
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Inter-controller Traffic to Support Consistency in ONOS Clusters / Muqaddas, ABUBAKAR SIDDIQUE; Giaccone, Paolo;
Bianco, Andrea; Maier, Guido. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN
1932-4537. - ELETTRONICO. - 14:4(2017), pp. 1018-1031. [10.1109/TNSM.2017.2723477]

Original

Inter-controller Traffic to Support Consistency in ONOS Clusters

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2017.2723477

Terms of use:

Publisher copyright

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2675391 since: 2018-04-14T08:10:07Z

IEEE

1

Inter-controller Traffic to Support Consistency
in ONOS Clusters

Abubakar Siddique Muqaddas†, Paolo Giaccone†, Andrea Bianco†, Guido Maier‡
† Dip. di Elettronica e Telecomunicazioni, Politecnico di Torino, Italy

‡Dip. di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Italy
E-mails:{abubakar.muqaddas,paolo.giaccone,andrea.bianco}@polito.it, guido.maier@polimi.it

Abstract—In distributed SDN architectures, the network is
controlled by a cluster of multiple controllers. This distributed
approach permits to meet the scalability and reliability require-
ments of large operational networks. Despite that, a logical cen-
tralized view of the network state should be guaranteed, enabling
the simple development of network applications. Achieving a
consistent network state requires a consensus protocol, which
generates control traffic among the controllers whose timely
delivery is crucial for network performance.

We focus on the state-of-art ONOS controller, designed to
scale to large networks, based on a cluster of self-coordinating
controllers. In particular, we study the inter-controller control
traffic due to the adopted consistency protocols. Based on real
traffic measurements and the analysis of the adopted consistency
protocols, we develop some empirical models to quantify the traf-
fic exchanged among the controllers, depending on the considered
shared data structures, the current network state (e.g. topology)
and the occurring network events (e.g. flow or host addition). Our
models provide a formal tool to be integrated into the design and
dimension the control network interconnecting the controllers.
Our results are of paramount importance for the proper design
of large SDN networks, in which the control plane is implemented
in-band and cannot exploit dedicated network resources.

Index Terms—Software Defined Networking, ONOS controller,
consistency protocols, inter-controller traffic measurements.

I. INTRODUCTION

A naı̈ve centralized approach for SDN is based on a single
controller managing all network switches. Even if this simpli-
fies the network management and the development of network
applications, it poses severe limitations to network scalability
and reliability. Indeed, a single centralized controller is a
single point of failure. Moreover, a single controller may
not be able to handle a large number of switches, because
communication load and processing overhead for the controller
increases with the number of switches. Finally, in very large
networks (as in WANs), switches can be physically very far
from the controller, and due to the propagation delays, flow
modifications in switches can experience large latency.

Distributed SDN controllers face all the above impairments.
Multiple instances of the controller manage the whole network,
which is divided into different domains, each of them under
the control of one controller instance. Distribution of the
controller functions over multiple physical servers improves
the robustness of the control plane, by providing backup
control resources for each network node. Furthermore, large
networks can be handled, because the switch control is dis-
tributed among the controllers and the processing load can be

balanced. Finally, being the control servers also geographically
distributed across the network area, they can reduce the switch-
to-controller delay, thus improving the controller reactivity as
perceived by the network nodes.

However, a logical centralized view of the network state
must be guaranteed also with distributed controllers, to ease
the development of advanced network applications. This trans-
parent behavior for the network operator/programmer comes at
the cost of keeping all the shared data structures synchronized
among the controllers by means of some consensus protocol.
For example, the same network topology must be known at
each controller to take correct routing decisions. However,
since each controller is responsible for a subset of switches, it
is of paramount importance to distribute any data plane related
event in a timely fashion to keep the same state among the
controllers and avoid possible misbehaviors (e.g. routing loops,
firewall leaks), as highlighted in [1].

In large SDN networks (as SDWANs), the control plane dis-
tributed among the controllers is implemented in-band, without
the possibility of relying on a dedicated out-of-band high-
performance network as the data center scenarios [2]. This
poses technical challenges in designing the control network,
which does not only interconnect the switches to controllers,
but also supports the communication between controllers. Due
to the complexity of the adopted consensus protocols, the
reactivity of the controllers as perceived by the switches
depends also on the bandwidth and delays experienced in the
inter-controller communication. This fact advocates a proper
design and plan of the network supporting the control traffic,
in particular guaranteeing adequate bandwidth for the inter-
controller traffic.

We focus on the control traffic exchanged among the con-
trollers, which is often neglected in the literature. We consider
the state-of-art ONOS controller [3], which is an open-source
project developed by ON.Lab [4] and supported by a large
community of network operators and vendors. Differently from
the initial versions of well-known OpenDaylight project [5],
ONOS has been designed specifically to cope with reliability
and scalability issues arising in large ISP/WAN networks.
It natively supports a distributed version of the controller,
running on a cluster of servers.

A. Our contributions
We run an experimental testbed which includes a cluster

of ONOS controllers and evaluate the amount of traffic ex-

2

changed among the controllers. Since the traffic depends on
the specific updates committed on the shared data structure,
we address our problem by analyzing the impact of each
update for all the shared data structures (i.e. topology, flow
and host stores) that manage the network state. Thanks to
tailored experiments, we evaluate the exact amount of traffic
in function of the specific event or change of state in the
network and thus we develop some empirical models of the
ONOS inter-controller traffic. Our results are general in terms
of network topology and partition of the network into different
controller domains. The adopted methodology is also general
and provides experimental guidelines to extend our results to
an arbitrary number of SDN controllers. A preliminary version
of our work appeared in [6].

B. Organization of the paper

Sec. II introduces the general architecture of distributed
SDN controllers and describes the two main consistency mod-
els adopted to synchronize the data structures. We concentrate
on the specific distributed architecture of ONOS and describe
the two main protocols to achieve the consensus on the
data structures. We present in Sec. III the methodology we
adopt to quantify the impact of network related events on
the inter-controller traffic for a general distributed cluster of
SDN controllers. The subsequent three sections are devoted
to investigate the impact of updates occurring in different
shared data structures. Indeed, in Sec. IV we concentrate on
the store describing the network topology. The experimental
data allows us to devise a set of empirical models to estimate
the bandwidth for any network topology and any domain
partition (Properties 1 and 2). In Sec. V we concentrate on
the store describing the flow tables and investigate the impact
of flow modifications in the switches. Finally, in Sec. VI we
concentrate on the store recording the hosts attached to the
network switches. In Sec. VII we discuss some related work,
and finally in Sec. VIII we draw our conclusions.

II. DISTRIBUTED SDN CONTROLLERS

Fig. 1 shows a distributed SDN architecture with two
controllers managing a single network divided in two domains.
The traffic is exchanged directly among the controllers through
the east-west interface [7], which is in addition to the north-
bound interface (providing the APIs to interact with the
controller at application level) and the south-bound interface
(running a standard control protocol to manage the switching
devices, as OpenFlow), both available in any SDN controller.

To understand the role of the traffic exchanged by the
controllers, we start by describing an important result in the
theory of distributed systems.

A. CAP theorem

Consistency of shared data in distributed systems is a well
known and deeply investigated property. This property is
achieved with quite complex protocols and algorithms [8]. The
consistency dilemma is explained thoroughly using the famous
CAP theorem [9] which states the impossibility of enjoying

Domain
Controller A Domain

Controller B

East-west traffic

SDN network

Cluster of controllers

SDN Controller A SDN Controller B

Fig. 1: Distributed SDN architecture with a single cluster of
two controllers.

the following three properties at the same time: Consistency,
i.e. all the data reads access the latest written version of the
data; Availability, i.e. all data is accessible and can be updated;
Partition, i.e. the system is tolerant to node partitions.

Even if the proof of the CAP theorem is complex, a
convincing scenario to understand this property is a stor-
age system with the data replicated locally in two servers
connected through a communication link. If availability and
consistency are required at the same time (CA case), i.e.
each server should be able to update the local data and
access the most recent version of it, network partitions are
not allowed, since the two servers must always be able to
communicate an update to the other. Similarly, if availability
and tolerance to partitions is required (AP case), i.e. each
server should be able to update the local copy of the data, then
consistency cannot be guaranteed anymore when partitions
occur. Finally, if consistency and tolerance to partitions is
required (CP case), i.e. the servers must access the most recent
version of the data even in the case of partitions, availability
cannot be guaranteed since each server cannot update the local
copy in case of partitions. Depending on the pair of required
guarantees (CA, AP or CP) in a distributed system, a large
number of consistency protocols and algorithms have been
devised and implemented so far.

B. Consistency in distributed SDN controllers

In a distributed SDN scenario, consistency means that all
the controllers view the same network state, e.g. have the
same local copy of the network topology and of the node/link
availability state in their shared data structures. Any change
of state occurring on each controller (due to, for example,
new flow setups, link failures) must be promptly propagated to
the other controllers according to one consistency protocol. If
the controllers have an inconsistent view, the network policies
may not run correctly and this can lead to potential network
misbehaviors (as routing loops, packet drops, firewall leaks).
For example, consider Fig. 1: if the communication between
the east-west interfaces is not available, the control network
is partitioned. In this case if there is a change in topology
in controller B’s domain, then it will not be propagated to
controller A. Consequently controller A could take routing
decisions based on an older view of the network topology in
controller B’s domain that could lead to unexpected behaviors.

In the theory of distributed systems, many consistency
models have been defined. We concentrate here on just two of

3

them, which have a direct application in SDN networks.
1) Eventual consistency model: This model provides a

weak form of consistency, in sense that data modifications
on a certain controller will be eventually propagated on all
the other controllers. This implies that, for some time, some
controllers may read values different from the actual updated
ones; but after some time, all the controllers will have the
updated values, given that they are able to communicate. This
model is typically employed in distributed systems requiring
high availability. The anti-entropy protocol, implemented in
ONOS and described in Sec. II-C, supports this consistency
model.

2) Strong consistency model: This model ensures that each
controller always reads the most updated version of the data.
If certain data are not yet updated to all (or most of) the
controllers, then they are not allowed to be read, thereby favor-
ing consistency instead of availability. The RAFT consensus
protocol, implemented in ONOS and described in Sec. II-C,
supports this consistency model.

The controllers exchange some control traffic, denoted as
inter-controller traffic, through their east-west interfaces, to
synchronize their shared data structures. The adopted consis-
tency model heavily affects the inter-controller traffic, whose
evaluation and modeling is the main contribution of our work.

C. Distributed ONOS
We now focus on the specific distributed architecture of

ONOS controller, which allows to achieve a large scalability
and availability, thanks to a distributed cluster of controllers.
Each controller in the cluster is responsible of managing the
switches under its domain, and updating their state on the
distributed data stores. Each switch can connect to multiple
ONOS controllers for reliability, but only one will be its master
with full control on it in terms of read/write capabilities on the
switch forwarding tables. The other controllers are denoted as
slaves and one of them takes the control of a switch whenever
the master controller fails. Anytime a cluster of controllers is
set up, each controller interacts with all the other controllers,
thus the controllers are always logically connected in a full
mesh according to a peer-to-peer approach, using a specific
TCP port (9876) for their interaction. The controllers send
and accept keep-alive messages to/from other controllers to
monitor the other cluster members.

Two consistency protocols are implemented in the previous
and current (Ibis - Dec. 2016) versions of ONOS to manage
the distributed stores, each protocol tailored to guarantee a
specific level of consistency.

1) Anti-Entropy Protocol: It is based on a simple gos-
sip algorithm in which each controller chooses at random
another controller in the cluster every 5 seconds and then
sends a message, containing the timestamp of each entry, to
compare the actual content of its store with the other one.
After the synchronization messages are exchanged and the
stores are updated based on the timestamp of each entry
(i.e. more recent updates supersede the older ones), the two
controllers become mutually consistent. This ensures that all
the controllers achieve consensus according to an eventu-
ally consistent model. However, in parallel with the above

scheme, whenever an update occurs in the store managed by
a controller, this is immediately broadcasted to all the other
controllers in the cluster.

2) RAFT Protocol: It is a recently proposed scheme [10]
which provides strong consistency in ONOS. A RAFT imple-
mentation requires a cluster of nodes (i.e. controllers in our
scenario) each having a database termed as the “log” which is
replicated in all the nodes: each update is appended to this
shared data structure. The consistency is coordinated by a
leader node in the cluster, which is responsible for receiving
update requests from all the other nodes and then relaying log
updates to the other nodes. Once the majority of the followers
have acknowledged the update, this is actually committed to
the log. In the case of network partitions, only the side with the
majority of the nodes is able to update the log, thus avoiding
contemporary and conflicting updates in two different network
partitions. All the updates on the distributed stores are tracked
using logical timestamps, which allow to reconcile conflicts
based on the most recent updates.

In ONOS, multiple instances of RAFT protocol run simul-
taneously. The data structures in the distributed stores are
partitioned into shards, where each shard is managed by a
different RAFT instance. Partitioning is aimed at improving
scalability. The total number of partitions is N + 1 where N
is the number of controllers in an ONOS cluster. The partitions
are termed as p0, p1, . . . pN . Partition p0 encompasses all the
controllers in the cluster and is just for temporary storage,
which is reset if the controller shuts down. For durable storage,
the data is partitioned into N shards. The number of controllers
that participate in each partition is min (3, N), i.e. each shard
is shared among not more than 3 controllers. The partition p
holding the value corresponding to a given key k within a data
structure is chosen with a simple hash map h(·) as follows:

p = [h(k) mod N] + 1 (1)

Stores are the actual distributed data structures in ONOS.
Each store is based on either the Anti-Entropy protocol, RAFT
protocol or both. In particular, the main ONOS stores are:

• Mastership store, which keeps the mapping between each
switch to its master. It is managed by RAFT protocol.

• Network topology store, which describes the network
topology in terms of links and switches; consistency is
achieved using the anti-entropy protocol.

• Flow store, which is responsible for backing flows of each
switch from the master controller to the slave controller
on detecting a change in the flow table. The details of
the adopted consistency model are discussed in Sec. V.

• Host store, which maintains the list of the network hosts.
It is managed by RAFT protocol.

• Application store, which manages the inventory of appli-
cations, and adopts the anti-entropy protocol.

• Intent store, which manages the inventory of intents using
the anti-entropy protocol. Intents are part of the ONOS
Intent framework used by applications to define which
policy is operating on the network, without the details of
how the data plane must be actually programmed.

4

• Component configuration store, which stores system-
wide configurations for various software components in
ONOS. It adopts the anti-entropy protocol.

• Network configuration store, which is used to store net-
work configurations inserted into ONOS via the north-
bound (e.g. REST API) or the south-bound API (e.g.
OpenFlow). It adopts RAFT consensus algorithm.

• Security mode store, which manages permissions granted
to applications using RAFT protocol. Instead, security
violations are managed using the anti-entropy protocol.

Of all these distributed stores, the ones which are related
to the data plane behavior are network topology store, flow
store and host store, and each of them will be investigated in
a dedicated section (Secs. IV-VI). The other distributed stores
are specific of each application and are neglected as part of
our experimental work in order to keep our results general.

III. METHODOLOGY FOR INTER-CONTROLLER TRAFFIC
ANALYSIS

For prototyping and testing, a test setup based on a stan-
dalone Ubuntu 14.10 server machine is used. A cluster of
ONOS version 1.4.1 controllers runs in a set of Linux con-
tainers (LXC) [11] hosted on the server machine as shown
in Fig. 2. LXC was chosen since containers are lighter on
the CPU than virtual machines and do not show undesired
background traffic, thus allowing to easily identify all the
traffic generated by each instance of the controller. Notably,
the adopted choice of the operating system (OS) virtualization
is transparent for the controller instances, and thus our results
hold for any other virtualization system compatible with the
considered ONOS distribution.

We adopt Mininet-2.2.1 to emulate a network topology
consisting of OpenFlow compliant software switches. Each
switch is associated to one master controller and all the other
slave controllers.

As shown in Fig. 2, three logical network topologies are
created using virtual bridges available in Linux: 1) North-
bound Virtual Bridge, connecting the controllers to our test
application through the north-bound interfaces of the con-
trollers; 2) South-bound Virtual Bridge, connecting the net-
work emulated with Mininet to the controllers; 3) East-West
Virtual Bridge, connecting directly the controllers to each
other. The use of separate virtual bridges simplifies traffic
capture and management. We run Wireshark as a sniffer
to capture the inter-controller traffic between any pair of
controllers by capturing all the TCP traffic on the interface
of a controller towards the other controller(s). ONOS uses
port 9876 for the inter-controller communications, thus it is
simple to identify such traffic. The total inter-controller traffic
is sampled every Ts = 0.1 s to compute the consumed
bandwidth. The bandwidth samples are averaged through a
sliding window of Tw = 10 s.

In each experiment, we start the controllers and then we wait
until the initial transient phase ends. Then, appropriate events
are generated either on the south-bound interface through the
terminal commands available in Mininet, or on the north-
bound interface using our test application, which leverages

E
ast-W

est V
irtual B

ridge

North-bound Virtual Bridge

Controller C
NB-API

SB-API

South-bound Virtual Bridge

Test APP

LXC

Controller B
NB-API

SB-API
Controller A

NB-API

SB-API

Mininet

Fig. 2: Single-host testbed to investigate inter-controller traffic
for distributed SDN controllers.

the APIs exposed by the controller. To repeat an experiment,
we restart by rebooting the LXC container for each SDN con-
troller, to avoid residual data due to previous experiments. The
reboot procedure is necessary since affecting the “tombstone”
inter-controller traffic, as explained further in Sec. IV.

A. Implementation approaches for consistency models

The specific implementation of the shared data structures
across the controllers and the adopted consistency model have
significant impact on the inter-controller traffic. We categorize
the inter-controller traffic as a combination of the following
types of updates:
• incremental updates, or full updates: this feature de-

scribes the actual information that is exchanged among
controllers. In the case of incremental updates, only
the differences with respect to the previous updates are
exchanged. Since incremental updates must rely on a
coherent update of the previous states, the approach is
typically employed by a strong consistency model. In-
stead, in the case of full updates, the whole data structure
is exchanged. Full updates are typically exchanged for
eventually consistent data structures, due to the unreliable
state coherence among data structures.

• periodic updates, or event-driven updates: this feature
describes when the updates are issued. Periodic updates
are generated periodically over the time, whereas event-
driven updates are triggered by specific change of states
or events.

All the four combinations of the two above features are
possible in practice, as shown later in Secs. IV, V and VI.

The overall inter-controller traffic is due to the superposition
of the synchronization of different data structures, each of
them with a specific feature. Thus, to understand the traffic due
to a specific data structure, we specifically modify the data on
just a single data structure, generating carefully crafted events
in the test application or in the Mininet topology.

We measure the traffic due to each update event in terms of
amount of data or bandwidth. For the first case, we measure the
additional traffic generated during the transient phase. For the
second case, we just evaluate the derivative of the cumulative
amount of exchanged traffic. Notably, the transient phase is
identified as included between two periods of steady-state
bandwidth values, as shown in Fig. 3. Interestingly, as shown

5

B
a
n
d
w

id
th

Time

Transient

Event

Fig. 3: Transient phase detection

Sniffer
Mininet

ONOS
Controller A

ONOS
Controller B

Sniffer

Mininet

ONOS
Controller A

ONOS
Controller B

ONOS
Controller C

Fig. 4: Experimental testbed for 2 and 3 ONOS controllers

in Sec. IV, the bandwidth after the transient phase may be
different from the initial one.

IV. DISTRIBUTED TOPOLOGY STORE

We evaluate the traffic exchanged among the ONOS con-
trollers due to the network topology store. Our results are
general since they apply to any network topology and any
partition of the network into controller domains. To highlight
the role of the topology, we adopt a time-variant topology
in which the number of active switches and active edges
changes with the time. By measuring the variation of the inter-
controller traffic, we are able to understand the detailed effect
of modifications in the topology store.

We consider two main scenarios, both shown in Fig. 4:
the first one with 2 controllers and the second one with 3
controllers belonging to the same cluster. We denote with
A, B and C the instances of the controller, running within
the same controller cluster. Let S be the total number of
switches in the network topology and L be the corresponding
number of (bidirectional) links. We adopt some simple test
network topologies to highlight the individual contribution of
each network element (switch or link) and thus obtain general
results holding for any topology. In the isolated topology we
have S isolated switches without links (L = 0). In the linear
topology, S switches are connected linearly (L = S − 1). In
the star topology, S − 1 switches are connected to the same
central switch (L = S − 1). We repeat all the experiments 20
times and compute the 98% confidence intervals.

The inter-controller traffic generated among the controllers
due to the topology store is periodic with full updates. This is
due to the adoption of anti-entropy protocol for maintaining
consistency in network topology store. Another contribution is
periodic with incremental updates and it is due to the LLDP
packets sent for the topology discovery received on the south-
bound interface, as later discussed in Sec. IV-B.

A. Transient behavior in the linear topology with 2 controllers

In Fig. 5 we show the communication bandwidth from
controller A to controller B for a linear topology with S = 10,

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0 50 100 150 200 250 300 350

B
an

d
w

id
th

 [
k
b
p
s]

Time [s]

Zero Bandwidth 1

Transient 1
Steady State

Zero Bandwidth 2

Transient 2

Fig. 5: Traffic from controller A to B by adding and removing
a linear topology S = 10, L = 9

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

A→B

Curve Fitted

Lower Conf

Mean

Upper Conf

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

B→A

Curve Fitted

Lower Conf

Mean

Upper Conf

Fig. 6: Isolated topology associated to controller A as master
in the scenario with 2 controllers

with all the switches managed by controller A. We start with
no topology (S = 0, L = 0) added to controller A; at time
120 s the linear topology is added (S = 10, L = 9); at time
240 s the linear topology is removed. At the beginning of the
experiment we observe an initial communication of 63 kbps
(denoted as Zero Bandwidth 1). When the linear topology is
added, after a short transient phase, the traffic reaches 88 kbps.
When the network is removed, the bandwidth reaches 78 kbps
(denoted as Zero Bandwidth 2). This value is different from
the initial one at the beginning of the experiment, and it is
due to the exchanged “tombstone” traffic. Tombstone traffic is
due the anti-entropy protocol and refer to devices, links and
hosts which have been removed from the active topology. The
reason for it is to react faster to network partitions. Indeed, in
the case of temporary network partitions, keeping tombstones
minimizes the variation in the internal topology store, and
thus the allocation/deallocation of memory for the internal data
structures. Notably, after each experiment, the LXC container
is rebooted so that no tombstone traffic persists in the observed
traffic.

B. Scenario with 2 controllers

We investigate the traffic exchanged by controllers A and B
in steady state for different sizes of the topology, in which all
the switches are under A’s control. Fig. 6 shows the bandwidth
from A to B and vice versa, when an isolated topology is
added to controller A. We show also the confidence intervals
and one linear curve fitting the experimental measurements.
Similarly, Fig. 7 shows the bandwidth when a linear topology
is added to controller A. Both graphs show that the bandwidth
is increasing linearly in both communication directions. This is
coherent with the linear growth of the internal data structures,

6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

A→B

Curve Fitted

Lower Conf

Mean

Upper Conf

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

B→A

Curve Fitted

Lower Conf

Mean

Upper Conf

Fig. 7: Linear topology associated to controller A as master
in the scenario with 2 controllers

based on hash tables. Moreover, the bandwidth for A→ B is
larger than B → A. If we consider that the topology store is
distributed with the anti-entropy protocol, we should expect
a symmetric behavior. Instead at controller A, the topology
is periodically refreshed (even if not changing) through the
LLDP packets received on the south-bound interface for topol-
ogy discovery. This causes an update on the topology store,
which generates additional traffic from A to B and causes
the asymmetry. In addition, port and flow statistics gathered
periodically by controller A are also sent to B.

Due to the internal data structures, whose memory occu-
pancy grows linearly with the number of elements (nodes and
links), we can assume that the exchanged traffic B in each
direction is proportional to the size of the topology store:

B = S · bs + L · bl + b0 (2)

where we used the notation in Table I. By applying (2) to the
linear topology (L = S−1) and to the isolated topology (L =
0) considered in our experiments, we can write the following
system of equations, assuming that A is master controller of
all the switches in the network:

BL
A→B = S · bsA→B + (S − 1) · blA→B + b0

BL
B→A = S · bsB→A + (S − 1) · blB→A + b0

BI
A→B = S · bsA→B + b0

BI
B→A = S · bsB→A + b0

(3)

This system can be solved by measuring BL
x→y , BI

x→y , for
any x, y ∈ {A,B} (x 6= y) and b0 and thus estimating
the remaining unknown values of per-link and per-switch
bandwidth.

Based on our measurements, we observe always a constant
value of zero bandwidth equal to b0 = 62.46 kbps (obtained
with 3.6% accuracy at 96% confidence level) for the both
directions, given our measurements. Thus, solving the system
in (3), we obtain experimentally:

blA→B = 1.63 kbps blB→A = 0.11 kbps (4)
bsA→B = 4.65 kbps bsB→A = 0.80 kbps (5)

So far all the network switches have been associated to the
same controller. In order to extend our model to any topology,
arbitrarily partitioned among two controller domains, we need
to evaluate the effect of inter-domain links, i.e. connecting
one switch in one domain with another in the other domain.

TABLE I: Notation for traffic in the scenario with 2 controllers
x and y

Symbol Meaning
B generic unidirectional bandwidth
b0 generic zero bandwidth
bs average unidirectional bandwidth per switch
bl average unidirectional bandwidth per intra-domain link
bd average unidirectional bandwidth per inter-domain link,

(shared also by target controller for 3 controller scenario)
be average unidirectional bandwidth per inter-domain link,

(external to target controller for 3 controller scenario)
BI

x→y bandwidth from x to y in isolated topology
BL

x→y bandwidth from x to y in linear topology
bsx→y average bandwidth from x to y per switch
blx→y average bandwidth from x to y per intra-domain link

ONOS
Controller A

ONOS
Controller B

Fig. 8: Scenario with a star topology

Domain
Controller A

Domain
Controller B

ONOS
Controller A

ONOS
Controller B

Fig. 9: Notation depicting the network topology in the scenario
with 2 controllers

We consider the star topology in Fig. 8, in which we vary
the number of switches and consequently the number of inter-
domain links. Now the observed bandwidth in one direction
is obtained by summing the following contributions: BI for 1
switch to model the switch in controller A’s domain; BI for
S−1 switches to model the S−1 switches in B’s domain; S−1
times the average bandwidth per inter-domain link bd. Using
the same methodology before and exploiting the estimated
values obtained so far, we estimate that the average bandwidth
per inter-domain link is

bd = 0.63 kbps (6)

By combining the results so far and the estimated band-
widths in (4), (5) and (6), we can claim the following, by
referring to the notation in Table II:

Property 1: In an arbitrary network managed by a ONOS
cluster of 2 controllers A and B, the traffic exchanged from
controller x to controller y is:

Bx→y = 62.46 + 4.65 · Sx + 1.63 · Lx + 0.80 · Sy

+ 0.11 · Ly + 0.63 · Lxy [kbps] (7)

for x = A and y = B, or for x = B and y = A.

7

TABLE II: Notation describing the network topology in the
scenario with 2 controllers. Let x be a controller, with x ∈
{A,B}.

Symbol Meaning
Sx number of switches in controller x’s domain
S total number of switches in the network
Lx number of intra-domain links in controller x’s domain
LAB number of inter-domain links
L total number of links in the network

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

A→B or A→C

Curve Fitted

Lower Conf

Mean

Upper Conf

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

B→A, C→A or B↔C

Curve Fitted

Lower Conf

Mean

Upper Conf

Fig. 10: Isolated topology added to controller A in the scenario
with 3 controllers

Let BTOT = BA→B + BB→A be the total exchanged traffic
among the two controllers. Referring to the notation in Table II
and depicted in Fig. 9, we claim:

Corollary 1: In an arbitrary network managed by a ONOS
cluster of 2 controllers A and B, it holds

BTOT = 124.92 + 5.45 · S + 1.74 · L− 0.48 · LAB [kbps]

Thus, the total inter-controller traffic grows linearly with
respect to the number of switches and links in the topology.

We validated the above formulas by considering multiple
scenarios, including full mesh topologies, ring topologies,
irregular topologies. All the experimental results have been
always compatible with the model prediction of Property 1
within 98% confidence interval. The details are omitted for
the sake of space.

C. Scenario with 3 controllers

The methodology adopted in the previous scenario is now
extended to the 3 controllers scenario using the configura-
tion shown in Fig. 4. We start by adding the topology to
controller A. For symmetry, the bandwidth BA→B = BA→C;
as no topology is added to controllers B and C, similarly
BB→A = BB→C = BC→A = BC→B. Fig. 10 shows the
bandwidth from A to B and vice versa, when an isolated
topology is added to controller A.

Fig. 11 shows the bandwidth when a linear topology is
added. As compared to Fig. 6 and 7, the bandwidth values
in the 3-controller case are lower than the 2-controller case.
This is due to the anti-entropy protocol: periodically, each
controller randomly selects another controller to synchronize
the network topology. Say the synchronization rate for each
controller is λ. Thus the average contribution of this process
on each link is 3λ/6 = λ/2, since 6 possible links are
present with 3 controllers. Instead, in the case of 2 controllers,
the average contribution was 2λ/2 = λ. Thus, a reduction

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

A→B or A→C

Curve Fitted

Lower Conf

Mean

Upper Conf

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

B→A, C→A or B↔C

Curve Fitted

Lower Conf

Mean

Upper Conf

Fig. 11: Linear topology added to controller A in the scenario
with 3 controllers

of a factor 2 in the bandwidth due to the enti-entropy is
expected. In the figure, the reduction is much lower, due to
the lower impact of this protocol with respect to the topology
updates sent by the master controller of a switch and caused
by LLDP packets, as explained in Sec. IV-B. Globally, the
bandwidth exchanged in each direction is still proportional to
the size of the topology store. Following the assumption while
deriving (2) and considering that the topology is only added to
controller A, the following system of equations can be written
with the notation in Table I:

BL
A→B = S · bsA→B + (S − 1) · blA→B + b0

BL
B→A = S · bsB→A + (S − 1) · blB→A + b0

BI
A→B = S · bsA→B + b0

BI
B→A = S · bsB→A + b0

which can be solved numerically. The zero bandwidth between
any two controllers here is b0 = 47.81 kbps (obtained with
4.15% accuracy at 98% confidence level).

Thus, we obtain:

blA→B = blA→C = 1.43 kbps (8)

blB→A = blB→C = blC→A = blC→B = 0.06 kbps (9)
bsA→B = bsA→C = 4.43 kbps (10)

bsB→A = bsB→C = bsC→A = bsC→B = 0.46 kbps (11)

To extend our empirical model to any topology, arbitrar-
ily partitioned among the two controller domains, the star
topology in Fig. 8 is considered albeit with 3 controllers
and no switch added to controller C, in which we vary the
number of switches and thus the inter-domain links. In this
scenario, the bandwidth originating from each controller to
the other two controllers is different, since different num-
ber of switches are added to each controller. Hence, here
BB→A = BB→C 6= BC→A = BC→B. Furthermore, the average
unidirectional bandwidth per inter-domain link in this case is
bd for controllers A and B, but it is be for controller C, since
the links are external to it but of inter-domain type. Now the
observed bandwidth in one direction is obtained by summing
the following contributions: BI for 1 switch to model the
switch in A’s domain; BI for S−1 switches to model the S−1
switch in B’s domain; S − 1 times the average bandwidth per
inter-domain link bd and S − 1 times the average bandwidth
per external inter-domain link be.

8

TABLE III: Notation describing the network topology in the
scenario with 3 controllers. Let x, y be two distinct controllers,
with x, y ∈ {A,B,C}.

Symbol Meaning
Sx number of switches in controller x’s domain
S total number of switches in the network
Lx number of intra-domain links in controller x’s domain
Lxy number of inter domain links between x and y
L total number of links in the network

LID total number of inter-domain links in the network

Using the same methodology before, and exploiting the
estimated values obtained so far, we are able to estimate that
the average bandwidth per inter-domain link as:

bd = 0.77 kbps be = 0.15 kbps (12)

By combining the results so far and the estimated band-
widths in (8), (9), (10), (11) and (12), we can claim the
following:

Property 2: In an arbitrary network managed by a ONOS
cluster of 3 controllers A, B and C, the traffic exchanged from
controller x to controller y is:

Bx→y = 47.81 + 4.43 · Sx + 1.43 ·Lx + 0.46 · (Sy + Sz)+

0.06 · (Ly + Lz) + 0.77 · (Lxy + Lxz)+

0.15 · Lyz [kbps] (13)

for any selection of distinct controllers x, y, z ∈ {A,B,C} (i.e.
such that x 6= y, x 6= z and y 6= z).
Let BTOT = BA→B + BA→C + BB→A + BB→C + BC→A +
BC→B be the total exchanged traffic among the 3 controllers.
Referring to the notation in Table III, we can claim:

Corollary 2: In an arbitrary network managed by a ONOS
cluster of 3 controllers, the total traffic exchanged among the
3 controllers is

BTOT = 286.86 + 10.7 · S + 3.10 · L+ 0.28 · LID [kbps]

where LID = LAB + LBC + LAC. Thus, also in this scenario,
the total traffic appears to be proportional to the number of
switches and the number of edges in the topology.

D. Inter-controller traffic in real ISP topologies

To prove the wide applicability of our approach, we ap-
ply the empirical models of Property 1 (for 2 controllers)
and Property 2 (for 3 controllers) to 262 real ISP network
topologies obtained from the Internet Topology Zoo [12] to
obtain the inter-controller traffic in case of a distributed ONOS
cluster managing the whole ISP network. The number of nodes
and edges in each ISP is shown in Fig. 12 and show a high
variety, even if in most of the cases the topology graph is
not dense. This is reasonable, since for a large (in term of
geographical distance) ISP, dense graphs are expensive and this
fact advocates a careful design of the in-band communication
network to support inter-controller traffic.

In order to obtain results regarding the inter-controller traffic
that are independent from the controller chosen as the master
for each switch, we evaluate the maximum and minimum value
of the inter-controller traffic by assuming (without loss of

 1

 10

 100

 1000

 0 50 100 150 200 250

N
o
d
es

/E
d
g
es

ISP

Nodes
Edges

Fig. 12: Size of the network topologies considered for the
inter-controller traffic in real ISP topologies

 10

 100

 1000

 10000

 0 50 100 150 200 250

B
an

d
w

id
th

 [
k
b

p
s]

ISP

2 controllers: A→B
3 controllers: A→B, A→C
2 controllers: B→A
3 controllers: B→A, C→A, B↔C

Fig. 13: Estimated inter-controller traffic, between pairs of
controllers, due to the topology store for realistic ISPs

generality) that each switch in the ISP topology is connected
to a single controller denoted as A. This is because the
contribution to the inter-controller traffic for a controller is
maximum when all the switches are in controller A’s domain
(i.e. SA = S, LA = L, SB = LB = 0), as when applying
(7), the coefficients for SA and LA are larger. Conversely, this
assumption minimizes the traffic generated by controller B
towards A. A similar argument can be used in (13) to show that
the upper and lower bounds can still be obtained by associating
all the switches to controller A.

Fig. 13 shows the average amount of inter-controller traffic
for each ISP, exchanged between pairs of controllers. In the
case of 2 controllers, traffic A→ B and B→ A give the maxi-
mum and minimum values. In the case of 3 controllers, traffic
A → B or A → C provide the maximum values, whereas
B → A, C → A or B ↔ C provide the minimum. According
to our experiments, the maximum inter-controller traffic in the
2-controllers scenario for the 261st ISP is BA→B = 5029 kbps
and the minimum is BB→A = 763.75 kbps. Both values are
practically relevant, since for a generic partitioning of the
network in two controller domains, a bandwidth of about 1-10
Mbps must be guaranteed among the pair of controllers, just
to synchronise the topology store.

Similarly in the 3-controller case, the maximum inter-
controller traffic for the 261st ISP is BA→B = 4668.8 kbps
and the minimum is BB→A = 447.73 kbps. Also in this case
the actual traffic is practically relevant, since about 1-10 Mbps
is again required to support the communication among any pair
of controllers. By comparing the results in Fig. 13 referred to
different number of controllers, the traffic reduction is evident
for 3 controllers with respect to 2 controllers case, as already

9

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120

B
an

d
w

id
th

 [
k

b
p
s]

Time [s]

A→B

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120

B
an

d
w

id
th

 [
k

b
p
s]

Time [s]

B→A

Fig. 14: Effect of a single flow addition the occurring at time
50 s on the synchronization of the flow store

observed in Sec. IV-C.

V. DISTRIBUTED FLOW STORE

In ONOS, a copy of each switch’s flow table is maintained
in the flow store by its respective master controller and by the
first slave controller, i.e. the new master if the current master
fails. We investigate the impact of modifying the switches’
flow tables by OpenFlow flow-mod commands.

To synchronize the flow stores within the ONOS cluster,
according to the code available in [13], the following process
occurs: every 2 seconds, the master controller checks for any
change in the flow table of each switch under its domain since
the last backup to the slave controller. The change detection
is based on comparing the time when the flows changed in a
switch and the time of the last backup to the slave controller.
Interestingly, in the case of a single modification of a flow,
the whole flow store of the corresponding switch is copied to
the slave controller.

As an example, consider the bandwidth measurement shown
in Fig. 14, referring to the scenario in which a switch is
connected to master controller A and slave controller B.
Initially, the switch has 5004 flows installed in it. At around
time 50s, one additional flow is installed on the switch,
which causes the controller A to backup the whole flow table
(5005 flows) to controller B. This results in a transient traffic
increase, just for the traffic A→ B.

A. Experimental methodology

We describe here the adopted methodology to calculate data
exchanged per flow, i.e. taking into account the contribution of
each individual flow. According to the previous observations,
the flow store backup from the master controller to one slave
controller is a transient phenomenon, thus the inter-controller
traffic is event-driven with full updates, according to the
classification in Sec. III-A. By observing the traffic with the
sniffer, we discover that ONOS adds the string “flow-backup”
in its packets when backing the switch flow table. Thanks to
this observation, we can easily isolate the traffic due to the
flow table backup.

We adopt the testbed illustrated in Fig. 15. The topology
consists of one isolated switch connected to one master and
one slave controller. The flows to be installed are configured
on the master controller through the ONOS north-bound REST
APIs (step 1). As a consequence, the flows are installed

Mininet Switch

1.
 R

E
ST

 A
PI

3. Flow Backup

2. South-bound Flow Mod

Sniffer

ONOS
Controller A

(Master)

ONOS
Controller B

(Slave)

Fig. 15: Methodology to investigate the effect of flow modifi-
cations in the inter-controller traffic

on the switch via the controller south-bound interface using
OpenFlow (step 2) and then the controller backups the flow
table to the slave controller (step 3).

To obtain general results, we test different types of flows
with different versions of OpenFlow, while varying the number
of flows, in order to evaluate the minimum and the maximum
amount of data exchanged per flow. Let F be number of
new added flows whose effect must be analyzed. We start by
installing F − 1 flows. After the traffic has reach a steady
state, we install a single additional flow, in order to avoid
multiple backups. Thanks to the traffic trace, we calculate the
data exchanged per flow by computing the ratio of observed
data on the network (in terms of Ethernet packet size) by the
number of flows in the table.

The amount of per-flow data depends on the adopted
“match” and “actions” fields adopted in the experiments,
which in turn, depend also on the specific version of Open-
Flow. ONOS version 1.4.1 supports two versions of Open-
Flow: 1.0 [14] and 1.3 [15]. In order to get general results,
we devise two types of flow definitions to be added in the
table. Type-1 is forged to be the flow definition with the
minimum size, corresponding to the smallest flow-mod
packet (on the south-bound interface) and thus the minimum
inter-controller traffic. Type-2 is instead forged to be the flow
definition with the maximum size. In order to induce a constant
synchronization traffic among the controllers, we generate a
new flow by changing the value of just one matching field.
For OpenFlow 1.0, we configure Type-1 flow definitions by
just setting the EtherType matching field and a basic forward
action, as shown in Table IVa, and we vary just the EtherType
field for each new flow. Instead, we configure Type-2 flow
definitions by setting all the 10 matching fields available in
the REST APIs exposed by ONOS for OpenFlow 1.0 and all
the 8 allowed actions, as shown in Table IVb. Similarly, for
OpenFlow 1.3, we use the same Type-1 definitions as before,
shown in Table Va. Instead, for Type-2 definitions we set all
16 match fields and all the 11 available actions in Table Vb.
Notably, we exploit IPv6 fields since they require a larger
number of bits for their definitions. In all Type-2 definitions,
we vary the TCP source port field for each new flow.

B. Experimental results

Fig. 16 shows the amount of data exchanged per flow
averaged on 10 experiments, for all possible 4 possible cases,
combining Type-1 and Type-2 flow definitions with the two
considered OpenFlow versions. As a reminder, this data in-
cludes all the packet overheads starting from the Ethernet

10

TABLE IV: Types used for
OpenFlow 1.0 experiments

(a) Type-1
Field

Match EtherType
Action Output to Controller

(b) Type-2
Field

Match

Input Port
Ethernet Source/Destination
Ethernet Type
IPv4 Source / Destination
IP Protocol Type / DSCP
TCP Source/Destination Port

Action

Output to Controller
Change VLAN ID / PCP
POP VLAN
Change Ethernet Source / Destination
Change IPv4 Source / Destination

TABLE V: Types used for
OpenFlow 1.3 experiments

(a) Type-1
Field

Match EtherType
Action Output to Controller

(b) Type-2
Field

Match

Input Port
Metadata
Tunnel ID
VLAN ID / PCP
Ethernet Source / Destination / Type
IPv6 Source / Destination / Flow label
IP Protocol Type / DSCP / ECN
TCP Source / Destination

Action

Output to Controller
Change VLAN ID / PCP
POP VLAN
Change Ethernet Source / Destination
Change Tunnel ID
Change IPv6 Source / Destination
Change TCP Source / Destination

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

P
er

-f
lo

w
 d

at
a

[b
y
te

s]

Number of flows

Type-1 flow definition

OpenFlow1.0
OpenFlow1.3

 250

 300

 350

 400

 450

 0 1000 2000 3000

P
er

-f
lo

w
 d

at
a

[b
y
te

s]

Number of flows

Type-2 flow definition

OpenFlow1.0
OpenFlow1.3

Fig. 16: Inter-controller data exchanged for each flow

PDU. All the graphs show that per-flow data converge to
a fixed value, which can be evaluated for a large enough
number of flows. Table VI compares the inter-controller data
for each flow, evaluated for the fixed value obtained in Fig. 16
with the value obtained by observing the size of the corre-
sponding flow-mod packet (including the Ethernet PDU for
fair comparison). As the “match” and “action” fields increase
from Type-1 to Type-2, the size of per-flow data increases
for both OpenFlow versions. By comparing the two right-
most columns, the inter-controller data exchanged for each
flow appears comparable with the size of the corresponding
flow-mod packet. The difference is due to the different internal
format1 and the packet overheads. Type-1 always corresponds
to 110 bytes for each flow in the inter-controller traffic due
to the same internal representation in ONOS, whereas Type-
2 shows a different size depending on the OpenFlow version
due to the different match and action fields that are exploited.
Thanks to the larger number of available fields, each flow can
require up to 409 bytes to be synchronized across the other
controllers.

To understand the practical impact of the above experimen-
tal results, we observe that the adopted full update scheme
in the flow store may generate large synchronization traffic
among the controllers, especially when the flow table is large.
Thus, we now evaluate the maximum traffic generated in some
commercial switches assuming that (i) the flow table is full,

1OpenFlow adopts Extensible Match (OXM) representation [15] to allow
variable “match” field in the south-bound.

TABLE VI: Experimental results due to the modification of
flow store

OpenFlow Flow Per-flow exchanged data [bytes]
Version Type OpenFlow packet Inter-controller data

1.0 Type-1 146 110
Type-2 218 304

1.3 Type-1 154 110
Type-2 458 409

TABLE VII: Maximum inter-controller traffic generated in
some commercial OpenFlow switches due to flow store up-
dates

Commercial Switch Maximum Maximum
flow rules inter-controller traffic [Mbps]

Dell PowerConnect 8132F 750 0.91
HP ProCurve 5406zl 1500 1.83
Pica8 P-3290 2000 2.43

(ii) at least one flow modification occurs every 2 seconds,
(iii) OpenFlow 1.0 Type-2 flow definitions are adopted in
each flow update. Thus, a table update is triggered every 2
seconds, requiring the exchange of the full flow table, and
each flow entry corresponds to 304 bytes, based on the results
of Table VI. We consider the physical OpenFlow 1.0 switches
analyzed in [16] with the maximum number of flow rules
specified in Table VII, where we also show the numerical
results for the worst-case inter-controller traffic due to flow
updates evaluated based on the previous assumptions. Notably,
the bandwidth required to backup the flow table is in the order
of Mbps which is relevant, due to just one flow update every
2 seconds.

The above experimental results can be used to compute the
inter-controller traffic due to the changes in a flow table for a
network, with an arbitrary number of controllers and domains.
For this purpose, the master and the first slave controller
of each switch must be known, along with the information
regarding the existing flows in the switch.

VI. DISTRIBUTED HOST STORE

We describe the impact of the presence of hosts in the
network on the inter-controller traffic. Events generated due
to hosts in data plane have a transient effect on the inter-
controller traffic. This is due to the fact that host information
is exchanged among the controllers in a strongly consistent
manner backed by RAFT consensus protocol; thus we classify
this traffic as event-driven with incremental updates.

A. Methodology

The event according to which a host is added to a switch
controlled by ONOS impacts on two data structures. First, an
additional port is added to the data structure representing the
switch in the topology store. Second, the information about
the new host is recorded in the host store. Thus, the inter-
controller traffic is affected by two different protocols: the
anti-entropy for the topology store, generating periodic and full
updates, and RAFT for the host store, generating event-driven
and incremental updates. In order to distinguish between the
two contributions, we adopt the following methodology.

11

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

P
er

-h
o
st

 d
at

a
[b

y
te

s]

Experiment Number

256 Hosts

A→B
B→A

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

P
er

-h
o
st

 d
at

a
[b

y
te

s]

Experiment Number

1024 Hosts

A→B
B→A

Fig. 17: Scenario with 2 controllers and all hosts added to the
switch whose master controller is A

We exploit the north-bound REST APIs to connect multiple
hosts (distinguished by different MAC addresses) to the same
port of the switch. In such a way, we avoid adding a new port
to the switch for each new host. We actually define a dummy
switch at which all the hosts are connected, and in this way
we avoid to use Mininet as network emulator. We proceed by
simultaneously adding a batch of hosts to the same dummy
switch. By evaluating the traffic increment due the transient
phase induced by the hosts addition, we evaluate the average
amount of data exchanged between the controllers for each
new added host. The experiments are carried out for 2 and 3
controllers. Each experiment is repeated 100 times.

B. Experimental results for 2 controllers

We start by considering the scenario with 2 controllers.
Fig. 17 shows the result of inter-controller data per host,
with the hosts added to controller A. The results depend on
the specific role of the controller (leader or follower of the
corresponding shard) that acts as master of the switch at which
the hosts are added. Notably, this role cannot be set a-priori
and changes randomly for each experiment. By changing the
number of added hosts in a batch the results are the same, thus
our numerical results appear to be reliable. By observing the
inter-controller data for each host (denoted as D) for different
number of hosts that are added in batch, we identify three
different behaviors which depend on the roles of the controllers
in managing the shards:
• Case 1: Controller A is the leader of all shards of the

host store. From the graphs, DA→B ≈ 1000 bytes and
DB→A ≈ 500 bytes.

• Case 2: Controller B is the leader of all shards of the
host store. Both DA→B and DB→A ≈ 2000 bytes.

• Case 3: Each controller is the leader of at least one shard.
DA→B ≈ 1500 bytes and DB→A ≈ 1200 bytes.

Recall that controller A is always master of the switch to which
the hosts are added. The different data values obtained in the
3 scenarios are explained in the following paragraphs. The
results in Fig. 17 are grouped based on the above cases.

Case 1 and 2 are the most interesting as they give an upper
and lower bound respectively to the per-host data. In case 1,
controller A is master and manages directly the host updates
received from the switch. Controller A is also the leader for
all the shards and thus directly updates the follower controller
B, which corresponds to the minimum amount of exchanged

REST API (Host)
Append (Host)

Append done

Commit done

ONOS
Controller
(Leader)

ONOS
Controller
(Follower)

(a) All hosts added to the leader
controller

REST API (Host)
Update (Host)

Append (Host)

Append done

ONOS
Controller
(Leader)

ONOS
Controller
(Follower)

Commit done

(b) All hosts added to the follower
controller

Fig. 18: Scenario with 2 controllers for distributed host store

data. This is clear from the protocol behavior as shown in
Fig. 18a: once the leader receives information about the host
from REST API, it sends this to the follower. The follower
adds this instruction to its log and sends a message to the
leader that it is updated. The leader then sends a “commit
done” message to the follower to end this transaction.

Instead in case 2, controller B is the leader of all the shards.
Thus when a host is added to the switch whose master is
controller A, acting as follower for the host store, then A
must update the leader B first before anything is committed,
as shown in the protocol diagram in Fig. 18b. After B is
notified, the same sequence of messages is observed as in
Fig. 18a. The additional messages exchanged in case 2 explain
the larger traffic with respect to case 1. Observe now that
the actual experimental values are not consistent if only a
single message was added in case 2 (denoted “Update host” in
Fig. 18b). For example in case 1, the follower sends around
500 bytes per host to the leader while in case 2, it sends
around 2000 bytes. This can be explained as the Network
Configuration Subsystem (i.e. a ONOS internal module) is
involved whenever a host is added to a controller. When
a controller receives a host to be updated, the Network
Configuration Subsystem does a read operation on a strongly
consistent data structure backed by RAFT. This read operation
is done on the leader. If the controller is itself the leader, the
read operation is served locally as in case 1. Instead, the read
operation is served remotely by the leader in case 2. This adds
extra messages to the inter-controller traffic, which amounts
to extra data exchanged per host.

C. Experimental results for 3 controllers

We now consider the scenario with 3 controllers. Since
the results in the previous scenario with 2 controllers depend
heavily on the role of the controllers, we adopt the following
methodology, in order to just find an upper and lower bound
on the inter-controller traffic.

In each experiment, we start all the containers with ONOS
controllers and then check if one specific controller is by
chance the leader of all partitions of all the data structures,
by following the logs of the leader election phase in RAFT
consensus protocol; otherwise the containers are rebooted.
The 3-controller cluster includes a leader and two follower
controllers F1 and F2. Two specific cases are adopted to
achieve a lower and upper bound on amount of data exchanged
per host:
• Case 1: All hosts are added to the switch whose master

is the leader controller.

12

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

P
er

-h
o
st

 d
at

a
[b

y
te

s]

Experiment Number

Case 1

Leader → Follower F1
Leader → Follower F2
Follower F1 → Leader
Follower F2 → Leader

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

P
er

-h
o
st

 d
at

a
[b

y
te

s]

Experiment Number

Case 2

Fig. 19: Scenario with 3 controllers and all hosts added to the
leader (case 1) or to one follower (case 2)

REST API (Host)

Append (Host)

Append done

Commit done

Append (Host)

Append done

Commit done

ONOS
Controller
(Leader)

ONOS
Controller

(Follower 2)

ONOS
Controller

(Follower 1)

Fig. 20: Scenario with 3 controllers and all hosts added to the
leader controller

• Case 2: All hosts are added to the switch whose master
is one follower controller (assume F1).

Similarly to the scenario with 2 controllers, case 1 produces
the minimum amount of inter-controller traffic due to host
addition, whereas case 2 the maximum one.

The data exchanged for each host update is shown in
Fig. 19. The results show that, regardless of the role of the
controllers, the minimum amount of data for each flow is
around 500 bytes and the maximum one is around 2000
bytes, coherently with the previous scenario. To understand the
actual values, we observe the protocol diagrams for the RAFT
messages for the two cases, as reported in Figs. 20 and 21.
Case 1 for 3 controllers achieves the same amount of data for
each flow than in the 2 controllers case. This is because the
data structure is updated in the same manner. Case 2 on the
other hand has a different behavior. Fig. 19 shows that the
data between the leader and F1 is same as that of case 2 for 2
controllers; on the contrary, the data between leader and F2 is
equivalent to add a host to the leader. This is due to the fact
that the Network Configuration Subsystem comes into play in
the communication between leader and F1, since F1 does a
read operation while accessing the leader. This read operation
is not done on the communication between the leader and F2.
The traffic between the two followers F1 and F2 in all cases
does not vary as all the read and write operations in RAFT
are done through the leader.

Notably, in the RAFT implementation of ONOS, no more
than 3 controllers constitute a partition. Thus the lower and
upper bound of data exchanged per host within a partition
computed in the previous section are expected to hold in
general, independently from the number of controllers in the
cluster.

Append (Host)

Append done

Commit done

Append (Host)

Append done

Commit done

ONOS
Controller
(Leader)

ONOS
Controller

(Follower 2)

ONOS
Controller

(Follower 1)
REST API (Host)

Update (Host)

Fig. 21: Scenario with 3 controllers and all hosts added to the
follower controller F1

VII. RELATED WORK

The need of a distributed SDN architecture has been thor-
oughly advocated in literature, since it provides resiliency and
scalability as compared to a centralized single controller im-
plementation. Onix [17] is a type of distributed SDN controller
which uses partitioning to introduce scalability in distributed
SDN. In Onix, although the network topology information
known as Network Information Base (NIB) is fully replicated
on all the cluster nodes, in a way similar to the topology
store in ONOS, yet the information such as forwarding state
of devices and link utilization levels are partitioned among
controllers, similarly to what RAFT does in ONOS.

Consistency issues in distributed SDN data plane have been
highlighted in [1], which extended the classic CAP theorem
for distributed systems. [1] discusses examples of network
policies operating under network partitions and highlights the
advantages of an in-band control plane in distributed SDN
controllers. Indeed, out-of-band control information among the
controllers may provide less resilience than in-band control
one. The intuitive idea is that, for pure in-band control, only
in case of data plane partitions the controllers are actually
partitioned. Instead, in case of out-of-band control plane, it
may happen that the data plane is fully working whereas the
control plane is partitioned, creating inconsistency problems.
Our work is strongly motivated by the need to understanding
deeply the bandwidth required to implement an efficient trans-
portation of in-band control information, and this is crucial for
network planning purposes.

Recently, [18] proposed a centralized in-band synchro-
nization approach to achieve a consistent behavior across
distributed controllers. Coherently with the motivations of our
work, the authors advocate the use of in-band control signaling
and highlight the importance of achieving consistency among
the controllers. They propose a new set of atomic primi-
tives to ensure consistency, and our proposed experimental
methodology could be applied also to their consistency system
to evaluate the actual inter-controller traffic due to in-band
synchronization. Such evaluation is currently neglected in their
work.

The importance of preserving consistency in shared data
structures across SDN controllers was highlighted by [19]. In
contrast to ONOS as well as Onix, only a global strongly
consistent key-value based data store is employed, since it
can provide acceptable performance as well as fault-tolerance.
The data store is based on replicas which employ state machine
replication using a combination of Paxos (a well known consis-
tency algorithm) and Viewstamped Replication (VR). Similar

13

to RAFT, all operations are coordinated using a leader acting
as the primary replica which handles all the read and write
operations. While comparing the performance, the authors
state that existing strongly-consistent data stores implementing
the Paxos/VR protocols can perform as good as an eventually
consistent data store in Onix for some applications, but the
cost of latency is inevitable as a strongly consistent data store
is involved.

DISCO (Distributed Multi-domain SDN Controllers) [20]
discusses specifically the inter-controller traffic, which is given
by two contributions: (i) delegating functions among various
agents such as controller reachability, monitoring and relaying
inter-controller link health, new controller domain discovery or
reservation of inter-domain flow setup and teardown (ii) oper-
ating a Messenger module for inter-controller communication
based on an Advanced Queuing Messaging Protocol (AQMP)
used by the agents. An interesting mechanism in DISCO
reconfigures the inter-controller links to abandon congested
or slow links and use other controllers as relays for inter-
controller communications, which is absent in ONOS.

Notably, [19] and [20] do not evaluate the cost in terms
of bandwidth needed to support the proposed consistency
schemes, and our methodology can be adapted to address such
issue in both scenarios.

The work in [21] investigated the synchronization cost due
to the exchange of inter-controller traffic among controllers
by analyzing the synchronization delay. This delay consists
of the time taken by a controller to detect an event in its
domain till the time a different controller becomes aware of
it. There exists a trade-off between the synchronization delay
and the amount of synchronization data. Different network
applications may require faster coordination among controllers
at the expense of higher synchronization data exchange rate
and vice versa. In contrast, our work focuses on the inter-
controller traffic due to network events, while neglecting
the delay to achieve consistency. Nevertheless, our empirical
models enable a proper planning of the network supporting
the control plane, and thus allow to control the corresponding
delay performance.

Finally, our approach is perfectly complementary to [22],
since the latter work focused on the OpenFlow traffic ex-
changed by ONOS controller with the switches on the south-
bound interface. Thus, by combining the results in [22] with
the results of our work (i.e. the control traffic exchanged
among the controllers), it is possible to properly plan and
design the whole transport network supporting the overall
control plane in a cluster of ONOS controllers.

VIII. CONCLUSIONS

We considered a distributed SDN architecture in which
a cluster of ONOS 1.4 controllers, manages all network
devices. We focused our investigations on the traffic exchanged
between the controllers, which is mainly due to the consensus
protocols enabling a consistent view of the network state.

We adopted an experimental testbed based on a cluster of
2 and 3 ONOS controllers and evaluated experimentally the
inter-controller traffic due to different shared data structures

and to different network configurations and events. We inves-
tigated specifically all the distributed stores that describe the
network state (i.e. topology, host and flow stores) and derived
some quantitive models to estimate the inter-controller traffic
under very general conditions. Even if the results are specific
of the considered version of the controller, our methodology
is general and can be applied to other versions of ONOS
and to different SDN controllers from ONOS. As a future
work, we plan to apply our methodology to a larger number
of controllers adopting the latest version of ONOS.

Thanks to our experimental results, a network designer
can design and plan carefully the network infrastructure that
support the inter-controller data plane. This is of paramount
importance for network operators running large SDN net-
works, like SDWANs, where the control data is typically in-
band and share the same resources devoted to the customers.

REFERENCES

[1] A. Panday, C. Scotty, A. Ghodsiy, T. Koponen, and S. Shenker, “CAP
for networks,” in HotSDN. ACM, 2013, pp. 91–96.

[2] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 2, pp. 70–75,
Apr. 2014.

[3] “ONOS 1.4 Wiki,” https://wiki.onosproject.org/display/ONOS14/Wiki+
Home.

[4] “On.Lab website,” http://onlab.us/.
[5] “OpenDaylight website,” https://www.opendaylight.org/.
[6] A. S. Muqaddas, A. Bianco, P. Giaccone, and G. Maier, “Inter-controller

traffic in ONOS clusters for SDN networks,” in IEEE International
Conference on Communications (ICC), Kuala Lumpur, Malaysia, May
2016, pp. 1–6.

[7] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of software
defined networks: A survey,” Computer Communications, vol. 67, pp. 1
– 10, 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0140366415002200

[8] P. Bailis and A. Ghodsi, “Eventual consistency today: limitations,
extensions, and beyond,” Communications of the ACM, vol. 56, no. 5,
pp. 55–63, May 2013.

[9] E. Brewer, “CAP twelve years later: How the “rules” have changed,”
IEEE Computer, vol. 45, no. 2, pp. 2–13, March 2012.

[10] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proc. USENIX Annual Technical Conference, 2014, pp.
305–320.

[11] “Linux Containers,” https://linuxcontainers.org/.
[12] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,

“The Internet Topology Zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[13] “ONOS Distributed Flow Rule Store,” https://github.com/
opennetworkinglab/onos/blob/onos-1.8/core/store/dist/src/main/java/
org/onosproject/store/flow/impl/DistributedFlowRuleStore.java.

[14] “OpenFlow 1.0 (Wire Protocol 0x04) specification,” http://archive.
openflow.org/documents/openflow-spec-v1.0.0.pdf.

[15] “OpenFlow 1.3 (Wire Protocol 0x04) specification,” https:
//www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.3.0.pdf.

[16] M. Kuźniar, P. Perešı́ni, and D. Kostić, “What you need to know
about SDN flow tables,” in Passive and Active Measurement: 16th
International Conference. Springer International Publishing, 2015, pp.
347–359.

[17] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievskiy, M. Zhuy,
R. Ramanathany, Y. Iwataz, H. Inouez, T. Hamaz, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,” in
Proc. USENIX conference on Operating systems design and implemen-
tation , Berkeley, CA, USA, 2010.

[18] L. Schiff, S. Schmid, and P. Kuznetsov, “In-band synchronization for
distributed SDN control planes,” SIGCOMM Comput. Commun. Rev.,
vol. 46, no. 1, pp. 37–43, Jan. 2016.

14

[19] F. A. Botelho, F. M. V. Ramos, D. Kreutz, and A. N. Bessani, “On
the feasibility of a consistent and fault-tolerant data store for SDNs,” in
2013 Second European Workshop on Software Defined Networks, Oct
2013, pp. 38–43.

[20] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed multi-
domain SDN controllers,” in IEEE Network Operations and Manage-
ment Symposium. IEEE, 2014, pp. 1–4.

[21] F. Benamrane, F. J. Ros, and M. B. Mamoun, “Synchronisation cost
of multi-controller deployments in software-defined networks,” Int. J.
High Performance Computing and Networking, vol. 9, no. 4, pp. 291–
298, 2016.

[22] A. Bianco, P. Giaccone, R. Mashayekhi, M. Ullio, and V. Vercellone,
“Scalability of ONOS reactive forwarding applications in ISP networks,”
Computer Communications, 2016.

Abubakar Siddique Muqaddas received the
B.E. in Electrical (Telecommunications) Engineering
from NUST, Rawalpindi, Pakistan and M.Sc. in
Telecommunications Engineering from Politecnico
di Torino, Italy, in 2011 and 2015 respectively.
Currently he is a Ph.D. candidate in the Electri-
cal, Electronics and Telecommunications Engineer-
ing program in Politecnico di Torino. He is a Cisco
Certified Network Associate (CCNA) and a Cisco
Certified Network Professional (CCNP). His current
interests are in assessing distributed SDN controller

architectures, software-defined optical network operations and management of
state in SDN.

Paolo Giaccone is an Associate Professor in the De-
partment of Electronics, Politecnico di Torino. Dur-
ing the summer of 1998, he was with the High Speed
Networks Research Group, Lucent Technology-Bell
Labs, Holmdel, NJ. During 2000-2001 and in 2002
he was with the Information Systems Networking
Lab, Electrical Engineering Dept., Stanford Univer-
sity, Stanford, CA. His main area of interest is the
design of network algorithms, in particular for the
control of SDN networks and of cloud computing
systems. He is an IEEE Senior Member.

Andrea Bianco is Full Professor and Department
Head of the Dipartimento di Elettronica e Telecomu-
nicazioni of Politecnico di Torino, Italy. He has co-
authored over 200 papers published in international
journals and presented in leading international con-
ferences in the area of telecommunication networks.
He is Area Editor for the IEEE JLT (Journal of
Lightwave Technology) and of the Elsevier Com-
puter Communications journal. His current research
interests are in the fields of protocols and architec-
tures of all-optical networks, switch architectures for

high-speed networks, SDN networks and software routers. Andrea Bianco is
an IEEE Senior Member.

Guido Maier is Associate Professor at Politecnico
di Milano (Italy). His main areas of interest are:
optical network modeling, design and optimization;
SDN orchestration and control-plane architectures;
WAN optimization. He is author of more than
100 papers in the area of Optical Networks and
Networking published in international journals and
conference proceedings (h-index 17) and 6 patents.
He is currently involved in industrial and European
research projects. He is editor of the journal Optical
Switching and Routing and TPC member in many

international conferences. He is a Senior Member of the IEEE Communica-
tions Society.

