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Abstract 

Different technologies are being utilized nowadays aiming to boost the fuel 

efficiency of Spark-Ignition (SI) engines. Two promising technologies which are 

used to improve the part load efficiency of SI engines are the utilization of 

downsizing in combination with turbocharging and cylinder deactivation. Both 

technologies allow a shift of load points towards higher loads and therefore towards 

more efficient zones of the engine map, while performance is being preserved or 

even enhanced despite the smaller displacement thanks to high boost levels. 

However, utilization of both technologies will increase the risk of knock 

dramatically. Therefore, the abovementioned systems can be coupled with other 

technologies such as gasoline direct injection, Miller cycle and water injection to 

mitigate knock at higher load operating conditions. 

Therefore, the aim of the current work is to investigate, through experimental 

and numerical analysis, the potential benefits of different knock mitigation 

techniques and to develop reliable and predictive simulation models aiming to 

detect root cause of cyclic variations and knock phenomena in downsized 

turbocharged SI engines. 
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After a brief introduction in Chapter 1, three different typical European 

downsized turbocharged SI engines have been introduced in Chapter 2, which were 

used for both experimental and simulation investigations, named as Engine A, 

which is downsized and turbocharged, Port Fuel Injection (PFI) with fixed valve 

lift and represents the baseline; Engine B, represents an upgraded version of Engine 

A, featuring Variable Valve Actuation (VVA), and Engine C which is a direct 

injection and further downsized engine. 

Engine B, equipped with MultiAir VVA system, was utilized to evaluate the 

possible benefits of cylinder deactivation in terms of fuel economy at part load 

condition, which is discussed in Chapter 3. Since the MultiAir VVA system does 

not allow exhaust valve deactivation, an innovative strategy was developed, 

exploiting internal Exhaust Gas Recirculation (iEGR) in the inactive cylinders in 

order to minimize their pumping losses. 

However, at higher load operating condition, risk of knock occurrence limits 

the performance of the engine. Therefore, the possible benefits of different knock 

mitigation techniques such as Miller Cycle and water injection in terms of fuel 

consumption were discussed in Chapter 4. 

Potential benefits of Miller cycle in terms of knock mitigation are evaluated 

experimentally using Engine B, as shown in Chapter 4.2. After a preliminary 

investigation, the superior knock mitigation effect of Late Intake Valve Closure 

(LIVC) with respect to Early Intake Valve Closure (EIVC) strategy was confirmed; 
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therefore, the study was mainly focused on the latter system. It was found out that 

utilization of LIVC leads up to 20% improvement in the engine indicated fuel 

conversion efficiency. 

Afterwards, Engine C, a gasoline direct injection engine, has been utilized in 

order to understand the potential benefits of water injection for knock mitigation 

technology coupled with the Miller Cycle, which is discussed in Chapter 4.3. 

Thanks to water injection potential for knock mitigation, the compression ratio 

could be increased from 10 to 13, which leads to an impressive efficiency 

improvement of 4.5%. 

However, utilization of various advanced knock mitigation techniques in the 

development of SI engines make the system more complex, which invokes the 

necessity to develop reliable models to predict knock and to find the optimized 

configuration of modern high-performance, downsized and turbocharged SI 

engines. Considering that knock is strictly related to Cycle-to-Cycle Variations 

(CCV) of in-cylinder pressure, CCV prediction is an important step to predict the 

risk of abnormal combustion on a cycle by cycle basis.  

Consequently, in Chapter 5, a procedure has been introduced aiming to predict 

the mean in-cylinder pressure and to mimic CCV at different operating conditions. 

First, a 0D turbulent combustion model has been calibrated based on the 

experimental data including various technologies used for knock mitigation which 

can impact significantly on the combustion process, such as Long Route EGR and 
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water injection. Afterwards, suitable perturbations are adapted to the mean cycle 

aiming to mimic CCV. Finally, the model has been coupled with a 0D knock model 

aiming to predict knock limited spark advance at different operating conditions. 

Finally, in order to provide a further contribution towards the prediction of 

CCV, 3D-CFD Large Eddy Simulation (LES) has been carried out in order to better 

understand the root cause of CCV, presented in Chapter 6. Such analysis could be 

used to extract the physical perturbation from the 3D-CFD and to use it as an input 

for the 0D combustion model to predict CCV. The operating condition studied in 

this work is at 2500 rpm, 16 bar brake mean effective pressure (bmep) and 

stoichiometric condition. Based on the analysis conducted using LES, it was found 

out that the variability in combustion can be mainly attributed to both the direction 

of the velocity flow-field and its magnitude in the region around the spark plug. 

Furthermore, the effect of velocity field and equivalence ratio on the combustion 

has been decoupled, confirming that the former has the dominant effect while the 

latter has minor impact on combustion variability. 

In conclusion, simulation models using 0D and 3D-CFD tools when calibrated 

properly based on experimental measurements can be used to support the design 

and the development of innovative downsized turbocharged SI engines considering 

the effects of CCV and knock on engine performance parameters. 
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Chapter 1 

Introduction 

 

The need to reduce anthropogenic greenhouse gases emissions has led most of the 
governments to set challenging targets for CO2 emissions from passenger cars [1], 
as shown in Figure 1. 

 
Figure 1. Trend of CO2 emissions reduction targets in different countries [1]  

Pollutant emissions are strictly related to engine operating conditions; hence, 
various emission test procedure and driving cycles have been established trying to 
reproduce the most significant operating conditions for different vehicle categories. 
Since for light duty vehicles the most frequent operating conditions are at low and 
medium load, as in the current procedure for type approval, which is based on the 
New European Driving Cycle (NEDC), the application of innovative technologies, 
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Figure 3. Difference of fuel consumption in 2-cylinder-modus to 4-cylinder-modus 
[g/kWh] (both throttle-free) [8] 

The abovementioned technologies, downsizing combined with turbocharging 
and cylinder deactivation, are effective at part load operating condition; however, 
their application at higher load operating points is limited by knock. Currently, 
more dynamic test procedures such as Worldwide harmonized Light vehicles Test 
Procedures (WLTP) (shown in Figure 4) and Real Driving Emission (RDE) are 
being adopted with the aim to better represent real driving condition, while moving 
the operating area of the engine to higher loads. Therefore, understanding and 
mitigation of knock phenomena which is the bottleneck of SI engines at higher 
loads are of crucial importance. 

 
Figure 4. Comparison of NEDC (left) and WLTP (right) operating region [9] 

As a consequence, various advanced technologies are currently being explored 
to achieve knock mitigation, including the adoption of cooled Exhaust Gas 
Recirculation (EGR) [10], [11], of variable compression ratio (for instance through 
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variable con rod length) [4], of Water Injection (WI) [12,13] and of Miller cycle 
[14,15]. Hence, it is of crucial importance to gather and to analyze extensive 
experimental data including such technologies aiming to understand their possible 
benefits in terms of fuel consumption. Furthermore, these technologies could be 
combined to maximize their fuel economy benefits which add further complexity 
to the engine calibration and design; therefore, it is necessary to have reliable 
models to find the optimized configuration and to support the production of modern 
high-performance, downsized and turbocharged SI engines. 

Besides, experimental observations clearly show that SI engines are affected by 
a significant amount of Cycle-to-Cycle Variations (CCV) of cylinder pressure 
which is due to variability of combustion from one cycle to the subsequent one. 
Figure 5 indicates three different pressure traces and their corresponding burn rates 
of a 4-cylinder downsized, turbocharged SI engine at 2500 rpm and 16 bar bmep. 
It can be seen that not only the maximum pressure is different but also the crank 
angle at maximum pressure is changing. The differences in-cylinder pressure traces 
can be explained by the fact that the fuel is burning at different rates in each cycle 
(Figure 5-b). The variation of the in-cylinder pressure can be translated to difference 
in the indicated work. As an example, the Indicated Mean Effective Pressure 
(IMEP) of the fast and slow cycles are 17.3 and 16.14, respectively, which shows 
about 7% of variation from one cycle to the other. Therefore, it can be appreciated 
that CCV affects adversely the indicated work and consequently the fuel 
consumption in SI engines.  

 
Figure 5. a) In-cylinder pressure at three different cycles b) Fraction of total fuel mass 
burned for the corresponding cycles 

Moreover, considering that the mean cycle is not generally detonating and the 
faster than average cycle is more probable to knock, this phenomenon is heavily 
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dependent on CCV and cannot be described by looking at the average cycle only. 
Hence, as the application domain of the engine simulation models enters the 
relatively full load conditions, the modeling of cyclic variations becomes 
significantly important. As a consequence, robust and reliable methods for the 
prediction of the combustion process and CCV have become more and more 
important to support the design and calibration of modern high-performance, 
downsized and turbocharged SI engines. 

Numerical investigations of the cyclic variation can be performed by two main 
categories of simulation tools: 0/1D simulation and three-dimensional 
Computational Fluid Dynamics simulations (3D-CFD). 

The three-dimensional fluid-dynamics simulation performs the full analysis of 
the fluid motion and combustion independently from the complexity of the 
geometry analyzed. Therefore, the 3D-CFD could be utilized in the modelling of 
internal combustion engines. 3D-CFD has been extensively used for studying CCV 
also thanks to the unique possibilities offered by the Large-Eddy Simulation (LES) 
technique. Such technique could be used for the design purposes as well as to 
understand the root cause of CCV while due to huge Central Processing Unit (CPU) 
time required by 3D-CFD models, it is not possible to use them for the control and 
calibration purposes. 

0/1D simulation represents another possible approach to model CCV. These 
models should be supported by an accurate model calibration with experimental 
data which allows to analyze and to predict combustion not only for the mean cycle 
but also its variability. Due to low computational time offered by 0/1D simulation, 
a great number of configurations can be compared in order to find the most suitable 
solution of the analyzed problem. 

Hence, the aim of the current work was to gather a better understanding of 
causes of CCV and try to predict CCV in 0D, using the information coming from 
3D CFD. 

 
 





  

 

Chapter 2 

Experimental Set-up 

The experimental and simulation analysis were performed on different engines, the 
main characteristic of which are summarized in this Chapter. 

2.1 Engine A 

The experimental activity was initially carried out in the Advanced Internal 
Combustion Engines Laboratory of the Energy Department of the Politecnico di 
Torino, Italy [16,17]. An extensive experimental campaign was carried out on a 
typical European 4-cylinder turbocharged SI engine (engine A), the main 
characteristics of which are reported in Table 1. 

Table 1. Characteristics of Engine A 

Number of cylinders / Arrangement 4 / In line 
Displacement 1368 [cm3] 
Bore 72 [mm] 
Stroke 84 [mm] 
Injection System Port Fuel Injection 
Turbocharger Fixed Geometry Turbine 
Compression Ratio 9.8 : 1 
Maximum Torque 270 Nm@ 3000 rpm 
Maximum Power 132 kW@ 5750 rpm 
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The engine was installed on the test bench, shown in Figure 6, and connected 

to an eddy-current brake in its standard configuration. It was then equipped with 1 
piezoelectric pressure transducer integrated in the spark-plug (KISTLER 6115) of 
cylinder #1, and 2 piezoresistive pressure transducers installed on the intake and 
exhaust ports of the same cylinder. Moreover, K-type thermocouples in the intake 
runners and at the turbine inlet, a linear lambda sensor mounted downstream of the 
turbine and a turbocharger speed sensor completed the experimental set-up. 

 
Figure 6.Test rig lay-out for Engine A 

It is noteworthy that external EGR strategy has not been used in the experiment 
and the engine has been operated with a fixed valve timing at all operating 
conditions. 

2.2 Engine B 

Engine B, is similar to Engine A in terms of geometrical characteristics, while is 
equipped with Variable Valve Actuation (VVA) system. The experimental 
measurements have been carried out in Centro Ricerche Fiat (CRF), Italy [7,18]. 
The engine selected for the investigation is a Fiat MultiAir Fire 1.4 liter, 
turbocharged and Port Fuel Injected (PFI), the main features of which are listed in 
Table 2. The engine was fuelled with a 95 RON unleaded gasoline. 

Table 2. Characteristics of Engine B 

Number of cylinders / Arrangement 4 / In line 
Displacement 1368 [cm3] 
Bore 72 [mm] 
Stroke 84 [mm] 
Injection System Port Fuel Injection 
Turbocharger Fixed Geometry Turbine 
VVA System MultiAir 
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Compression Ratio 9.8 : 1 
Maximum Torque 230 Nm@ 2000 rpm 
Maximum Power 103 kW@ 5000 rpm 

As far as intake valves are concerned, the engine is equipped with a tandem 
actuator, the MultiAir system [19], where both intake valves are operated by a 
unique actuator, the operating principle of which can be briefly summarized as 
follows, by means of the scheme shown in Figure 7. The cam is acting on a piston, 
which is connected to the intake valve through a hydraulic chamber filled by 
lubricant oil and can be used to couple or decouple the valve motion from the cam 
profile. The pressure in the hydraulic chamber is controlled by an on/off solenoid 
valve. When the solenoid valve is closed, the oil trapped into the chamber behaves 
like a solid body and transmits to the intake valve the lift schedule imposed by the 
intake cam profile. When the solenoid valve is open, the hydraulic chamber is 
depressurized and the intake valve is de-coupled from the camshaft: it does not 
follow the intake cam profile anymore and its motion is only determined by the 
inertia and return spring forces; the latter prevails, thus causing the valve closure, 
which can therefore be controlled by the opening of the solenoid valve, regardless 
of the cam profile. The final part of the valve closing stroke is controlled by a 
dedicated hydraulic brake to ensure a soft and regular landing phase at any engine 
operating condition. By controlling the solenoid valve actuation, both Early Intake 
Valve Closure (EIVC) and Late Intake Valve Opening (LIVO) strategies can be 
actuated, as shown in Figure 8 [19], [18]. 

 
Figure 7. Scheme of the MultiAir VVA system for Engine B [18] 

A specific intake cam lobe was designed in order to perform the planned 
experimental investigation on extreme late intake valve closures. While the Normal 
Production (NP) intake cam profile was designed to optimize the volumetric 
efficiency at 5500 rpm (that is the full rated power point of the tested engine), the 
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extreme late closure cam lobe allows a complete LIVC regulation with a maximum 
Intake Valve Closure (IVC) equal to the combustion Top Dead Center (TDC), as 
shown in Figure 9.  

The engine was fully instrumented with four KISTLER 6052 C32 piezoelectric 
transducers which were installed on the engine cylinder head and coupled with a 
high-resolution (0.2 crank angle degrees) encoder for in-cylinder indicating 
analysis and knock detection. 

 
Figure 8. Examples of possible EIVC and LIVO strategies of the MultiAir VVA system 
[18] 

 

 
Figure 9. Exhaust and Intake cam profile tested [18] 

2.3 Engine C 

2.3.1 Engine set-up 

Engine C is a Gasoline Direct Injection (GDI) European downsized, turbocharged 
SI engine equipped with VVA [6]. Two different engine set up were tested, one 
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with a Compression Ratio (CR) of 10 and one with a CR of 13. The experimental 
measurements have been carried out at Centro Ricerche Fiat (CRF), Italy. 

Similar to Engine B, Engine C was fully instrumented with four KISTLER 
6052 C32 piezoelectric transducers which were installed on the engine cylinder 
head and coupled with a high-resolution (0.2 crank angle degrees) encoder for in-
cylinder indicating analysis and knock detection. 

The engine was also equipped with a water injection system, including 
demineralized water tank, water pump, filter, 2 pressure transducers, a water rail, 
and the injectors. The injected water temperature is equal to 25°C. A schematic 
representation of the water injector position is shown in Figure 10. 

 
Figure 10. Schematic representation of the water injector position for Engine C [6] 

2.3.2 Water injector set-up 

Since a full characterization of the water spray was needed, a Phase Doppler 
Anemometry (PDA) was utilized in order to characterize the global shape of the 
analyzed injection system spray and to quantify the spray penetration and cone 
angle as a function of time. The schematic representation of the experimental setup 
is shown in Figure 11. More details could be found in [20]. Experimental 
characterization of the spray was carried out at Shot to Shot Engineering, a spin-off 
company of University of Perugia. 
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Figure 11. Test vessel used for imaging, PDA and momentum tests (left). Reference 
system (right) 

A dINJ Injection Analyser has been used to measure the injection rate and 
injected mass. This instrument is currently being used for the hydraulic analysis of 
low pressure injection systems such as Port Fuel Injection (PFI) and Selective 
Catalytic Reduction (SCR). The schematic representation of the injection analyzer 
is reported in more details in [21] and also shown in Figure 12. 

 
Figure 12. Schematics of the dINJ injection analyzer [21] 

A closed vessel or measuring chamber acts as an isolated rail feeding the 
injector, that can operate against the atmosphere or any given ambient condition 
from vacuum to high pressure conditions. In fact, according to this scheme the 
detection of the downstream pressure conditions is not required for the injection 
rate/injected volume evaluation. The injection rate and the injected quantity 
measurements are based on the analysis of the pressure time-history in the 
measurement chamber [21]. 





  

 

Chapter 3 

Engine Displacement Modularity 
for Enhancing Automotive SI 
Engines Efficiency at Part Load 

3.1 Introduction 

Part load operation of Spark Ignition (SI) engines is conventionally achieved by the 
use of a throttle to restrict the airflow into the engine; hence, allowing the quantity 
of fuel that is injected to be reduced, whilst maintaining a constant air-fuel ratio. 
However, this operation leads to a significant increase of the gas exchange or 
pumping work, which is one of the main reasons of the poor part load efficiency of 
SI engines.  

One of the most widely used means to improve the part load efficiency of SI 
engines is the utilization of downsizing in combination with turbocharging [2]: fuel 
consumption and therefore CO2 emissions are being reduced by means of engine 
downsizing, which allows a shift of load points towards higher loads and, as a result, 
towards more efficient zones of the engine map, while performance is being 
preserved or even enhanced despite the smaller displacement thanks to high boost 
levels [3]. 

Other technologies such as Variable Valve Actuation (VVA) and Cylinder 
Deactivation (CD) [22] could be effectively exploited as an alternative or in 
combination with downsizing and turbocharging in order to improve SI engine 
efficiency. Switching off a fraction (typically one half) of engine cylinders at part 
load is entitled as CD, which is an effective way to increase load (and therefore 




















































































































































































































