DOP) between user and satellites.

1.5.1 Multipath

The MP is an interference generated by reflecting surface around the receiver.
It is a replica of the original signal, typically delayed and attenuated. It is
one of the main source of error difficult to handle and with different behaviour
in different environments. The errors are different in frequency, for instance,
the same surface can reflect differently L1 and L2 carrier. The satellites with
low elevation are the ones most affected by the MP. It affects both code and
carrier measurements. The interference given by the MP, can be attenuated
using directional antennas, which could have particular radiation pattern that
can reduce the gain from specific direction, e.g. from the ground (as in Fig.
1.12). Another way is to use long integration time or different architectures
in the GNSS receivers to mitigate the impact of the MP [19, 20]. Due to the
geometric nature of the MP, the error can be visible in the position domain. In
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Fig. 1.6 Example of ground MP reflection [21].

particular, by collecting data with a static receiver for consecutive days and by
observing the results. The same kind of errors are repeated anytime appears
the same satellite-user geometry. The MP is one of the main impairments
treated in this thesis.

1.5.2 Interference

The satellites of a GNSS constellation transmit the data by means of Radio-
Frequency (RF) signals. As all wireless communication systems, they are
vulnerable to the interference present in the environment where the signals are
transmitted. These interferers might degrade the navigation solution or the
receiver might lose the lock of the incoming signals [3]. Based on the comparison
between bandwidth of the interferer and the GNSS signal, the interference can
be either wideband or narrowband. The interference is classified as unintentional
or intentional. The latter category can further be classified as jamming and
spoofing. The jamming consists to the transmission of high power signal in
the GNSS signal bandwidth to blind the user receiver and do not permit it to
perform its operations. Instead, the goal of a spoofing is to mislead the receiver
through the use of false GNSS signals in order to compute wrong position.

In this thesis, the spoofing problem is treated in Chapter 5. This topic was
done in collaboration with another PhD student.
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1.6 Receiver Architecture

Before introducing the receiver used in our experiments, it is necessary to give
the notations and the model of the GNSS signal and channel. As previously
mentioned, GNSS signal is transmitted by using CDMA format and, the
received signal is under the power level of the noise. After downconversion and
Analog to Digital Converter (ADC), a typical GPS L1 C/A sampled signal can
be written as a combination of the Signal In Space (SIS)s of all the satellites in
view, each one expressed by

ym(nTs) =
√

2PmCm(nTs −τm)dm(nTs −τm)cos(2π(fIF +fd,m)nTs+φm)+n0(nTs)
(1.8)

where:

• m is the index of a specific satellite;

• Pm is the received power;

• Cm(·) is the PRN spreading code;

• dm(·) is the navigation data;

• fIF is the intermediate frequency of the front-end;

• fd is Doppler frequency;

• φm is a phase term;

• τm is the code delay;

• Ts is the sampling interval.

• The second term of the sum is a noise component n0(nTs), that is a
discrete-time random process obtained by sampling the noise at the front-
end output. Since the input noise may be assumed to be White Gaussian
Noise (WGN) with power spectral density S(f) = N0/2, at the front-
end output n0(nTs) becomes a Gaussian discrete-time random process
with zero mean and variance σ2 = N0BIF , where BIF is the front-end
bandwidth.
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Fig. 1.7 General architecture of a GPS receiver taken from [3]

Therefore (1.8) represents a so called Additive White Gaussian Noise
(AWGN) channel. Thanks to the code orthogonality, the receiver can dis-
criminate different signals coming from different satellites. Therefore the
analysis of the receiver can be done only considering the signal ym(nTs).

To evaluate the amount of noise with respect to the signal, a fundamental
parameter is the carrier-to-noise ratio, defined as C/N0 = Pm/N0. This ia
an important metric. In general, higher C/N0 we have, less noisy range
measurements we get to have a better positioning.

The architecture of the software receiver used for the simulations is shown
in Fig. 1.7. We are interested in the tracking stage, which gives results in
the correlation domain of a single GNSS channel. Since tracking requires
a preliminary acquisition stage, in the following also the acquisition system
is described. The other parts before and after these stages (i.e downconver-
sion, PVT computation) are not considered in this report. For example, the
working frequencies of the front-end used in 3 are fIF = 4.130400 MHz and
fsampling = 16.367600 MHz. The ratio between the sampling frequency fs and
the chip rate Rc is not an integer value, in order to takes advantage from the
incommensurability of the code.
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1.6.1 Acquisition stage

The aim of this stage is to conduct a rough search on a 2D space in order to
give a coarse estimation of the code delay and Doppler frequency of the signal
to verify the presence of the signal. The acquisition algorithms try to look for
the maximum of the Cross Ambiguity Function (CAF), that theoretically is
the point with the correct values of τ and fd of the incoming signal (see the
example in Fig. 1.8, which shows a normalized search space). The CAF is
given by

S(τ,FD) = 1
N

N−1∑
n=0

r(nTs)C(nTs − τ)e−j2πFDn (1.9)

where r(nTs) are the samples of the received signal, τ is a variable code delay
and FD is a variable Doppler frequency. The variable code delay is obtained by
using a circular-shifted version of the local code C(nTs), thus (1.9) assumes the
form of a Discrete-Time Fourier Transform (DTFT), which can be evaluated
by using a Fast Fourier Transform (FFT) algorithm. The peak of the CAF can
be identified once the samples of S(τ,FD) are available. In our implementation,
there are two steps for the acquisition: one uses a Doppler step larger than the
second one, in order to have a fastest acquisition stage and to give a coarse
estimation but with sufficient precision for the tracking stage. The second step
starts only if the first one misses to acquire the signal.

1.6.2 Tracking stage

The goal of this stage is to maintain the incoming signal aligned with a local
replica of the code and the carrier.

Code tracking

A classical method to align the incoming and the local code is to use a code
tracking loop. In a GPS receiver the tracking loop is generally a DLL. To
characterize the DLL, we need to design the integrators, the code loop discrim-
inator, and the code loop filter. A generic block diagram of a code tracking
is shown in Fig. 1.9. After the demodulation of the signal (1.8), obtained by
multiplying it by two local carrier waves at frequency fIF , one for each branch
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Fig. 1.8 example of Normalized search space at C/N0 = 45dBHz

Fig. 1.9 model of GPS code tracking loop [3]
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of the receiver (I and Q), the resulting signal is multiplied by three local codes
(called early, prompt, late) shifted by −1/2, 0 and +1/2 chip time and the
outputs are integrated and dumped to implement the correlator. The common
DLL discriminators are divided in two classes:

• coherent ((Ie − Il)), which requires a good estimation of the frequency
and phase of the Intermediate Frequency (IF) carrier, because if the local
carrier is in phase with the input signal, all the energy will be in the
in-phase branch.

• non-coherent, which has to be used when there is a misalignment of the
local carrier with the input carrier. In fact in this case the energy will be
divided in two branches, and then the DLL must use both in-phase and
in-quadrature branches.

In our experiments we use the following non-coherent DLL discriminator:

(I2
e +Q2

e)− (I2
l +Q2

l )
(I2

e +Q2
e)+(I2

l +Q2
l )

called Normalised Early minus Late power. The code loop filter, at the output
of the discriminator, reduces the effects of the noise and has bandwidth Bl = 2
Hz, ζ = 0.707, gain of the overall loop K0Kd = K = 1 and natural frequency
ωn = Bl

0.53 . Loop filter coefficients are t1 = K
(ωn·ωn) and t2 = 2 · ζ

ωn
.

Costas loop

The aim of the Phase Lock Loop (PLL) is to keep locked the incoming signal, by
means of a continue estimation, epoch by epoch, of the phase of the incoming
carrier. An example is shown in the block diagram of Fig. 1.10 known as
Costas loop, and based on two multiplications by local signals shifted each
other by 90◦, in the same way as in the DLL’s branches. In other words, a
Costas loop tries to maintain all the energy in the in-phase branch [2], as seen
in Fig. 1.11. Typically, a PLL is sensitive to 180◦ phase shifts due to data
bit transitions, for this reason it is important to have a PLL insensitive to
this jump of phase. After the multiplication block, that generates frequency
components at 2fIF that are eliminated with a low pass filter, the output comes
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Fig. 1.10 Scheme of Costas Loop

into the PLL discriminator that returns a phase error

ϕe = tan−1
(

Q

I

)

Costas loop is insensitive because the discriminator provides ϕe = 0◦ in the
cases the real error is 0 or ±180◦.

Fig. 1.11 Example of I and Q prompt correlators when the incoming signal is locked
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Carrier and code tracking loop

DLL and PLL block diagrams are generally not separated, but the output of
each loop is an input of the other one in order to keep the tracking of the
incoming signal. The prompt correlator of the DLL helps to calculate ϕe and
this last one helps to correct the phases of the local carrier for demodulation
purpose. We chose an integration time equal to the C/A code periodicity, so at
each iteration of the loop the tracking stage takes 1 ms of the signal in terms
of number of raw samples, demodulates by multiplying the input signal by
local carrier replicas at frequency fIF and the results are used to compute 6
correlation points (I/Q and early, prompt and late).

Another important point is how to generate the local code and how to reach
a resolution higher than Ts in the correlation domain to improve the estimate
of the delay of the input signal. Thanks to the incommensurability of the code
(the ratio between sampling frequency and the chip rate is not an integer value),
the number of samples per each single chip is not constant, but could be N or
N +1. For instance, in the simulation we used a sampling frequency of about
≈ 16 MHz, from which the number of samples per chip results in the average

Tchip

Ts
= fs

fchip
= 15.9996

where Tchip is the chip duration, and fchip = 1.023 MHz. The PRN code is
re-sampled every 1 ms by using the normalized sampling interval

Ts

Tchip
= fchip

fs

and the correction term ∆fc , generated at the output of the DLL code loop
filter, is used to update fchip in the form

fchip[n+1] = fchip[n]+∆fc

The correlation points evaluated by the DLL can be written in the form
2Npoints +1, where Npoints is the number of correlation points evaluated at the
right or left side of the correlation peak. Another important parameter of a
DLL is the maximum spacing dsp, which is a quantity normalized with respect
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to Tchip, from which the DLL resolution can be written as

Rres = dspTchip

Npoints
(1.10)

In a standard DLL, Npoints = 1, so the total number of correlator points is
2Npoints +1 = 3.

1.7 Narrow correlation

The GPS receivers usually use d = 1.0 chip early-late correlator spacing for
the DLL in the tracking loop [22]. To reduce the multipath effects, the first
approach to use is the narrow correlation technique. This technique has been
developed for GPS receivers by NovAtel Inc. Instead of using a spacing d = 1.0
chip, in narrow correlation technique is typically used a value less than d = 1.0.
The narrow correlator spacing also reduces the influence of the noise in a DLL.
This because the impact of the noise is proportional to the chip spacing.

It has been noted that multipath effects in a DLL tend to dominate the error
budget using the GPS L1 C/A. The multipath error envelope is illustrated
in Fig. 1.12 where different value of chip spacing and a multipath relative
amplitude is α = 0.5. Compared to the spacing d = 1.0, the DLL performance
can be enhanced significantly by using the narrow correlation technique. In
Fig. 1.12 shows that the impact of the multipath decreases for values d = 0.5,
d = 0.3 d = 0.1. This is because, due to multipath distortion, the correlation
function near its peak is less severe than that at regions away from the peak
[22].

1.8 Multipath Estimating Delay Lock Loop

This section provides an overview on one of the most important technique
to mitigate the multipath implemented by NovAtel in the mid 1990s. This
technique is called Multipath Estimating Delay Lock Loop (MEDLL) [23, 24].
The MEDLL applies Maximum Likelihood Estimation (MLE) in order to reduce
both code and carrier multipath errors by using a receiver structure which
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Fig. 1.12 Multipath Error Envelope with MSR = -6 dB. BPSK(1)and spacing d = 0.5,
d = 0.3 d = 0.1
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simultaneously estimates the parameters of LOS and multipath signals. The
signal model considered for the received signal is

r(t) =
M∑

i=0
αip(t− τi)cos(ωt+ϕi)+n(t) (1.11)

where r(t) is the sum of M + 1 signals, p(t) is the spreading code and the
navigation data, n(t) is the noise term and αi, τi, ϕi are the amplitude, the
time delay and phase of the i-th signal respectively. To get the LOS component,
the index i is set to zero.

In a normal tracking loops, by using DLL and PLL, it is possible to have
an estimation of τ0 and ϕ0 only. The approach followed by the MEDLL is to
estimate the multipath parameters. The estimated signal s(t) can be written as

s(t) =
M∑

i=0
α̂ip(t− τ̂i)cos(ωt+ ϕ̂i) (1.12)

The correct estimation of the multipath parameters have to minimize the Mean
Square Error (MSE):

L(α̂i, τ̂i, ϕ̂i) =
∫ t

t−T
[r(t)− s(t)]2dt

The Eq. (1.12) can be solved by setting the partial derivatives ∂L/∂α̂i, ∂L/∂τ̂i,
∂L/∂ϕ̂i to zero.

The MEDLL method finds a set of M +1 correlation functions (LOS and
multipath components) which, if summed, they provide the best fit of the current
measured correlation under the MSE criteria. The MEDLL decomposes in a
sum of correlation functions the current correlation, then all the multipath
components are subtracted from the current correlation and, the remaining
correlation is then used to get a better estimation of the code tracking error.

To limit the computational load, NovAtel’s first MEDLL receivers worked
with 12 correlators per channel and assumed the existence of three signal
components, one direct path plus two multipath components. [25].

Other mitigation techniques are presented in literature suitable to decompose
the incoming signal into a set of LOS and multipath components like Multipath
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Mitigation Technology (MMT) which assumes a model with the direct signal
plus one single multipath component [26].

In Chapter 3 a novel method to estimate multipath components will be
presented and some considerations about the difference will done.

1.9 Software receiver

For the purpose of this thesis, it was necessary to work with the data coming
from the tracking loops which typically are internal data, not visible outside
the receiver. To do that, a Software-Defined Radio (SDR) solution was chosen
and most of the results come from a receivers using this approach. The SDR is
a radio system where components have been implemented by using software
on a computer or embedded system instead of to be hardware components.
The main advantage of this approach is the possibility to easily reconfigure
the architecture of the system. SDR is the approach that permits to handle
all the receiver stages in order to check specific parameters or modify part of
the receiver without any additional costs. This is important to design and test
prototypes both in the context of a company or for academic research. The
evolution of the communication systems and, more specific, the GNSS receivers
is to reduce the number of the parts that now have to be realized in analogical.
In particular the antenna and the front-end need to be analogical, then by
means of an analogical to digital converter the signal pass from analogic to
digital domain. The optimization of the software code in order to have an
efficient and complex GNSS receiver is an actual research topic [27, 12, 28, 29].



Chapter 2

Integrity

To assess the quality of the positioning information it is necessary to define
four parameters:

• accuracy: the accuracy of an estimated value (position, velocity, time,
angles etc.) at a given time is defined as the degree of conformance
between the estimated value and the true parameter. Accuracy is usually
presented as a statistical measure of the performance of the system.

• continuity: is the capability of the whole system to work without any
interruption during the period of an operation. More precisely, given a
specified level of accuracy and integrity performance, continuity is the
probability that the system is able to maintain this performance for the
duration of the operation.

• availability: is the percentage of time that the system is able to provide
services to the user.

• integrity: Integrity relates to the reliability of a measurement. It will be
discussed deeply in this chapter.

These parameters are referred to as Required Navigation Performance (RNP)
parameters[30, 31].

Integrity relates to the trust of the navigation information, the ability
of a navigation system to provide timely warnings to users when navigation
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information is unreliable so the system should not be used. To define this
concept, the positioning systems, with integrity constraints, calculate the
Protection Level (PL). PL, as introduced in Section 2.1.2, is a zone around
the receiver with certain statistical characteristics, that guarantees a safety
positioning of the receiver. To ensure the integrity, PL must to be ranged by a
limit that guarantees the error between computed position and the true one is
bounded. Integrity is a topic that in the last years increased its importance
not only in the aviation but also in maritime and railways applications, and in
general for SoL services and liability critical applications.

SoL systems generally adopt RAIM algorithms devoted to PL computation.
RAIM systems also include methods able to identify satellites, whose signals
present anomalies, in order to discard them from the navigation solution.

These RAIM systems are algorithms which work with data of the range or
position domain, typical output of a GNSS receiver. However, the information
about the anomalies is also detectable by analyzing the correlation of the single
satellites. Therefore, fault detection by using signal processing techniques can
be derived and it is one of the purpose of this thesis.

2.1 Trustworthy measurements

To discuss about integrity, we start by recalling some statistical concepts. In
this section the concept of confidence level is recalled from the statistical point
of view. Then, the main concepts related to the integrity are introduced. This
helps to have a understanding of the terms used in the thesis.

2.1.1 Confidence interval

Let’s start by defining the quantities:

x = xt + ϵ (2.1)

where xt is the true value of the parameter which needs to be estimated, x

is a random variable which represents the estimate of xt and ϵ is the error
associated to the estimate and modeled as a random variable. From (2.1) it is
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possible to state the probability of the event A that x exceeds a given threshold
γ, so

P (A) = Prob(|ϵ| > γ)

To establish this probability, a Probability Density Function (PDF) fϵ(e) of
the error ϵ has to be known. Therefore the probability P (A) can be expressed
as

P (A) =
∫ −γ

− inf
fϵ(e)de+

∫ inf

γ
fϵ(e)de = 1−

∫ γ

−γ
fϵ(e)de (2.2)

If fϵ(e) is a zero-mean Gaussian PDF with σ2
ϵ , the P (A) in equation (2.2) can

be computed as

P (A) = erfc
 γ√

2 σ2
ϵ


and can be solved for the threshold γ

γ =
√

2 σ2
ϵ erfc−1(P (A)) = k σϵ (2.3)

where k =
√

2 erfc−1(P (A)). Therefore P (A) is the probability of the absolute
value of the error ϵ which exceeds the threshold γ, so ϵ is bounded to within
the confidence interval ±γ with probability 1−P (A).

2.1.2 Integrity risk and Protection Level

When we talk in terms of integrity, the probability P (A) that |ϵ| exceeds
γ = k σϵ is called Integrity Risk (IR) or loss of integrity. The concept of the
confidence interval x−γ < xt < x+γ in the language of integrity is called PL.
PL is the radius of circumference in a plane or, of a sphere in a tridimensional
space which has the center in the true position.

The concept of PL can be divided in Horizontal Protection Level (HPL)
and Vertical Protection Level (VPL). The former is defined as the bound of the
Horizontal Position Error (HPE) and the latter is defined as the bound of the
Vertical Position Error (VPE). Depending on the case, these two definitions
are used in different applications. In aviation domain, the vertical dimension
is more critical than the horizontal one. Instead, for land applications, the
situation is the opposite.
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Fig. 2.1 Example of Stanford diagram [32]

Another important integrity parameter, similar to the PL, is the Alarm
Limit (AL). The AL is the radius of an interval, with its centre being at
the true position, which describes the region which is required to contain the
indicated position with a probability 1−P (A).

When an integrity event occurs, the systems has to provide timely warnings
after the event. This time, called the Time To Alert (TTA), is the maximum
allowable time elapsed from the onset of the estimation system being out of
tolerance until the equipment enunciates the alarm [32].

The integrity, in a standalone GNSS receiver, is guaranteed by internal blocks
called RAIM and FDE. By using redundancy of the satellite measurements,
RAIM checks the consistency either of the pseudoranges or of the navigation
solution [3]. In this thesis we focused in particular on the FDE in the presence
of impairments given by the environments around the receiver. We present
RAIM and FDE in Section 4.4.

One of the instruments useful to evaluate the performance of a system
in terms of integrity is the Stanford diagram (or Stanford plot). It is a
graphical tool to explain integrity concepts and their relations for assessing
positioning system performance. This diagram provides a clear view of the
system performance. For further reading see [33].
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In Fig. 2.1 an example of the so-called Stanford Diagram or Stanford Plot
is shown. Next, we look briefly at some of the main RAIM algorithms have
been proposed in literature.

2.2 RAIM algorithms

The structure of the fault detection of a RAIM algorithm is based on statistical
detection theory [34]. The hypothesis testing are two:

1. If a failure exist

2. if so, which is the SV responsible of the fault.

Once identified the faulty SV, it is eliminated from the navigation solution.

In this section, the main algorithms for RAIM purpose with snapshot scheme
are presented, such as range comparison [35], Pseudorange residual or Residual
Based (RB) [36], and parity method [37]. They provide snapshot schemes and
yield identical results under the assumption of equal alarm rate, as shown in
[38], where a detailed comparison of these methods is given. Other methods
are not based on snapshot schemes, but current and previous measurements are
used to take decision about the presence of faults [39]. All of these methods use
the pseudorange measurements to detect failures, but it is not the only kind of
measurements domain that could be used for this scope as in Section 2.2.4.

2.2.1 Range comparison

Suppose we have a situation with NSV > 4 SV in view, it leads to have NSV

equations and four unknown (position in cartesian coordinates and clock bias)
in vector x̂. The next step is to solve the system of the first four equations
(in any arbitrary order), as in absence of noise. The solution is then used to
predict the remaining NSV −4 pseudorange measurements ρ̂. After that, ρ̂ is
compared with the actual measured pseudoranges ρ and, if either or both the
differences (residuals) are over a certain threshold, a presence of a failure is
declared. In case of NSV = 6, there are two range residuals ∆ρ1 and ∆ρ2 and
they can be seen as a coordinates [∆ρ1,∆ρ2] of a point in a test-statistic plane
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Fig. 2.2 Test statistic plane in case of six SV in view.

as in Fig. 2.2. Then, a decision rule or, graphically, a decision boundary that
divides the plane has to be chosen. In case of noise with a Gaussian distribution,
the contour of the decision boundary will be elliptical as in example in Fig.
2.2. The contour is chosen by setting the desired alarm rate. If a residual lies
within the bound, there is no failure, otherwise a failure is present.

2.2.2 Least-squares residuals

This technique is used to ensure the integrity by checking the consistency of
pseudorange measurements. If more than six SV are in view, it is possible to
detect and to exclude faulty measurements as well. For this method, we start
from the position estimated from Eq. (1.5). Once we get the position x̂LMS

by solving LMS with pseudorange measurements ρ ∈ RNSV , we can estimate
the pseudoranges simply by ρLMS = H · x̂LMS . After that, the pseudorange
residuals are computed in this way

w = ρ−ρLMS = [I−H(HTH)−1HT]ρ (2.4)

The vector w can be used to build a test statistic by means of a scalar product
t = wT w. If the noise processes that affect the pseudorange measurements are
independent and have zero mean Gaussian distributions with same variances,
the test statistic t is the sum of the squares of the elements of w and it
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Fig. 2.3 Statistical distribution of the test statistic with three DOF.

has an unnormalized χ2 distribution with NSV − 4 DOF. An example of χ2

distribution with three DOF can be seen in Fig. 2.3. The threshold used for
the fault detection is calculated to meet the required probability of false alarm.
Least-squares residuals method is easy to implement in a SDR and the test
statistic is always a scalar value, regardless of the number of SV in view [34].
This method is explained in deep and used in Chapter 4 and 6.

2.2.3 Parity method

The parity method is more formal method compare to the previous ones [34, 3].
Starting from the navigation equation

∆ρ = H∆x + ϵ

where ϵ is the noise error vector that affects the measurements and it could
contain possibles biases. The method performs a linear transformation on the
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pseudoranges vector ρ by means of the following relation
x̂LMS

−−

p

 =


(HTH)−1HT

−−

P

ρ (2.5)

where P ∈ R(NSV −4)×NSV and its rows are mutually orthogonal, mutually
orthogonal to the columns of matrix G and unity in magnitude [34]. The upper
part of the left part of the equation 2.5 are the coordinates and the clock bias
in the vector x̂LMS . The p vector, called parity vector, is the result of the
transformation operated on ρ by the special matrix P, so

p = Py

The matrix P can be obtained by QR factorization of the geometry matrix H

??. Under the assumption of the components of the noise ϵ are independent
and zero mean Gaussian random variables, if there are no fault, then E[p] = 0
and the covariance matrix covp = E[ppT ] = σ2I, where σ2 are the variances
associated to each element of ϵ. In the parity method we use the vector p as
the test statistic. It can be shown that exist a relation between the parity
vector p and the residual vector w, indeed

pT p = wT w

so the dimension of the vectors can be different but the magnitudes are the
same. This leads to have identical test statistic.

2.2.4 Solution Separation

Instead of using pseudorange measurements, the Solution Separation method
[40] is based on the observation of the computed positions starting by the
assumption that no more than one SV at a time can have a fault. If there are
NSV SV in view, it means there are NSV possible subset obtained by omitting
one SV at a time from the all-in view solution. If a failure exists, the faulty
SV will miss in one of the subsets and, once the SV is excluded, a faulty free
solution will obtained. if there is no fault present, the solutions should stay
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bouded around the true position. Then,in the horizontal plane, the maximum
observed solution separation can be used as a test statistic. It is a scalar
non-negative value that has to be compared against a threshold to decide if
the solution contain a faulty SV. In [41] is presented an heuristic method on
how to set the threshold and assess the radial error protected.

The Solution Separation method can be further extended to include multiple
hypotheses as in [42]. The Multiple Hypothesis Solution Separation is a RAIM
algorithm based on the assumption to have more than one simultaneous faulty
measurements.

2.3 Augmentation systems

The presented RAIM techniques works with measurements available at the
receiver side without any help from external systems. Furthermore, nowadays,
the positioning services based on the standalone GNSS receivers performance
are not suitable for critical applications like in flight or maritime operations
to meet accuracy or integrity user requirements. Thus, augmentation systems
have been developed to increase the performance.

These systems introduce the concept of the augmentation of a navigation so-
lution, in particular providing user differential corrections to improve accuracy,
reliability, availability and to meet and guarantee particular integrity require-
ments. Augmentation systems can enhance the performance of a stand-alone
receiver thanks to the use of information given by external sources.

To achieve this goal, the receiver may integrate external information of the
augmentation system in its positioning calculation. The augmented systems
broadcast messages containing several kinds of information like error corrections
on clock drift, ephemeris, or ionospheric delay.

The Satellite-Based Augmentation System (SBAS) is one of the augmenta-
tion methods. Through the use of additional geostationary satellites, SBAS
collects measurements from own ground stations, then the information messages
are created and they are broadcasted by geostationary satellites covering large
areas of the world. There are several SBAS implementations around the world:
the american Wide Area Augmentation System (WAAS), the european Euro-
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pean Geostationary Navigation Overlay System (EGNOS), the indian GPS
Aided Geo Augmented Navigation (GAGAN) and the japanese Multi-functional
Satellite Augmentation System (MSAS).

Other augmentation method is the Ground-Based Augmentation System
(GBAS). These methods use radio terrestrial links to cover areas usually
limited compared to the coverage of SBAS systems. GBAS provides differential
corrections and integrity monitoring in the proximity of airport. The ground
stations send messages in Very High Frequency (VHF) band. Another term used
in the past by the american Federal Aviation Administration (FAA) referred to
GBAS was Local Area Augmentation System (LAAS).



Chapter 3

Multipath Distance Detector
Algorithm

In GNSS receivers local effects due to the environment around the antenna
can introduce errors on the estimation of the true delay. A typical disturbing
effect in urban environment is MP, due to the presence of buildings, moving
obstacles like cars, tree and the ground. These disturbing effects could have
an impact not only on the accuracy but on the integrity systems as well. In
order to satisfy the requirement to detect the signal faults, in this chapter we
propose a MP detector working with tracking measurements. The method is
based on the well known results of the LAF theory, [43], and works at the
correlation layer, so as to provide an early warning to the integrity algorithms.
In the following of the chapter it is shown how the LAF coefficients can be
used to detect the presence of MP and the validity of the method is proved by
simulation.

The work presented in this chapter is focused on environmental effects like
MP, that may change the estimation of the true delay of the GNSS signal or
more in general, if MP occurs, the multiple reflections change the length of
pseudoranges and consequently the estimated position will be wrong. The
results presented in this chapter is an extension of the work in [44, 45], that
proposes a detection method of the correlation distortions tailored to anomalies
caused by MP. In literature, many MP mitigation techniques are described
[46, 47], but here the objective is different, as we want to identify the possible
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distortion, but not to fix it. The concept of the proposed algorithm comes
from a method based on the theory of LAF, already adopted in [48, 49], but
rearranged in order to make detection. To design and assess the performance
of the detection algorithm, the LAF method was integrated in a SDR receiver
and its performance was validated by simulation. These aspects are described
in the remainder of the chapter.

This chapter shows the first approach used to start the research work, the
presentation of the LAF theory and how to use that for correlation distortions.
LAFs are based on methods of least squares estimation, are used to solve linear
filtering problems without a priori information on the statistical characteristics
of the input signal applied to the filter. The basic idea is to build a curve that
"best" fit a measured set of N data points d[1], . . . ,d[N ]. This curve is created
as a linear combination of delayed versions of a given discrete-time sequence
u[n].

3.1 Linear Adaptive Filter model

An overview of some of adaptive algorithms can be find in [50], where adaptive
techniques were presented for channel equalization. The algorithm proposed
in this chapter is based on LAF [43, 51]. The idea is to represent a set of
measured data d[n] as the output of a linear Finite Impulse Response (FIR)
filter corrupted by a measurement noise, modeled as Gaussian white random
process. This implies that d[n] can be written in the form

d[n] =
M−1∑
k=0

w∗
ku[n−k]+n0[n] (3.1)

where n is the discrete time, u[n] is a given discrete-time input signal, and w∗
k

are the unknown parameters of the FIR model that weight delayed versions of
the input signal u[n].

The problem is the estimation of the coefficients w∗
k of the FIR model. We

introduce the estimation error e[n] as the difference between the clean filter
output y[n], defined as

y[n] =
M−1∑
k=0

w∗
ku[n−k]
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and the measured data d[n]. Therefore we can write

e[n] = d[n]−y[n] (3.2)

and we estimate the coefficients w∗
k by adopting the LS method consisting in

the minimization of the cost function:

ϵ =
i2∑

n=i1

| e[n] |2 (3.3)

that is the error energy, where i1 and i2 are the limits of the sum. The values
assigned to the limits depend on which kind of data windowing is chosen. This
problem will be addressed in Section 3.1.1 and in Section 3.4.

3.1.1 Data windowing

In order to generate an input rectangular matrix U from u[1], . . . ,u[N ], it is
possible to distinguish four different methods, depending on the values of i1

and i2 in (3.3). Here we are essentially interested on only two methods and at
the end only one will be the correct choice in our application.

• Covariance method: this method makes no assumptions about the data
outside the interval [1,N ], so u1 and u2 and U takes the form:

UH =


u(M) u(M +1) · · · u(N)

u(M −1) u(M) · · · u(N −1)
... ... . . . ...

u(1) u(2) · · · u(N −M +1)


• Autocorrelation method: this method instead makes assumption that the

data prior to time i = 1 and after i = N are zero. The matrix U becomes:

UH =


u(1) u(2) · · · u(M +1) · · · u(N) 0 · · · 0

0 u(1) · · · u(M) · · · u(N −1) u(N) · · · 0
... ... ... ... . . . ... ... . . . ...
0 0 · · · u(2) · · · u(N −M +1) u(N −M) · · · u(N)
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The choice on what definition of U has to be preferred depends on the specific
problem and the one adopted in our application will be indicated later

3.1.2 Normal equations and principle of orthogonality

To solve the minimum error problem, it is necessary to use the principle of
orthogonality:

N∑
n=M

w∗
ku[n−k]e∗

min[n] = 0, 0 ≤ k ≤ M −1 (3.4)

which affirms that the minimum error time series emin[n] is orthogonal to the
time series u[n−k] applied to the taps of a transversal filter of length M for
k = 0,1, · · · ,M −1, when the filter is operating in least squares condition. We
may derive the system of normal equations by substituting the expression

emin(n) = d[n]−
M−1∑
k=0

w∗
k ·u[n−k] (3.5)

in (3.4) from which we get

M−1∑
t=0

wt

N∑
n=M

u[n−k]u∗[n− t] =
N∑

n=M

u[n−k]d∗[n], k = 0, · · · ,M −1 (3.6)

where the left side of the expression contains the time averaged autocorrelation
function defined as

ϕ[t,k] =
N∑

n=M

u[n−k]u[n− t], 0 ≤ (t,k) ≤ M −1 (3.7)

while on the right side of (3.6), the summation

z[−k] =
N∑

n=M

u[n−k]d∗[n], 0 ≤ k ≤ M −1 (3.8)

represents the cross-correlation between the tap inputs and the measured
response.
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By adopting these correlation terms, (3.6) may be written as

M−1∑
t=0

wtϕ[t,k] = z[−k], k = 0, · · · ,M −1 (3.9)

that are the normal equations of the linear LS filter.

3.1.3 Re-formulation of normal equations

Now, in order to work with a matrix notation, we rewrite (3.9) by using the
following definitions:

• an M ×M time averaged correlation matrix

Φ =


ϕ(0,0) ϕ(1,0) · · · ϕ(M −1,0)
ϕ(0,1) ϕ(1,1) · · · ϕ(M −1,1)

... ... . . . ...
ϕ(0,M −1) ϕ(1,M −1) · · · ϕ(M −1,M −1)


• a vector M ×1 that contains time-averaged cross correlation vector be-

tween u[n] and d[n]: z = [z[0], z[−1], · · · , z[−M +1]]T

• a vector M × 1 that contains the coefficients of the least squares filter:
ŵ = [w0,w1, · · · ,wM−1]T

By using these vectors, the system of normal equations for linear least
squares filters can be simply written as

Φw = z

In this way, the problem of estimation of w turns in an inversion matrix problem,
that is

w = Φ−1z (3.10)

by assuming Φ is nonsingular, therefore invertible.
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3.2 LAF for multipath detection

The goal of this work is to develop a technique to detect the presence of the MP
for integrity purpose, where the goal is to remove the signals affected by strong
MP. The basic idea for the detection is to use information coming out from a
LAF filter designed so as to decompose the correlations measured during the
tracking step as a weighted sum of ideal correlations. To do this, we use the
LAF theory previously presented.

The application of the LAF theory to the tracking to decompose the corre-
lation, presents an analogy with the MEDLL already introduced in 1.8. The
purpose of both techniques is to estimate the possible presence of the MP but,
in case of MEDLL, the estimation is used to correct directly the tracking loops
by mitigating the estimated MP. In puour case we want detect and not mitigate.
Then the estimation process is different, LAF solves a LS minimization problem
in order to find the amplitude and the delay of the reflected rays. Instead, the
MEDLL uses a maximum likelihood estimation to find amplitude, the delay
and phase of the reflected rays. Moreover, MEDLL generally starts with the
assumptions of limited number of rays considered compare to LAF.

The capability of a LAF to model MP phenomena in a GNSS received SIS
is described in [48, 49]. Here we use that approach with the specific goal of
detecting the presence of MP in the signal of a single GNSS satellite. The
method is described in the remainder of this section.

3.3 Multipath Distance Detector algorithm

The Multipath Distance Detector (MPDD) works in parallel with the tracking
stage, because it uses the raw data after demodulation and takes delay correction
terms calculated by the DLL.The DLL and its update mechanism will be
discussed deeply in Chapter 4. The detector does not influence the normal
operations of the receiver, but raises an alert when MP, or more in general,
distortions affect the signal.

The MPDD algorithm [44] can be implemented inside a software receiver
at the tracking stage level. To operate, it needs as input information the
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Fig. 3.1 Block scheme of MPDD algorithm.

DLL output; however, it has to be noted that does not provide corrections to
the tracking loops. The block scheme of the algorithm with its fundamental
components is shown in Fig. 3.1. where the input tracking data are the
multicorrelator functions from the DLL. The multicorrelator functions are
collected in time and then averaged, in order to limit the noise on one side, and
to reduce the computational load on the other side. Then, the output of the
average filter becomes the input of the LAF. The LAF decomposes the input
multicorrelator signal as a weighted sum of ideal multicorrelation functions,
then the weight coefficients are used by the decision metric, to take a decision
about the presence/absence of MP.

The detector is composed by 4 elements:

1. Multicorrelator

2. Moving average filter

3. Linear adaptive filter

4. Decision metric

A section will be devoted to describe each of them, except for muticorrelator
already described in chapter 1. We need a multicorrelator, but Npoints = 3
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Fig. 3.3 Generic block scheme of a LAF.

points is not sufficient to implement a MPDD. Hence, LAF block needs a
multicorrelator with a higher value of Npoints, as seen in Fig. 3.2. This
multicorrelator works independently from the correlator of the DLL, and its
maximum spacing is 0.5 Tchip. For example, by using the data of the front-end
used in Section 1.6.2, to have a resolution higher than Ts, at least Npoints = 16,
for instance, Npoints = 20, so the total number of points of the multicorrelator
is Ntot = 41. In the following we call correlation sequence the collection of
correlation points obtained at each epoch at the output of the multicorrelator.
The last component of the chain is the Decision metric, which is the innovative
contribution of the present work. Therefore this part will be presented in the
next section together with the discussion about the choices made on signals
contained in the LAF vectors and matrices.
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Fig. 3.4 Example of a correlation obtained with two delayed components of u[n].

3.3.1 LAF component block

In section 3.1 it was introduced the theory of the LAF, that is valid for generic
signals. Here we use the LAF scheme, depicted in Fig. 3.3, by adopting the
method suggested in [48] and [49], where d[n] is the measured correlation
sequence and u[n] is the ideal correlation sequence

u[n] =
k∑

m=−k

C∗
m(m ·∆sp)Cm((m+n) ·∆sp)

where ∆sp is the resolution of the multicorrelator, that is in general different
from Ts. With this scheme we are able to fit the measured correlation sequence
with an approximated correlation y[n], which is a weighted sum of delayed
versions of the ideal correlation. An example is in Fig. 3.4, which shows a
correlation obtained with two delayed components of u[n].

The LAF method allows the estimation of the filter coefficient vector w,
which can be used to decide about the presence of possible MPs. Therefore a
key point of the algorithm is the computation of the vector ŵ, which can be
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done by using (3.10), where
Φ = UHU

z = UHD

and D is the windowed measured correlation from index M to N . The first
point to note is that the length M of the LAF filter also impacts on the length
of D. Since D = [d[M ],d[M +1], · · · ,d[N ]]T , more taps we choose, less points
of the measured correlation are used by the LAF algorithm. In our application
we use a portion of the signal containing Ns samples and we measure 2Ns +1
correlation points in the region around the peak. Since only the correlation
samples from M to N = 2Ns +1 are used, M has to be lower than (2Ns +1)/2,
in order to preserve the samples close to the peak. The value of M also
determines the computational load due to the fact that the matrix to invert
becomes bigger, as the filter becomes longer. The M-to-N ratio defined as

MNR = M

2N +1

must be chosen ≪ 50%. For instance, if M = 10 and N = 20, MNR = 0.2439.
Notice that in our application we are not interested in the single components
of y[n], since our goal is not to mitigate MP effects, but rather to exclude
satellites with severe MPs.

Energy analysis

First of all, it’s important to underline what we expect from the w vector,
that is, what we can infer from the vector about MP and more in general the
presence of an undesired distortion in the measured correlation.

In an ideal static situation between transmitter and receiver with no Doppler,
no MP and no noise effects, w will contain only the first component (w[1]) and
the other coefficients are all zero. This because the measured correlation D
exactly coincides with the ideal correlation except for a normalization term
wLOS . In all the other cases the presence of undesired components in the
received SIS modifies all the elements of w. In the presence of LOS and a
single ray of MP with a specific delay and no noise, w[1] and the element of w
corresponding to the delay will be different from zero.
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Noise complicates the identification of MP or other distortions, because
spreads energy on all the elements of w. In order to mitigate this effect we use
an averaged correlation sequence, as it will be explained in section 3.3.3.

Another consideration to take into account is that the MP delay is in
general a quantity ∈ R, while in the discrete-time domain only delay ∈ N can
be represented. This means that the expression y[n] = ∑

w∗
ku[n − k] used by

the LAF to represent the measured correlation can properly model only a
finite set of possible delays, therefore the method has not an infinite resolution.
For example a delay of 1 correlation sample is properly modeled by u[n − 1].
Instead, it is probable that a real delay is not proportional to the resolution of
the LAF filter or, in other words, the delay between two correlation samples
cannot be modeled by a single replica of u[n].

The delay is represented in that case by more than one elements of the w
vector.

It is evident that the information about the presence of MP is contained in
the signal:

yside[n] = y[n]−wLOS ·u[n]

that is the curve of side components, obtained by subtracting the approximated
correlation and the 0-delayed ideal correlation weighted with the calculated
LOS coefficient.

In order to have an idea of the information on MP possibly embedded in
yside[n] some simulation experiments have been performed. A GPS signal with
C/N0 = 45 dBHz has been generated with no MP in the initial part, and a 1 ray
MP added in the time interval (t1, t2), where T1 = 15s and t2 = 20s, with MSR
(MSR) = −6dB. The simulation results are shown in Fig. 3.5 which shows the
energy of the vectors at the LAF output. In the top left there is the evolution
in time of the energy of the LOS component; in top right the evolution of the
energy of the side components; in lower left and lower right respectively the
energy of approximated correlation and measured one. As expected, the energy
of the side components increases during the MP stage. We can say that in the
correlation domain the energy of y[n] well approximates the energy of d[n].
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Fig. 3.5 Energy analysis of LAF input and output signals.

The energy of the error introduced in (3.5) is normalized over the energy of
d[n] and the expression is

Ee[n] =
k∑

n=−k

|d[n]−y[n]|2
|d[n]|2

This parameter is represented in Fig. 3.6, where we note that the energy of
the relative error is on the order of 10−4 and it maintains constant its order of
magnitude for both MP and no MP stage.

3.3.2 Decision metric

First of all, which type of information can we extract from w vector? LAF
decomposes the signal as a linear sum of delayed ideal correlations; this means
that, for instance, in the case we have LOS and another reflected ray delayed
as in Fig. 3.4, only u[n] and u[n−3] are present in the measured correlation
and the w vector should contain non-null values only in the first and third
position. In the general case with a ray with a fractional delay, there will
be an additional coefficient given by the filter in order to well approximate
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Fig. 3.6 Energy of the error between d[n] and y[n].

the input signal. In the presence of noise all coefficients are non-zero, since
noise spreads energy into the whole vector, as shown in Fig. 3.7. The idea is
not to use a simple threshold on the coefficients, but to find a way to use all
information inside the w vector. The key point is to consider the w vector in a
coefficients space, where we know that in the absence of noise and MP, the ideal
LOS vector M ×1 is wLOS = β · [1,0, . . . ,0]T where β is only a normalization
constant. An example can be seen in Fig. 3.8. After the computation of the
vector coefficients at the output of the filter wout, the algorithm calculates the
geometrical distance between wout and a set of specific vectors, by using the
square distance criterion. This dictionary of vectors contains possible binary
combinations of vectors with dimension M ×1 (potentially there is a very high
number of entry in the dictionary). Therefore the dimension of the comparison
set depends strictly on M , that increases its relevance not only as length of
the filter. Inside the set there are "samples" vectors that represent several
situations like only LOS, LOS and 1 ray or more of MP with different delays
etc. When the distance between wout and wLOS is greater than other, the
algorithm detect possible presence of distortions. In formula we have

ELOS = ∥wout −WLOS∥2

and
Ek = ∥wout −Wk∥2 k = 1,2, ...Nv −1
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Fig. 3.7 wout in case of only noise and C/N0 = 45 dBHz.

and we decide that anomalies are present if

Ek < ELOS k = 1,2, ...Nv −1

or
min

k=1,2,...Nv−1
(Ek,ELOS) ̸= ELOS

where W is the matrix dictionary M × Nv that has sample vectors along
the columns. A preliminary important consideration is that we consider the
detection of MP in the presence of the LOS signal. This implies that all
the normalized sample vectors have the first coefficient set to 1. The others
remaining coefficients are multiplied by an additional parameter α ∈ (−1,1)\{0}
that tunes the amplitude of the considered delayed replicas. The next problem
will be to choose appropriate values for α. If wout is recognized as a vector
with MP, to raise an alert is not sufficient. The MP phenomenon is critical if
it has strong distortion effects on correlation and its duration is more than few
hundred milliseconds. In conclusion, the threshold is moved from coefficients
to temporal duration.

Independently from the value of M and by keeping the number of correlation
points constant, we will avoid to consider last two values of w, which are the
most delayed replicas. The last two coefficients on the border have low C/N0,
the correlation is weak, so from the point of view of detection, we may reduce
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Fig. 3.8 wout in case of no noise and no MP.

the effect of the noise by not using them. In the example in Fig. 3.9, with
C/N0 = 42 dBHz, without MP and M = 10, the power of the 9th and 10th
component are consistent and the algorithm may confuse distortion caused
by the noise for MP. The situation is more clear by viewing the vector wout

depicted in Fig. 3.10.

A possible strategy to improve the detection is to update the vectors on
the dictionary, calculating the best ideal vectors by adding information about
noise variance which is related to C/N0. This implies the existence of several
dictionaries specified for at least sample values of C/N0. i.e. 40, 42, 45 dBHz.

Example

Let’s suppose to work in condition with LOS and 1 reflected ray (with less
power). We choose M = 8, so wout is 8×1; the set should contain Nv = 2M = 256
vectors, but they are less than this number, in fact Mnew = M − 2 = 6, that
implies Nv = 26 = 64 vectors. Now, we consider that we have an environment
that receives always the LOS consequently, we remove all the vectors that
don’t have 1 as a first coefficient but 0, so Nv will be halved. Eventually, are
needed 32 distance calculations to establish if there is distortion within the
time window.
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3.3.3 Cross-correlation moving average

The LAF-based detector described in this document requires the measurements
of a correlation sequence with of a significant number of points. In order to
distinguish the effects of the noise from the effects of the MP, the noise in the
correlation sequence should be attenuated as much as possible. To reduce the
noise effect, the first step, after the multicorrelator, is a cross-correlation moving
average. Two possible implementation of this filter are continous moving average
or block moving average. The first one is a moving average filter with overlap
between slices of the signal, the second one instead operates independently the
average on slices, without overlapping. For this implementation and to reduce
computational load, the block moving average is chosen. During the processing,
on every integration time of the incoming signal a correlation sequence with
Ntot points is computed, and stored. Then we supposed that, if a strong MP is
present, it has the same nature (same delay) in a time interval including many
measurement epochs. In this case we can store and average the correlation
sequences, to reduce the noise effect. For example a MP which lasts about 50
ms is present in 50 non-overlapping correlation sequences. In the examples
shown in this section the following parameters have been used:

• C/N0 = 45 dBHz

• A simulation duration of 22 s.

• No MP in the first 15 s and last 2 s.

• MP from 15 s to 20 s.

• The MP is one ray with amplitude halved respect to the direct path, and
delay 0.30548µs.

Concerning the moving average filter, we set M = 10 for all the cases (this
choice will be discussed in depth later). Fig. 3.11 is divided in four subplots.
The upper-left graph shows the measured and ideal correlation in a particular
instant. In the upper-right graph the measured correlation and the estimated
correlation by the LAF are shown. The bottom-left shows the estimation error
between the input of the LAF (measured correlation) and the output (estimated
correlation). In the last graph, in bottom-right plot is shown the ŵ vector.
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Fig. 3.11 Correlations and coefficients and 1 ray of MP presence.

These plots are taken during the MP part and the presence of the MP could
be detected since the moving average window has short duration of 20 ms.
Therefore it is important to attenuate the effects of the noise, visible in the
resulting ŵ vector of the LAF.

To underline this, let’s consider a time window of 1 ms, equal to the
integration time, so it means there is no average on data. It is possible to see
the distribution of the amplitude of the coefficients in Fig. 3.12 and to observe
that the 1-st coefficients have approximately the same normal distribution with
different averages (see Section 3.6).

In Fig. 3.13 are shown correlations, in different time instants, which can be
affected by the noise. Instead, in Fig. 3.14, the correlations are also affected by
MP in the instants from 15 s to 20 s. Both of the figures use a moving average
window of 1 ms. With respect to the previous figures, in Fig. 3.15 is visible
the denoising effect, due to the average over a time window of 50 ms.

Other example of average time window is in Fig. 3.16, where the moving
average is calculated over 200 ms. This value together with 500 ms, is typically
used for the simulations, especially when C/N0 is lower than 45 dBHz.
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Fig. 3.12 Distribution of coefficients on a duration of 6 s without MP.

Delay [s] ×10-6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(Normalized) Correlations in time - C/N0= 45 dBHz; Moving average every 1 ms

instant 0.001s

instant 3s

instant 3.001s

instant 6s

Fig. 3.13 Correlations at different time instant, without MP and where it is difficult
to identify the peak for all correlations. Moving average window of 1 ms
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Fig. 3.14 Correlations at different time instant, with MP and where it is difficult to
identify the peak for all correlations. Moving average window of 1 ms
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Fig. 3.15 Correlations at different time instant, with/without MP and moving average
window of 50 ms.
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Fig. 3.16 Correlations at different time instant, with/without MP. Moving average
window of 200 ms

Another reason to use moving average is to reduce the computational load,
because for instance the case with 1 ms of window implies that the LAF’s
weights have to be evaluated at each millisecond instead of 50, 200, 500 ms.
Moreover the analysis to have information at level of 1 ms is not so useful and
very noisy.

3.3.4 Peak Alignment problem

This section will address the problem of the alignment of the peak of the
correlation function. In fact the points of the correlation have to be correctly
aligned before performing the moving average operation. Peak alignment is
important to avoid to give false information to the detector block and to better
compute the w vectors. The situation of the following simulations is this:

• C/N0 = 45 dBHz.

• 200 ms of time window.

• 6 seconds of the signal, with last 3 s with MP.

Obviously, the peak of correlation is the maximum of the function, so the
problem is to fix the maximum value of the correlation. In ideal case, there
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Fig. 3.17 Correlations not aligned but averaged (istants after 15 s have MP together
with the signal).

is no problem, and the identification of the maximum is a simple operation.
On the contrary, in the presence of noise, as in the example of Fig. 3.13, the
correlation is not a perfect triangle and especially the points around the true
peak could be higher than the peak itself. In conclusion, due to noise, it is
possible to find a wrong maximum peak. The moving average reduces the
quantity of noise giving regular correlation points as shown in Fig. 3.17, but
if we observe the case of MP presence, the peak is not aligned as in the case
of only noise presence. The problem is how to do the alignment, because the
average after the alignment risks to smooth not only the noise, but also the
MP as shown in Fig. 3.18, so degrading the detection capability.

The adopted solution is to compute the average before the alignment. If a
strong MP persists during the time with the same characteristics, the average
allows us to highlight the distortion and the true peak, as shown in Fig. 3.19
where the alignment is done after the average.
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Fig. 3.18 Smoothing effect on correlations by using alignment before the average
(istants after 15 s have MP together with the signal).
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Fig. 3.19 Correlations by using alignment after the average (istants after 15 s have
MP together with the signal).



3.3 Multipath Distance Detector algorithm 73

3.3.5 Simulation results

To validate the results obtained by simulation, we used data generated with
N-Fuels, that is a GNSS signal simulator [52]. This part of the work considers
four main types of environment depending on the characteristics: Open, Rural,
Suburban, Urban. The first problem was to establish a correct tuning of
parameters of the signal simulator, to work in a realistic scenario. To do that,
in section 3.3.6 are presented values which were useful to set up, taken from
the research in [53]. It was possible to determine, for different environments,
some MP characteristics, i.e. average number of reflected rays etc. In section
3.3.7 it will be shown the profiles of the MP and the results obtained with the
complete detection algorithm.

3.3.6 Multipath characteristics

This brief section will introduce some typical values useful to validate the
analysis. From the the receiver point of view, the most dangerous MP or
distortion problem is when it has a high MSR and this situation continues over
time. In table 3.1 are reported some typical values of Signal-to-Multipath ratio
(SMR) that is defined with opposite sign respect to MSR, in the case to have
elevation angle of E = 25◦. We are interested, in particular to the last case of
the table, urban environment, where there is the lowest SMR (highest MSR).

Multipath Characteristics (E = 25◦)
Environment Mean SMR (dB) Typ. Path Delay (m)
Open 27.5 26
Rural 13.5 57
Suburban 20.5 56
Urban 6.0 51

Table 3.1 MP characteristics for different environment with elevation angle of 25◦

[53].

Another important parameter to consider is the average number of rays
present in the incoming signal. Instead to have a single reflected ray with a
certain power, it may be possible to have many rays with less power. In [53], it
is shown a mean number of reflected rays for each type of environment. For



74 Multipath Distance Detector Algorithm

Delay [s] ×10-7

-8 -6 -4 -2 0 2 4 6 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(Normalized) Correlations in time - C/N0= 45 dBHz; Moving average every 200 ms

instant 0.2s

instant 5s

instant 5.2s

instant 10s

Ideal corr

Fig. 3.20 Correlations at different epochs without MP.

the urban case, the worst one, the maximum number of reflected rays in the
case of an elevation angle E = 25◦, is set equal to 5.

3.3.7 Multipath profiles

As already mentioned in the introduction of the chapter, here we consider many
different scenarios with and without MP, the effects of different moving average
windows, etc. We start with the first case, that we consider as a reference good
case. In Fig. 3.20 some correlation functions are shown in several time instants
on a dataset with duration 22 s and C/N0 = 45 dBHz. These correlations are
not referred to a single epoch of 1 ms but they are an average on a window
duration of 200 ms. Here the istants before 10 s are shown. For all the cases,
α can be 0.3 or 0.5, so the peak of MP will be 0.3 or 0.5 than the peak of the
LOS.

Figs. 3.21 and 3.22 show the results of the detector, in terms of computed
distances (upper graph) and detector output (lower graph). The detection
output is the index in the dictionary that indicates which vector is closer to
w0. If the index is different from 1 (the index of the wLOS), the distortion is
present. The results are shown in the time interval from 10 s to 22 s.

Now in Figs. 3.23 and 3.24, the conditions are the same as before, but
C/N0 decreases to 42 dBHz. The performance is still good, but during MP
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Fig. 3.21 Distances and detector results in case with α = 0.3 and C/N0 = 45 dBHz.
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Fig. 3.22 Distances and detector results in case with α = 0.5 and C/N0 = 45 dBHz.
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Fig. 3.23 Distances and detector results in case with α = 0.3 and C/N0 = 42 dBHz.

stage, there is some missed detection in case of α = 0.5. The last case is in
Figs. 3.25 and 3.26, where C/N0 = 40 dBHz. The performance is very similar
for both values of α.

Multiple rays

Until now, all the examples and figures have only one reflected ray. In Figs.
3.27 and 3.28, there are two replicas with MSR1 = −6 dBHz and MSR2 = −8
dBHz and different delays τ1 = 0.29µs τ2 = 0.3548µs.

In the last case shown in 3.29 and 3.30, with C/N0 = 42 dB, there are five
MP rays with MSR1 = −9 dB, MSR2 = −7 dB, MSR3 = −6 dB, MSR4 = −7
dB and MSR5 = −8 dB. The delays are τ1 = 0.15µs, τ2 = 0.19µs, τ3 = 0.25µ,s
τ4 = 0.32µs and τ5 = 0.39µs. As we expect, the detection method works both
in the simplest cases with two rays and with multiple rays. This because the
resulting distortion is more important than the effective number of rays.
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Fig. 3.24 Distances and detector results in case with α = 0.5 and C/N0 = 42 dBHz.
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Fig. 3.25 Distances and detector results in case with α = 0.3 and C/N0 = 40 dBHz.
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Fig. 3.26 Distances and detector results in case with α = 0.5 and C/N0 = 40 dBHz.
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Fig. 3.27 Distances and detector results in case with α = 0.3 and C/N0 = 45 dBHz.
MP has two replicas with MSR1 = −6 dB and MSR2 = −8 dB and different delays
τ1 = 0.29µs τ2 = 0.3548µs
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Fig. 3.28 Distances and detector results in case with α = 0.5 and C/N0 = 45 dBHz.
MP has two replicas with MSR1 = −6 dB and MSR2 = −8 dB and different delays
τ1 = 0.29µs τ2 = 0.3548µs
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Fig. 3.29 Distances and detector results in case with α = 0.3 and C/N0 = 42 dBHz. MP
has five rays with MSR1 = −9 dB, MSR2 = −7 dB, MSR3 = −6 dB, MSR4 = −7 dB
and MSR5 = −8 dB. The delays are τ1 = 0.15µs, τ2 = 0.19µs, τ3 = 0.25µ,s τ4 = 0.32µs
and τ5 = 0.39µs
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Fig. 3.30 Distances and detector results in case with α = 0.5 and C/N0 = 42 dBHz. MP
has five rays with MSR1 = −9 dB, MSR2 = −7 dB, MSR3 = −6 dB, MSR4 = −7 dB
and MSR5 = −8 dB. The delays are τ1 = 0.15µs, τ2 = 0.19µs, τ3 = 0.25µ,s τ4 = 0.32µs
and τ5 = 0.39µs
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Fig. 3.32 Calculated distances and detector results for long dataset with C/N0 = 43
dBHz, α = 0.3 and M = 8.

3.3.8 Detection and error probability

In this subsection, we try to estimate the detection and error probability (Pd

and Pe). For this type of simulation, we use longer dataset in order to plot the
probability of detection and probability of false alarm for several value of C/N0.
The MP profile is shown in Fig. 3.31, where the duration of the dataset is 82 s
and where every 20.5 s, the MSR rises from −100 dB to −8 dB and viceversa,
with a fixed delay of 0.31748µs. The results for the detector are shown in Figs.
3.32, 3.33 and 3.34 respectively for α = 0.3, α = 0.4 and α = 0.5 with M = 8.
It is possible to see that the performance of the detector are influenced by α

values.

Figs. 3.35, 3.36, 3.37 and 3.38 show the results referred to the previous
dataset, in terms of probability to detection and probability to commit error,
with a growing value of C/N0 for several fixed values of α and for M = 8
and M = 10. The graphs show that it is possible to identify an optimal α to
define the presence of the MP, in case of the example with MSR = −8 dB, the
optimum is between α = 0.3 and α = 0.4. From the case with M = 8 to M = 10
the situation doesn’t change very much so it may be possible to reduce the
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Fig. 3.33 Calculated distances and detector results for long dataset with C/N0 = 43
dBHz, α = 0.4 and M = 8.
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Fig. 3.34 Calculated distances and detector results for long dataset with C/N0 = 43
dBHz, α = 0.5 and M = 8.
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Fig. 3.35 Results for Pd with M = 8.

complexity by decreasing M . Obviously, α depends from distortion and could
give additional information about it.

3.4 Constrained Least Squares

This section presents an enhanced method of the algorithm proposed in Section
3.3.2, where a novel approach of the MPDD algorithm to detect MP or other
distortions at the correlation stage level is presented. The method is based on
the decomposition of the signal by means of LAFs [43, 51]. The enhancement
presented in this section includes some constraints on the solution, in order
to limit the effects of the noise and improving the performance in terms of
detection and false alarm probability even in low Signal-to-Noise Ratio (SNR)
conditions. It is also presented the adaptation of the algorithm to Galileo
correlation signal, so extending the possibility to use not only with the GPS
but also with other satellite constellations.

The idea is to estimate the received signal as a weighted sum of delayed
replicas of the LOS signal by solving, instead of LS, a CLS, a different mini-
mization problem. Then, getting the new vector ŵ ∈ RM×1 of filter coefficients,
the MPDD algorithm is performed.
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Fig. 3.36 Results for Pe with M = 10.
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In the MPDD, the estimated vector ŵ ∈ RM×1 is used in a M -dimensional
geometrical space to compute its geometrical distance from sample vectors,
representing possible MP scenarios.

In Section 3.1, the LS goal is the minimization of the error ϵ defined by (3.3).
The method could not be very robust in the presence of noise. Then, in order to
improve the method, in particular reducing the false alarm probability mainly
due to the noise, an updated version has been developed and is presented here.
The wi coefficient vector is estimated by solving a CLS problem, which in
formulas is defined as:

min ||Uw −d||2

subject to wi > 0, i = 1, . . . ,M.

where U,w and d are the previous matrix and vectors as described in Section
3.1. The Non-Negative Least Squares, as in [54], is applied here. As discussed
in 3.1, in the presence of noise the traditional LS estimates the input including
the input noise. The input signal is estimated as a weighted sum of delayed
replicas of the target signal, which is a suitable model for the MP channel but
does not fit well for the WGN channel. As a consequence, the system adds a
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high number of positive and negative wi coefficients in order to try and estimate
the WGN component as well as it can. The result is a highly noisy solution.

A constraint is then put here on the possible values of the wi coefficients.
The method presented here, applying the CLS, includes a bound on the solution
in order to have all the M coefficients wi of the w vector such that wi > 0, ∀i.

However, it is clear that this constraint appears not to be suitable to
estimate a MP channel where LOS and MP components have different phase
signs. In such a case, in order to properly estimate the signal components
some negative wi coefficients would be needed. Nevertheless, it has to be
noted that the goal of the algorithm is not to properly estimate the signal as
weighted sum of components, but just to detect if anomalies are present in the
signal, discriminating between the only-LOS case and all the other unwanted
cases. If a counter-phase component is present, then the CLS (applied with
the autocorrelation method windowing as explained in Section 3.1.1), estimates
non-null wi coefficients with shorter delay with respect to the LOS. Such an
anomalous behaviour detects the presence of counter-phase MP, and a warning
flag is raised. Furthermore, CLS has also an impact on the decision metric
because thanks to the constraint, we can avoid to compute distances with
vectors with α < 0. In the ideal case of only-LOS signal present without noise,
the LS and the CLS solutions are coincident. However, in general the CLS
algorithm gives a smaller number of non-null wi coefficients than the LS, and
the global noise effect decreases.

3.5 Results

The new version of the MPDD algorithm has been tested and validated by
means of a simulation campaign with simulated GNSS data generated by N-
Fuels [52], which can generate signals affected by multiple different MP rays.
The main problem is the presence of the noise, so in Section 3.3.3, to reduce the
noise and also the computational load, the correlations computed are collected
in a time window and averaged. In all the considered simulations, the time
window chosen is Ta = 200 ms. In this case, with a Tint = 1 ms, we have 200
correlations which are averaged within a single time window. Moreover, we
assume that if a strong MP is present (strong enough to affect the position
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solution) its delay is supposed to be constant over several measurement epochs.
For both LS and CLS solutions the length of the filter is M = 9. Another
parameter to take into account for the detection is the set of vectors used in
the decision metric. In the simulations both the LS and the CLS method have
the same set of vectors with α = 0.3 and α = 0.5. In the following simulations,
we test the detector on different scenarios with some common parameters. We
generate only 1 reflected ray of MP and its power is PMP (t) = PLOS(t)

2 where
PLOS(t) is the power of the LOS signal and it is present in the interval [15−20]
s. We perform the test with different values of C/N0 and DLL spacing ds. In
the scenario in Fig. 3.39, the MP is in counter-phase. The MPDD output
with CLS solution shows that some MP is present and a distortion is correctly
detected. It is possible to observe the effects of the MP even in the estimated
C/N0. In general, the correlators of the DLL influence the algorithms devoted
to the estimation of C/N0.

Furthermore, the detection method was adapted to Galileo E1 OS signal by
changing the ideal correlations in matrix U. An example in Fig. 3.41 where
the correlation in the presence and absence of MP is displayed. In Fig. 3.39
some MPDD results related to Galileo are shown.

Then, in Fig. 3.40 a comparison between the LS and the CLS coefficients is
shown: the w vector estimated in the two cases is plotted, in the only-LOS case
with C/N0 = 40 dBHz. It can be noted that the CLS solution provides a lower
number of non-null wi coefficients, and the absolute value of those coefficients
is in general lower, with respect to the LS solution. This is an aspect of the
CLS method, able to reduce the noise impact on the coefficients.

The results of the simulation scenario with C/N0 = 39 dBHz with in-phase
MP and different values of ds are shown in Fig. 3.42 and Fig. 3.43. Figure
3.42 is obtained with a spacing of ds = 0.5 and it means that the tracking
loops are more affected by MP and noise distortions than tracking loops with
a narrower spacing as in Fig. 3.43 where ds = 0.2. In fact, the effect of ds is
also visible in the performance of both implementations of the MPDD with
LS and CLS. Again, it is possible to see the effects of the MP even in the
estimated C/N0: in the considered cases, the effect of the MP on the C/N0

is not, as it could be imagined, to decrease the signal power; on the contrary,
the MP presence increases the C/N0. However, this kind of situation does not
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Fig. 3.39 MPDD results with Galileo signals with an output every Ta = 200 ms.

Fig. 3.40 Example of vector coefficients in case of LS and CLS solution without MP
and C/N0 = 40 dBHz.
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Fig. 3.41 Galileo correlations (left plot) and values of the taps of the linear filter
(right plot).

mean that the quality of the signal is improved overall, simply it is the effect of
the small difference between MP and LOS phase. The LOS signal is distorted
and affected by a MP error. The delay estimate provided by the DLL is not
properly correct.

In Fig. 3.44 the evolution in time of the energy of the residual error ϵ is
shown (the cost function in (3.3) of the minimization problem), in both the LS
(ϵLS) and in the CLS case (ϵCLS). The graph is normalized by the maximum
value of ϵCLS . As we expect, the LS solution has a lower value of residual
error, which means that the LS problem has better performance in terms of
approximation of the input signal, since the LS solution has not constraints.
On the contrary, the CLS approach provides a worse solution in terms of
approximation of the input signal, with respect to the LS method. Therefore
in general ϵLS < ϵCLS . On the other side, when only the noise is present, it
is possible to observe that the difference ϵCLS − ϵLS is not so remarkable as
in case of MP presence, so the performance is quite similar and the difference
is given by the presence of the constraint and the noise. As mentioned in
Section 3.4, for our detection purpose, a huge difference between the only-noise
condition and MP condition is desirable, since it allows to have less ambiguous
results to discriminate between the presence/absence of signal distortions (MP)
even in the presence of low SNR.
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Fig. 3.42 MPDD comparisons between LS (upper graph) and CLS (middle graph)
method, spacing of the DLL ds = 0.5 with GPS L1 C/A signals with an output every
Ta = 200 ms and C/N0 trend (bottom graph).

Fig. 3.43 MPDD comparisons between LS (upper graph) and CLS (middle graph)
method, spacing of the DLL ds = 0.2 with GPS L1 C/A signals with an output every
Ta = 200 ms and C/N0 trend (bottom graph).
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Fig. 3.44 Energy of the residual error ϵ. Results for both LS and CLS method.
Spacing of the DLL ds = 0.2 with an output every Ta = 200 ms.

3.5.1 LS and CLS comparison

To compare the performance in terms of Pd and Pfa of the detectors, we used
the same dataset used in ??. The results are illustrated in Fig. 3.45 and Fig.
3.46 for different value of α. In Fig. 3.45 the results are related to LAF-LS,
while Fig. 3.46 to LAF-CLS solution. It is possible to observe that the two
detectors, in terms of Pd, have similar performance, instead, the situation is
different in terms of Pfa. As we already mentioned, the reason why we choose
a constraint is because the noise at the input of the LAF-LS generates possible
false alarm, especially in case of low C/N0.

By using these plots, it is even possible to select values for α to tune the
entries of the dictionary for the detector.

3.6 Statistical plots for the coefficients: Q-Q
plot and mountain plot

Here, we present two graphical tools used in the work. The first, the mountain
plot, also called folded empirical Cumulative Density Function (CDF) plot,
presented in [55], is a graphical tool alternative to the CDF. The CDF is a
strictly increasing function, the mountain plot, instead, folds the second half
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Fig. 3.45 Pd (upper graph) and Pfa (bottom graph) for different value of α in case
of LS decomposition.

Fig. 3.46 Pd (upper graph) and Pfa (bottom graph) for different value of α in case
of CLS decomposition.
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of CDF. Therefore the resulting plot is identical to the CDF for the elements
X with probability P (X < x) ≤ 0.5 while, it is plotted 1 − P (X ≤ x) for the
elements X with probability P (X > x) > 0.5. This instrument is quite useful
to highlight some properties, such as symmetry, and to emphasize the median
of the distribution [56]. It is also useful and easier to find the central amount
of percentage (i.e 95%) of the data. Finally, different distributions can be
compared more easily.

Another graphical tool used is the Q-Q plot (stands for Quantile-Quantile
plot) to compare two probability distributions by using quantiles against each
other. If the two distributions are similar, the Q-Q plot will be a line y = x.
In our case Q-Q plot is used to compare an empirical distribution against a
Normal distribution.

To populate the dictionary used for the detection, we can start by evaluating
the distribution of the coefficients in case of LAF with LS and CLS solution.
First of all, we started with a simulation scenario with only noise with a
duration of 30 minutes and a moving average window of 500 ms. The case
of LAF-LS is in Fig. 3.47, where it is possible to see a good symmetry for
all the M = 9 distributions. It is plotted also a Gaussian distribution (the
circle marker) that overbound the 5-th coefficient, the center one. As already
explained in the chapter, it is the coefficient representing the LOS in the ideal
case. Its distribution is centered around a value different from zero. The
other distributions, in case of only noise, are centered around zero. Instead,
others distributions of the coefficients are centered around zero and have
different variances. It is still possible to overbound with a zero mean Gaussian
distribution and a standard deviation larger (σ = 0.5) than the center coefficient
distribution (σ = 0.2). Another observation regards the distribution of the 4-th
and 6-th coefficient. As in the case of the 5-th coefficient, they have a bias,
since they are not centered around zero. This depends on the decomposition
mechanism of filter together with the position of the peak leading to a not
perfect symmetry of the measured correlation. This is more visible in case of
LAF-CLS solution as in Fig. 3.48. The Q-Q plot in Fig. 3.49 is an example,
for the distributions centered around zero, of the similarity with a Normal
distribution in a limited range.
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Fig. 3.47 Distribution of all M coefficients of the filter in case of LAF-LS solution
with C/N0 = 45 dBHz.

In Fig. 3.48 a mountain plots in the case of LAF-CLS is shown. Here it is
possible to observe the huge separation between the zero-centered distributions
and the LOS distribution. This depends on the fact that in the same noise
condition, the variances of the non-LOS components is smaller than in the
LAF-LS case.

3.6.1 Analogy with Transmission Theory

As already said, the analysis over the incoming signals were performed at
the tracking stage of the GNSS receiver. The correlation signal obtained was
decomposed by solving a LS or CLS minimization problem. The decomposition
works not directly on the signal, but on the shape of the correlation. All the
considerations about the detector are based on the vector of the filter coefficients
in a vector space domain. The decision metric chosen is the minimum euclidean
distance between vectors in a geometrical space. By using a multicorrelator and
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Fig. 3.49 Q-Q plot of the 9-th coefficient in case of LAF-LS solution with C/N0 = 45
dBHz.

the decomposition, we could have more information about the MP, so the reason
why we chose to use a dictionary of vectors for comparisons. This approach
leads to an analogy with another communications topic: the transmission
theory [57]. By transforming the problem from signal to geometrical domain,
we have similar conditions as in case of reception of a symbol, on an AWGN
channel, and try to guess which symbol of the constellation we received.

In transmission theory, in case of the classical modulation scheme like
BPSK, Pulse Amplitude Modulation (PAM), Quadrature Amplitude Modu-
lation (QAM) etc., we have a set (s1, s2, . . . , si, . . . , sn), called constellation, of
the possible symbol that can be received. The constellation can be represented,
for example, in a plane and the symbols are points distributed in that space.
The received symbol sr, due to the noise or other impairments, is a point in
the space that probably has coordinates not coincident with the coordinates
of the constellation symbols. To decide which symbol was transmitted, the
space is divided in regions, called Voronoi regions, around the symbols of the
constellation. The decision taken is that the incoming symbol sr is a symbol of
the constellation (s1, s2, . . . , si, . . . , sn) if it is within one of these regions.
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The Voronoi region associated to a symbol si is the set of all vectors which
are nearest to a si than to all the others. To assess in which region the symbol
belongs, the distance between the symbols’coordinates is calculated. The
decision is taken choosing the symbol at the minimum distance.

In our problem, we have a similar situation where the “transmitted symbol“
is the vector of filter coefficients and the ”constellation“ is the dictionary. Then,
our decision metric is the minimum distance as in the transmission theory case.
In our constellation, the number of symbols is proportional to the number of
its dimensions and it is higher than the contellations used for the modulation
purpose.

3.7 Conclusion

In this chapter, we presented the LAF theory and how this theory can be used
to detect correlation distortions.The strategy is based on the representation of
the measured correlation as the output of a FIR filter, then the coefficients of
the filter are observed and compared with a dictionary of vectors.

From this initial approach, the method is evolved, the U matrix has been
extended in order to have a better representation of the signal in input by
using components both on the left and on the right side of the correlation peak.
Then, the method has been enhanced by modifying the minimization method,
changing from a LS to a CLS problem. Thanks to the CLS algorithm the noise
impact is highly reduced (especially with low C/N0), resulting in a reduction
of the false alarms.

Moreover the MPDD algorithm, which was initially developed and tested
on the GPS L1 C/A signals, has been modified in order to be applied to the
Galileo signals.

Simulation results showed that the new enhanced algorithm, based on the
CLS solution, has better performance in terms of false alarm probability even in
the presence of low SNR. The results are proved also with the Galileo signals.



Chapter 4

Signal Quality Index

This chapter is related to the work presented in [58]. A well assessed integrity
technique is the so-called RAIM [59], which can be implemented by adopting
different algorithms, such as range comparison [35], Pseudorange residual or
Residual Based (RB) [36], and parity method [37]. They provide snapshot
schemes and yield identical results under the assumption of equal alarm rate, as
shown in [38], where a detailed comparison of these methods is given. Another
well known RAIM scheme is the Solution Separation that works on the position
domain [60]. A basic assumption of all these schemes is that only one fault
at a time is possible. However, these schemes can be extended to the case of
multiple faults, as described in the recent work [61].

The RAIM algorithms use PR and position data to implement the FDE
module, which leads to the exclusion of faulty satellites in the position com-
putation. However the identification of faulty satellites can be done also at
the tracking stage of the receiver, by adopting adequate signal processing
techniques, as shown, for example, in [62]. Today, these methods cannot be
implemented in a current commercial GNSS receiver, but a new generation of
receivers can be devised with new blocks working in the correlation domain,
and able to assist the FDE module of RAIM.

The work presented in this chapter analyses the feasibility of this concept
of assisted-RAIM. In particular it is focused on the effects of environmental
impairments, as MP, and how to assist RAIM to protect the receiver from
this type of errors. MP occurs in the presence of objects, close to the receiver,
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which can reflect the signals coming from the satellites. The working principle
of a GNSS receiver is based on the measurements of the delay between the
time instant when a signal leaves the satellite and the time instant when the
signal is received. Therefore, if reflected signals are received together with the
useful signals, an error on the estimation of the delay of the GNSS signals may
occur. The DLL is the block devoted to the delay estimation. However a DLL
error not always impairs the PR measurements. This fact has to be taken
into account in the design of assistance methods based on correlation points
estimated by a DLL. More details on this aspect are given in Section 4.2.

In the literature, many MP mitigation techniques are proposed (e.g., [46, 47],
just to cite a couple of examples). However, when the goal is to satisfy some
integrity requirements, the general approach is to identify the presence of errors
in the delay estimation without mitigating its effect, but rather excluding the
satellite affected by impairments from the solution. We propose here to adopt a
technique of MP detection, which derives from the MPDD described in Chapter
3, and based on the identification of a LAF able to model the MP effects, as
shown in [48, 49]. This chapter introduces the concept of SQI, which is both
a metric able to evaluate the goodness of the signal, and a parameter used to
improve the performance of the FDE module of RAIM. Note that methods
of Signal Quality Monitoring (SQM) are already proposed in literature in the
framework of integrity systems. For example in [63, 64] SQM algorithms are
proposed to detect anomalous signal distortions by using extra correlators,
which are not used to maintain the receiver locked to the incoming signal. The
difference here is that the information from the tracking stage is used to create
an index (SQI), which becomes an integral part of the assisted RAIM.

The chapter gives a brief introduction of the DLL and how it works in
Section 4.1. In Section 4.2 the methods of pseudorange calculation are reviewed
and the MP impact on DLL outputs and PR measurements is analysed. The
Section 4.3 introduces the concept of the heuristic metric SQI. In Section 4.4
some RAIM and FDE concepts are given and the RB RAIM algorithm is briefly
explained. In Section 4.5 a possible interaction between SQI and RAIM is
described and simulation results are given.
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4.1 DLL

The main purposes of the DLL is to maintain a local code Cloc,m[n] of the
receiver locked to the incoming PRN code Cm[n] where m is the SV index.
To do this, DLL estimates the relative delay between two codes by using
a correlation operation. However, the typical implementation of the DLL is
not based on the estimation of a delay, rather, on the estimation of a code
frequency fc. To maintain locked Cloc,m[n] and Cm[n], every integration time
Tint (i.e., 1 ms), the output of the DLL’s discriminator is used to correct fc and
this mechanism yields to have a variable number of samples every Tint. The
presence of filters in the loop introduces a delay in the receiver chain or better,
a transient with a duration dependent on the filter bandwidth: narrow band
means less noise but long transient and vice versa. To align the incoming PRN
code with a locally generated code, a DLL must include integrators, a code loop
discriminator, and code loop filters. In our scheme the signal Equation (1.8) is
first demodulated by multiplying it by two local carrier waves at frequency fIF ,
one for each branch of the receiver (I and Q). The resulting signal is multiplied
by three local codes (called early, prompt, late), generally shifted by −1/2, 0
and +1/2 chip time, and the outputs are integrated and dumped to implement
the correlator.

The model chosen in this work for the discrimination function is a non-
coherent scheme, independent of the phase of the local carrier, and with the
expression

(I2
e +Q2

e)− (I2
l +Q2

l )
(I2

e +Q2
e)+(I2

l +Q2
l )

called Normalised Early minus Late power, where Ie = ARx(τ −d/2)cos(ϕe),
Qe = −ARx(τ −d/2)sin(ϕe), Il = ARx(τ +d/2)cos(ϕe), Ql = −ARx(τ +d/2)sin(ϕe),
and Rx(·) is the correlation function between the local and incoming code, A

is an amplitude factor, τ is the code delay of the signal, ϕe is the estimated
carrier phase error and d is the correlator spacing between early and late.

We are interested in investigating what happens to the DLL parameters,
when a disturbance, e.g., an MP, affects the received signal. The tracking loops
settings used for the results are the following:

• the DLL noise bandwidth is Bn = 2 Hz
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• the correlator spacing d = 0.5 chips

• the PLL noise bandwidth is Ln = 10 Hz

4.2 Pseudorange Calculation in a GNSS Re-
ceiver

From the theory, we know that a typical GNSS receiver computes the user’s
position from the estimated pseudorange ρi (distance between the i-th satellite
and the receiver). Considering that both satellites and receiver’s clocks are
affected by independent errors, we call system time the reference time frame
where satellites and the receiver’s clocks are referred. Before introducing the
equation, we define some notations [3]:

• Tt is the system time at which the signal left the satellite

• TRX is the system time at which the signal reached the user receiver

• δt is the offset of the satellite clock from system time (written in the
navigation message)

• tRX is the offset of the receiver clock from system time

• Tt + δt is the satellite clock reading at the time that the signal left the
satellite

• TRX + tRX is the user receiver clock reading at the time the signal reached
the user receiver

• c is the speed of light

A generic ρ for a single satellite is given by taking into account all the clock
errors

ρ = c (TRX + tRX)− c (Tt + δt)
= c (TRX −Tt)+ c (tRX − δt)
= r + c (tRX − δt)

(4.1)
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where r is the geometric range and the second term c (tRX − δt) is the residual
distance due to the not perfect synchronisation between satellite and receiver
clocks. To calculate this, the time of flight of the signals is measured and the
clock corrections will be made after data demodulation and PVT computation.

4.2.1 How the GNSS Receiver Implements the pseudo-
range Computation

In order to process tracked signals independently, GNSS receivers assign each
one a dedicated channel. As said, to obtain ρ it is necessary to know the
transmitted time Tt for each satellite and to correct all the misalignments
of the receiver and the satellite clock with respect to the system time. Two
possible implementations of this measurement are Common transmission time
and Common reception time [65, 66]. The former one is based on the satellites’
transmission time. Obviously the channels are not synchronised each other at
the receiver side, so on each channel the same bit of a subframe (and relative
TOA) have to be identified. The receiver selects a reference channel by using
the first arriving bit, and calculates the relative delay ∆i with respect to the
bit of i-th satellite, ∆i = TRX,i − TRX,1. This allows to write the range ri of
the i-th satellite as ri = ρ1 + cδti + c∆b+ c∆i, where ρ1 is the pseudorange of
the reference channel or in other words, the satellite closest to the user, ∆b is
the unknown bias for the not perfect synchronisation between clock on board
the i-th satellite and the clock of the receiver. Finally, δti is the correction of
the offset of the i-th satellite clock from system time.

In the second implementation (Common reception time) the receiver cal-
culates ∆i = Tu − TRX,i, where, in this case, ∆i is the time interval between
the instant of reception of the subframe for the i-th channel TRX,i and Tu,
that is the common receiving time when the receiver decides to measure the
PR over all channels. All the pseudoranges are derived with respect to the
reference channel, which is the one with the minimum travel time. Once ∆i

are computed for all the channels, ri = ρ1 + c∆b+ c(∆1 −∆i)+ δti.

To measure the time interval ∆i, the receiver continuously counts the
samples processed per each channel and maintains a monotone counter in 20
ms increments derived from receiver’s reference oscillator [3]. The mechanism
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of counting partially protects the pseudorange measurements from correlation
distortions. In next section this is proved by simulation since a theoretical
explanation would require a deep analysis of both DLL and counting operations.

The Common reception time is the method usually employed in commercial
GNSS receivers.

4.2.2 Simulation Experiments

In this section we investigate which is the effect of the correlation distortions on
the pseudorange measurements. In fact it is known that the PRs are measured
in scheduled time epochs with a typical rate of 1 Hz (or few Hz), while a
DLL computes correlations with a much greater rate (e.g., 50 Hz). Therefore,
we expect that a distortion in the correlation may have a different impact
if it occurs during the local code update performed by the DLL, or at the
epochs of pseudorange measurements. To analyse these different effects we
have performed some simulation tests. The simulation scenarios were created
by using the signal generator described in [67]. The analyzed datasets represent
a static position with four satellites in view all affected by one-reflected ray of
MP. The received signal is GPS L1 C/A, it lasts 60 s with different values of
Carrier-to-Noise ratio (C/N0), but constant for the whole duration.

The dimension of the time windows of the MP events are different, so as to
test the impact of the duration on the accuracy reached by the receiver on the
PVT stage. The MP model used in the simulation is

s(t) = A0D(t− τ0)C(t− τ0)cos(ω0t+ϕ0)

+
N∑

i=1
AiD(tτ0 − τi)C(t− τ0 − τi)cos(ω0t+ϕ0 +∆Φi +(∆ωi −∆ω0)t)

where A0 is the signal amplitude of the LOS and Ai is the amplitude of the
reflected rays. τ0 and τi are respectevely the delay of the LOS and the delay
of the i-th ray. ω0t + ϕ0 is the phase of LOS and the phase of the i-th ray is
ω0t+ϕ0 +∆Φi +(∆ωi −∆ω0)t. The values of the initial phase and delay of the
reflected ray are randomly chosen. All the satellites in view are affected by a
simulated single ray MP during the time windows indicated in Table 4.1. The
MSR is the parameter used to assign the MP amplitude. It is defined as the
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Table 4.1 Time windows when MP is present.

Multipath Instants Duration (s)

10.900–11.300 0.400
27.900–28.100 0.200
42.350–42.650 0.300
50.750–50.900 0.150
53.475–53.525 0.050

ratio between the power of the MP signal and the power of signal itself. MSR
is constant and equal to −6 dB (about half amplitude of the signal) for all the
time windows.

4.2.3 Preliminary Results

Since the purpose of the simulation experiments is to compare the effect of MP
on the measured pseudorange, two versions of the simulated signal are created:

(a) the signal sc(t), which represents the clean scenario, containing only noise;

(b) the signal sm(t) obtained by adding MP to sc(t) in the time windows
given in Table 4.1.

Fig. 4.1 shows the time evolution of the code frequency corrections ∆fc[n] =
fc[n+ 1]−fn where fn is the nominal value of the code frequency (1.023 MHz
in GPS L1 C/A), and the relative value in time calculated as ∆Tchip[n] =
Tchip − 1/fc[n + 1] in the DLL. The red line is the average value for the
corrections. Let’s start by analysing this figure in the time windows specified
in Table 4.1. What we want to observe is the behaviour of the pseudorange
computation just before and during a MP occurrence. The MP effect is clearly
observed in the first time window shown in Fig. 4.2, where a change of the code
frequency appears during the disturbed time window. Then after a transient,
the estimate of the code frequency returns to be stable. Fig. 4.3 shows similar
results in time windows affected by MPs with different durations.

To make some comparisons with simulated data, we calculated pseudorange
ρclean in a scenario with only noise and pseudorange ρMP in a scenario with
noise and MP in the time windows given in Table 4.1. Then, we computed
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the difference ρclean − ρMP in order to see the impact of tracking errors at
pseudorange level. These operations are repeated for different values of the
output rate Tρ of the pseudorange measurements. The persistent distortions
could introduce errors on the estimate of fc and consequently in pseudorange
computation based on samples counting (as we explained in Section 4.2.1).

We observe that, if we use short Tρ, affected by MPs limited in time, the
probability that next pseudorange calculated is wrong is higher than if we
use longer Tρ. It is possible to observe this effect in Figs. 4.4–4.6, where on
the top left graph there is the difference ρclean − ρMP , on the top right the
evolution of the ρMP in time, at bottom left the graph shows if the PR is
measured in the presence of MP and at bottom right the MP profile. For
example there are respectively 3, 2 and 1 pseudoranges measured during MP
event in Figs. 4.4–4.6. Errors in code frequency fc estimation may alternate
the pseudorange computation. These errors can be recovered by the DLL if
the duration of the distortion is limited in time and, once the disturbance is
finished, there is enough time before next pseudorange measurement for the
DLL to recover the error.

In Fig. 4.7 a zoom of the Fig. 4.4 is depicted, where the circle points
indicate that a MP is present in a time instant of pseudorange computation.
As expected the quantity ρclean −ρMP is different from zero where circle points
are present.

4.3 SQI

The output provided by the detector is a hard detection (Yes/No) about the
presence of correlation anomalies. However it could be interesting to introduce
a sort of soft decision to better assist the RAIM.

The idea has been to continuously monitor the quality of the received
signal during the computation of navigation solution. To achieve this goal
we introduced an index SQI(tn) that describes the quality of the navigation
solution, where tn are the time instants of the PVT computation.

This quality index takes into consideration the MPDD output and other
information data such as the C/N0 and the distance between the weight vector
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Fig. 4.1 ∆Tchip[n] in time (a) and corrections of code frequency ∆fc[n] for PRN 31
(b).

Fig. 4.2 Zoom of the ∆Tchip[n] (a) and ∆fc[n] (b) for PRN 31 in the first time
window of Table 4.1.
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Fig. 4.3 Zoom of the ∆Tchip[n] (a) and ∆fc[n] (b) for PRN 31 in the last time window
of Table 4.1.

ŵ and the theoretical LOS vector wLOS . It is defined as

SQI(tn) = 1
λ

N∑
k=1

m(tn−1 +kTa)s(tn−1 +kTa)d(tn−1 +kTa)f
[

C

N0
(tn−1 +kTa)

]

where:

• Ta is the duration of the moving average time window.

• N is the number of the moving average time windows between two time
instants (tn and tn−1). For example, between two PVT computations
with a rate of 1 Hz and a moving average of Ta = 100 ms, N = 10.

• m(·) represents the MPDD output,

m(kTa) =

−1, if Emin = minEp = ELOS , p = 1,2, ...NV

1, if Emin = minEp ̸= ELOS , p = 1,2, ...NV

meaning that −1 indicates a correlation function with at most noise
presence, instead 1 the presence of distortions.

• The function s(·) takes into account the temporal distance between
the occurrence of the distorting event and the epoch when the PVT
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Fig. 4.4 Behaviour of pseudorange for PRN 31, with output every ∆Tρ = 500 ms.
Pseudorange error (ρclean −ρMP ) (a); ρMP trend in time (b); MP presence during a
pseudorange computation (c) and MP profile (d) are shown.
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Fig. 4.5 Behaviour of pseudorange for PRN 31, with output every ∆Tρ = 1000 ms.
Pseudorange error (ρclean −ρMP ) (a); ρMP trend in time (b); MP presence during a
pseudorange computation (c) and MP profile (d) are shown.
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Fig. 4.6 Behaviour of PR for PRN 31, with output every ∆Tρ = 2000 ms. Pseudorange
error (ρclean −ρMP ) (a); ρMP trend in time (b); MP presence during a pseudorange
computation (c) and MP profile (d) are shown.
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Fig. 4.7 Zoom around 10 s of ρclean −ρMP in the case ∆Tρ = 500 ms in blue and MP
profile in red.

is computed. In fact the PVT module of any GNSS receiver uses the
estimated pseudoranges at some given epochs, and, as explained in Section
4.2.3, correlation distortions between two epochs could have an impact on
the pseudorange estimation. The meaning of the function s(·) is to give
a different importance to the MPDD output measurements depending on
how far they are from the next pseudorange computation. The focus of
this work is not to find an optimum s(·) so, by experimental assessment,
for our receiver, we chose s(·) as a Gaussian function shown in Fig. 4.8.

• The function d(·) measures the ratio Emin/ELOS , and it is defined as

d(kTa) =

Emin/ELOS , if Emin ̸= ELOS

1, if Emin = ELOS

d(·) is a ratio between distances, so it gives a relative measure of how far
is ŵ with respect to the LOS.
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Fig. 4.8 Trend of s(t) within two instants of the PVT computation.

• f(·) takes into account the C/N0 value. The C/N0 gives a measure of the
reliability of the output of the MPDD. As a matter of fact, if C/N0 is high,
it means that the decision about the presence of distortions is more reliable
than with low value of C/N0. By using experimental data, we choose a
valid function based on C/N0. Therefore, an experimental assessment
of the f(·) has been obtained by using NAVX-NCS ESSENTIAL GNSS
SIMULATOR and simulating 1 hour of SIS signals without multipath
and with different C/N0. The data are then collected and processed by a
fully-software GNSS receiver. In Fig. 4.9, the setup of the data collection
is shown. The GNSS simulator is connected to the USRP that is the
front-end able to downconvert the radiofrequency signal into baseband
signal. The USRP has an external rubidium clock that provides a precise
time reference for synchronization purpose. Then, the data are collected
by the computer connected to the USRP. The signals transmitted by
the simulator contain 8 SV in view each of them with a different value
of C/N0 as in Fig. 4.10. Starting from this situation where we know
that no multipath rays are in the signals, by running the MPDD and
counting the false alarm results of the detector per each channel, we try
to estimate the false alarm probability Pfa. The f(·) function chosen is
1−Pfa and is plotted in Fig. 4.11 in function of C/N0.
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Fig. 4.9 Data collection setup.

Fig. 4.10 C/N0 trend over the time for all the 8 SV in view.
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Fig. 4.11 1−Pfa curve in function of C/N0.

It is important to choose a C/N0 estimator that suits our problem. In [68]
a comparison between five well-known methods to estimate the C/N0 is
made. We chose to use an estimator with low computational complexity,
the Signal-to-Noise Variance (SNV), that is based on the first absolute
moment and the second moment of the signal samples [68].

• λ is a normalization factor to obtain SQI(tn) ∈ (0,1]. The parameter λ

is set as the sum of the maximum values that can be obtained at each
discrete time k for the functions m(·), s(·), d(·) and f(·).

4.4 RAIM

Traditional RAIM techniques provide integrity information, by making use of
the available measurements [59]. The basic assumption for RAIM for aviation
applications is the presence of only one fault at the same time. This is a strong
assumption, but the process may be iterated so including de facto the case of
multiple faults. In literature three main RAIM algorithms are proposed and
already presented in 2.2: range comparison, least-squares residuals and parity
method. All the methods are able to determine the presence of a satellite
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failure by using the redundancy of the measurements of the over-determined
system of linearised equations

∆ρ = H∆x +ϵ

where ∆x is a vector containing the incremental deviations of the user position
from the linearization point, H is the geometry matrix, where the generic row
j is the unit vector pointing from the linearization point to the considered
j-th satellite, and ϵ is the vector of pseudorange errors. To detect position
errors, RAIM requires at least five satellites in view, while the exclusion of the
faulty measurements requires at least six satellites. The snapshot approach
means that the system takes decision about the presence of failure by using
only current considered observations.

In this chapter, we propose a method of assisted RAIM, based on the idea
to detect satellite failures at tracking stage level, since errors like MP are much
more visible in the correlation rather than at the pseudorange level.

4.4.1 Global and Local Test

The structure of a RAIM algorithm comes from the statistical detection theory
[59]. Two hypothesis tests are posed: Global and Local Test. The first one tests
if a failure exists and the second one identifies which is the failed satellite, under
the assumption to have at most one failure at a time. In the residual method,
the first step is to compute the residual between predicted and measured
pseudoranges [69], r̂ = H∆x̂−∆ρ, given by

r̂ = H(HTΣ−1H)−1HTΣ−1∆ρ−∆ρ = −R∆ρ

For the Weighted Least Squares (WLS) solution, if the pseudorange errors
are normally distributed with covariance matrix Σ, then the residuals are
distributed as r̂ ∼ N(0,RΣRT) [70]. The first test performed is the global test,
which checks if a failure exists by calculating the value for the test statistic
T = r̂TΣ−1r̂. If the error is a Gaussian variable with zero-mean, T follows a
Chi-square distribution with n−p DOF, where n is the number of measurements
and p the number of parameters to be estimated. In other words, n−p is the
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number of redundant measurements. Therefore, once we get T , we need to
compare it against a threshold value. To do this, we have to set a certain level of
false alarm probability (α) and missed detection (β). If the current calculated T

fails the test, the local test is performed to identify which is the faulty satellite.
The elements of the residual vector r̂ are normalised by the diagonal elements
of the covariance matrix of the residual and finally, we get ŵ ∼ N(0,1). The
fault exclusion is performed with the null and alternative hypotheses test with
H0: |wk| ≤ n1−(α0/2), where α0 is the false alarm probability of the local test.
The values of the parameters α, β and α0 are linked together and, once two of
them are fixed the third is obtained. The complete parameters computation
is explained in [70]. The β parameter is involved for both global and local
test (through the non-centrality parameter [71]). The complete sequence of the
tests is shown in Fig. 4.12.

4.4.2 Covariance Matrix Uncertainty

In the simulations, the model for the pseudorange error variance is σ2
k =

a + b · 10−0.1(C/N0), where k is the satellite index. The model is discussed in
[72] and used in many other works [70], where the values a and b are constant
and take into account the degradation caused by the environment. In [71] the
authors suggest a = 10 m2 and b = 22500 m2 Hz for lightly degraded signal
conditions. The implicit assumption is that the covariance matrix Σ is diagonal
with entries σ2

1 . . .σ2
k, but this in general is not true and the measurements are

correlated, then the matrix entries out of the diagonal are different from zero
[73]. In a non-aviation context, like road or railway, the covariance matrix is
not generally diagonal [74, 75]. In [76] there is an example on how to deal
with the uncertain covariance. For the experimental results we used a diagonal
matrix, since the correct definition of a non diagonal matrix is out of the scope
of this work.

4.5 SQI and RAIM interaction

The SQI introduced in the previous section has to be integrated within the
algorithms of PVT and RAIM in order to improve the accuracy of the estimated
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Fig. 4.12 Block diagram of the FDE algorithm.
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position. The simplest integration method could be to set a threshold SQIthres,
and to exclude the satellites with SQI < SQIthres from the PVT computation.
However, in the case of a low number of satellites in view, the problem of
the satellite-user geometry has an impact on the accuracy, and this should
be considered in the mechanism of SQI/RAIM/PVT integration. This means
that a trade-off has to be found, considering also the effect of the Geometric
Dilution of Precision (GDOP) (or simply DOP) [3] , on the estimated position.
In fact in some cases the error introduced by the worst DOP (due to a satellite
exclusion) could be bigger than the error due to the effect of MPs in some of
the satellites in view included in the PVT computation.

In the case of a bad geometry and of strong distortions, instead of removing
degraded satellite signals from the PVT, another possible approach is to penalise
satellites with a poor signal quality in the WLS solution of the navigation
equations, by changing the diagonal noise covariance matrix Σ, as

Σk,k(t) = σ2
k(t)+σ2

k(t)γ(1−SQI(t))

where γ is a penalty weight. The diagonal entry k can assume values from σ2
k(t),

when SQI = 1 (corresponding to a signal in good conditions), to (γ +1)σ2
k(t)

when SQI = 0 (corresponding to a strong distortion). In this way, we can
reduce the effects of the errors in the pseudoranges projected in the position
domain. This method is denoted as P-WLS in the following (where P stands
for penalty).

4.5.1 Simulation Results without Using GDOP informa-
tion

The purpose of the simulations in Section 4.2 is to show the effects of some
MP distortions in the GNSS receiver. In order to validate this method we
chose scenarios in which the MP phenomenon had longer durations than those
of Section 4.2. We show simulation results obtained by processing these new
scenarios, with different numbers of satellites in view, and with MP events
that affect specific satellites in the time windows indicated in Table 4.2. The
purpose is to analyze the effects of satellite exclusion and P-WLS, without
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Scenario MP Windows (s) PRN

1 8–16 27
21–25 11, 22
30–35 16
40–45 1, 4, 21, 27

2 20–80 1, 4, 21, 27
Table 4.2 Time windows when MP is present for the scenario 1 and 2.

considering GDOP data. For the PVT computation, the WLS solution is
used. The RAIM algorithm used in simulation has a false alarm probability
α = 5×10−5 and missed detection probability β = 5×10−5. The two simulation
scenarios represent the same static position and they have different durations
and are presented in Table 4.2:

• Scenario 1 of duration of 50 s

• Scenario 2 of duration of 90 s

Both scenarios globally have 10 satellites in view.

When in the scenarios we consider only 5 chosen satellites in view, obviously
FDE cannot be used for exclusion, but the anomalies on pseudoranges can
be detected. An example of the position errors in East-North-Up (ENU)
coordinates in scenario 1 with 5 satellites, without using RAIM and signal
processing assistance, is shown in Fig. 4.13. In Fig. 4.14 the output of the
detector, the SQI and the C/N0 trend related to PRN 11 in scenario 1 is
shown. The Tables 4.3 and 4.4 show the position errors in ENU coordinates
in scenario 1 and 2 with several values of the penalty weight in the P-WLS
method. The performance is also evaluated in terms of MSE over the whole
duration of the scenarios. It is possible to observe that especially in scenario 2,
where the environment is more degraded than in the scenario 1, the penalty on
pseudorange variances can have a strong impact in terms of accuracy expressed
in MSE. In scenario 1 the MP affects several PRN in different time windows
but with shorter duration, so the penalty weight is between 0 and 1 except for
the case with 5 satellites. In fact, in both scenarios another parameter that
influences the choice of the penalty weight is the satellites geometry. If most of
the satellite signals that we have are not affected by any impairment and also
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Fig. 4.13 WLS solution of the scenario 1. In (a) the position error is shown. The
East-North coordinates (b) and the skyplot (c).

we have a good geometry, penalising the variances may be useless. Finally, the
accuracy takes benefit from the penalty weight in a harsh environments.

The results summarised in Tables 4.5 and 4.6 show the effects of the exclusion
performed by applying a threshold on SQI. The results have been obtained
with SQIthres = 0.7. As it can be seen in the first row of Table 4.5 relative to
the case of 5 satellites, if we exclude one satellite with low SQI, we could get
a worse solution due to the bad geometry. This is true with a low number of
satellites, but the exclusion leads to an improved solution with a high number
of satellites. In summary these results prove that the effect of GDOP has to
be considered in the set up of the exclusion algorithms, when the number of
satellites in view is very low.

Note that the focus of this chapter is to show that fault detection via signal
processing techniques is possible and useful especially for land applications
where the environment has important effects on the degradation of the signals.
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Fig. 4.14 Example related to PRN 11 in scenario 1: the MPDD output (a), the SQI
(b) and the C/N0 trend (c).

Num. of SV γ E (m) N (m) U (m) MSE (m)

5

0 17.5 8.4 37.6 24
1 17.5 8.4 37.5 24
5 17.5 8.4 37.2 23.9
10 17.5 8.4 37.1 23.9

8

0 11.7 9.1 31.6 22.8
1 11.8 9.1 32.3 22.9
5 12.2 9.1 34.2 23.3
10 12.4 9.6 35.3 23.6

10

0 5.8 8.9 12.4 12.7
1 5.8 8.9 12.2 12.5
5 5.9 9.2 12.4 12.5
10 5.9 9.4 12.8 12.7

Table 4.3 Results for the scenario 1 with increasing penalty weight and different
number of satellites.
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Num. of SV γ E (m) N (m) U (m) MSE (m)

5

0 3 9.3 57.8 51.6
1 1.8 6.4 45.9 41.3
5 1.9 11.7 31.3 30.1
10 2.5 14.4 26.4 27.2

8

0 8.3 10.9 41.9 38.8
1 4.5 14.1 36.5 34.5
5 2.3 16.1 31.1 30.1
10 3.1 15.8 29.9 28.8

10

0 7 13.9 37.1 35.6
1 3.6 16.1 29.9 30.3
5 1.8 15.8 20.8 23.4
10 2.2 14.3 17.4 20.2

Table 4.4 Results for the scenario 2 with increasing penalty weight and different
number of satellites.

Num. of SV E (m) N (m) U (m) MSE (m) PRN Tracked RAIM SQI Exclusion

5 12.6 16.7 56.8 36.1 16, 21, 22, 4, 11 NO NO
15.1 16.3 67.2 43.4 NO YES

6.3 15.6 20.9 20.8 6, 16, 21, 22, 4, 11 NO NO
6 6 32.2 17.2 21.8 YES NO

6 32.2 16.2 21.5 YES YES

6.5 14.8 13.8 17.4 6, 16, 21, 22, 4, 18, 11 NO NO
7 4.5 14.7 14 15.9 YES NO

4.6 14.7 13.6 15.9 YES YES

5.8 8.9 12.4 12.7 6, 16, 21, 22, 4, 18, 11, 1, 19, 27 NO NO
10 3 8.5 8.7 10.5 YES NO

3.1 8.1 8.4 10.4 YES YES

Table 4.5 Results for the scenario 1 with SQIthres = 0.7 and no penalty weight.
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Num. of SV E (m) N (m) U (m) MSE (m) PRN Tracked RAIM SQI Exclusion

5 44.6 99.3 170.3 170.2 1 , 4 , 21, 27, 19 NO NO
159.4 136 395.7 323.5 NO YES

44.7 90.4 147 150.4 1 , 4 , 21, 27, 19, 6 NO NO
6 30.9 65.6 109 110.9 YES NO

213.7 444.4 242.9 379.9 YES YES

1.5 14.8 8.4 15.8 6, 19, 27, 16, 18, 4, 11 NO NO
7 1.5 14.8 8.4 15.8 YES NO

4 24.3 12.6 21.8 YES YES

7 13.8 36.7 34.92 6, 19, 27, 16, 18, 4, 11, 22, 21, 1 NO NO
10 2.4 6.3 26.6 24.5 YES NO

2.7 10 8.5 11.9 YES YES

Table 4.6 Results for the scenario 2 with SQIthres = 0.7 and no penalty weight.

For this reason methods for a proper selection of the threshold are not considered
in this chapter.

4.5.2 GDOP Control

The simulation results just presented motivate the adoption of an exclusion
method able to implement a trade-off between the weights of errors removed
by signal quality index and weights of the potential errors introduced by the
geometry.

A possible approach is to calibrate the dictionary on specific error cases,
in order to detect and remove satellites affected by these specific problems. A
second approach is to consider that, in a future with a high number of satellites,
the risk to degrade the DOP will be lower, but in any case, an additional block
of DOP control is convenient for these kinds of algorithms.

We propose here a control, based on a GDOP budget, which tries to remove
satellites starting from the ones with lowest SQI and SQI < SQIthres in order
to eliminate the distorted signals which could not be detected by the RAIM.
Then a GDOP test can be performed, for example by observing if the GDOP
after removal exceeds k times the GDOP with all the tracked channels. The
idea is to combine several effects: calibration of the dictionary depending on
the considered environment, and choice of the parameter k. In this heuristic
way, we can have a kind of control even on the geometry effects, avoiding to
introduce wide errors due to the weak geometry. For example, we set k = 0.1,
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Number of Satellites E (m) N (m) U (m) MSE (m) PRN Tracked RAIM SQI Exclusion
44.7 90.4 146.9 150.4 1 , 4 , 21, 27, 19, 6 NO NO

6 30.9 65.6 109 110.9 YES NO
30.9 65.6 109 110.9 YES YES

1.51801 14.7719 8.40841 15.7991 6, 19, 27, 16, 18, 4, 11 NO NO
7 1.5 14.8 8.4 15.8 YES NO

1.5 14.8 8.4 15.8 YES YES
Table 4.7 Results for the scenario 2 with SQIthres = 0.7, no penalty weight and
GDOP control enabled with k = 0.1 in case of 6 and 7 satellites in view.

so it means that the new GDOP after a possible exclusion cannot exceed 10%
of the previous GDOP. By taking in consideration the situation in Table 4.6
with 6 or 7 satellites, with GDOP control we do not perform an erroneous
exclusion and we will get in this way the same results as in not assisted RAIM
case (as reported in Table 4.7). Conversely, with 10 satellites, GDOP control
simply permits the additional exclusion performed by SQI.

Another possible approach to avoid problems in case of a poor geometry is
to leave the decision on the exclusion to RAIM algorithms but using SQI to
identify unreliable navigation solutions. It is possible to declare a navigation
solution unreliable when the global test fails but the local test is passed for all
the normalised pseudorange residuals (see Figure 4.12). It means that a faulty
situation is detected, but it is impossible to identify which is the faulty satellite
and consequently RAIM cannot perform the exclusion. In this situation the
RAIM algorithm is not able to provide information related to VPL and HPL.

Fig. 4.15 shows test results regarding scenario 1 with 9 satellites in view,
without using SQI, with a false alarm probability α = 3.33 ·10−5 and missed
detection probability β = 1 ·10−2. The graph on top is the evolution in time of
the global test statistic compared to the global threshold. Then, the local test
is performed on the points above the global threshold. In the graph on bottom,
the evolution in time of the local test statistic shows that there are only two
points under the local threshold (circle points). These values under the local
threshold are the navigation solutions which fail the global test, but pass the
local one. By using SQI, we want to identify the possible biased pseudorange
and exclude it to make reliable the navigation solution. To do this, after the
global test failure and when local test is valid, instead of declaring an unreliable
solution, we can check the SQI values for each satellite and decide to exclude
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Fig. 4.15 Example of global (a) and local (b) test on scenario 1 with two unreliable
solutions.

the satellite with the lowest SQI and repeat again the global and local test (if
needed). In Fig. 4.16 the results of the assistance are shown. We observe that
there are not points under the threshold in the local test graph, since after the
exclusion, the global test is repeated and no more biases are detected and so
the local test is not repeated.

4.6 Conclusions

This chapter presents a technique to detect the presence of distortions at the
tracking stage level of a GNSS receiver. In particular the method has been
tailored to MP detection, but can be applied also to other impairments. The
specific goal is to assist the modules of integrity monitoring of RAIM. In
the near future, the presence of a multi-constellation of satellites like GPS,
Galileo, GLONASS, Beidou and of receivers able to demodulate all these signals,
will provide an increasing number of satellites in view. This will foster the
development of signal processing techniques of FDE, since they perform better
with a high number of satellites. In general, this kind of exclusion approach is
sensitive to the DOP variation, and the effects of the satellite geometry could
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Fig. 4.16 Example of global (a) and local (b) test assisted by SQI information on
scenario 1 without unreliable solutions.

be greater than a simple MP phenomenon in terms of accuracy. For this reason
a method to combine GDOP control and FDE is also proposed in this work.

Another way to integrate SQI into RAIM suggested in this work is the
exclusion of satellites with lowest SQI in case when RAIM declares a navigation
solution as unreliable.

In this work, we have not taken into consideration a possible use of a
carrier-smoothing techniques, that might be useful to protect against sporadic
MP distortions, because usually they are used in the case of good visibility of
the satellites in view.

The proposed technique could be also employed for other kinds of distortion,
like spoofing attacks that can bypass RAIM tests. An application of the SQI
to the spoofing is in Chapter 5.



Chapter 5

The use of the SQI in a different
scenario: the Anti-spoofing case

This chapter is the result of a work in collaboration with fellow PhD student
Esteban Garbin Manfredini. He works on developing spoofing detectors and
mitigators. My contribution to this work was related to the signal processing
part and how to use of SQI to monitor the quality of a signal affected by
spoofing interference. Then we developed the tracking jumping procedure to
try to mitigate the effects of a spoofer. GNSS navigation and positioning is
the core of many applications, such as geofencing [77], that requires a granted
level of trustworthiness.

In recent years, one of the major security threats concerning the GNSS
users is the so-called spoofing menace. These spoofing attacks consist on the
transmission of a counterfeit satellite-like radio frequency signal, in order to
gain control of the GNSS receiver and cause it to compute erroneous PVT
solutions [78–80]. Spoofing attacks have been proved to be possible [81, 82] and
the new software defined ratio technologies are making the spoofing attacks
easier to be implemented.

In the framework of this research we focused on the so-called intermediate
spoofing attack [83]. An intermediate spoofer consists of a device capable
of receiving GNSS signals and generating counterfeit signals. The spoofers
extracts time, position, and satellite information from the received signals, and
then leverages the synchronization of the local codes and carriers to generate
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plausible counterfeit signals [78]. Different kinds of configuration of intermediate
attacks have been proposed such as over-powered or matched power attacks
[84, 85].

On the other hand, several anti-spoofing techniques have been proposed over
the past years [79, 80]. Some of these methods use antenna arrays to obtain
information on the direction of arrival with respect to the satellite elevation
and discriminate between the satellite and the spoofing signal [86–88]. Other
techniques cross-check GNSS measurements with other externals systems, such
as, inertial or communications systems [89–91]. Different solutions are based
on the authentication of the satellite signal, in order to avoid the reception of
unauthorized signals [92–94]. Finally, there are other methods, based on signal
processing, designed to detect the spoofing signal exploiting by observables
taken at different stages of the receiver, such as, the Carrier-to-Noise ratio
(C/N0) or the correlation function shape [95, 85, 89, 96–98].

Even though many of the existing signal processing techniques are designed
for detecting spoofing attacks, only a few of them are able to mitigate its effects,
e.g. [96, 99]. In this chapter we propose a novel anti-spoofing signal processing
algorithm, called TJ. It is based on the idea used in Chapter 3, where multiple
correlators are used to observe the correlation function between the incoming
signal and the local replica for MP detection purposes. In this work, a similar
concept is developed using a different linear regression algorithm [100]. The
TJ algorithm aims at detecting the spoofing signal and mitigating its effects by
unlocking the receiver from the spoofing control and track the satellite signal
instead.

In this chapter we focus on the matched-power intermediate spoofing attack
with the goal of introducing the novel TJ algorithm and demonstrating its
feasibility, in particular, on the vehicular context and its applications. For the
test phase we used the TEXBAT as the main source for demonstrating the
working abilities of the algorithm. The TEXBAT is a set of recorded scenarios,
made available by the Radionavigation Laboratory at the University of Texas
at Austin, created to provide a test-bench for the evaluation of anti-spoofing
techniques performance, both in static and dynamic scenarios [84]. The TJ
algorithm, by itself, is not conceived as a defense against the over-powered
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types of spoofing attacks, but these are easily detectable by means of a power
measurement control and can be a priori excluded [101].

By means of the TJ algorithm, the receiver is able to maintain availability
of the GNSS usage and obtain trusted positions by using the mitigated signal.
Due to the presence of vestigial spoofing signals, the accuracy of the mitigated
positions is slightly degradated with respect to the position obtained using
clean signals.

The chapter is organized as follows: in Section 5.1 we outline the overall
working procedure of the TJ algorithm. In Section 5.2 we detail the spoofing
signal detection algorithm based on the linear regression algorithm. Following,
in Section 6.1.1 we describe the two different KFs used inside the TJ algorithm.
In Section 5.4 we present the delay estimation algorithm and jumping procedure
to unlock the signal from the spoofing control. Finally, in Section 6.5 the working
results for the TJ algorithm are discussed and in Section 5.6 the conclusions
are drawn.

5.1 The Time Jumper principle

The flow chart of algorithm describing the TJ working principle is depicted
in Fig. 5.1, where three main sections of the algorithm can be identified, the
detection part, the PVT part, and the jumping part.

The detection part is in charge of revealing the spoofing presence and of its
exclusion from the navigation solution. The detection is based on a SQI able to
measure the difference between the received signal and the ideal one. The SQI
is defined by using the correlation function between the received signal and
the local code replica, and other signal information, such as C/N0. The SQI
value is the metric used for the detection and exclusion of the faulty satellites
from the PVT computation. A detailed description of the detection part is
presented in Section 5.2.

The PVT part, described in Section 6.1.1, regards the use of KFs in the
PVT computation. There are two different KFs used in the algorithm, one used
when enough unspoofed channels are available to compute a trusted solution
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Fig. 5.1 Flow chart of the functioning principle of Time Jumper algorithm

and the second one when a solution cannot be found using only the unspoofed
ones.

Finally, In Section 5.4 we discuss the jumping part that is in charge of
unlocking the channel’s DLL from the control of the spoofer and make it lock
to the authentic signal. During this procedure, we first estimate the relative
delay between the spoofing and the satellite signal by observing the correlation
function shape. Afterwards, a delay jump is performed by modifying the
absolute delay of the DLL using the estimated delay difference. After the jump,
appropriate checks to control if the jump was performed correctly are done.

The detection strategy and the PVT computation are based on previous
research and known results. The jumping procedure is the major novel contri-
butions of this work.
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5.2 Detection problem

The detector used in the scheme of Fig 5.1 is a modified version of the MPDD
algorithm introduced in Chapter 3. This algorithm works at the correlation
level and it is able to detect distortions of the correlation function. Since MP
and spoofing signals may create similar distortions in the correlation function,
it is possible to use a variant of the MPDD algorithm to detect spoofing signals.
In spite of the similarities in the distortion, there are subtle differences that can
be considered when detecting one or the other. For example, a spoofing attack
is expected to create a single additional ray apart from the LOS signal, while
in MP environments many different rays can be mixed with the LOS signals.

The MPDD is based on the use of LAFs. In this work we substitute
the LAFs by a Least Absolute Shrinkage and Selection Operator (LASSO)
[100], which provides, in the framework of spoofing detection, better detection
capabilities. Furthermore, the algorithm is improved by the introduction of a
quality index that will be used to exclude low quality signals.

5.2.1 From Linear adaptive filter to LASSO

The idea described in Chapter 3 is to use LAF to decompose the correlation of
the incoming signal in a weighted sum of delayed ideal correlations in order
to detect MP reflections of the LOS in the correlation domain, without any
limitation on the number of reflections. In the LAF theory, a generic signal
is modeled as d[n] = y[n]+n0[n], where n0[n] is a noise sequence and y[n] is a
signal defined as the output of a FIR filter:

y[n] =
M−1∑
k=0

w∗
ku[n−k] (5.1)

according to (5.1) y[n] is written as a summation of M delayed and weighted
replicas of a basis input signal u[n]. The filter length M depends on how many
delayed replica signals are used to approximate d[n]. In Chapter 3, u[n] is the
ideal correlation of a GPS L1 C/A signal and d[n] is the measured correlation
between the local code and the incoming one averaged in a time window. In
order to limit the effect of the noise in the receiver, the measured correlations
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are collected in time and then averaged before applying the LAF decomposition.
The taps of the filter wk are considered as the unknowns of the system and
they are computed by minimizing the residual error e[n] = y[n] − d[n]. This
minimization problem can be written in matrix form as:

min
w

||Uw −d||22 (5.2)

where U ∈ RN×M contains M delayed ideal correlations and d ∈ RN×1 is a
vector of measured correlation points. Equation (5.2) is a typical least square
minimization problem, solved as ŵ = (UHU)−1UHd. The vector ŵ ∈ RM×1,
containing the taps of the linear filter, is used to characterize the presence of
external signals. The value of the central tap weights the ideal correlation with
zero delay and is related to the LOS signal, while the values of other taps are
linked to the presence of possible MP signals and noise.

The rule chosen here to detect the presence of distortions is the same used
in Chapter 3, so the anomalies are present if the distance between the estimated
coefficient vector ŵ and the vector representing LOS in the dictionary case is
not minimum.

In the spoofing attack scenarios the problem is similar. Although there are
distortions in the correlation domain, only one additional signal is present when
a receiver is under a spoofing attack. The minimization problem expressed by
(5.2) can be modified, taking into account the fact that we are looking for a
single additional signal. The new formulation of the problem has to guarantee
a limited number of non-zero components of the vector w. This is possible by
adding a constraint so that:

min
w

||Uw −d||22
subject to ||w||0 < s

(5.3)

where ||w||0 is the pseudo ℓ0 norm defined as

||w||0 = |supp(w)|

and where | · | is the cardinality of the set supp(w) = {w : wi ̸= 0}. The integer
number s is used in order to do this minimization and limits the ℓ0 norm of
the vector w, so s indicates the maximum number of non-zero components. A
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possible choice is to select s = 2, in order to represent only the LOS and the
spoofed signal. Nevertheless, the replicas in U have fixed delay values while the
LOS and the spoofing signals may fall between two replicas, as shown in Fig.
5.2 and this leads to s ≥ 4. To limit the complexity of the overall representation
we chose s = 6.

The problem in (5.3), an ℓ0 constrained least square, is a non-convex and
NP-hard problem [54]. In order to solve it, a possible approach could be to use
greedy algorithms like iterative hard thresholding [102] or, as an alternative, we
relax ℓ0 and solve an approximated version of the problem, using the ℓ1 norm
[103].

In this work, we are more interested in highlighting the presence of com-
ponents than approximating the input signal in the best way. The convex
problem

min
w

||Uw −d||22
subject to ||w||1 < s

is referred to as the LASSO problem [100, 104]. Given the nature of the
constraints, the LASSO tends to produce several coefficients that are exactly
zero [105] and this behavior fits well with the desired representation. In our case,
we have w ∈ RM×1 with M > s, so the solution will have at most s components
different than zero. In Fig. 5.2 we can observe an example of the LASSO
applied to decompose input correlation d and approximate it as y = Uw. The
vector w, obtained by the LASSO solution, used for detection purposes will
also be used in Section 5.4.1 to estimate the relative delay between LOS and
spoofing signals.

5.2.2 The use of SQI

Another element of the proposed method is the use of the heuristic metric
introduced in Chapter 4 that evaluates the quality of the signal.

In Figs. 5.3 and 5.4, two examples of MPDD binary outputs are depicted,
the SQI results and C/N0 trend respectively. The results presented hereafter
were obtained by processing two channels of TEXBAT dataset number 4,
where it is easy to observe the time epoch when the distortion appears in the
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Fig. 5.2 Example of measured correlation d and its approximation, tap of the filter
(w) and weighted decomposition

correlation function, and the effects that it has on the SQI of each channel.
Scenario number 4 of TEXBAT is a matched-power static position push that
serves the purpose to validate the definition adopted for the SQI.

5.2.3 Exclusion rule

A spoofing attack is able to alter the delay of each satellite signal at different
times and with different trends. The mitigation of the dangerous spoofing
effects cannot be based only on SQI, since a low SQI does not necessarily
indicate that the receiver is under spoofer attack. In our method we declare the
spoofing presence by combining the information given by SQI and the duration
of the event. We chose that when one of the channel’s SQI is below a predefined
threshold γSQI = 0.6 for an amount of time TSQI = 10 s, the channel is excluded
from the navigation solution. Once a channel is excluded, the remaining healthy
ones are used to compute the PVT solution by means of a classical KF. The
algorithm will continuously monitor the channels and exclude the impaired
ones. If there are less than four channels declared healthy, the algorithm will
switch to the KF version used under spoofing attack, and the solution will be
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Fig. 5.3 Example of detection results for satellite 13, using TEXBAT scenario ds4.
The attack is detected after 180 s, when the spoofer tries to change the true delay
computed by the receiver.
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Fig. 5.4 Example of detection results for satellite 23, using TEXBAT scenario ds4.
The attack is detected after 110 s, when the spoofer tries to change the true delay
computed by the receiver.
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computed using only Doppler measurements as it will be explained in Section
6.1.1. At the end of the procedure, a number Ns of satellites will be excluded,
where 0 < Ns ≤ NT and NT is the total number of satellites.

5.3 Kalman Filter

When NT −Ns ≥ 4, Ns satellites are excluded from the solution based on the
KF using only the non-spoofed code and Doppler measurements, otherwise,
when NT −Ns < 4, the NT Doppler measurements are used by the KF. This
double choice provides an overall better performance, in terms of continuity
and accuracy, as it will be shown in Section 6.5.

Both discrete KFs architectures are based on the description presented in
[3, 106] and the notation used, referring to time tk, is:

• xk is the process state vector

• Φk is the state transition matrix relating xk to xk+1 in the absence of a
forcing function

• zk is the measurement vector

• Hk is the matrix giving the ideal connection between the measurement
and the state vector

• vk is the vector containing the measurement error, which is assumed
white with known covariance and zero crosscorrelation with wk

• Qk is the noise covariance matrix associated to the Kalman linear model

In a classical KF the state estimate is given by:

x̂k = x̂−
k +Kk(zk −Hkx̂−

k )

where Kk is the Kalman Gain computed as:

Kk = P−
k HT

k (HkP−
k HT

k +Rk)−1
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The error covariance update is:

Pk = (I−KkHk)P−
k

The state estimate prediction is given by:

x̂−
k+1 = Φkx̂k

and the error covariance extrapolation is computed as:

P−
k+1 = ΦkPkΦT

k +Qk

5.3.1 Case NT −Ns ≥ 4

Thanks to the detection and exclusion stage, the KF used in this case works
with only non-spoofed signals. A KF with eight states is used, considering four
states for the position and timing and other four states for their respective
derivatives. The error state vector is:

ek =


δx
δt

δẋ
δṫ


where δx, is the vector related to the position coordinates x,y and z and δẋ is
the vector related to the velocity coordinates. This architecture is used as soon
as the receiver is turned ON and it is maintained while NT −Ns ≥ 4.

Using the non-spoofing KF, the measurement vector at time tk is obtained
as:

zk =
r
ṙ


where r contains the code-based pseudoranges measurements minus the pre-
dicted measuremtns and ṙ is computed using the Doppler measurements ob-
tained from the PLL. Under non-spoofing conditions, the matrix describing
the connection between the measurements and the state vector at time tk is
given by:
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Hk =
r̃x,y,z 1 0 0

0 0 r̃x,y,z 1


where r̃x,y,z is the unit vector from the user to the satellite, computed using
the satellite position and the user’s previous positions. This is the structure of
the KF generally used to obtain the PVT solution.

5.3.2 Case NT −Ns < 4

In this case it is not possible to obtain a solution using only non-spoofed
pseudorange measurements, and in this condition, we switch to a KF version
which uses all NT available Doppler measurements. The motivation is that, in
the dataset used to validate the method, the Doppler measurements are not
spoofed.

This version of KF uses also eight states but provides a PVT solution using
only Doppler measurements obtained from the PLL.

To compute the solution, the measurement vector zk and its connection
matrix Hk, are changed as:

zk =
0

ṙ


and

Hk =
0 0 0 0
0 0 r̃x,y,z 1


With these changes, the KF completely ignores the pseudorange measurements
and relies only on the phase measurements and previous positions.

5.4 Delay Estimation and Jump

5.4.1 Delay Estimation method

As introduced in Section 5.2, for the delay estimation between LOS and spoofer,
we use the correlation decomposition performed by the LASSO algorithm. If,
during the detection phase, we identify the presence of additional signals in the
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correlation function, then the distance between the non-zero taps of the filter
are representative of the relative delay between them. Obviously, this estimated
delay has a resolution given by the number of taps of the filter (w ∈ RM×1) and
by the range of the multicorrelator used, i.e Trange = 2Tchip −(−2Tchip) = 4Tchip.
Using a greater number of taps, maintaining a fixed Trange, provides higher
resolution in time.

The ideal correlations are contained in the matrix U ∈RN×M whose columns
contain shifted versions of the ideal correlation, with a single point shift between
two adjacent columns. The choice of M with respect to Trange affects the number
of possible delayed replicas, the number of columns of U and, indirectly, the
computational load. Hence, the choice of the resolution needs to meet a trade-off
between computational load and the range of the multicorrelator Trange. In the
experiments presented in this chapter we selected M = 21 and Trange = 4Tchip

in order to limit the computational load and to have a range wide enough to
observe external signals that are well separated from the LOS one.

Once decided M and Trange, we need a technique to estimate τ̂ . The first
and intuitive approach could be to observe directly the vector ŵ and count the
number of taps between the two coefficients different from zero. This approach
is possible if we have only 1 (LOS case) or 2 (LOS + spoofer) coefficients
different than zero. Unfortunately this is generally not true because of three
factors:

• the presence of noise that could create small additional coefficients (Fig.
5.5)

• the constraint s in the LASSO, that allows to have more than 2 taps for
the approximation if s > 2 (Fig. 5.6)

• the resolution. Since the true delay τ is not generally an integer multiple of
the distance between two adjacent taps, LASSO will use the combination
of two adjacent taps when LOS or spoofer correlation peaks are between
two taps.

The developed technique takes into account these factors in order to have a
better delay estimation and it is called Barycenter Delay Estimation (BDE).
The idea is to first remove possible taps with low values, caused by noise,
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through hard-thresholding, and then, if there are two remaining non-zero
coefficients, count the number of taps between them and multiply it by the
resolution Tres. If the remaining coefficients are more than two, we observe w
and compute all barycenters between adjacent taps. Finally, the delay will be
the distance between the two highest barycenters. An example is shown in Fig.
5.6.

Using GPS L1 C/A signal, the correlation functions are all triangles with
the same base b and the heights are related to the amplitudes of the coefficients
of w. The barycenter will be computed as:

tbar = iAi +(i+1)Ai+1
Ai +Ai+1

·Tres

where Ai = bwi is the area of the triangle associated to the wi coefficient. In
Fig. 5.7, we show an example of delay estimation vs. time for three satellite
signals using the dataset number 6 of the TEXBAT.

In Fig. 5.7, we observe that around 120 s the spoofer starts the push-off
phase, the estimated delay starts growing and after some time the estimation
stabilizes around a final value for each channel. At the beginning of the attack,
from 50 to 120 s, when the spoofing signal is aligned with the satellite signal, the
estimation is more difficult because of the smaller distance between two peaks.
This Figure shows that the technique has difficulties in detecting additional
signals that are perfectly aligned to the LOS signal. Fortunately, these scenarios
do not present real threats to the PVT solution.

5.4.2 Pre-Jump Checks

In general, during spoofing attacks, the estimated delay τ̂ will be a non
constant parameter, that will be under the spoofer control and will be modified
accordingly. Nevertheless, given the nature of a spoofing attack, in order to
adequately manipulate the target’s position and to avoid that the receiver loses
the tracking lock, a spoofer will generally alter the delay information slowly, on
the order of 20 ns/s. Therefore, for adequately small time windows, τ̂ can be
considered constant and its variance can be calculated accordingly. We can use
the absolute value of τ̂ and its variance, in order to decide if the estimations
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Fig. 5.5 Clean scenario with only the true signal and noise. The measured correlation
is clean, with only the central tap (0-delayed replica) different from zero. This means
that only one signal component is present in signal correlation.
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Fig. 5.6 Spoofed scenario in a generic time instant. The distortion in correlation
domain is visible also in the number of taps different from zero. Therefore, it is
possible to estimate the relative delay between the authentic and the spoofing signal
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Fig. 5.7 Temporal evolution of delay estimation. Example for 3 different satellites.
Not until 120 seconds the spoofer starts the push-off phase of the attack, separating
the two peaks from each other

are correct and the authentic peak is being observed. If these conditions are
met, the time jump can be performed during that time instant.

Two basic checks are done in order to identify if the current time is suitable
for jumping or not. First we check that the estimated delay is at least 0.5µs.
This empirical threshold is used to give the possibility for the two signals to be
sufficiently apart and for the two peaks to be clearly visible in the correlation
function. In case of an unsuccessful jump, an after-jump check is used, as
shown in Section 5.4.3.

The second check consists in observing the variance of the delay estimation
within a time window. If the variance during one second of the delay estimation
is lower than a predefined threshold γσ, the estimation is stable and the channel
is ready to jump. We can define the checks as:

τ̂ ≥ 0.5µs and σ2
τ̂ < γσ (5.4)

These checks are done on each channel individually. We jump on all the
satellites at the same time, because in case of an attack that leaves, at least,
four non-spoofed satellites, the receiver is able to continue the operation. In
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Fig. 5.8 Variance of the estimated delay for all visible channels. In the red circle it is
highlighted the time instants chosen to jump because they have the lowest estimated
variance

Fig. 5.8 we observe the chosen time instant where the variance of the delay
estimation of each channel is below γσ. Observing Fig. 5.7 in that time instant,
we see that the delay estimations of the satellite signals are greater than 0.5 µs.

Once the checks (5.4) are positive, the absolute delay of the DLL is modified
by τ̂ , in order to unlock the signal from the spoofer and lock it into the authentic
signal.

5.4.3 Post-Jump Checks

After the jump has been performed, we need to check if the DLL is tracking
the satellite signal. We check the value of τ̂ and we check the behaviour of the
tracking loop, observing the correlators. We define three possible outcomes for
each satellite and they are shown in Fig. 5.9:

• Successful jump (red line of Fig. 5.9). In this case, the jump successfully
unlocks the signal from the spoofer and ends up locked into the authentic
signal. A change in the sign of τ̂ is observed, meaning that the DLL
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successfully jumped from one peak to the other. Also, the correlator level
will be above zero, indicating that a signal is being tracked.

• Unsuccessful jump (blue line of Fig. 5.9). In this case, the jump unlocks
the signal of the spoofer for a limited time, but it comes back and lock
itself to the spoofer again. In this scenario, τ̂ does not change signs and it
maintains a similar value before and after the jump. Also the correlator
levels indicate that a signal is being tracked.

• Loss of lock (green line of Fig. 5.9). In this case, the jump moves the
DLL to a point where there is no signal and it is not able to go back to
any peak. In this scenario the correlator levels are very low indicating
that no signal is being tracked and τ̂ randomly wanders. When this occur,
the channel should go back to acquisition stage and restart the process.
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5.5 Results

As previously discussed, the TJ algorithm aims at detecting spoofing attacks
and providing continuous use of GNSS signals in the receiver. It also has the
scope of mitigating the effects of these attacks by means of a delay jump.

In order to asses the TJ algorithm performance we use the TEXBAT
datasets [84]. From the different datasets available in the testbed we focus
on the scenario number 6 (ds6), which consists on a Dynamic Matched-Power
Position Push. The dynamic scenarios of the TEXBAT are based on a clean
road dataset recorded at Austin, TX to which it is added a spoofing signal on
top in order to deviate the course taken from the real course of the vehicle. We
believe that this is a good example of a typical vehicular application.

We also present results of a static case, the scenario ds4, a similar scenario
to ds6 but based on a static clean dataset. These results show the working
capabilities of the TJ algorithm, in both dynamic and static cases.

For each scenario, four cases were studied in order to highlight the overall
working procedure:

• Case 1 is the clean solution obtained using a generic GNSS software
receiver and where no spoofing attack was present.

• Case 2 is the solution obtained with the generic software receiver for the
spoofing attack scenario.

• Case 3 is a solution using only the jumping procedure together with
a classical PVT computation based on a KF using code and Doppler
measurements.

• Case 4 is the solution using the TJ algorithm, i.e. jumping procedure
and the double choice KF.

Fig. 5.5 shows a comparison of the error of x,y and z compared to the case
1. For the case 2, we observe that the solution is driven away from the correct
road, and large errors are introduced mainly in the z axis. For the case 3 the
effects that the jump has in the overall solution are clearly visible, at time 270.
We observe that after the jump, the solution comes back to the real path and
the maximum errors are reduced with respect to the third case.
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Fig. 5.10 x, y, z results for scenario ds6 with several configurations of the TJ algorithm.
The blue line is the position error in case two. In orange the third case with only the
Jump and in yellow the error when using the TJ algorithm.

Finally, we can observe how the complete TJ algorithm performs. The
solution follows closely the real path and it is not controlled by the spoofer.
In Fig. 5.11 the 2D tracks are presented for the four cases. It is possible
to observe that using the TJ algorithm provides a continuity of unspoofed
solutions, contrary to what it is observed for case 3, where the error increases
considerably before the jump is feasible.

In this scenario from the six satellites available before the jump, five satellites
performed a successful jump and one loss the lock, so it was excluded from the
solution.

For the static case, ds4 scenario, results are presented in Figs. 5.5 and 5.13.
We observe how in this scenario the KF is not working as well as in the dynamic
scenario. The low dynamics of the scenario make the Doppler measurements
less informative for PVT usage.

In the static case, from the six satellites available before the jump, four of
them did a successful jump, one did an unsuccessful jump and one lost the
lock, so the final PVT solution after the jump is performed with four satellites.
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Fig. 5.11 The dynamic track of ds6 with several configurations of the TJ algorithm
over map. The blue line is the real path of case 1, the orange line is the spoofed
track of case 2. In yellow is depicted the path of case 3 and in purple the case 4 path,
using the TJ algorithm
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Fig. 5.12 x, y, z results for scenario ds4 with several configurations of the TJ algorithm.
The blue line is the position error in case two. In orange is the error for case 3 with
only the Jump. In yellow is the error of case 4, using the TJ algorithm

Nevertheless we observe how the errors decrease considerably when using TJ
algorithm and the solution is reliable throughout the whole test.

In Table 5.1 we have several error measurements and it is possible to observe
how the 3D Root Mean Square (RMS) error is reduced considerably between
the different cases in both considered scenarios. If we compare cases 2 and 3,
we observe how the jumping procedure alone, reduce the mean error in more
than 55 % for the ds6 scenario and 40 % for scenario ds4. Comparing case 2
and 4, the TJ algorithm improves the mean and Standard Deviation (std) of
3D RMS error in more than 80 % for both scenarios. We observe how in case 2
we have the maximum error, but this is generated from the spikes generated by
the jump, as can be observed in X, Y and Z directions in Figs. and .

5.6 Conclusions

In this work we presented the TJ algorithm, which is able to detect spoofing
attacks and mitigate its effects in a GNSS receiver. Moreover, in parallel to
these operations, the algorithm tries to guarantee the continuity and reliability



5.6 Conclusions 149

Fig. 5.13 The track of ds4 with several configurations of the TJ algorithm. The blue
point is reference static position, the red ones indicates the spoofed track of case 2,
in purple is depicted the path for case 3 and in green the path of case 4, using the
TJ algorithm

ds6 ds4
3D RMS error mean [m] std [m] max [m] mean [m] std [m] max [m]

case 2 413 218 645 290 195 512
case 3 181 193 747 170 186 846
case 4 82 30 134 49 16 94

Table 5.1 Mean, standard deviation and maximum 3D RMS error in meters, for all 3
cases in scenarios ds6 and ds4.
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of the system by means of a KF using only Doppler measurements. These
Doppler measurements are more difficult to spoof, so more reliable during
pseudorange-based attack.

The combination of several techniques like LASSO, KF and time jumping
procedure at different levels, increases the complexity of the system, but allows
to have a more robust receiver that is able to mitigate the negative effects of a
spoofing attack, especially in vehicular applications. The working abilities of
the TJ algorithm were demonstrated by means of real tests scenarios, both in
static and dynamic, observing how the position error is considerably reduced.

The signal processing part, LASSO, SQI and BDE should be applied to
both branches (I and Q) of the receiver, in order to take into account possibles
attacks which use relative phase between LOS and spoofer to take control of
the receiver while not changing delay or power of the real signal.



Chapter 6

Hybrid method for
multipath-resiliant PVT
determination using Kalman
filter based algorithms

This chapter describes some experiments related to a method of integrity
monitoring based on KF.The KF-based positioning, in urban environment,
results generally affected by the MP, which is inevitable. The sequential nature
of KF also generates in the positioning output a drift from the true trajectory
when the navigation data is not clean enough. Therefore, a mechanism called
LS fallback is proposed to mitigate the effect of MP on KF-based receiver. The
idea of the method is to fallback to LS solution and reinitialize the KF, so
reducing the drift and improve the accuracy of the results. This work has been
done in collaboration with fellow PhD student, Hieu Trung Tran. His topic is
related to environment models for integrity applications. We work together on
developing and implementing the algorithms presented in this chapter.

The idea of this work is the analysis of the behaviour of the KF and the LS
solution in a urban simulated environment in the presence of MP and a limited
number of satellites in view. Here, the RAIM algorithm, in particular the
Global test, is used for the detection of the outlier in the set of pseudoranges
due to the MP environment. The objective of the comparison is to verify if
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the KF-based RAIM can show higher sensitivity against MP than LS-based
RAIM, which will be shown later in this chapter. Then an algorithm, called
LS fallback, is proposed.

6.1 Introduction

PVT information is an essential element to develop and run services and
applications in almost any field of science and technology. Consequently, over
the past decades, the use of GNSS has become increasingly ubiquitous in
almost any field of technology applications. At the same time the demand for
higher accuracy has increased together with an interest in positioning solutions
resilient to disturbances and interferences, which often are caused by the harsh
environmental conditions in which GNSS receivers are used. Several factors can
actually affect PVT accuracy: the miss-functioning of the satellites; different
errors sources in the pseudorange determination (ionosphere, geometry, clocks,
multipath, etc.) [3]; masking of the sky by the environment; etc. As for
the environment, while problems can rise anywhere nonetheless the urban
environment deserves special attention since it typically generates unfavorable
conditions for a smooth PVT determination. In particular in urban environment
the masking of consistent portions of the sky is a common feature that in some
urban canyons can become very severe. Meanwhile the flat surfaces of buildings
easily reflect GNSS signals generating consistent MP. Yet many applications
and services are used in urban environment and improvement in performances
in this environment would affect consistent amount of end users.

As for the PVT determination several algorithms and solutions have been
developed and proposed, but they mainly refer to two basic schemes [3, 106, 107]:
(i) the LS PVT determination which is a memoryless approach deriving the PVT
information applying the least square algorithm to the pseudoranges between
satellites and receiver; (ii) the KF approach that processes the pseudoranges
between satellites and receiver with a KF. While LS based PVT output is
relatively noisy, the more sophisticated KF approach provides a smoother
output. On top of this it allows to integrate the GNSS PVT information
together with other sensors like Inertial Measurement Units (IMU) which are
becoming more and more common even in mass-market devices. However KF
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is more prone to MP interference that easily causes drifts in the output of the
filter that keeps some memory of the past.

In literature, the MP is faced in different ways. MP can be dealt with
integrating other sensors, providing extra information as in [108], or detecting
it at signal processing level; in this case several metrics based on correlation
measurements are proposed in literature [44, 45, 58] or in the previous chapters
of this thesis. In [109] some comparisons among different methods are presented.
In addition, many mitigation techniques are proposed to limit the disturbance
[20, 110] and several other works evaluate the impact of MP on the receiver in
different environments [47, 53, 111].

In order to mitigate the possible drifts related to MP when using KF based
algorithms, two solutions have been developed. They consist in shifting to LS
based PVT determination when the presence of MP is recognized. The two
solutions differentiate from each other for the test that is used to identify the
presence of MP. One of the two tests is actually structurally equal to a test
used in some Fault Detection (FD) algorithms. In fact MP is one of the several
causes that can induce GNSS receiver malfunctioning.

Since FD in GNSS technology has been widely addressed and several so-
lutions have been suggested to identify faulty systems [38], considering that
MP can be a source of faulty behaviors, a comparison of the behavior of the
proposed algorithms for MP occurrence recognition with some indicators used
for FD has also been performed.

6.1.1 Kalman Filter

A classical approach, which is commonly adopted in GNSS receivers, consists
in implementing a KF to compute the receiver position vector uk. In designing
GNSS receivers, different KF solutions have been implemented and are described
in the literature. Sometimes the filter has been used to integrate inertial sensors
with the GNSS receiver [112], while in other studies it has been integrated
directly in the tracking part of the receiver implementing the vector tracking
loop architecture [113]. The KF architecture implemented is quite common
and foresees the use of a filter state vector xk with 8 states that are the
receiver position coordinates and the clock bias together with their derivatives



154
Hybrid method for multipath-resiliant PVT determination using Kalman filter

based algorithms

(velocities and clock drift) so that xk = [uk, u̇k]T . The interested reader can
refer to [3, 106, 112] for more details. The notation used for the filter description
at epoch tk is:

• xk ∈ R8 is the process state vector

• Φk ∈ R8×8 is the state transition matrix relating xk to xk+1

• wk ∈ R8 is the process noise vector, assumed to be a white sequence with
known covariance matrix Qk

• zk ∈ R2Nsat is the measurement vector containing the pseudorange and
Doppler measurement for each satellite.

• Hk ∈ R2Nsat×8 is the matrix giving the ideal connection between the
measurement and the state vector

• vk ∈ R2Nsat is the measurement error vector, which is assumed white with
known covariance Rk and zero crosscorrelation with wk.

• Rk is the covariance matrix of vk, it is assumed to be diagonal and it is
derived according to the model in [71].

In the KF the state estimate x̂k of xk is given by:

x̂k = x̂−
k +Kk(zk −Hkx̂−

k ) (6.1)

where x̂−
k is the predicted state vector for epoch k, propagated from previous

epoch x̂−
k = Φk−1x̂k−1,

The connection matrix Hk ∈ R2Nsat×8 relating states to measurements is
given by:

Hk =
hx,y,z 1 0 0

0 0 hx,y,z 1

 (6.2)

where each row of hx,y,z ∈ RNsat×3 is the unit vector pointing from the lin-
earization point to the location of each satellite [106].
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Finally, Kalman Gain Kk is computed as:

Kk = P−
k HT

k (HkP−
k HT

k +Rk)−1 (6.3)

where P−
k is the predicted (a priori) error covariance update at epoch k. P−

k is
defined as:

P−
k = Φk−1Pk−1ΦT

k−1 +Qk−1 (6.4)

and Pk−1 is the a posteriori error covariance update:

Pk−1 = (I−Kk−1Hk−1)P−
k−1 (6.5)

To initialize Pk at k = 1 when there is no information on the error covariance,
Pk can be assumed to be diagonal with large values [114].

Since xk = [uk, u̇k]T , the state transition matrix Φk of the KF is:

Φk =



1 0 0 0 ∆t 0 0 0
0 1 0 0 0 ∆t 0 0
0 0 1 0 0 0 ∆t 0
0 0 0 1 0 0 0 ∆t

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



(6.6)

in which ∆t is the time interval between epochs. In this work the position is
calculated every second, thus ∆t = 1 s.

The measurement error covariance matrix Rk ∈ R2Nsat×2Nsat is usually
written as:

Rk =
 Σk 0

0 Σ̇k

 (6.7)

where Σ ∈ RNsat×Nsat is a diagonal matrix, whose diagonal elements are the
pseudorange error variances, while Σ̇ is a diagonal matrix containing the
variances related to derivatives of pseudoranges.

Different solutions have been suggested in literature to assign numerical
values to these variances. The interested reader can refer to [115] for more
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Environment a(m2) b(m2Hz) ȧ(m2/s2) ḃ(m2Hz/s2)
Lightly degraded 10 1502 0.01 25
Heavily degraded 500 106 0.001 40

Table 6.1 Example values for measurement error variance model

insight on some of them. Here the solution adopted is the one described in
[116]. With it the diagonal elements of Σ and Σ̇ are defined as:

Σi,i = a+ b ·10
−C/N0,i

10 (6.8a)

Σ̇i,i = ȧ+ ḃ ·10
−C/N0,i

10 (6.8b)

where C/N0,i is the carrier-to-noise ratio of the signal from the i-th satellite
which is time dependent, a, b, ȧ and ḃ are coefficients whose values depend on
the assumed environment. Some examples of these coefficients are reported in
Table 6.1 [116].

PVT determination applying KF is much smoother and less noisy than the
one obtained with LS. This result depends on the fact that KF keeps some
memory of the past and does not preform a memory-less one shot computation
of the position at each epoch tk. However, while KF is not much sensitive to
random noise, it is more sensitive to biased disturbances that can introduce
drifts on the PVT determination and can propagate them in time due to the
memory of the filter.

6.2 Quality of PVT determination

In general GNSS applications degrade their performances when the PVT
provided by the GNSS receiver is affected by increasing errors and uncertainties
that can be particularly harming for safety-of-life critical applications. Remark
that the quality of PVT determination, in terms of achieved accuracy, is
generally time-varying since it depends on the quality of received signal, which is
dependent on the satellite geometry, can be affected by disturbances (ionosphere
and its scintillations, MP, etc.) as well as by miss functioning of some satellites.
These facts have suggested the study of strategies [108] aiming at recognizing
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possible degradation of the accuracy, rising alarms when the integrity of the
PVT is negatively affected and looking for mitigation solutions that allow to
correct, at least partially, the problem.

It is in this context that RAIM techniques have been elaborated to monitor
the integrity of the navigation results [59]. The main goal of RAIM algorithms
is to protect users from excessive errors in the navigation output [3], which
may cause hazardous outcome if the faulty positions are used. Initially devel-
oped for use in aviation, they were classified as algorithms for Aircraft-Based
Augmentation System (ABAS). They operate autonomously, using solely data
from the receiver to work out the integrity assessment, without relying on
external aids, assuming the presence of only one fault at the same time. The
structure of RAIM algorithms consist of several features: Fault Detection (FD)
mechanism to check the consistency of input measurements and detect possible
faults, Exclusion (FDE) mechanism to identify faulty satellites to be excluded,
Protection Level (PL) calculation to measure the availability of the navigation
solution. Details about RAIM algorithm and its features can be found readily
in literatures [59, 3, 70].

To identify degradation in the quality of PVT determination induced by a
fault, FD algorithms check for the consistency of the measurements derived
using a redundant satellite constellation. This is done running the so-called
Global Test [70] (also known as range-residual test) that requires at least five
satellites in view. The process of a FD algorithm comes from the statistical
detection theory [59] and consists in verifying if a quantity (identified as
test statistic) exceeds a given threshold. The threshold is chosen so that, in
faultless conditions, the test statistic has a very low probability to pass it, thus
ensuring very low false positive alarms. Faulty conditions instead, increase the
values achieved by the test statistic that is no longer distributed as in faultless
conditions and therefore more likely exceeds the threshold thus allowing for
the recognition of the fault.

In literature three main FD algorithms are proposed for LS-based solutions
[3, 38, 34] and presented in Chapter 2. On the other hand, FD algorithms for
KF-based positioning method have also been recently proposed in [117, 111].
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6.2.1 Global Test

When using LS for PVT determination the Global Test can be defined at each
epoch k as:

Global Test =

H0 : E{ϵk} = 0,V ar{ϵk} = Σk if τglobal < Tglobal

H1 : E{ϵk} ̸= 0,V ar{ϵk} ̸= Σk if τglobal > Tglobal

(6.9)

where Σk is the covariance matrix of the pseudorange errors ϵk, which are
assumed to be normally distributed, τglobal and Tglobal are the test statistic and
detection threshold, respectively. In the residual method, τglobal is given by:

τglobal = r̂T
k Σ−1

k r̂k (6.10)

where r̂k = H̄k∆ûk − ∆ρk is the residual between predicted and measured
pseudoranges [69]. For Weighted LS (WLS) solution, r̂ is given by:

r̂k = H̄k

(
H̄T

k Σ−1
k H̄k

)−1
H̄T

k Σ−1
k ∆ρk −∆ρk = −Rk∆ρk (6.11)

In faultless conditions the errors in ϵk are normally distirubuted, thus τglobal

(which is a sum-square of the errors) follows a central Chi-square distribution
with Nsat −p DOF, where p is the number of parameters to be estimated, that
in our case is 4.

The threshold Tglobal, against which the test statistic must be compared, is
obtained arbitrarily fixing the probability of false alarm Pfa that is perceived
acceptable for the faulty free condition. It results that

Pfa =
∫ ∞

Tglobal

fχ2(x;Nsat −p)dx (6.12)

where fχ2(x;K) is the central Chi-square probability density function (pdf)
with K DOF.

Tglobal can then be derived as [34]:

Tglobal = Qχ2(1−Pfa,Nsat −p) (6.13)
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where Qχ2(P,K) is the quantile function of the probability P of central Chi-
square distribution with K degree-of-freedom, while Pfa is the probability of
false alarm.

Note that τglobal and Tglobal depend on the number Nsat of available satellites,
therefore in general they are function of the epoch k. This dependence has
been however omitted in the notation for sake of simplicity, also because no
change usually occurs on short time horizon of few minutes.

6.2.2 Kalman filter FD test

When the KF is used for PVT determination it is also possible to monitor
the integrity of the achieved results with a consistency test [117] which is
conceptually identical to the Global Test previously discussed for the LS PVT
determination. In this case the test statistic τKF can be derived from the
innovation vector d̂T

k of the KF process at the k-th epoch, which can be
computed as

d̂T
k = zk −Hkx̂−

k (6.14)

while Sk is the innovation vector covariance matrix, which can be calculated as

Sk = HkP −
k HT

k +Rk (6.15)

The test statistic τKF according to [117, 111] is then:

τKF = d̂T
k S−1

k d̂k (6.16)

The consistency test for KF is then defined as [117]:

Global Test =

H0 : E
{
d̂k

}
= 0,V ar

{
d̂k

}
= Sk if τKF < TKF

H1 : E
{
d̂k

}
̸= 0 or V ar

{
d̂k

}
̸= Sk if τKF > TKF

(6.17)

Since in faultless conditions τKF follows a central Chi-square distribution
with 2Nsat degree-of-freedom (the length of zk) [117], the detection threshold
TKF is given by:

TKF = Qχ2(1−Pfa,2Nsat) (6.18)
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Remark that, also in this case, τKF and TKF depend on the number Nsat of
available satellites and therefore can vary in time. However this dependence is
not accounted for in the notation, for sake of simplicity.

6.3 Least Square Fallback algorithms

When MP and possibly other disturbances introduce bias in the error of the
PVT determination, such bias can cause drifts in the PVT computed using
KF, since biased information is stored in the memory of the filter. It turns out
that, while in disturbance-free conditions the KF approach, providing smoothed
and accurate data, performs more satisfactorily than the much more noisy LS
approach. When the satellite signals are affected by consistent biased error the
one-shoot memoryless LS approach is indeed more noisy than the KF, but it is
less affected by bias.

These considerations have motivated the creation of a new algorithm,
presented in this chapter, called the Least Square Fallback algorithm that
combines LS and KF PVT determination reinitializing the KF-based PVT
computation using LS when MP degradation is taking place. The main goal of
the algorithm is to achieve better positioning stability and accuracy under the
effect of MP.

In order to decide when the received signal is degraded and the receiver
should switch to LS, two solutions have been envisaged. The first one is based
on the innovation computed in the KF, while the second one, which can be
used when carrier smoothing is in use, is based on CS detection.

6.3.1 Innovation-based Fallback algorithm (IFB)

As for this first solution, it consists in performing a test formally identical to
the Global Test for integrity using the innovation of the KF. In this test the
only difference is the value chosen for the threshold Tfb against which the test
statistic τKF must be compared. The reason for this lies in the fact that the
detection of disturbances for integrity monitoring purposes needs to ensure
very low false positive rates while accepting relatively large PVT error values.
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Fig. 6.1 Scheme of the IFB algorithm

On the contrary for the Fallback algorithm relatively high rates of false positive
alarms are not critical, while it is important that possible drifts in the PVT,
which are identified through an increase of the test statistic τKF , are promptly
recognized.

The Fallback Test, to decide whether the receiver should switch to LS, is
defined as:

Fallback Test =

H0(no disturbance) : E
{
d̂k

}
= 0 if τKF < Tfb

Hfb(presence of disturbances) : E
{
d̂k

}
̸= 0 if τKF > Tfb

(6.19)
In other words, the Fallback Test assumes that the small degradation (such as
MP) can drift the trajectory away from the correct path. When the presence
of such degradation is recognized, the receiver switches to LS for NLSfb steps.
After running LS for NLSfb steps the receiver switches back to KF again.

The Fallback threshold Tfb is derived in the same way as the consistency
threshold TKF of FD [70]. Tfb is derived from the probability of false alarm
Pfa,fb that is considered suitable for the fallback algorithm so that:

Tfb = Qχ2(1−Pfa,fb,2Nsat) (6.20)

To chose a suitable value for the probability of false alarm Pfa,fb, it is
possible to make use of an experimentally derived ROC curve as better described
in Section 6.5.2.
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The overall scheme for the LS Fallback algorithm is depicted in Fig. 6.1,
where sLS is the counter of LS epochs after fallback decision. After initialization
for KF (using LS), the process calculates the positions using KF, as with any
normal KF implementation. After each epoch, the Fallback Test Computation
block calculates τKF and Tfb following (6.16) and (6.20), using Pfa,fb, then
proceed to the actual Fallback Test. If the test is passed, the next epoch will
be processed using KF. Otherwise, the process will fallback to LS for NLSfb

steps counted by the counter sLS . After NLSfb steps in LS, the process returns
to KF.

6.3.2 Cycle-slip-based fallback algorithm (CSFB)

As previously described, the carrier-smoothing algorithm, implemented with
the Hatch Filter, needs to be reset if a CS occurs. To this extend a CS detector
is needed. One of the possible detection strategies presented in literature [118]
makes use of Doppler data to compute the quantity:

τCSD = |∆Φ|−
∣∣∣∣∣ [D(t)−D(t−1)]

2 dt

∣∣∣∣∣
where ∆Φ is the phase variation, in number of cycles, between consecu-
tive epochs, D(t) is the Doppler measurement at epoch t, so that the term
[D(t)−D(t−1)]

2 dt is the Doppler prediction. In general, the phase variation has
to be in agreement with the Doppler prediction between epochs, otherwise a
CS occurred.

To take a decision, the indicator τCSD is compared against a threshold
TCS . The Fallback Test, to decide whether the receiver should switch to LS, is
defined as:

Fallback Test =

H0(no CS) : if τCSD < TCS

Hfb(presence of CS) : if τCSD > TCS

(6.21)

Besides being used to reinitialize the Hatch filter, this test is used to trigger
the Fallback algorithm. As for the determination of the threshold TCS , its
value can be heuristically derived. The value TCS = 6 has been used in the
experiments.
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6.4 Input data sets

In order to test the properties and the quality of the proposed algorithms
while examining them side by side with indicators of PVT performances three
different data sets are used. Two of them are simulated data sets while the
third is a real data set.

As for the simulated data sets, two tools were used for their generation.
Simulated signals were generated using a modified version of the signal generator
presented in [67]. This generator, which is developed in MATLAB, in its original
version takes two sets of information as input: the nominal trajectory of the
mobile receiver for which GNSS signals have to be generated (provided through
a google-map-based interface) and the information of the available GNSS
satellites for PVT determination (skyplot). As output the generator provides
the signal to be fed to the receiver. In its original version the generator provides
only MP-free outputs which are useless for the study of the algorithms presented
in this paper. Therefore a modified version of the simulator was developed
to allow for outputs affected by multipath that fit the needs of the analysis
described hereafter. The modified version of the signal generator integrates,
together with the above mentioned inputs, also the information characterizing
the MP affecting GNSS signals. This last information is provided by a second
tool, developed by the German Aerospace Center - DLR, named Land Mobile
Multipath Channel Model [119] which has been standardized in ITU document
[120]. This tool is based on a model which was developed starting from a real
data measurement campaign aiming at investigating the way in which different
environmental factors (buildings, trees, etc.) affect GNSS signals generating
MP and degrading the quality of the signals received by a mobile receiver
[119]. With the Land Mobile Multipath Channel Model, which is developed in
MATLAB, it is possible to provide a nominal trajectory of the moving receiver
and customize its surrounding environment including buildings, trees, light
poles, etc. The tool is then able to generate MP delay rays and to provide
parameters characterizing them. These parameters are fed to the modified
version of the signal generator.

Both simulated data sets were generated with sampling frequency of 16.367
MHz, intermediate frequency of 4.123 MHz, using 5 bits for quantization. As
for the available satellites the same configuration with 9 satellites was chosen
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Fig. 6.2 Route of the scenario 1.

for both data sets. The corresponding skyplot is shown in Fig. 6.3. The C/N0

of the satellites ranged from 37 to 42 dBHz. For the mutipath generation the
MP model was setup in urban surrounding mode, with a road width of 15 m
and both sides of the road populated with buildings (maximum height 25 m),
trees and light posts. The simulated trajectories for both simulated data sets
were generated starting from the map of Hanoi, Vietnam and they propose two
different scenarios.

6.4.1 Scenario 1

This scenario, whose path is reported in Fig. 6.2 together with the indication
of the direction of movement, simulates a vehicle moving at an average speed
of 40 km/h along straight roads with only two ninety-degrees sharp curves.
Generated data last for 3 minutes (180 seconds). MP affects the signal (on all
satellites) from 108 s to 126 s, so that it starts before the first curve and ends
before the second one.

6.4.2 Scenario 2

This scenario, whose path is reported in Fig. 6.4 together with the indication
of the direction of movement, simulates a vehicle moving at an average speed
of 40 km/h along a curved path in an urban environment. Also in this case
generated data last for 3 minutes (180 seconds), but MP affects the signal (on
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Fig. 6.3 Skyplot of the simulated scenarios.

all satellites) for a longer period: from 108 s to 156 s, that is 30 s longer than
in scenario 1.

6.4.3 Real data set

The real data set was recorded on a car moving around the campus of the
Polytechnic of Turin, Turin, Italy, using a Septentrio SSRC2 receiver. The
path followed by the car for this data collection is reported in Fig. 6.5 where
’A’ is the starting point. Data were collected for about 24 minutes. Over this
time interval the number of available satellites varied from a maximum of 11
GPS satellites to even less than 4 at some epochs in which Non Line-of-Sight
(NLOS) conditions were met thanks to the unfriendly urban environment in
which the car was moving along a trajectory featuring sometimes segments
with rather clear sky view, but other times segments with high buildings and
flyovers which consistently degraded the signals even blocking the view of the
sky at some epochs. The receiver had the carrier smoothing function enabled.
Fig. 6.6 shows the skyplot with the available satellites at the beginning of the
data collection.
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Fig. 6.4 Route of the scenario 2.

Fig. 6.5 Path of the real data collection starting from point A.
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Fig. 6.6 Skyplot of the real data at the beginning of the data collection.

6.5 Performance analysis

The different simulated and measured row data sets were processed with in-
house developed software receivers in order to evaluate the performances of
different FD indicators and algorithms. The performances of the new PVT
algorithms presented were also evaluated.

In the following paragraphs the obtained experimental results are presented
and commented.

6.5.1 Fault detection and related indicators

A first analysis carried out with the simulated data consisted in examining the
fault detection capability associated to the pseudorange residuals and to the
innovation when using LS and KF respectively. Plots of these quantities were
derived for two representative satellites (PRN1 1 and PRN 7) and are reported
in Fig. 6.7, which is relative to scenario 1, and in Fig. 6.8, which is relative
to scenario 2. The time interval in which the MP occurs is highlighted in the
figures. From these figures it can bee seen that KF, with the innovation, is

1Pseudo-Random-Noise (PRN) code spreads the spectrum of the satellite signals and it is
used to identify each satellite.
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Fig. 6.7 Pseudorange residuals and innovation of satellites PRN 1 (a) and PRN 7 (b)
in scenario 1 (MP occurs in the highlighted time window 108-126 s).

much more sensitive to the occurrence of MP. It can be also noted that the
effect of MP on the innovation last longer than the MP itself.

The test statistics τglobal for LS and τKF for KF are shown in Fig. 6.9,
which is relative to scenario 1, and Fig. 6.10, which is relative to scenario 2.
From these figures it appears evident that MP does not affect much τglobal

while it affects consistently τKF that results to be a very good indicator of MP
presence.

It is worth noting that τKF has been proposed as integrity indicator for
FD algorithms [117, 111]. Should such an algorithm be implemented while
processing these data sets, assuming a probability of false alarm equal to
6.65 ·10−5 (which is in the same order of magnitude of the value used in [121])
the resulting threshold would be 21.9 and τKF would pass it triggering the
FDE algorithm. This could result in the exclusion of some satellites that would
affect the PVT determination, as presented later.
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Fig. 6.8 Pseudorange residuals and innovation of satellites PRN 1 (a) and PRN 7 (b)
in scenario 2 (MP occurs in the highlighted time window 108-156 s).

6.5.2 Derivation of the threshold Tfb for the Innovation-
based Fallback (IFB) algorithm

As previously remarked while describing the IFB algorithm in Section 6.3,
the threshold Tfb to be used to detect MP events should be determined from
relation (6.20) properly choosing the probability of false alarm Pfa,fb.

In order to derive a reasonable value for this probability, the ROC curve
relating the probability of detection Pd versus the probability of false alarm
Pfa,fb has been experimentally derived from the data relative to scenarios 1
and 2.

The derivation has been carried out by varying the values of the input
probability of false alarm Pfa,fb from 0 to 1, and evaluating, for each of them,
the corresponding Fallback threshold Tfb(following (6.20)) and the probability
of detection Pd. The probability of detection Pd is derived considering only the
epochs that are within the intervals in which MP occurs. Such probability is
estimated as the ratio between: (i) the number of epochs for which the test
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Fig. 6.9 Test statistic τglobal while using LS (a) and τKF while using KF (b) in
scenario 1 (MP occurs in the highlighted time window 108-126 s).
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Fig. 6.10 Test statistic τglobal while using LS (a) and τKF while using KF (b) in
scenario 2 (MP occurs in the highlighted time window 108-156 s).
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Fig. 6.11 ROC curve reporting the probability of detection Pd against the probability
of false alarm Pfa.

statistic τKF is higher that the threshold, (ii) the total number of epochs in
the intervals in which MP occurs.

In Fig. 6.11 the obtained ROC curve is depicted.

From this curve the value of 0.3 was chosen for the probability of false alarm
Pfa,fb to be used in relation (6.20) in order to compute the threshold Tfb. This
threshold allows the test statistic τKF to detect almost all faults.

6.5.3 Positioning performances of the algorithms

Once the probability of false alarm Pfa,fb = 0.3 is chosen and the corresponding
threshold Tfb is computed, it is possible to run the IFB algorithm and compare
it with the LS and the KF algorithms. Only one more parameter is needed
that is the number NLSfb of epochs in which the PVT is computed using LS
before switching back to KF. This number has been set equal to 5 s considering
that in general MP last for a while so that it is useless to switch immediately
back to KF. However it is not useful to keep too long the LS PVT evaluation
in case MP ends, since KF performs better when no MP is present. Actually, if
that is not the case, the algorithm will just switch back from KF to LS more
times, but without causing any problem.

Using data of scenarios 1 and 2, the position has been deriveded using LS,
KF and IFB algorithms. Since simulated data are used, the true path is exactly
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known and the results obtained with the different algorithms can be easily
compared with it.

In Fig. 6.12 the results relative to scenario 1 are reported. During the initial
clean period with no MP, the path derived with KF algorithm, that coincides
with the one of the IFB algorithm, is smooth and very close to the true one,
while the path derived with LS is noisier. When the MP steps in, positions
derived with KF derive away from the true path, while positions derived with
LS are still noisy but closer to the true path. The IFB algorithm, switching
from KF to LS takes advantage of this fact providing an overall more accurate
solution. In Fig. 6.13 the part in which MP occurs is shown enlarged to allow
a better comparison of the different results.

The different performances of the algorithms can be even better compared
referring to Fig. 6.14 in which the horizontal positioning errors of the different
algorithms are split into their East and North components. It can be noted
that, when no MP is present, the KF algorithm (and consequently also the
IFB algorithm) has in general lower error than the LS algorithm. Also the
maximum error of KF is about 7 m compared with about 10 m of LS. On the
contrary, when there is MP, KF derives and its error rises up to 20 m in East
direction and 40 m in North direction, while LS (and consequently the IFB
algorithm that in such conditions is associated to it) has more or less the same
performances as in the MP-free time interval.

Results for scenario 2 are shown in Fig. 6.15 and Fig. 6.16. They are
qualitatively similar to the ones of scenario 1 showing better performances of KF
in MP-free time intervals while in MP-affected time intervals LS works definitely
better. Consequently the IFB algorithm, which is switching from FK to LS
when MP presence is recognized, takes the advantages of the two algorithms.
Quantitatively, in scenario 2 the error of KF algorithm is consistently larger
than in scenario 1. Actually in MP-affected time intervals the error rises up to
40 m in East direction and 160 m in North direction. It should also be noted
that in scenario 2 the path is curved while in scenario 1 it has two sharp curves,
but beside this it is along straight roads where in general KF performs better
than along curved paths.
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Fig. 6.12 Positioning results for scenario 1

Fig. 6.13 Positioning results for scenario 1 - MP segment
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Fig. 6.14 Positioning error for scenario 1 in horizontal plane: (a) East direction, (b)
North direction

Fig. 6.15 Positioning results for scenario 2
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Fig. 6.16 Positioning error for scenario 2 in horizontal plane: (a) East direction, (b)
North direction
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Fig. 6.17 Positioning results for scenario 2 with one satellite excluded

6.5.4 Positioning with satellite exclusion

As discussed before, the test statistics τKF , which is used in some FD algorithms
to decide whether faulty conditions are present, is quite sensitive to MP events
that could therefore easily trigger FDE algorithms implemented in the receiver
(like in the case of some RAIM implementation). If this happens, the receiver
does not use the pseudorange relative to the less reliable satellite to derive the
PVT with the KF algorithm. While this strategy is implemented to get better
PVT results in faulty conditions, when the FDE algorithm is triggered by MP
the improvement in PVT determination can be missed as it is shown in Fig.
6.17, in which results of PVT determination using KF algorithms without any
satellite exclusion and with the exclusion of one satellite is reported together
with the PVT determination using the IFB algorithm and the true path. Results
are relative to scenario 2 and show that KF algorithm with and without satellite
exclusion provide almost the same outputs, which are less accurate than the
IFB algorithm.
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Fig. 6.18 Comparison on navigation solution in latitude and longitude for scenario 1
(MP in the time window 108 s to 126 s).

6.5.5 Carrier-smoothing and CS-fallback algorithm (CSFB)
performances

The two simulated data sets of scenarios 1 and 2 were used also to test the
performances of the CSFB algorithm. To this extent the length of the carrier
smoothing filter was heuristically chosen NHF = 40. Data were processed with
a different software receiver, written in C language [122] and implementing
carrier-smoothing. In order to perform the CSFB algorithm it is necessary
to chose the detection threshold TCS . Also this value has been heuristically
derived as TCS = 6.

In Fig. 6.18 navigation solutions are shown for scenario 1, using different
methods: the KF without smoothed pseudoranges, the KF with CSFB algorithm
and the KF with IFB algorithm.

In Fig. 6.19 similar results are shown for scenario 2, while in Fig. 6.20 the
horizontal positioning errors of the different algorithms are split into their East
and North components.

From these results it appears clearly that the CSFB algorithm has quite good
performances. Actually it takes advantage of the smoothed input pseudoranges



6.5 Performance analysis 179

Fig. 6.19 Comparison on navigation solution in latitude and longitude for scenario 2
(MP in the time window 108 s to 156 s).

and, on top of this, with the Fallback mechanism it mitigates the MP effects
on KF positioning algorithms.

6.5.6 Real data elaboration

The results relative to the real data set PVT determination are reported in Fig.
6.21. It is possible to observe the effect of the harsh environment in in which
the presence of obstacles can cause errors misfitting the internal model of the
KF. Such errors are propagated in time by the memory of the filter affecting
the overall goodness of PVT. The LS fallback algorithm, instead, provides a
reset for the KF whenever the test statistic τKF is over the threshold Tfb.

In Fig. 6.22 the test statistics τglobal for LS and τKF for KF are shown
for the real data sets together with the threshold TKF used by the CSFB
these that however appears only when the KF solution is used. Note that
this threshold varies in time since the number of available satellites is varying
according to the varying masking angle induced on the receiver antenna by the
urban environment.
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Fig. 6.20 Positioning error with carrier smoothing for scenario 2 in horizontal plane:
(a) East direction, (b) North direction
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Fig. 6.21 Application of the fallback algorithm to real data.
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Fig. 6.22 Test statistic trend for KF, LS.

6.6 Conclusion

In this chapter we presented two version of a new algorithm aiming at getting
MP-resiliant performances when using KF based algorithms for PVT determi-
nation. The algorithm mainly consists in switching from KF to LS whenever
the presence of MP is detected. The two versions of the algorithm differentiate
from each other in terms of the test that is used to identify the MP occurrence.
One test is performed using a function derived from the innovation which is
available when KF algorithms are used for PVT computation. This test is
formally similar to a test proposed for FD but its different purpose impacts on
the choice of threshold to be actually used. The second test is based on the CS
detection when using carrier smoothing in pseudorange evaluation.

The performance of the proposed algorithm has been tested and compared
with the performances of standard LS and KF algorithms. For these tests
two simulated data sets and a real data set have been used. Besides, the
performances of different indexes commonly used in FD algorithms have also
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been computed for the same set of data in order to verify their suitability to
identify the occurrence of MP.

The obtained results show that the proposed algorithm performs satisfacto-
rily allowing to combine advantages of KF algorithms, which perform better
in the absence of MP, with the advantages of LS, which performs better in
MP-affected time intervals.



Conclusions

In this thesis, we discussed about techniques to use against impairments in
order to detect it. These techniques use information coming from tracking loops
of the receiver. Then, an index to assess the quality of the received signals was
presented and used in multipath and spoofing scenarios. The quality index can
be used to exclude or to inflate the variance of the pseudorange measurements.

An application of the MP detection algorithm is, for instance, for the
reference stations to monitor the environmental changes around the GNSS
receiver. A possible situation for reference ground stations and information
about these changes are taken from [123]. We suppose a station with an antenna
mounted at a certain height from the ground, that is considered as a planar
surface. The surface layer around the antenna may change, for example, in case
of soil moisture. In fact the reflection coefficient of the soil changes if it is dry
or wet and it depends on the elevation angle of the incoming signal and also
depends on the polarization of the signal. GPS signal is transmitted with Right
Hand Circularly Polarized (RHCP), but the reflections from surfaces could
rotate and transform in Left Hand Circularly Polarized (LHCP) or contain
both polarizations. An alteration of the reflection coefficient due to rain or to
other climatic events may be an additional MP source, also in case the receiver
is apparently protected from it.

The last part is dedicated to algorithms devoted to mitigate the effect of
multipath by using an hybrid method composed by KF and LS solution. All of
these methods are validated by using simulated and real data.

Chapter 3 presented the multipath detector called MPDD. The detector is
implemented in a software receiver. Some qualitative comparisons are given
between the LAF theory used and the well known MEDLL technique presented
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in literature. Then, the structure of the detector is introduced, which is a
novel contribution. Then to increase the performance of the detector, in terms
of reduction of Pfa, the LS problem was modified and a new minimization
problem to solve was provided.

The feasibility of a MP detector based on signal processing techniques is
possible but its capabilities are limited by the presence of noise. It is important
to tune detector’s parameters (LAF length, dictionary entries, mathbfU matrix
containing the basis signals). Then, another problem to take into account is
the of the front-end. The algorithm, in particular the basis signal contained in
the mathbfU needs to be calibrated with the correlations shaped by the the
Front-end filter used. The algorithm increased the complexity of the receiver
architecture.

Chapter 4 focused on the use of the detector to create a quality index
called SQI, for each received signal. This index is composed by several kind
of measurements those take into account different conditions like the current
output of the MPDD, the C/N0, etc. Therefore, once we get this complete
index, we primarly use it to exclude SV but the problem to have worse GDOP
could bring a worst position solution due to the insertion of a geometrical error
bigger than the error introduced by the MP. Another possible approach is
to try inflate the pseudorange variances, by following a chosen model, for the
WLS solution and leave the decision of the exclusion to the RAIM with FDE
module.

In future another possible use of the SQI is a sort of environment detector.
In fact, by a further statistical characterization, it is possible to select different
values of pseudorange variances depending on the value of SQI. This could
be useful especially for the land environments. In addition to this, find a link
between SQI and the computation of PLs.

In Chapter 5 we presented the TJ algorithm, which is able to detect spoofing
attacks and mitigate its effects in a GNSS receiver. Furthermore, the algorithm
tries to guarantee the continuity and reliability of the system computing the
PVT solution by means of a KF using only Doppler measurements. This
technique, implemented in the tracking stage of the software receiver, requires
high computational load, so in the list of future work, one of the main focus is
the reduction of the computational load.The signal processing part, LASSO,
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Fig. 6.23 Distributions of the angles between vectors: the circle marker is the
empirical distribution from data collection and the continuous line is the exponential
distribution with λ = 2 that overbounds the data.

SQI should be applied to both branches In-Phase and In-Quadrature of the
receiver, in order to take into account possible attacks which use relative phase
between LOS and spoofer to take control of the receiver while not changing
delay or power of the real signal.

The advantages of using decomposition techniques like LAF or LASSO
permits to build different decision metric and, in future work, a comparison
with new metric will be performed. An example is in Fig. 6.23 where the new
metric could be decided by studying the experimental distribution of the angles
between the computed vector w and the wLOS vector and find a threshold.

Finally in Chapter 6 a simple method to compute the PVT si presented. The
method taking into account different test to perform a switch between the KF
and LS to reduce the efects of the impairments on the position solution. From
the results, this simple algorithms have good performance and the capability
to avoid the KF to drift away from the correct solution.

The possible improvement is to optimize the number NLSfb of epochs in
which the PVT is computed using LS before switching back to KF. This
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number has been set equal to 5 s. In general, if we have both KF and LS
solution test statistic at the same time, we could decide to extend NLSfb.

the techniques presented can work with real-time receiver due to the fact
that the computational load is sustainable for the current performance of the
processors present in the market.

Overall the algorithms presented in this thesis show an evolution from the
detection of multipath to the mitigation of its effect in the PVT domain. Some
of these techniques are then used to other impairments like spoofing.



References

[1] shift2rail, https://shift2rail.org.

[2] Pratap Misra and Per Enge. Global positioning system: Signals, mea-
surements and performance second edition, 2006.

[3] Elliott D Kaplan and Christopher J Hegarty. Understanding GPS: prin-
ciples and applications. Artech House: Norwood, MA, USA, 2005.

[4] Richard Easton. Who invented the global positioning system?, 2006.
online resource: http://www.thespacereview.com/article/626/1.

[5] J. Ventura-Traveset and European Space Agency. EGNOS: The European
Geostationary Navigation Overlay System : a Cornerstone of Galileo.
ESA SP. ESA Publications Division, 2006.

[6] Trilateration. Online resource: http://galleryhip.com/gps-satellite-png.
html.

[7] Jaume Sanz, J Juan, and M Hernández-Pajares. GNSS data processing,
vol. i: Fundamentals and algorithms. ESA Communications, 2013.

[8] ESA. Galileo Begins Servings the Globe. Available at http://www.esa.
int/Our_Activities/Navigation/Galileo_begins_serving_the_globe.

[9] U.S. Government. Official u.s. government information about the GPS
system. online resource: http://www.gps.gov/systems/gps/control/.

[10] Google opens up GNSS pseudoranges, 2016. Online resource: http:
//galileognss.eu/google-opens-up-gnss-pseudoranges/.

[11] Navipedia. GNSS signal, 2011. Online resource: http://www.navipedia.
net/index.php/GNSS_signal.

[12] K Borre, D.M Akos, N Bertelsen, P Rinder, and S.H. Jensen. A software-
defined gps and galileo receiver: a single frequency approach, 2007.

[13] Interface Specification. Navstar gps space segment/navigation user inter-
faces. Technical report, IS-GPS-200, Rev. D, December 7, 2004, available
athttp://www. navcen. uscg. gov/gps/geninfo/IS-GPS-200D. pdf, 2010.

http://www.thespacereview.com/article/626/1
http://galleryhip.com/gps-satellite-png.html
http://galleryhip.com/gps-satellite-png.html
http://www.esa.int/Our_Activities/Navigation/Galileo_begins_serving_the_globe
http://www.esa.int/Our_Activities/Navigation/Galileo_begins_serving_the_globe
http://www.gps.gov/systems/gps/control/
http://galileognss.eu/google-opens-up-gnss-pseudoranges/
http://galileognss.eu/google-opens-up-gnss-pseudoranges/
http://www.navipedia.net/index.php/GNSS_signal
http://www.navipedia.net/index.php/GNSS_signal


References 189

[14] D. V. Sarwate and M. B. Pursley. Crosscorrelation properties of pseudo-
random and related sequences. Proceedings of the IEEE, 68(5):593–619,
May 1980.

[15] GPS Joint Program Office (prepared by ARINC Research). Icd-gps-200
cgps interface control document, 1991.

[16] R. Gold. Optimal binary sequences for spread spectrum multiplexing
(corresp.). IEEE Transactions on Information Theory, 13(4):619–621,
October 1967.

[17] Galileo Open Service, Signal in Space Interface Control Document (OS-
SIS-ICD), 2016.

[18] S. Bancroft. An algebraic solution of the gps equations. IEEE Transac-
tions on Aerospace and Electronic Systems, AES-21(1):56–59, Jan 1985.

[19] Thomas Pany, B Riedl, J Winkel, T Wórz, R Schweikert, H Niedermeier,
S Lagrasta, G López-Risueño, and D Jiménez-Baños. Coherent integration
time: the longer, the better. Inside GNSS, 4(6):52–61, 2009.

[20] Mohamed Sahmoudi and René Landry Jr. Multipath mitigation tech-
niques using maximum-likelihood principle. Inside GNSS, 3(8):24–29,
2008.

[21] Navipedia. Multipath, 2011. Online resource: http://www.navipedia.net.

[22] A. J. Van Dierendonck, P. Fenton, and T. Ford. Theory and performance
of narrow correlator spacing in a gps receiver. In Proceedings of the 1992
National Technical Meeting of The Institute of Navigation, pages 115–124,
San Diego, CA, January 1992.

[23] R. D. J. van Nee. The multipath estimating delay lock loop. In IEEE
Second International Symposium on Spread Spectrum Techniques and
Applications, pages 39–42, Nov 1992.

[24] R. D. J. van Nee, J. Siereveld, P. C. Fenton, and B. R. Townsend. The
multipath estimating delay lock loop: approaching theoretical accuracy
limits. In Position Location and Navigation Symposium, 1994., IEEE,
pages 246–251, Apr 1994.

[25] M. Irsigler. Multipath Propagation, Mitigation and Monitoring in the
Light of Galileo and the Modernized GPS. 2008.

[26] Lawrence R Weill. Multipath mitigation using modernized gps signals:
how good can it get? In ION GPS 2002: 15 th International Technical
Meeting of the Satellite Division of The Institute of Navigation, 2002.

[27] M Fantino, A Molino, and M Nicola. N-gene gnss receiver: Benefits of
software radio in navigation. In Proceedings of the European Navigation
Conference-Global, 2009.

http://www.navipedia.net


190 References

[28] L. Lo Presti, E. Falletti, M. Nicola, and M. T. Gamba. Software de-
fined radio technology for GNSS receivers. In 2014 IEEE Metrology for
Aerospace (MetroAeroSpace), pages 314–319, May 2014.

[29] M. T. Gamba, M. Nicola, and E. Falletti. Performance assessment of an
arm-based dual-constellation gnss software receiver. In 2015 International
Conference on Location and GNSS (ICL-GNSS), pages 1–6, June 2015.

[30] Karl Kovach. Continuity- the hardest gnss requirement of all. In ION
GPS-98, pages 2003–2020, 1998.

[31] Washington Y Ochieng, Knut Sauer, David Walsh, Gary Brodin, Steve
Griffin, and Mark Denney. Gps integrity and potential impact on aviation
safety. The journal of navigation, 56(01):51–65, 2003.

[32] Navipedia. Integrity. Online resource: http://www.navipedia.net/index.
php/Integrity.

[33] Waas precision approach metrics: Accuracy, integrity, continuity and
availability. Online resource: http://waas.stanford.edu/metrics.html.

[34] B. W. Parkinson and J. J. Spilker. Chapter 5: Receiver Autonomous
Integrity Monitoring Global Positioning System: Theory and Applications.
American Institute of Aeronautics and Astronautics, USA, 1996.

[35] Dr Young Lee and C. Lee. Analysis of range and position comparison
methods as a means to provide GPS integrity in the user receiver. In In
Proceedings of the Annual Meeting of the Institute of Navigation (ION),
Seattle, WA, june 24-26, pages 1–4, 1986.

[36] BRADFORD W. PARKINSON and PENINA AXELRAD. Autonomous
GPS integrity monitoring using the pseudorange residual. NAVIGATION,
35(2):255–274, 1988. [CrossRef].

[37] MARK A. STURZA. Navigation system integrity monitoring using re-
dundant measurements. NAVIGATION, 35(4):483–501, 1988. [CrossRef].

[38] R. Grover Brown. A baseline GPS RAIM scheme and note on the
equivalence of three RAIM methods. NAVIGATION, 39(3):301–316,
1992. [CrossRef].

[39] GROVER BROWN and PATRICK Y. C. HWANG. Gps failure detection
by autonomous means within the cockpit. Navigation, 33(4):335–353,
1986.

[40] R Grover Brown and Paul McBurney. Self-contained gps integrity check
using maximum solution separation. Navigation, 35(1):41–53, 1988.

[41] Alison K Brown. Receiver autonomous integrity monitoring using a 24-
satellite gps constellation. In Institute of Navigation, Technical Meeting,
pages 256–262, 1987.

http://www.navipedia.net/index.php/Integrity
http://www.navipedia.net/index.php/Integrity
http://waas.stanford.edu/metrics.html
http://dx.doi.org/10.1002/j.2161-4296.1988.tb00955.x
http://dx.doi.org/10.1002/j.2161-4296.1988.tb00975.x
http://dx.doi.org/10.1002/j.2161-4296.1992.tb02278.x


References 191

[42] Juan Blanch, Alex Ene, Todd Walter, and Per Enge. An optimized
multiple hypothesis raim algorithm for vertical guidance. In in Proceedings
of the ION GNSS 2007, Fort. Citeseer, 2007.

[43] S. Haykin. Adaptive filter theory. Prentice-Hall: Upper Saddle River, NJ,
USA, 1986.

[44] Mattia Berardo and Letizia Lo Presti. GNSS multipath detector based
on linear adaptive filter. In In Proceedings of the 28th International
Technical Meeting of The Satellite Division of the Institute of Navigation
(ION GNSS+ 2015), Tampa, Florida, pages 3077–3083, 2015.

[45] M. Berardo and S. Ugazio. Multipath distance detector algorithm
(MPDD): Enhancement and application to galileo signals. In 2016 IEEE
Metrology for Aerospace (MetroAeroSpace), pages 579–584, June 2016.

[46] S. Ugazio, L. Lo Presti, and E. Falletti. Multipath mitigation using linear
adaptive filtering techniques. In In Proceedings of 26th International
Technical Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS), Nashville, TN, USA, 16-20 Sep, 2013.

[47] Xin Chen, F. Dovis, Senlin Peng, and Y. Morton. Comparative studies
of GPS multipath mitigation methods performance. Aerospace and
Electronic Systems, IEEE Transactions on, 49(3):1555–1568, July 2013.
[CrossRef].

[48] S. Ugazio and L. Lo Presti. Effects of colored noise in linear adaptive
filters applied to GNSS multipath detection. In In Proceedings of Design
and Architectures for Signal and Image Processing (DASIP), Cagliari,
Italy, 8-10 October, pages 126–133, Oct 2013.

[49] S. Ugazio and L. Lo Presti. Effects of noise correlation on least squares
filtering in multipath detection for GNSS. In In Proceedings of the 21st
European Signal Processing Conference (EUSIPCO), Marrakech, Morocco,
9-13 Sept., pages 1–5, Sept 2013.

[50] Amandeep Singh Sappal Garima Malik. Adaptive equalization algorithms:
An overview. IJACSA, 2(3):62–67, 2011. [CrossRef].

[51] Monson H. Hayes. Adaptive Filtering (chapter 9). In Statistical Digital
Signal Processing and Modeling. John Wiley & Sons, Inc., New York,
NY, USA, 1st edition, 1996.

[52] E. Falletti, D. Margaria, and B. Motella. Educational library of GNSS
signals for navigation. Coordinates, pages 30–34, August 2009.

[53] M. Irsigler, J. A. Avila-Rodriguez, and G. Hein. Criteria for GNSS multi-
path performance assessment. In Proceedings of the 18th International
Technical Meeting of the Satellite Division of The Institute of Navigation
(ION GNSS 2005), Long Beach, CA, pages 2166–2177, Sept 2005.

http://dx.doi.org/10.1109/TAES.2013.6558004
http://dx.doi.org/10.14569/IJACSA.2011.020311


192 References

[54] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press: New York, USA, 2004.

[55] Katherine L. Monti. Folded empirical distribution function curves-
mountain plots. The American Statistician, 49(4):342–345, 1995.

[56] James E Gentle. Computational statistics, 2009.

[57] Sergio Benedetto and Ezio Biglieri. Principles of Digital Transmission:
With Wireless Applications. Kluwer Academic Publishers, Norwell, MA,
USA, 1999.

[58] Mattia Berardo and Letizia Lo Presti. On the use of a signal quality
index applying at tracking stage level to assist the raim system of a gnss
receiver. Sensors, 16(7):1029, 2016.

[59] B.W. Parkinson and J.J. Spilker. Progress in Astronautics and Aero-
nautics: Global Positioning System: Theory and Applications, volume 2.
American Institute of Aeronautics & Astronautics, Washington DC, USA,
1996.

[60] R. GROVER BROWN and PAUL W. McBURNEY. Self-contained GPS
integrity check using maximum solution separation. NAVIGATION,
35(1):41–53, 1988. [CrossRef].

[61] N. A. Tmazirte, M. E. E. Najjar, J. A. Hage, C. Smaili, and D. Pomorski.
Fast multi fault detection exclusion approach for gnss integrity monitoring.
In In Proceedings of 17th International Conference on Information Fusion
(FUSION), Salamanca, Spain, 7-10 July, pages 1–6, July 2014.

[62] Frank M Schubert, Jan Wendel, Francis Soualle, Michael Mink, Sébastien
Carcanague, Rigas Ioannides, Paolo Crosta, and Massimo Crisci. Integrity
of navigation for land users: Study concept and simulator architecture. In
In Proceedings of 7th ESA Workshop on Satellite Navigation Technologies,
Navitec 2014, At Noordwijk, The Netherlands, 3-5 December, 2014.

[63] R Eric Phelts, Todd Walter, and Per Enge. Toward real-time SQM for
WAAS: improved detection techniques. In In Proceedings of the 16th
International Technical Meeting of the Satellite Division of the Institute
of Navigation (ION GNSS+ 2003), Portland, OR, USA, 23 September,
pages 2739–2749, 2003.

[64] Robert Eric Phelts. Multicorrelator techniques for robust mitigation of
threats to GPS signal quality. PhD thesis, Stanford University, 2001.

[65] M. Rao and G. Falco. How can pseudorange measurements be generated
from code tracking? Inside GNSS magazine, 7(1):26–33, 01/2012 2012.
[CrossRef].

http://dx.doi.org/10.1002/j.2161-4296.1988.tb00939.x
http://www.insidegnss.com/node/2898


References 193

[66] M. Pini, G. Falco, and L.L. Presti. Estimation of Satellite-User Ranges
Through GNSS Code Phase Measurements (chapter 5). In Global Navi-
gation Satellite Systems: Signal, Theory and Applications; Shuanggen
Jin. INTECH Open Access Publisher, Rijeka, Croatia, 2012.

[67] Nguyen Dinh Thuan, Ta Hai Tung, and Lo Presti Letizia. A software based
multi-if output simulator. In In Proceedings of International Symposium
of GNSS (IS-GNSS), Kyoto, Japan, 16-19 November, 2015.

[68] Emanuela Falletti, Marco Pini, and Letizia Lo Presti. Are carrier-to-noise
algorithms equivalent in all situations? INSIDE GNSS, pages 20–27,
2010. [CrossRef].

[69] Kai Borre. GPS easy suite II, easy13 raim. Inside GNSS, 4:48–51, 2009.
[CrossRef].

[70] Heidi Kuusniemi and Timo Jokitalo. Indoor and Weak Signal Navigation
(chapter 12). In GNSS: Applications and Methods, 1st ed.; S. Gleason
and D. Gebre-Egziabher (Eds.). Artech House: Norwood, MA, USA,
2009.

[71] Heidi Kuusniemi. User-level reliability and quality monitoring in satellite-
based personal navigation. PhD thesis, 2005.

[72] Variances of GPS phase observations: The sigma-ϵ model. GPS Solutions,
2(4), 1999. [CrossRef].

[73] Burkhard Schaffrin. Reliability measures for correlated observations.
Journal of Surveying Engineering, 123(3):126–137, 1997. [CrossRef].

[74] D. Margaria and E. Falletti. A novel local integrity concept for gnss
receivers in urban vehicular contexts. In In Proceedings of the IEEE/ION
Position, Location and Navigation Symposium, Monterey, CA, USA, 5–8
May, pages 413–425, May 2014.

[75] D. Margaria and E. Falletti. Proof-of-concept of the local integrity
approach: Prototype implementation and performance assessment in an
urban context. In In Proceedings of 2015 International Conference on
Location and GNSS (ICL-GNSS), Gothenburg, Sweden, pages 1–6, June
22-24 June 2015.

[76] Jason H. Rife. The effect of uncertain covariance on a chi-square integrity
monitor. NAVIGATION, 60(4). [CrossRef].

[77] D. A. Sanou and R. Jr. Landry. Analysis of GNSS interference impact
on society and evaluation of spectrum protection strategies. Positioning,
4(2):169–182, 2013.

[78] F. Dovis, editor. GNSS Interference Threats and Countermeasures. GNSS
Technology and Applications. Artech House, Norwood, MA, 2015.

http://www.insidegnss.com/node/1826
http://www.insidegnss.com/node/1610
http://dx.doi.org/10.1007/PL00012765
http://dx.doi.org/10.1061/(ASCE)0733-9453(1997)123:3(126)
http://dx.doi.org/10.1002/navi.45


194 References

[79] Ali Jafarnia-Jahromi, Ali Broumandan, John Nielsen, and Gérard
Lachapelle. GPS vulnerability to spoofing threats and a review of anti-
spoofing techniques. International Journal of Navigation and Observation,
2012, June 2012.

[80] Mark L Psiaki and Todd E Humphreys. GNSS spoofing and detection,
2016.

[81] M. Pini, B. Motella, L. Pilos, L. Vesterlund, D. Blanco, F. Lindstrom,
and C. Maltoni. Robust on-board ship equipment: the TRITON project.
In Proceedings of the 10th International Symposium Information on Ships,
Hamburg, Germany, September 2014.

[82] UT Austin Researchers Successfully Spoof an $80 million Yacht at Sea,
2013. Available on line.

[83] T. E. Humphreys, B. A. Ledvina, M. L. Psiaki, B. W. O’Hanlon, and Jr.
P. M. Kitner. Assessing the spoofing threat. GPS World, 20(1):28–38,
January 2009.

[84] T. E. Humphreys, J. A. Bhatti, D. P. Shepard, and K. D. Wesson. The
Texas Spoofing Test Battery: Toward a Standard for Evaluating GPS
Signal Authentication Techniques. In Proc. of the 25th Int. Tech. Meeting
of The Satellite Division of the Institute of Navigation (ION GNSS 2012),
Nashville, TN, September 2012.

[85] D. M. Akos. Who’s Afraid of the Spoofer? GPS/GNSS Spoofing Detection
via Automatic Gain Control (AGC). Journal of the Institute of Navigation,
59(4), Winter 2012.

[86] P. Y. Montgomery and T. E. Humphreys and B. M. Ledvina. Receiver-
autonomous spoofing detection: experimental results of a multi-antenna
receiver defense against a portable civil GPS spoofer. In Institute of
Navigation Int. Tech. Meeting (ITM 2009), Anaheim, CA, January 2009.

[87] P. Y. Montgomery, T. E. Humphreys, and B. M. Ledvina. A multi-
antenna defense: Receiver-autonomous GPS spoofing detection. Inside
GNSS, 4(2):40–46, April 2009.

[88] A. Broumandan S. Daneshmand, A. Jafarnia-Jahromi and G. Lachapelle.
A low complexity GNSS spoofing mitigation technique using a double
antenna array. GPSWorldMagazine, 22(12):44 – 46, 2011.

[89] N.A. White, P.S. Maybeck, and S.L. DeVilbiss. Detection of interfer-
ence/jamming and spoofing in a DGPS-aided inertial system. Aerospace
and Electronic Systems, IEEE Transactions on, 34(4):1208–1217, Oct
1998.



References 195

[90] Peter F. Swaszek, Scott A. Pratz, Benjamin N. Arocho, Kelly C. Seals,
and Richard J. Hartnett. GNSS spoof detection using shipboard imu
measurements. Proceedings of the 27th International Technical Meeting
of The Satellite Division of the Institute of Navigation (ION GNSS+),
Tampa, Florida, pages 745–758, sep 2014.

[91] P. Papadimitratos and A. Jovanovic. GNSS-based positioning: Attacks
and countermeasures. In Military Communications Conference, 2008.
MILCOM 2008. IEEE, pages 1–7, Nov 2008.

[92] L. Heng, D. B. Work, and G.X. Gao. Cooperative GNSS Authentication.
Reliability from Unreliable Peers. Inside GNSS, 8(5):70–75, Septem-
ber/October 2013.

[93] H. V. de Castro, G. van der Maarel, and E. Safipour. The Possibility and
Added-value of Authentication in future Galileo Open Signal. In 23rd
Int. Tech. Meeting of the Satellite Division of The Institute of Navigation,
Portland, OR, September 2010.

[94] Cheng Xi-jun, Xu Jiang-ning, Cao Ke-jin, and Wang Jie. An authenticity
verification scheme based on hidden messages for current civilian GPS
signals. In Computer Sciences and Convergence Information Technology,
2009. ICCIT ’09. Fourth International Conference on, pages 345–352,
Nov 2009.

[95] A. Jafarnia-Jahromi, A. Broumandan, J. Nielsen, and G. Lachapelle. GPS
spoofer countermeasure effectiveness based on signal strength, noise power
and C/N0 observables. International Journal of Satellite Communications
and Networking, 30(4):181–191, 2012.

[96] F. Dovis, X. Chen, A. Cavaleri, and K. Ali. Detection of spoofing threats
by means of signal parameters estimation. In Proc. of the 24th Int. Tech.
Meeting of The Satellite Division of the Institute of Navigation (ION
GNSS 2011), Portland, OR, September 2011.

[97] K. Ali, E. Garbin Manfredini, and F. Dovis. Vestigial signal defense
through signal quality monitoring techniques based on joint use of two
metrics. In presented at the Position Location and Navigation Symposium
2014 (PLANS), Monterey, CA, May 2014.

[98] E. Garbin Manfredini, F. Dovis, and B. Motella. Signal quality monitor-
ing for discrimination between spoofing and environmental effects, based
on multidimensional ratio metric tests. In Proceedings of the 2015 Inter-
national Technical Meeting of The Institute of Navigation ION GNSS+
2015, Tampa, FL (USA), September 2015. Institute of Navigation.

[99] T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W. O’Hanlon, and
Kintner Jr. Assessing the spoofing threat: development of a portable gps
civilian spoofer. In Proc. of the 21st Int. Tech. Meeting of the Satellite



196 References

Division of The Institute of Navigation (ION GNSS 2008), Savannah,GA,
September 2008.

[100] Robert Tibshirani. Regression shrinkage and selection via the lasso. Jour-
nal of the Royal Statistical Society. Series B (Methodological), 58(1):267–
288, 1996.

[101] K. D. Wesson, B. L. Evans, and T. E. Humphreys. A combined symmet-
ric difference and power monitoring GNSS anti-spoofing technique. In
Proceeding of the 1st IEEE Global Conference on Signal and Information
Processing, Austin, TX, December 2013.

[102] Thomas Blumensath and Mike E Davies. Iterative thresholding for
sparse approximations. Journal of Fourier Analysis and Applications,
14(5-6):629–654, 2008.

[103] Carlos Ramirez, Vladik Kreinovich, and Miguel Argaez. Why ℓ0 is a good
approximation to ℓ0: A geometric explanation. Journal of Uncertain
Systems, 7(3):203–207, 2013.

[104] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements
of statistical learning: data mining, inference and prediction. Springer, 2
edition, 2009.

[105] C. Soussen, J. Idier, Junbo Duan, and D. Brie. Homotopy based algo-
rithms for ℓ0 -regularized least-squares. Signal Processing, IEEE Trans-
actions on, 63(13):3301–3316, July 2015.

[106] Robert Grover Brown and Patrick YC Hwang. Introduction to random sig-
nals and applied Kalman filtering: with MATLAB exercises and solutions,
volume 1. John Wiley and Sons, third edition, 1997.

[107] N.I. Ziedan. GNSS Receivers for Weak Signals. Artech House Space
Technology and Applications. Artech House, 2006.

[108] Khurram Ali, Xin Chen, Fabio Dovis, David De Castro, and Antonio J.
Fernández. Multipath estimation in urban environments from joint gnss
receivers and lidar sensors. Sensors, 12(11):14592–14603, 2012.

[109] D. M. Franco-Patiño, G. Seco-Granados, and F. Dovis. Signal quality
checks for multipath detection in GNSS. In 2013 International Conference
on Localization and GNSS (ICL-GNSS), pages 1–6, June 2013.

[110] Z. Shengkang, W. Hongbo, Y. Jun, and H. Leiming. GPS short-delay mul-
tipath estimation and mitigation based on least square method. Journal
of Systems Engineering and Electronics, 20(5):954–961, Oct 2009.

[111] Ralf Ziebold, Luis Lanca, and Michailas Romanovas. On fault detec-
tion and exclusion in snapshot and recursive positioning algorithms for
maritime applications. European Transport Research Review, 9(1):1, 2016.



References 197

[112] Emanuela Falletti, Marco Rao, and Simone Savasta. The Kalman Filter
and Its Applications in GNSS and INS, pages 709–751. John Wiley and
Sons, Inc., 2011.

[113] X. Tang, G. Falco, E. Falletti, and L. Lo Presti. Practical implementation
and performance assessment of an extended kalman filter-based signal
tracking loop. In 2013 International Conference on Localization and
GNSS (ICL-GNSS), pages 1–6, June 2013.

[114] M. Linderoth, K. Soltesz, A. Robertsson, and R. Johansson. Initialization
of the kalman filter without assumptions on the initial state. In 2011 IEEE
International Conference on Robotics and Automation, pages 4992–4997,
May 2011.

[115] G. Falco, M. Nicola, and E. Falletti. Constellation-aware method for
computing the covariance matrix of gnss measurements. In 2016 European
Navigation Conference (ENC), pages 1–8, May 2016.

[116] Heidi Kuusniemi. User-Level Reliability and Quality Monitoring in
Satellite-Based Personal Navigation. Tampere University of Technol-
ogy, 2005.

[117] Andreas Wieser, Mark G Petovello, and Gérard Lachapelle. Failure
scenarios to be considered with kinematic high precision relative GNSS
positioning. In Proceedings ION GNSS, page 6. Citeseer, 2004.

[118] Guochange Xu. GPS: Theory, Algorithms and Applications. Springer,
2007.

[119] Andreas Lehner and Alexander Steingass. A novel channel model for
land mobile satellite navigation. In Institute of Navigation Conference
ION GNSS, pages 13–16, 2005.

[120] ITU. Propagation data required for the design of earth-space land mobile
telecommunication systems, 2009.

[121] D. Salós, A. Martineau, C. Macabiau, B. Bonhoure, and D. Kubrak.
Receiver autonomous integrity monitoring of gnss signals for electronic
toll collection. IEEE Transactions on Intelligent Transportation Systems,
15(1):94–103, Feb 2014.

[122] E. Falletti, D. Margaria, M. Nicola, G. Povero, and M. T. Gamba. N-fuels
and soprano: Educational tools for simulation, analysis and processing
of satellite navigation signals. In 2013 IEEE Frontiers in Education
Conference (FIE), pages 303–308, Oct 2013.

[123] JOHN J. BRAUN KRISTINE M. LARSON, ERIC E. SMALL and
VALERY U. ZAVOROTNY. Environmental sensing: a revolutionary in
GNSS applications. Inside GNSS, July 2014.


	Contents
	List of Figures
	List of Tables
	List of Acronym
	Introduction
	1 Overview on GNSS systems
	1.1 History of Global Navigation Satellite Systems
	1.1.1 Trilateration in GNSS

	1.2 System architecture
	1.2.1 Space segment
	1.2.2 Control segment
	1.2.3 User segment

	1.3 GNSS Signals
	1.3.1 GPS Signal structure
	1.3.2 Galileo Signal structure

	1.4 Position, velocity and time
	1.4.1 Carrier-Phase Measurement

	1.5 Error budget
	1.5.1 Multipath
	1.5.2 Interference

	1.6 Receiver Architecture
	1.6.1 Acquisition stage
	1.6.2 Tracking stage

	1.7 Narrow correlation
	1.8 Multipath Estimating Delay Lock Loop
	1.9 Software receiver

	2 Integrity
	2.1 Trustworthy measurements
	2.1.1 Confidence interval
	2.1.2 Integrity risk and Protection Level

	2.2 RAIM algorithms
	2.2.1 Range comparison
	2.2.2 Least-squares residuals
	2.2.3 Parity method
	2.2.4 Solution Separation

	2.3 Augmentation systems

	3 Multipath Distance Detector Algorithm
	3.1 Linear Adaptive Filter model
	3.1.1 Data windowing
	3.1.2 Normal equations and principle of orthogonality
	3.1.3 Re-formulation of normal equations

	3.2 LAF for multipath detection
	3.3 Multipath Distance Detector algorithm
	3.3.1 LAF component block
	3.3.2 Decision metric
	3.3.3 Cross-correlation moving average
	3.3.4 Peak Alignment problem
	3.3.5 Simulation results
	3.3.6 Multipath characteristics
	3.3.7 Multipath profiles
	3.3.8 Detection and error probability

	3.4 Constrained Least Squares
	3.5 Results
	3.5.1 LS and CLS comparison

	3.6 Statistical plots for the coefficients: Q-Q plot and mountain plot
	3.6.1 Analogy with Transmission Theory

	3.7 Conclusion

	4 Signal Quality Index
	4.1 DLL
	4.2 Pseudorange Calculation in a GNSS Receiver
	4.2.1 How the GNSS Receiver Implements the pseudorange Computation
	4.2.2 Simulation Experiments
	4.2.3 Preliminary Results

	4.3 SQI
	4.4 RAIM
	4.4.1 Global and Local Test
	4.4.2 Covariance Matrix Uncertainty

	4.5 SQI and RAIM interaction
	4.5.1 Simulation Results without Using GDOP information
	4.5.2 GDOP Control

	4.6 Conclusions

	5 The use of the SQI in a different scenario: the Anti-spoofing case
	5.1 The Time Jumper principle
	5.2 Detection problem
	5.2.1 From Linear adaptive filter to LASSO
	5.2.2 The use of SQI
	5.2.3 Exclusion rule

	5.3 Kalman Filter
	5.3.1 Case Lg
	5.3.2 Case Lg

	5.4 Delay Estimation and Jump
	5.4.1 Delay Estimation method
	5.4.2 Pre-Jump Checks
	5.4.3 Post-Jump Checks

	5.5 Results
	5.6 Conclusions

	6 Hybrid method for multipath-resiliant PVT determination using Kalman filter based algorithms
	6.1 Introduction
	6.1.1 Kalman Filter

	6.2 Quality of PVT determination
	6.2.1 Global Test
	6.2.2 Kalman filter FD test

	6.3 Least Square Fallback algorithms
	6.3.1 Innovation-based Fallback algorithm (IFB)
	6.3.2 Cycle-slip-based fallback algorithm (CSFB)

	6.4 Input data sets
	6.4.1 Scenario 1
	6.4.2 Scenario 2
	6.4.3 Real data set

	6.5 Performance analysis
	6.5.1 Fault detection and related indicators
	6.5.2 Derivation of the threshold Tfb for the Innovation-based Fallback (IFB) algorithm
	6.5.3 Positioning performances of the algorithms
	6.5.4 Positioning with satellite exclusion
	6.5.5 Carrier-smoothing and CS-fallback algorithm (CSFB) performances
	6.5.6 Real data elaboration

	6.6 Conclusion

	Conclusions
	References

