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Abstract 

This paper presents Best Theory Diagrams (BTDs) for plates considering all the 

displacement and stress components as objectives. The BTD is a diagram in which 

the minimum number of terms that have to be used to achieve the desired accuracy 

can be read. Maclaurin, zig-zag, trigonometric and exponential expansions are 

employed for the static analysis of cross-ply composite plates. The Equivalent 

Single Layer (ESL) approach is considered, and the Unified Formulation 

developed by Carrera is used. The governing equations are derived from the 

Principle of Virtual Displacement (PVD), and Navier-type closed form solutions 

are adopted. BTDs are obtained using the Axiomatic/Asymptotic Method (AAM) 

and genetic algorithms (GA). The results show that the BTD can be used as a tool 

to assess the accuracy and computational efficiency of any structural models and 

to draw guidelines to develop structural models. The inclusion of the 

multiobjective capability extends the BTD validity to the recognition of the role 

played by each output parameter in the refinement of a structural model. 

Keywords: Plates; Carrera Unified Formulation (CUF); Zig-Zag; Trigonometric; 

Exponential; Best Theory Diagram; Composite Structures. 

1. Introduction 

Composite laminated plates are increasingly common in many engineering applications, 

such as aerospace, mechanical, marine and civil structures.  In fact, composite plates have 

many favorable mechanical properties, e.g. high stiffness, and low density. The high 

demand for the use of composite material structures calls for research of efficient and 

accurate numerical techniques to predict the structural and dynamical behavior of 

laminated composites. 

Classical plate theories (CPT) neglect transverse shear and normal stresses [1, 2]. 

An extension of this model to multi-layered structures is referred to as the Classical 

Lamination Theory (CLT) [3, 4]. Due to the increasing use of thick laminated plates in 

structures, Reissner and Mindlin [5, 6] included transverse shear effects in their well-
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known First-Order Shear Deformation Theory (FSDT). Although the FSDT is simple to 

implement and apply for both thick and thin laminated plates, the accuracy strongly 

depends on shear correction factors and the nonexistence of complicated stress gradients 

[7]. The limitations of the FSDT weaken or disappear with Higher-order Shear 

Deformation Theories (HSDT). The HSDTs assume quadratic, cubic, higher variations 

or non-polynomial terms to improve the displacement field along the thickness direction 

[8-14]. Further enhancements are useful if local effects are important or accuracy in the 

calculation of the transverse stresses is required. The zig-zag models [15, 16] and mixed 

variational tools [17] can deal with these phenomena. 

Plate modeling has two main approaches, the Equivalent Single Layer (ESL) and 

the Layer-Wise (LW) models [18-22]. Theories based on the ESL assumption offer 

reduced computational complexity; however, they struggle to model the zig-zag effects 

typical of laminates. LW theories have quasi-three-dimensional predictive capabilities; 

however, the computational effort can increase significantly. 

The present paper makes use of ESL models and includes non-polynomial terms 

to Maclaurin expansions. Different non-polynomial kinematics models have been 

proposed in the literature. Shimpi and Ghugal [12] proposed a LW trigonometric shear 

deformation theory for the analysis of composite beams. Arya et al. [13] developed a zig-

zag model using a sine term to represent the non-linear displacement field across the 

thickness in symmetrically laminated beams. Mantari and co-workers have recently 

proposed various extensions to non-polynomial plate models, including ESL and LW 

trigonometric models [23, 24], HSDTs based on Trigonometric-Exponential terms [25, 

26], hybrid Maclaurin-trigonometric models [27, 28], a generalized hybrid formulation 

for the study of functionally graded sandwich beams [29, 30]. Nguyen et al. [31] 

developed a unified framework on HSDTs for laminated composite plates. The Carrera 
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Unified Formulation (CUF) has been recently employed to develop non-polynomial 

structural models [32-37]. 

The refined models employed in this paper are based on the CUF. According to 

CUF, the governing equations are given via the so-called fundamental nuclei whose form 

does not depend on either the expansion order nor on the choices made for the base 

functions to generate any structural model [38-40]. In the CUF framework, Carrera and 

Petrolo [41, 42] introduced the Axiomatic/Asymptotic Method (AAM) to develop 

reduced models whose accuracies are equivalent to those of full higher-order models. The 

AAM has been applied to several problems, including: static and free vibration of beams 

[41, 43], metallic and composite plates [42, 44], shells [45, 46], LW models [47, 48], 

advanced models based on the Reissner Mixed Variational Theorem [49], piezoelectric 

plates [50], and thermomechanical problems [51]. 

The AAM has led to the BTD [52]. The BTD allows one to determine the 

minimum number of expansion terms - i.e. unknown variables - required to meet a given 

accuracy; or, conversely, the best accuracy provided by a given amount of variables. To 

construct BTDs with a lower computational cost, a genetic algorithm was employed by 

Carrera and Miglioretti [53]. In particular, BTDs were built by minimizing the number of 

the expansion terms and the error on an output parameter, such as a displacement or stress 

component. Petrolo et al. [54] presented BTDs for ESL and LW composite plate models 

based on Maclaurin and Legendre polynomial expansions of the unknown variables along 

the thickness. Recently, Carrera et al. have recently extended the BTD to multifield 

problems [55].  

The present work presents a method to develop BTDs considering multiple 

objectives simultaneously; in particular, the three displacement components and the six 

stress ones. The BTDs are therefore the Pareto fronts of the optimization of the 
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expansions to minimize the error on each displacement and stress component. A 

Maclaurin expansion with zig-zag terms and a hybrid Maclaurin, zig-zag, trigonometric 

and exponential expansion are considered. The non-polynomial terms in the latter are 

selected according to Filippi et al. [36].  

The present paper is organized as follows: a description of the adopted 

formulation is provided in Section 2; the governing equations and closed-form solution 

is presented in Section 3; the AAM is presented in Section 4; the BTD for multiple output 

parameters is introduced in Section 5; the results are presented in Section 6, and the 

conclusions are drawn in Section 7. 

2. Carrera Unified Formulation for Plates  

The geometry and the coordinate system of the multilayered plate are shown in Fig. 1, 

where x and y are the in-plane coordinates while z is the thickness coordinate. The integer 

k denotes the layer number. In the framework of the CUF, the displacement components 

of a plate model is 

 𝒖(𝑥, 𝑦, 𝑧) = 𝐹𝜏(𝑧) ∙ 𝒖𝜏(𝑥, 𝑦)          𝜏 = 1, 2, … . , 𝑁 + 1 (1) 

where 𝒖 is the displacement vector (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧). 𝐹𝜏 are the expansion functions. 𝒖𝜏 

(𝑢𝑥𝜏
, 𝑢𝑦𝜏

, 𝑢𝑧𝜏
) is the vector of the displacements variables. In the ESL case, 𝐹𝜏 functions 

can be Maclaurin functions of 𝑧 defined as 𝐹𝜏 = 𝑧𝜏−1. The ESL models are referred to as 

EDN, where N is the expansion order. An example of an ED4 displacement field is 

 𝑢𝑥 = 𝑢𝑥1
+ 𝑧 𝑢𝑥2

+ 𝑧2𝑢𝑥3
+ 𝑧3𝑢𝑥4

+ 𝑧4𝑢𝑥5
  

 𝑢𝑦 = 𝑢𝑦1
+ 𝑧 𝑢𝑦2

+ 𝑧2𝑢𝑦3
+ 𝑧3𝑢𝑦4

+ 𝑧4𝑢𝑦5
  

 𝑢𝑧 = 𝑢𝑧1
+ 𝑧 𝑢𝑧2

+ 𝑧2𝑢𝑧3
+ 𝑧3𝑢𝑧4

+ 𝑧4𝑢𝑧5
 (2) 
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The ESL models considering the zig-zag functions are indicated as EDZN. The 

components of an EDZ4 plate model are: 

  𝑢𝑥 = 𝑢𝑥1
+ 𝑧 𝑢𝑥2

+ 𝑧2𝑢𝑥3
+ 𝑧3𝑢𝑥4

+ 𝑧4𝑢𝑥5
+ (−1)𝑘𝜁𝑘𝑢𝑥6

  

 𝑢𝑦 = 𝑢𝑦1
+ 𝑧 𝑢𝑦2

+ 𝑧2𝑢𝑦3
+ 𝑧3𝑢𝑦4

+ 𝑧4𝑢𝑦5
+ (−1)𝑘𝜁𝑘𝑢𝑦6

  

 𝑢𝑧 = 𝑢𝑧1
+ 𝑧 𝑢𝑧2

+ 𝑧2𝑢𝑧3
+ 𝑧3𝑢𝑧4

+ 𝑧4𝑢𝑧5
+ (−1)𝑘𝜁𝑘𝑢𝑧6

 (3) 

The present paper investigates the influence of trigonometric, exponential and zig-zag 

terms in ESL models. Two different plate theories are compared, the EDZ4 model 

presented in Eq. (3) and the EDZ17 model reported in Table 1. The displacement field of 

EDZ17 consists of 54 unknown variables, which include 15 Maclaurin terms,  three zig-

zag terms - the EDZ4 terms -, 24 trigonometric terms and 12 exponential terms.  For 

instance, the full expression of the displacement along x is 

𝑢𝑥 = 𝑢𝑥1
+ 𝑧 𝑢𝑥2

+ 𝑧2𝑢𝑥3
+ 𝑧3𝑢𝑥4

+ 𝑧4𝑢𝑥5
+ (−1)𝑘𝜁𝑘𝑢𝑥6

+ sin (
𝜋𝑧

ℎ
) 𝑢𝑥7   

 +sin (
2𝜋𝑧

ℎ
) 𝑢𝑥8  + sin (

3𝜋𝑧

ℎ
) 𝑢𝑥9  + sin (

4𝜋𝑧

ℎ
)𝑢𝑥10  + cos (

𝜋𝑧

ℎ
) 𝑢𝑥11  + 

 cos (
2𝜋𝑧

ℎ
)𝑢𝑥12  + +cos (

3𝜋𝑧

ℎ
)𝑢𝑥13  +  cos (

4𝜋𝑧

ℎ
) 𝑢𝑥14  + 𝑒

𝑧

ℎ𝑢𝑥15   

 +𝑒
2𝑧

ℎ 𝑢𝑥16  + 𝑒
3𝑧

ℎ 𝑢𝑥17  + 𝑒
4𝑧

ℎ 𝑢𝑥18   (4) 

where h is the thickness of the plate.  

3. Governing equations and Closed-form solution  

Geometrical relations enable to express the in-plane 𝝐𝑝
𝑘 and the out-planes 𝝐𝑛

𝑘  strains in 

terms of the displacement 𝒖, 
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 𝝐𝑝
𝑘 = [𝜖𝑥𝑥

𝑘 , 𝜖𝑦𝑦
𝑘 , 𝜖𝑥𝑦

𝑘 ]
𝑇

= (𝑫𝑝
𝑘)𝒖𝑘,   𝝐𝑛

𝑘 = [𝜖𝑥𝑧
𝑘 , 𝜖𝑦𝑧

𝑘 , 𝜖𝑧𝑧
𝑘 ]

𝑇
= (𝑫𝑛𝑝

𝑘 + 𝑫𝑛𝑧
𝑘 )𝒖𝑘  (5) 

where 𝑫𝑝
𝑘, 𝑫𝑛𝑝

𝑘   and 𝑫𝑛𝑧
𝑘  are differential operators whose components are: 

 𝑫𝑝
𝑘 =

[
 
 
 
 

𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

𝜕

𝜕𝑦

𝜕

𝜕𝑥
0]
 
 
 
 

,    𝑫𝑛𝑝
𝑘 = [

0 0
𝜕

𝜕𝑥

0 0
𝜕

𝜕𝑦

0 0 0

],    𝑫𝑛𝑧
𝑘 =

[
 
 
 
 

𝜕

𝜕𝑧
0 0

0
𝜕

𝜕𝑧
0

0 0
𝜕

𝜕𝑧]
 
 
 
 

 (6) 

Stress components for a generic k layer can be obtained using the constitutive law, 

 𝝈𝑝
𝑘 = 𝑪𝑝𝑝

𝑘 𝝐𝑝
𝑘 + 𝑪𝑝𝑛

𝑘 𝝐𝒏
𝑘  

 𝝈𝑛
𝑘 = 𝑪𝑛𝑝

𝑘 𝝐𝑝
𝑘 + 𝑪𝑛𝑛

𝑘 𝝐𝒏
𝑘 (7) 

where 𝑪𝑝𝑝
𝑘 , 𝑪𝑝𝑛

𝑘 , 𝑪𝑛𝑝
𝑘  and 𝑪𝑛𝑛

𝑘  are: 

 𝑪𝑝𝑝
𝑘 = [

𝐶11
𝑘 𝐶12

𝑘 𝐶16
𝑘

𝐶12
𝑘 𝐶22

𝑘 𝐶26
𝑘

𝐶16
𝑘 𝐶26

𝑘 𝐶66
𝑘

],          𝑪𝑝𝑛
𝑘 = [

0 0 𝐶13
𝑘

0 0 𝐶23
𝑘

0 0 𝐶36
𝑘

],  

 𝑪𝑛𝑝
𝑘 = [

0 0 0
0 0 0

𝐶13
𝑘 𝐶23

𝑘 𝐶36
𝑘

],          𝑪𝑛𝑛
𝑘 = [

𝐶55
𝑘 𝐶45

𝑘 0

𝐶45
𝑘 𝐶44

𝑘 0

0 0 𝐶33
𝑘

], (8) 

For the sake of brevity, the dependence of the elastic coefficients 𝐶𝑖𝑗
𝑘  on Young’s 

modulus, Poisson’s ratio, the shear modulus, and the fiber angle is not reported. They can 

be found in [9]. The analysis of a plate can be conducted using the principle of virtual 

displacement (PVD),  

 𝛿𝐿𝑖𝑛𝑡 = 𝛿𝐿𝑒𝑥𝑡 (9) 
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Where 𝛿𝐿𝑖𝑛𝑡 is the virtual variation of the internal work and 𝛿𝐿𝑒𝑥𝑡 is the virtual variation 

of the work made by the external loadings. The PVD can be written as 

 ∑ ∫ (𝛿𝝐𝑝
𝑘𝝈𝑝

𝑘 + 𝛿𝝐𝑛
𝑘𝝈𝑛

𝑘)
𝑉

𝑁𝑙
𝑘=1 𝑑𝑉 = ∑ 𝛿𝐿𝑒𝑥𝑡

𝑘𝑁𝑙
𝑘=1  (10) 

Further details about the CUF and its implementation through the use of variational 

principles can be found in [40]. The governing equations are expressed in compact form, 

 𝛿𝒖𝑠
𝑘:  𝑲𝑑

𝑘𝜏𝑠𝒖𝜏
𝑘 = 𝑷𝑠

𝑘 (11) 

Where 𝑷𝜏
𝑘 is the external load. The fundamental nucleus, 𝑲𝑑

𝑘𝜏𝑠, is assembled through the 

indexes 𝜏 and 𝑠 to obtain the stiffness matrix of each layer 𝑘. The matrices of each layer 

are assembled at the multilayer level according to the approach considered, for this work 

the ESL approach is adopted. 

The numerical results were obtained via the Navier closed-form solution for simply 

supported orthotropic plates, loaded by a transverse distribution of harmonic loadings. 

The following properties hold: 

 𝐶16 = 𝐶26 = 𝐶36 = 𝐶45 = 0 (12) 

The displacements are expressed in the following harmonic form, 

 𝑢𝑥 = ∑ 𝑈𝑥𝑚,𝑛 ∙ 𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)  

 𝑢𝑦 = ∑ 𝑈𝑦𝑚,𝑛 ∙ 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

𝑛𝜋𝑦

𝑏
)  

 𝑢𝑧 = ∑ 𝑈𝑧𝑚,𝑛 ∙ 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) (13) 
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where 𝑈𝑥, 𝑈𝑦, and 𝑈𝑧 are the amplitudes, 𝑚 and 𝑛 are the wave numbers, and 𝑎 and 𝑏 are 

the dimensions of the plate in the 𝑥 and 𝑦 directions, respectively. 

4. Axiomatic/Asymptotic Method 

The introduction of higher-order terms in a plate model offers significant advantages in 

terms of improved structural response prediction at the expense of higher computational 

costs. The axiomatic/asymptotic method (AAM) allows us to lower the computational 

cost of a model without affecting its accuracy. A typical AAM analysis has the following 

steps: 

(1) Parameters such as geometry, boundary conditions, loadings, materials, and 

stacking sequences are fixed. 

(2) A set of output parameters is chosen, such as displacement and stress components. 

(3) A theory is fixed; that is, the displacement variables to be analyzed are defined. 

(4) A reference solution is defined; in the present work, a fourth-order LW model 

(LD4) is adopted. 

(5) The CUF is used to generate the governing equations for the considered theories. 

(6) A penalty technique allows the deactivation of each variable in turn. 

(7) Reduced models are built using combinations of the full model variables, and their 

accuracy is evaluated. All those variables that do not affect the accuracy are 

discarded. 

(8) The most efficient kinematic model for a given structural problem is then obtained 

by discarding all the noneffective displacement variables. 

A graphical notation is introduced to represent the results. This consists of a table 

in which rows are related to the three displacement components, and the number of 
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columns is equal to the number of the displacement variables used in the expansion. As 

an example, an ED4 model (full model) and a reduced model in which the term 𝑢𝑥2
 is 

deactivated is shown in Table 2. The meaning of the symbols ▲ and Δ is reported in 

Table 3. The reduced displacement field of Table 2 is 

 𝑢𝑥 = 𝑢𝑥1
+               𝑧2𝑢𝑥3

+ 𝑧3𝑢𝑥4
+ 𝑧4𝑢𝑥5

  

 𝑢𝑦 = 𝑢𝑦1
+ 𝑧 𝑢𝑦2

+ 𝑧2𝑢𝑦3
+ 𝑧3𝑢𝑦4

+ 𝑧4𝑢𝑦5
  

 𝑢𝑧 = 𝑢𝑧1
+ 𝑧 𝑢𝑧2

+ 𝑧2𝑢𝑧3
+ 𝑧3𝑢𝑧4

+ 𝑧4𝑢𝑧5
 (14) 

5. Best Theory Diagram  

The construction of refined models through the AAM allows one to obtain a diagram in 

which each refined model is associated with the number of active terms and the error on 

a given displacement or stress output variable on a reference solution. Best models are 

those that, for a given error, require the minimum number of variables; or, for a given 

number of variables, provide the best accuracy. Best models represent a Pareto front of 

an optimization problem in which the objectives are the minimization of the error and the 

number of terms, as shown in [53, 54]. Such a Pareto front is the BTD. In previous works, 

only one displacement or stress component was considered; that is, the best models were 

found considering the accuracy in only one output variable. In this paper, for the first 

time, BTDs are built considering multiple displacement and stress outputs.  

BTDs could be obtained directly from the AAM without employing an optimization tool. 

The computational cost required for the BTD construction via the AAM depends on the 

number of unknown variables in the model. The number of all possible combinations of 

active/not-active terms for a given model is equal to 2𝑀, where M is the number of 

unknown variables (DOFs) in the model. In the cases considered in this paper, M is equal 



11 

 

to 18 and 54 for the EDZ4 and EDZ17, respectively. The resulting computational cost to 

build the BTD is, therefore, excessive.  

A way to build the Pareto front is to rank the refined models according to a dominance 

rule. This ranking is based on the principle of non-dominated sorting (Pareto dominance). 

Models in the Pareto front are those for which the improvement in one objective implies 

the worsening of at least one other objective. All the non-dominated models are added to 

the Pareto front. The selection of the refined models which belong to the Pareto front can 

be stated as an N-dimensional minimization problem, where N is the number of objective 

functions. It is clear that, as N increases, the number of refined models in the Pareto front 

increments considerably. This may cause complications in the selection of an 

appropriately refined model. To simplify the analysis from N to a three-dimensional 

minimization problem, the following objective functions were chosen: 

• The number of terms in the refined model. 

• The mean error of the output parameters (µ). 

• The standard deviation of the output parameters (σ). 

By minimizing these three objectives, one can build a Pareto front which includes refined 

models with least unknown variables, minimum error, and minimum standard deviation. 

The refined models in the Pareto front define a surface in the 3D solution space, as 

presented in Fig. 2. Due to the large number of best plate theories in the Pareto front, the 

selection of a plate model is still more complicate than the case with a single output 

parameter. To facilitate the selection of refined models in the Pareto front a new metric, 

denoted as %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 (see Fig. 4), was introduced. %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 is equal to the sum of the 

mean error and the standard deviation and is a measure of the upper limit of the error of 

each output parameter considered. It is important to remark that %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 is not exactly 
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the upper limit error of the output parameters, but an indicator employed for comparative 

purposes. The new 2D Pareto front is built selecting the best plate theories from the 3D 

one and considering the following new objective functions: 

• The number of terms in a refined model. 

• %𝐸𝑟𝑟𝑜𝑟𝑢𝑙. 

The computational cost of this further optimization is not significant since the 

optimization is carried out on a very small set of refined models. 

As proved by Carrera and Miglioretti [53], a genetic algorithm can be used to build a 

BTD. A solution vector 𝒙 ∈ 𝑿, where 𝑿 is the solution space, is called an individual or 

chromosome. Chromosomes are made of discrete units called genes. Each gene controls 

one or more features of the individual. GAs operate with a collection of chromosomes, 

called a population. The population is normally randomly initialized. As the search 

evolves, the population includes fitter and fitter solutions, and eventually it converges, 

meaning that it is dominated by a single solution. Simple GAs use three operators to 

generate new solutions from existing ones: reproduction, crossover, and mutation. On the 

reproduction, individuals with higher fitness are preserved for the next generation. Each 

individual has a fitness value based on its rank in the population. The population is ranked 

according to a dominance rule. The fitness of each chromosome is evaluated through the 

following formula: 

 𝑟𝑖(𝒙𝒊, 𝑡) = 1 + 𝑛𝑞(𝒙𝒊, 𝑡) (15) 

where 𝑛𝑞(𝒙, 𝑡) is the number of solutions dominating 𝒙 at generation t. A lower rank 

corresponds to a better solution. To maintain diversity among non-dominated solutions, 

niching among solutions of each rank is employed as shown in Ref. [56]. On the 
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crossover, two chromosomes called parents, are combined to form new chromosomes, 

called offsprings. This operator allows the GA to find new solutions. The mutation 

operator introduces random changes at the gene level, with the aim of recovering strong 

genes possibly loss on the crossover operation. In this paper, an elitism technique is 

employed to preserve the dominant individuals in each generation without any changes 

in its configuration. A complete explanation of genetic algorithms can be found in Refs. 

[56,57].  

In the present work, each plate theory has been considered as an individual. The 

genes are the terms of the expansion along the thickness of the three displacement fields 

in the following manner. Each gene can be active or not, the deactivation of a term is 

obtained by exploiting a penalty or row-column elimination technique. The representation 

of this method is shown in Fig 3. Each individual is therefore described by the number of 

active terms, the mean error and the standard deviation of the output parameters computed 

on a reference solution. The dominance rule is applied through these three parameters to 

evaluate the individual ranking. A fitness value is assigned to the individual based on it’s 

ranking and niching. The error of the new models on a reference solution was evaluated 

through the following formula: 

 𝑒 = 100
∑ |𝑄𝑖−𝑄𝑟𝑒𝑓

𝑖 |
𝑁𝑝
𝑖=1

𝑚𝑎𝑥𝑄𝑟𝑒𝑓∙𝑁𝑝
 (16) 

where 𝑄 can be any output parameter (stress/displacement component) and 𝑁𝑝 is the 

number of points along the thickness on which the entity 𝑄 is computed. New dominant 

individuals are selected based on it’s fitness. More details about the implementation of 

genetic algorithms for BTD can be found in Ref. [53]. For the EDZ17 model, 2000 

individuals are considered for 200 generations. For the EDZ4 model, 500 individuals for 

50 generations are considered. Once the 3D Pareto front is built, the reduced models are 
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ranked again based on the number of active terms and the objective function %𝐸𝑟𝑟𝑜𝑟𝑢𝑙. 

As a result, a 2D Pareto front – the BTD - is obtained, as shown in Fig. 4.  

6. Results and discussion  

A bisinusoidal load was applied to the top surface of the simply supported laminated 

plate, 

 𝑝 = �̅�𝑧 ∙ 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) (17) 

where 𝑎 = 𝑏 = 0.1 𝑚, �̅�𝑧 = 1 𝑘𝑃𝑎, and 𝑚, 𝑛 = 1. The reduced models were developed 

considering the displacements 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 , and the stresses 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜏𝑥𝑦, 𝜏𝑥𝑧, and 𝜏𝑦𝑧. 

The following dimensionless quantities were defined for the displacements and stresses: 

 �̅�𝑥 =
𝑢𝑥∙𝐸2

𝑘=1∙ℎ2

�̅�𝑧∙𝑎3  ,  �̅�𝑦 =
𝑢𝑦∙𝐸2

𝑘=1∙ℎ2

�̅�𝑧∙𝑎3  ,  �̅�𝑧 =
𝑢𝑧∙100∙𝐸2

𝑘=1∙ℎ3

�̅�𝑧∙𝑎4  , 

 𝜎𝑥𝑥,𝑦𝑦 =
𝜎𝑥𝑥,𝑦𝑦

�̅�𝑧∙(
𝑎

ℎ⁄ )2
 ,  𝜎𝑧𝑧 =

𝜎𝑧𝑧

�̅�𝑧
, 𝜏�̅�𝑦 =

𝜏𝑥𝑦

�̅�𝑧∙(
𝑎

ℎ⁄ )2
, 𝜏�̅�𝑧,𝑦𝑧 =

𝜏𝑥𝑧,𝑦𝑧

�̅�𝑧∙(
𝑎

ℎ⁄ )
 (18) 

where 𝑘 = 1 identifies the bottom layer; �̅�𝑥 and 𝜏�̅�𝑧 were calculated at 𝑥 = 0, 𝑦 = 𝑏/2; 

�̅�𝑦 and 𝜏�̅�𝑧 at 𝑥 = 𝑎/2, 𝑦 = 0; �̅�𝑧 , 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑧𝑧 at 𝑥 = 𝑎/2, 𝑦 = 𝑏/2; 𝜏�̅�𝑦 at 𝑥 = 𝑦 =

0. The shear stresses 𝜏�̅�𝑧 and 𝜏�̅�𝑧 were computed via the 3D equilibrium equations. 

In all the examples considered, the individual laminae were considered of equal 

thickness and the following set of material properties was used for each lamina: 
𝐸𝐿

𝐸𝑇
⁄ =

25; 
𝐺𝐿𝑇

𝐸𝑇
⁄ = 0.5; 

𝐺𝑇𝑇
𝐸𝑇

⁄ = 0.2;  𝜈𝐿𝑇 = 𝜈𝑇𝑇 = 0.25.  

As a reference solution, an LD4 model was considered. The results are reported 

in Table 4; the three-dimensional exact elasticity results were obtained as in [58, 59]. The 

LD4 results are in excellent agreement with the reference solution. Consequently, the 



15 

 

LD4 model is used as the reference solution in this paper. Two length-to-thickness ratios 

were investigated: 𝑎 ℎ⁄  = 5 and 𝑎 ℎ⁄  = 20.  

6.1 0º/90º/0º 

First, to verify the convergence of the GA to the Pareto front, a comparison between the 

BTDs obtained by the GA and the AAM is presented in Figure 4 for a three-layer, thick 

plate. The AAM solution was obtained considering all the plate models given by the 218 

combinations of terms given by an EDZ4 model, presented in Eq. (3). Each model along 

the BTD is the one that, for a given errors, requires the minimum number of terms, or, 

for a given number of terms, provides the best accuracy. The BTDs obtained are in 

complete agreement. From now on, all the results were obtained using the GA method 

only.  

Figures 5a and 5b compare BTDs built via the EDZ4 and EDZ17 terms. For the sake of 

clarity, only the lower branch of the BTD is shown, from 24 to six terms. Some of the 

BTD models given in Fig. 5 are reported in Tables 5 and 6, respectively in which ME 

indicates the number of active terms. For instance, the best EDZ17 model with 15 

unknown variables for the thick laminated plate (𝑎 ℎ⁄  = 5), has the following displacement 

field: 

 𝑢𝑥 = 𝑢𝑥1
+ z𝑢𝑥2

+ 𝑧2𝑢𝑥3
+ 𝑧3𝑢𝑥4

+ (−1)𝑘𝜁𝑘𝑢𝑥6
+ sin (

𝜋𝑧

ℎ
)𝑢𝑥7

  

 𝑢𝑦 = 𝑢𝑦1
+ 𝑧𝑢𝑦2

+ 𝑧3𝑢𝑦4
+ (−1)𝑘𝜁𝑘𝑢𝑦6

+ sin (
2𝜋𝑧

ℎ
)𝑢𝑦8

  

 𝑢𝑧 = 𝑢𝑧1
+ 𝑧𝑢𝑧2

+ 𝑧2𝑢𝑧3
+ 𝑧4𝑢𝑧5

 (19) 

Similarly, the best plate model obtained via EDZ4 with 15 unknown variables is: 
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 𝑢𝑥 = 𝑢𝑥1
+ 𝑧𝑢𝑥2

+ 𝑧2𝑢𝑥3
+ 𝑧3𝑢𝑥4

+ (−1)𝑘𝜁𝑘𝑢𝑥6
  

 𝑢𝑦 = 𝑢𝑦1
+ z𝑢𝑦2

+ 𝑧2𝑢𝑦3
+ 𝑧3𝑢𝑦4

+ (−1)𝑘𝜁𝑘𝑢𝑦6
  

 𝑢𝑧 = 𝑢𝑧1
+ 𝑧𝑢𝑧2

+ 𝑧2𝑢𝑧3
+ 𝑧3𝑢𝑧4

+ 𝑧4𝑢𝑧5
 (20) 

The accuracy of the previous BTD models is given in Tables 7 and 8. For each model, 

the error on the three displacement and six stress components is given. Also, the mean 

error, the standard deviation, and %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 are reported. For instance, the plate model 

of Eq. (19) can detect displacements and stresses with %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.4302 %, while the 

plate model of Eq. (20) can detect displacements and stresses with %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.6112 

%. The distribution through the thickness of selected output parameters is shown in Figs. 

6 and 7. The EDZ17 reduced models reported in Tables 5 and 6 were used. The refined 

models are indicated as hybrid refined model,  N  HRM, and N is the number of variables 

in the HRM. The reference solution (LD4) was included for comparison purposes. 

The results for the 0º/90º/0º plate suggest that 

• The results show that the addition of non-polynomial terms can further enhance 

the results obtained by the EDZ4 refined models. 

• The polynomial terms are essential in the analysis. Concerning the zig-zag terms, 

the zig-zag term in the 𝑢z displacement field is not needed for both length-to-

thickness ratios. 

• The trigonometric terms are more effective than the exponential ones. 

• The non-polynomial terms are mostly needed in the 𝑢z displacement field, 

especially in the case with 𝑎 ℎ⁄  = 20. 

• The transverse stress components are those demanding more displacement 

variables. However, in the thick case, the errors on each displacement and stress 
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components are quite similar for a given model; that is, all the output variables 

play an important role in the determination of the active terms.  

• The GA approach is a reliable and computationally inexpensive tool to build 

BTDs. In all cases, the refined best models can detect the 3D-like, LW solution 

with a considerable lower amount of unknown variables. Some twelve generalized 

displacement variables are usually enough to meet satisfactory accuracy levels.  

6.2 0º/90º 

BTDs from EDZ4 and EDZ17 are presented in Fig. 8. Selected BTD models for both 

length-to-thickness ratios are reported in Tables 9 and 10. For example, the best EDZ17 

refined model with fourteen degrees of freedom for 𝑎 ℎ⁄ = 20 is the following: 

 𝑢𝑥 = 𝑢𝑥1
+ z𝑢𝑥2

+ 𝑧3𝑢𝑥4
+ sin (

2𝜋𝑧

ℎ
) 𝑢𝑥8

  

 𝑢𝑦 = 𝑢𝑦1
+ z𝑢𝑦2

+ 𝑧3𝑢𝑦4
+ sin (

2𝜋𝑧

ℎ
) 𝑢𝑦8

  

 𝑢𝑧 = 𝑢𝑧1
+ z𝑢𝑧2

+ 𝑧2𝑢𝑧3
+ 𝑧4𝑢𝑧5

+ (−1)𝑘𝜁𝑘𝑢𝑧6
+ cos (

2𝜋𝑧

ℎ
) 𝑢𝑧12

 (21) 

Likewise, the best EDZ4 refined model for the same case is: 

 𝑢𝑥 = 𝑢𝑥1
+ 𝑧𝑢𝑥2

+ 𝑧2𝑢𝑥3
+ 𝑧3𝑢𝑥4

  

 𝑢𝑦 = 𝑢𝑦1
+ z𝑢𝑦2

+ 𝑧2𝑢𝑦3
+ 𝑧3𝑢𝑦4

+ 𝑧4𝑢𝑦5
  

 𝑢𝑧 = 𝑢𝑧1
+ z𝑢𝑧2

+ 𝑧2𝑢𝑧3
+ 𝑧4𝑢𝑧5

+ (−1)𝑘𝜁𝑘𝑢𝑧6
 (22) 

The refined models considered are compared in Table 11 and 12. Selected displacement 

and stress distributions along the thickness are presented in Fig. 9 and 10. 

The results reported for the 0º/90º case suggest that 
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• Although the EDZ4 refined models are in good agreements with LD4 results for 

both length-to-thickness ratios, further improvements can be obtained by adding 

trigonometric and exponential terms to the plate model. The EDZ17 refined 

models can obtain better accuracies with less unknown variables. 

• All the output variables play a similar role in the determination of the unknown 

variables. On the other hand, in the moderately thick case, the influence of 𝜎𝑧𝑧 is 

predominant.  

• The polynomial and zig-zag terms are indispensable in the analysis. Regarding 

the non-polynomial terms, the effectiveness of the exponential and trigonometric 

terms depends on the length-to-thickness ratio. The former are more important 

in the thick case, whereas the latter in the moderately thick case.  

6.3 0º/90º/90º/0º 

BTDs are presented in Fig. 11. Some of the BTDs are shown in in Tables 13 and 14. For 

instance, the best EDZ17 refined model with ten degrees of freedom for  𝑎 ℎ⁄ = 20 is the 

following: 

 𝑢𝑥 = 𝑧𝑢𝑥2
+ 𝑧3𝑢𝑥4

+ sin (
𝜋𝑧

ℎ
)𝑢𝑥7

  

 𝑢𝑦 = 𝑧𝑢𝑦2
+ 𝑧3𝑢𝑦4

  

 𝑢𝑧 = 𝑢𝑧1
+ 𝑧𝑢𝑧2

+ 𝑧2𝑢𝑧3
+ 𝑧4𝑢𝑧5

+ cos (
2𝜋𝑧

ℎ
)𝑢𝑧12

 (23) 

Likewise, the best EDZ4 refined model for the same case is: 

 𝑢𝑥 = z𝑢𝑥2
+ 𝑧3𝑢𝑥4

  

 𝑢𝑦 = 𝑢𝑦1
+ z𝑢𝑦2

+ 𝑧3𝑢𝑦4
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 𝑢𝑧 = 𝑢𝑧1
+ 𝑧𝑢𝑧2

+ 𝑧2𝑢𝑧3
+ 𝑧4𝑢𝑧5

+ (−1)𝑘𝜁𝑘𝑢𝑧6
 (24) 

Tables 15 and 16  present the accuracy of the selected plate models, whereas the 

displacement and stress distributions along the thickness are given in Fig. 12 and 13. The 

results for the 0º/90º/90º/0º case suggest that 

• Important improvements are achieved by employing non-polynomial terms in the 

plate models. They are particularly noteworthy for thick plates. 

• As for the previous case, all the output variables play a significant role in the 

definition of the displacement field. In the moderately thick case, the transverse 

axial stress is the most critical component. 

• As seen in the previous cases, polynomial terms are indispensable in refined plate 

models. Concerning the zig-zag terms, only the zig-zag term in the 𝑢z 

displacement field is needed. 

• The exponential terms are more effective than the trigonometric terms for the 

laminated composite plate studied, especially the exponential terms in the 𝑢x 

displacement field. 

7. Conclusion 

Best Theory Diagrams (BTDs) for cross-ply laminated plates considering multiple output 

parameters have been presented in this paper. The BTD is a curve in which, for a given 

problem, the most accurate plate models for a given number of unknown variables can be 

read. In this work, BTDs consider multiple objectives simultaneously; in particular, the 

three displacement components and the six stress ones. The BTDs are therefore the Pareto 

fronts of the optimization of the expansions to minimize the error on each displacement 

and stress component. The axiomatic/asymptotic method together with genetic 
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algorithms has been employed in the framework of the Carrera Unified Formulation to 

develop refined ESL plate models. In particular, a combination of Maclaurin, zig-zag, 

trigonometric and exponential functions has been used to define the displacement field 

along the thickness of the plate. The results have been presented in terms of displacements 

and stresses for different length-to-thickness ratios. Simply-supported plates have been 

analyzed via Navier-type closed form solutions. The following conclusions can be drawn: 

(1) Quasi-3D results for multiple output parameters can be obtained by the AAM and 

the BTD with adequate computational costs. The method presented allows the 

user to set several output parameters as objective functions in the analysis. 

(2) Overall, the addition of trigonometric and exponential terms may improve the 

accuracy and computational cost of refined plate theories. 

(3) Polynomial terms up to the fourth-order are indispensable. The influence of non-

polynomial terms is more relevant for thick plates rather than moderately thick 

ones. 

(4) The importance of exponential and trigonometric terms vary depending on the 

plate configuration. For plates with lamination 0º/90º/0º, trigonometric terms are 

more effective than exponential ones. For plates with lamination 0º/90º, 

exponential and trigonometric terms have different relevance depending on the 

length-to-thickness ratio. 

(5) For plates with lamination 0º/90º/90º/0º, exponential terms are more effective than 

the trigonometric ones.  

Future works should tackle the construction of BTDs for dynamic problems. 
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Tables 

Table 1: Expansion terms of the proposed theories. 

1 2 3 4 5 6 7 8 9 10 
 

1 𝑧 𝑧2 𝑧3 𝑧4 (−1)𝑘𝜁𝑘 𝑠𝑖𝑛 (
𝜋𝑧

ℎ
) 𝑠𝑖𝑛 (

2𝜋𝑧

ℎ
) sin (

3𝜋𝑧

ℎ
) sin (

4𝜋𝑧

ℎ
) 

1 𝑧 𝑧2 𝑧3 𝑧4 (−1)𝑘𝜁𝑘 𝑠𝑖𝑛 (
𝜋𝑧

ℎ
) 𝑠𝑖𝑛 (

2𝜋𝑧

ℎ
) sin (

3𝜋𝑧

ℎ
) sin (

4𝜋𝑧

ℎ
) 

1 𝑧 𝑧2 𝑧3 𝑧4 (−1)𝑘𝜁𝑘 𝑠𝑖𝑛 (
𝜋𝑧

ℎ
) 𝑠𝑖𝑛 (

2𝜋𝑧

ℎ
) sin (

3𝜋𝑧

ℎ
) sin (

4𝜋𝑧

ℎ
) 

 

11 12 13 14 15 16 17 18 
 

cos (
𝜋𝑧

ℎ
) cos (

2𝜋𝑧

ℎ
) cos (

3𝜋𝑧

ℎ
) cos (

4𝜋𝑧

ℎ
) 𝑒

𝑧
ℎ 𝑒

2𝑧
ℎ  𝑒

3𝑧
ℎ  𝑒

4𝑧
ℎ  

cos (
𝜋𝑧

ℎ
) cos (

2𝜋𝑧

ℎ
) cos (

3𝜋𝑧

ℎ
) cos (

4𝜋𝑧

ℎ
) 𝑒

𝑧
ℎ 𝑒

2𝑧
ℎ  𝑒

3𝑧
ℎ  𝑒

4𝑧
ℎ  

cos (
𝜋𝑧

ℎ
) cos (

2𝜋𝑧

ℎ
) cos (

3𝜋𝑧

ℎ
) cos (

4𝜋𝑧

ℎ
) 𝑒

𝑧
ℎ 𝑒

2𝑧
ℎ  𝑒

3𝑧
ℎ  𝑒

4𝑧
ℎ  

 

Table 2: Example of model representation. 

Full model representation  Reduced model representation 
   

▲ ▲ ▲ ▲ ▲  ▲ Δ ▲ ▲ ▲ 

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ 

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ 

 

Table 3: Symbols to indicate the status of a displacement variable. 

Active term  Inactive terms 

▲  Δ 
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Table 4: LD4 model assessment for 3-layer and 5-layer laminated plates. 

 

 

 

 

 

 

𝑎
ℎ⁄ = 100 

 
3-layer laminate (0º/90º/0º) 

 �̅�𝒙𝒙(𝒛 = ±𝒉/𝟐) �̅�𝒚𝒚(𝒛 = ±𝒉/𝟔) �̅�𝒙𝒛(𝒛 = 𝟎) �̅�𝒚𝒛(𝒛 = 𝟎) �̅�𝒙𝒚(𝒛 = ±𝒉/𝟐) 

Ref. [58] ±0.539 ±0.181 0.395 0.0828 ±0.0213 

LD4 ±0.539 ±0.1808 0.3946 0.0828 ±0.0213 

 
5-layer laminate (0º/90º/0º/90º/0º) 

 �̅�𝒙𝒙(𝒛 = ±𝒉/𝟐) �̅�𝒚𝒚(𝒛 = ±𝒉/𝟑) �̅�𝒙𝒛(𝒛 = 𝟎) �̅�𝒚𝒛(𝒛 = 𝟎) �̅�𝒙𝒚(𝒛 = ±𝒉/𝟐) 

Ref. [59] ±0.539 ±0.360 0.272 0.205 ±0.0213 

LD4 ±0.5386 ±0.3600 0.2720 0.2055 ±0.0213 

𝑎
ℎ⁄ = 4 

 
3-layer laminate (0º/90º/0º) 

 �̅�𝒙𝒙(𝒛 = ±𝒉/𝟐) �̅�𝒚𝒚(𝒛 = ±𝒉/𝟔) �̅�𝒙𝒛(𝒛 = 𝟎) �̅�𝒚𝒛(𝒛 = 𝟎) �̅�𝒙𝒚(𝒛 = ±𝒉/𝟐) 

Ref. [58] 0.801      -0.755 0.534      -0.556 0.256 0.2172 -0.0511  0.0505 

LD4 0.8008  -0.7547 0.5341   -0.5562 0.2559 0.2179 -0.0510  0.0505 

 5-layer laminate (0º/90º/0º/90º/0º) 

 �̅�𝒙𝒙(𝒛 = ±𝒉/𝟐) �̅�𝒚𝒚(𝒛 = ±𝒉/𝟑) �̅�𝒙𝒛(𝒛 = 𝟎) �̅�𝒚𝒛(𝒛 = 𝟎) �̅�𝒙𝒚(𝒛 = ±𝒉/𝟐) 

Ref. [59] 0.685      -0.651 0.633      -0.626 0.238 0.229 -0.0394  0.0384 

LD4 0.6852  -0.6512 0.6334   -0.6256 0.2378 0.2289 -0.0393  0.0384 
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Table 5: Best EDZ17 models, 0º/90º/0º, 𝑎 ℎ⁄ = 5. 

𝑀𝐸 = 7
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 3.3590 

  

Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 9
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 2.2010 

  

Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 12
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.6713 

  

▲ ▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 15
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.4302 

  

▲ ▲ ▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 18
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.2900 

  

▲ ▲ ▲ ▲ Δ ▲ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ ▲ Δ ▲ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 21
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.2475 

  

▲ ▲ ▲ ▲ Δ ▲ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ ▲ Δ ▲ ▲ ▲ Δ Δ Δ Δ Δ Δ ▲ ▲ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ 
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Table 6: Best EDZ17 models, 0º/90º/0º, 𝑎 ℎ⁄ = 20. 

𝑀𝐸 = 7
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 1.6493 

  

Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 9
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.5888 

  

Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 12
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.3979 

  

Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ ▲ ▲ Δ ▲ Δ Δ Δ Δ 

 

𝑀𝐸 = 15
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.3160 

  

▲ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ ▲ ▲ ▲ ▲ Δ Δ Δ Δ 

 

𝑀𝐸 = 19
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.2678 

  

▲ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ ▲ ▲ Δ ▲ Δ Δ Δ ▲ ▲ Δ ▲ ▲ ▲ ▲ Δ 

 

𝑀𝐸 = 21
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.2498 

  

▲ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ ▲ ▲ Δ ▲ Δ Δ Δ ▲ ▲ Δ ▲ ▲ ▲ Δ ▲ 
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Table 7: Comparison between the accuracies of best EDZ4 and EDZ17 models in 

computing displacement and stress components, 0º/90º/0º, 𝑎 ℎ⁄ = 5.  

 

 

 𝑀𝐸 = 7
54⁄ , µ = 2.1125, σ = 1.2465, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 3.3590 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 1.732 1.460 0.839 0.826 1.381 1.285 3.645 3.787 4.053 

EDZ4 3.128 1.571 3.285 2.120 1.172 1.787 3.000 4.541 3.248 

 𝑀𝐸 = 9
54⁄ , µ = 1.4259, σ = 0.7750, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 2.2010 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 1.726 1.362 0.914 0.816 1.224 0.903 3.468 0.988 1.428 

EDZ4 1.184 1.435 0.914 0.668 1.363 1.021 0.901 3.566 1.428 

 𝑀𝐸 = 12
54⁄ , µ = 0.4888, σ = 0.1824, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.6713 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.603 0.481 0.388 0.478 0.446 0.390 0.460 0.223 0.928 

EDZ4 0.603 0.481 0.388 0.478 0.446 0.390 0.460 0.223 0.928 

 𝑀𝐸 = 15
54⁄ , µ = 0.2459, σ = 0.1843, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.4302 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.229 0.291 0.078 0.065 0.235 0.242 0.131 0.214 0.723 

EDZ4 0.606 0.476 0.317 0.484 0.517 0.358 0.449 0.361 0.759 

 𝑀𝐸 = 18
54⁄ , µ = 0.1398, σ = 0.1502, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.2900 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.135 0.125 0.011 0.050 0.061 0.107 0.101 0.112 0.550 

EDZ4 0.598 0.475 0.317 0.484 0.514 0.343 0.449 0.361 0.758 

 𝑀𝐸 = 21
54⁄ , µ = 0.1153, σ = 0.1321, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.2475 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.132 0.051 0.010 0.051 0.057 0.061 0.101 0.094 0.477 
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Table 8: Comparison between the accuracies of best EDZ4 and EDZ17 models in 

computing displacement and stress components, 0º/90º/0º, 𝑎 ℎ⁄ = 20. 

 

 

 

 𝑀𝐸 = 7
54⁄ , µ = 1.0443, σ = 0.6049, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 1.6493 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 1.056 0.996 2.176 0.601 0.405 0.688 0.380 1.140 1.954 

EDZ4 1.056 0.996 2.176 0.601 0.405 0.688 0.380 1.140 1.954 

 𝑀𝐸 = 9
54⁄ , µ = 0.2640, σ = 0.3247, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.5888 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.092 0.149 0.033 0.061 0.149 0.115 0.169 0.496 1.109 

EDZ4 0.092 0.115 0.033 0.059 0.094 0.059 0.158 0.077 1.301 

 𝑀𝐸 = 12
54⁄ , µ = 0.1668, σ = 0.2311, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.3979 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.092 0.115 0.033 0.059 0.092 0.059 0.158 0.077 0.813 

EDZ4 0.027 0.115 0.033 0.014 0.093 0.052 0.019 0.077 1.298 

 𝑀𝐸 = 15
54⁄ , µ = 0.0985, σ = 0.2174, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.3160 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.018 0.051 0.012 0.006 0.031 0.026 0.006 0.021 0.712 

 𝑀𝐸 = 19
54⁄ , µ = 0.0859, σ = 0.1818, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.2678 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.018 0.051 0.012 0.006 0.031 0.026 0.006 0.021 0.599 

 𝑀𝐸 = 21
54⁄ , µ = 0.0736, σ = 0.1762, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.2498 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.016 0.019 0.004 0.005 0.017 0.009 0.004 0.013 0.571 
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Table 9: Best EDZ17 models, 0º/90º, 𝑎 ℎ⁄ = 5. 

𝑀𝐸 = 7
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 3.1976 

  

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 9
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 1.9212 

  

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ ▲ Δ 

▲ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 12
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.8463 

  

▲ Δ Δ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 

▲ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ ▲ Δ 

▲ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 15
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.6863 

  

▲ ▲ Δ Δ Δ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ ▲ Δ ▲ Δ 

▲ ▲ Δ Δ Δ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ ▲ Δ ▲ Δ 

▲ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 18
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.4524 

  

▲ Δ Δ ▲ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ ▲ Δ 

▲ ▲ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ ▲ Δ 

▲ ▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 21
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.2791 

  

▲ ▲ Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ ▲ Δ Δ ▲ Δ ▲ Δ 

▲ ▲ ▲ Δ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ ▲ ▲ Δ Δ 

▲ ▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ 
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Table 10: Best EDZ17 models, 0º/90º, 𝑎 ℎ⁄ = 20. 

𝑀𝐸 = 8
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 1.3690 

  

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 11
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.7074 

  

▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 14
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.1415 

  

▲ ▲ Δ ▲ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ ▲ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 18
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.0633 

  

▲ ▲ ▲ ▲ Δ Δ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ ▲ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ ▲ Δ ▲ Δ Δ Δ Δ 

 

𝑀𝐸 = 21
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.0397 

  

▲ ▲ ▲ ▲ Δ Δ Δ ▲ Δ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ 

▲ ▲ ▲ ▲ Δ Δ Δ ▲ Δ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ ▲ Δ ▲ Δ Δ Δ Δ 
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Table 11: Comparison between the accuracies of best EDZ4 and EDZ17 models in 

computing displacement and stress components, 0º/90º, 𝑎 ℎ⁄ = 5.  

 

 

 𝑀𝐸 = 7
54⁄ , µ = 2.0630, σ = 1.1346, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 3.1976 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 1.814 1.559 5.003 1.695 1.653 1.690 1.239 1.094 2.815 

EDZ4 1.814 1.559 5.003 1.695 1.653 1.690 1.239 1.094 2.815 

 𝑀𝐸 = 9
54⁄ , µ = 1.2676, σ = 0.6536, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 1.9212 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 1.077 0.740 2.454 1.512 0.730 0.988 0.945 0.612 2.346 

EDZ4 1.533 1.591 3.379 1.177 1.773 1.573 0.899 1.392 1.827 

 𝑀𝐸 = 12
54⁄ , µ = 0.6455, σ = 0.2007, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.8463 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.603 0.481 0.388 0.478 0.446 0.390 0.460 0.223 0.928 

EDZ4 1.017 0.812 1.650 1.168 0.872 0.972 0.801 0.504 0.984 

 𝑀𝐸 = 15
54⁄ , µ = 0.3998, σ = 0.2865, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.6863 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.346 0.312 0.223 0.203 0.187 0.457 0.370 0.320 1.176 

EDZ4 0.648 0.687 0.518 0.384 0.405 0.895 0.432 0.459 0.982 

 𝑀𝐸 = 18
54⁄ , µ = 0.3740, σ = 0.0784, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.4524 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.377 0.420 0.245 0.235 0.382 0.464 0.395 0.375 0.467 

 𝑀𝐸 = 21
54⁄ , µ = 0.1847, σ = 0.0944, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.2791 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.132 0.124 0.067 0.094 0.171 0.158 0.315 0.361 0.236 
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Table 12: Comparison between the accuracies of best EDZ4 and EDZ17 models in 

computing displacement and stress components, 0º/90º, 𝑎 ℎ⁄ = 20.  

 

 

 

 

 

 

 𝑀𝐸 = 8
54⁄ , µ = 0.4753, σ = 0.8936, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 1.3690 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.127 0.126 0.504 0.122 0.122 0.120 0.088 0.087 2.979 

EDZ4 0.127 0.126 0.504 0.122 0.122 0.120 0.088 0.087 2.979 

 𝑀𝐸 = 11
54⁄ , µ = 0.3123, σ = 0.3951, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.7074 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.190 0.189 0.266 0.131 0.129 0.218 0.132 0.130 1.422 

EDZ4 0.190 0.189 0.266 0.131 0.129 0.218 0.132 0.130 1.422 

 𝑀𝐸 = 14
54⁄ , µ = 0.1057, σ = 0.0358, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.1415 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.115 0.114 0.132 0.067 0.066 0.113 0.079 0.078 0.184 

EDZ4 0.093 0.055 0.169 0.090 0.059 0.088 0.069 0.032 1.390 

 𝑀𝐸 = 18
54⁄ , µ = 0.0399, σ = 0.0234, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.0633 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.036 0.036 0.064 0.024 0.024 0.033 0.020 0.024 0.096 

 𝑀𝐸 = 21
54⁄ , µ = 0.0250, σ = 0.0147, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.0397 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.019 0.019 0.039 0.011 0.011 0.018 0.022 0.022 0.060 
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Table 13: Best EDZ17 models, 0º/90º/90º/0º, 𝑎 ℎ⁄ = 5. 

𝑀𝐸 = 9
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 3.2985 

  

Δ ▲ Δ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 12
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 2.0088 

  

Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ ▲ 

▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 15
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 1.4414 

  

Δ ▲ Δ ▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ ▲ 

▲ ▲ Δ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 18
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 1.1586 

  

▲ ▲ ▲ ▲ Δ Δ ▲ ▲ Δ Δ ▲ Δ Δ Δ ▲ ▲ ▲ Δ 

▲ ▲ Δ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 21
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.8212 

  

▲ ▲ ▲ ▲ ▲ Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ ▲ ▲ ▲ ▲ 

▲ ▲ Δ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ 
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Table 14: Best EDZ17 models, 0º/90º/90º/0º, 𝑎 ℎ⁄ = 20. 

𝑀𝐸 = 7
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 1.2881 

  

Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 10
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.7098 

  

Δ ▲ Δ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 13
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.5242 

  

Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ ▲ 

Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 16
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.4327 

  

Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ ▲ ▲ 

▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 20
54⁄ , %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.3199 

  

▲ Δ ▲ Δ ▲ Δ ▲ ▲ Δ Δ ▲ Δ Δ Δ ▲ ▲ Δ ▲ 

▲ ▲ Δ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ 
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Table 15: Comparison between the accuracies of best EDZ4 and EDZ17 models in 

computing displacement and stress components, 0º/90º/90º/0º, 𝑎 ℎ⁄ = 5.  

 

 

 

 

 

 

 𝑀𝐸 = 9
54⁄ , µ = 2.2857, σ = 1.0127, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 3.2985 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 3.974 1.887 2.570 1.356 1.173 1.838 3.127 3.571 1.071 

EDZ4 4.857 2.109 3.390 1.897 0.981 2.075 2.593 0.652 1.268 

 𝑀𝐸 = 12
54⁄ , µ = 1.3057, σ = 0.7030, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 2.0088 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 2.788 1.648 2.119 0.764 0.988 1.218 1.004 0.549 0.669 

EDZ4 3.785 2.110 3.390 1.792 0.984 1.863 1.892 0.652 1.025 

 𝑀𝐸 = 15
54⁄ , µ = 0.9034, σ = 0.5379, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 1.4414 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 2.179 0.464 1.436 0.658 0.425 0.719 0.958 0.503 0.784 

EDZ4 3.776 2.108 3.390 1.793 0.978 1.860 1.892 0.651 1.018 

 𝑀𝐸 = 18
54⁄ , µ = 0.7391, σ = 0.4194, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 1.1586 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 1.662 0.432 1.305 0.510 0.391 0.566 0.553 0.459 0.771 

 𝑀𝐸 = 21
54⁄ , µ = 0.5425, σ = 0.2786, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.8212 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 1.099 0.370 0.982 0.369 0.311 0.415 0.395 0.339 0.599 
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Table 16: Comparison between the accuracies of best EDZ4 and EDZ17 models in 

computing displacement and stress components, 0º/90º/90º/0º, 𝑎 ℎ⁄ = 20.  

 

  

 𝑀𝐸 = 7
54⁄ , µ = 0.6530, σ = 0.6351, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 1.2881 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.490 0.510 1.199 0.240 0.155 0.396 0.150 0.493 2.241 

EDZ4 0.127 0.126 0.504 0.122 0.122 0.120 0.088 0.087 2.979 

 𝑀𝐸 = 10
54⁄ , µ = 0.4298, σ = 0.2800, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.7098 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.395 0.400 0.797 0.173 0.183 0.257 0.117 0.570 0.973 

EDZ4 0.190 0.189 0.266 0.131 0.129 0.218 0.132 0.130 1.422 

 𝑀𝐸 = 13
54⁄ , µ = 0.3182, σ = 0.2060, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.5242 

     e (%)     

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.276 0.300 0.571 0.083 0.146 0.193 0.116 0.464 0.710 

EDZ4 0.093 0.055 0.169 0.090 0.059 0.088 0.069 0.032 1.390 

 𝑀𝐸 = 16
54⁄ , µ = 0.2584, σ = 0.1742, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.4327 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.281 0.266 0.558 0.083 0.087 0.194 0.158 0.132 0.562 

 𝑀𝐸 = 20
54⁄ , µ = 0.1975, σ = 0.1223, %𝐸𝑟𝑟𝑜𝑟𝑢𝑙 = 0.3199 

 e (%) 

 �̅�𝑥 �̅�𝑦 �̅�𝑧 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏�̅�𝑦 𝜏�̅�𝑧 𝜏�̅�𝑧 𝜎𝑧𝑧 

EDZ17 0.188 0.186 0.418 0.082 0.115 0.113 0.115 0.140 0.418 
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Figures 

Figure 1. Plate geometry and reference system. 
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Figure 2. 3D Pareto front via AAM, EDZ4, 0º/90º/0º, 𝑎 ℎ⁄  = 5. 

 

 

Figure 3. Displacement field of a refined model and genes of a chromosome.  
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Figure 4. BTD based on EDZ4 via GA and AAM, 0º/90º/0º, 𝑎 ℎ⁄  = 5.  
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Figure 5. BTDs for 0º/90º/0º, (a) 𝑎 ℎ⁄  = 5, (b) 𝑎 ℎ⁄  = 20. 
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(a)  𝑎 ℎ⁄  = 5 
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(b) 𝑎 ℎ⁄  = 20 
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Figure  6. Displacement and stress distributions along the thickness, 0º/90º/0º, 𝑎 ℎ⁄  = 5. 
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Figure  7. Displacement and stress distributions along the thickness, 0º/90º/0º, 𝑎 ℎ⁄  = 20. 
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Figure 8. BTDs for 0º/90º, (a) 𝑎 ℎ⁄  = 5, (b) 𝑎 ℎ⁄  = 20. 
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Figure  9. Displacement and stress distributions along the thickness, 0º/90º, 𝑎 ℎ⁄  = 5. 
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Figure  10. Displacement and stress distributions along the thickness, 0º/90º, 𝑎 ℎ⁄  = 20. 
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Figure 11. BTDs for 0º/90º/90º/0º, (a) 𝑎 ℎ⁄  = 5, (b) 𝑎 ℎ⁄  = 20. 
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Figure  12. Displacement and stress distributions along the thickness, 0º/90º/90º/0º, 𝑎 ℎ⁄  

= 5. 
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Figure  13. Displacement and stress distributions along the thickness, 0º/90º/90º/0º, 𝑎 ℎ⁄  

= 20. 
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