
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Cepstral Peak Prominence Smoothed distribution as discriminator of vocal health in sustained vowel / Castellana,
Antonella; Carullo, Alessio; Corbellini, Simone; Astolfi, Arianna; M., Spadola Bisetti; J., Colombini. - ELETTRONICO. -
Unico:(2017), pp. 552-557. (Intervento presentato al  convegno 2017 IEEE International Instrumentation and
Measurement Technology Conference tenutosi a Torino nel May, 22-25).

Original

Cepstral Peak Prominence Smoothed distribution as discriminator of vocal health in sustained vowel

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2675359 since: 2017-06-29T11:43:43Z

Institute of Electrical and Electronics Engineers (IEEE)



Cepstral Peak Prominence Smoothed distribution as 
discriminator of vocal health in sustained vowel  

 
A. Castellana, A. Carullo, S. Corbellini, A. Astolfi 
Dipartimento di Elettronica e Telecomunicazioni e 

 Dipartimento di Energia 
Politecnico di Torino, Torino, Italy 

Email: antonella.castellana@polito.it 
 

M. Spadola Bisetti, J. Colombini 
Dipartimento di Scienze Chirurgiche 

Università degli Studi di Torino, Torino, Italy 
Email:  massimo.spadolabisetti@unito.it

 
Abstract—This paper focuses on Cepstral Peak Prominence 
Smoothed (CPPS) as a possible indicator of vocal health status, 
considering individual CPPS distribution and its descriptive 
statistics. 31 voluntary patients and 22 control subjects 
performed the same protocol, which includes the simultaneous 
acquisition of three repetitions of the sustained vowel /a/ with a 
microphone in air and a contact sensor, the perceptual 
assessment of voice and the videolaringoscopy examination. The 
best logistic regression models have been applied and preliminary 
results showed that the fifth percentile and the standard 
deviation of CPPS distributions are the best parameters that 
discriminate healthy and unhealthy voice for the microphone in 
air and the contact sensor, respectively. The Area Under Curve 
(AUC) revealed the diagnostic precision of the selected CPPS 
parameters: AUC of 0.96 and 0.83 have been found for the 
microphone in air and the contact sensor, showing strong to 
moderate discrimination power, respectively. The repeatability of 
the selected CPPS parameters has been also estimated. For each 
selected CPPS parameter, the Monte Carlo method has been 
implemented in order to evaluate the uncertainty of the 
threshold, which was identified by means of the Receiver 
Operating Curve analysis.  

 

Keywords — Dysphonia; Cepstral analysis; Sustained vowel; 
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I.  INTRODUCTION  
Objective assessment of voice overcomes the subjectivity 

due to the interpretation of symptoms and medical standards. 
One of the objective tools commonly employed is the voice 
acoustic analysis, which is used to assess voice disorders 
thanks to its non-invasiveness, low cost and ease of application 
[1]. It provides a numerical output that is relatively easy to 
communicate to all stakeholders, such as voice clinicians, 
patients, third-party payers, and physicians [2] and allows 
tracking of vocal behavior, proving to be appealing for 
dysphonia prevention, diagnosis, and dysphonia treatment.  

Many researches have studied acoustic analysis algorithms 
and methods to obtain an objective analysis of dysphonia and 
its severity (see Buder for an overview [3]). Time-based 
parameters, such as jitter and shimmer, have been the first 
investigated ones. They depend on accurately identifying cycle 
boundaries, i.e. where a cycle of vocal-fold vibration begins 
and ends, so they become unreliable with highly perturbed 
signals [4]-[5]. Furthermore, such traditional perturbation 

parameters are valid only for sustained vowels produced with 
steady pitch and loudness, since any purposeful changes will be 
read as increases in vocal perturbation [6]. To overcome the 
limitations of cycle boundary detection, current practice are 
considering spectral- and cepstral-based measures, which can 
be applied also to continuous speech that is able to represent 
everyday speaking patterns [7]. Among them, cepstral analysis 
has been considered as the most promises measure of 
dysphonia severity. According to the definition given by 
Hillenbrand and Houde [8], the cepstrum is a log power 
spectrum of a log power spectrum: the first power spectrum 
represents the frequency distribution of the signal energy, while 
the second spectrum shows how regular the harmonics peaks in 
the spectrum are. Two cepstral parameters have been defined, 
namely the Cepstral Peak Prominence (CPP) and its smoothed 
version (CPPS). CPP is a measure (in dB) of the amplitude of 
the cepstral peak, normalized for overall signal amplitude by 
means of linear regression line calculated relating quefrency to 
cepstral magnitude [9]. CPPS derived from two smoothing 
processes before calculating the cepstral peak prominence [8]. 
Maryn et al. [10] highlighted the relevance of CPPS: they 
performed a meta-analysis on correlation coefficients between 
acoustic measurements and perceptual evaluation of voice 
quality, stating that CPPS satisfied the meta-analytic criteria in 
sustained vowels as well as in continuous speech. Other studies 
have demonstrated the correlation of CPPS with perceptual 
ratings of overall grade of dysphonia and different types of 
voice quality [11]-[16]. Brinca et al. [17] assessed that CPPS 
measures were significantly different between dysphonic and 
control group in the vowel /a/, but in the existing literature 
there is a lack of investigations on diagnostic precision of 
CPPS. Such analysis has been done for multi-parametric 
indexes, e.g. the Acoustic Voice Quality Index (AVQI), which 
is a multivariate construct with CPPS and other four acoustic 
parameters [18]. All the above-mentioned works used cepstrum 
software packages to calculate CPPS from signals acquired 
with microphones in air. Praat [19], SpeechTool [20] and the 
Analysis of Dysphonia in Speech and Voice module [21] of 
Multi-Speech from KayPENTAX (Montvale, NJ) are the most 
popular packages. These programs only provide the mean of 
CPPS values and in some cases the standard deviation.  

Recently, in-clinic short-term measurements have been 
replaced by in-field long-term monitorings, which allow for the 
characterization of the vocal behavior with distributional 
parameters [22]. Proper devices for such vocal monitoring have 
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been developed, which are equipped with a contact sensor that 
allows minimizing the effects of sound sources different from 
the voice of interest and does not impair the subject activity: 
the NCVS dosimeter [23], the VoxLog [24], the Ambulatory 
Phonation Monitor [25], the Voice Care [26]-[28] and a 
smartphone-based platform [29]. A recent work by Mehta et al. 
[30] investigated the relationship between vocal measures from 
vowels acquired with a microphone in air and an accelerometer 
sensor. They calculated CPP with a commercially available 
program and they found that CPP measures from the two 
signals were highly correlated, but no differences between 
healthy and unhealthy voice were found. 

The present study investigates CPPS distributions in 
sustained vowel /a/ and their descriptive statistics as 
discriminators between healthy and unhealthy voices, assuming 
that descriptive statistics different than the mean could have a 
good discrimination power. Such analysis has been done for 
signals acquired with two types of microphones: a headworn 
microphone and a contact electret condenser microphone 
(ECM). The intra-speaker variability of CPPS parameters has 
been determined in repeated measures and the variability of the 
threshold values between healthy and unhealthy voices has 
been assessed by means of the Monte Carlo method. 

II. METHOD 

A. Subjects 
Thirty-one voluntary patients, 22 females and 9 males, 

participated in this study (age range: 20-77 years; mean: 49.5 
years; standard deviation SD: 17.4 years). Twenty-two healthy 
adults with normal voices, 4 females and 18 males, were also 
included in the experiment (age range: 21-49 years; mean: 28.9 
years; SD: 11.1 years). All subjects were native Italian 
speakers. Diagnosis for all the participants were made on the 
basis of a clinical protocol that included a careful case history, 
auditory-perceptual measures, and videostroboscopy. Table I 
summarizes the otolaryngologic diagnoses and their amounts in 
the patient group. 

B. Procedure 
The protocol was designed in order to avoid each step 

affecting the following one. The relevant steps of the procedure 
can be summarized as follows: 

(1) each participant was asked to vocalize the sustained 
vowel /a/ on a comfortable pitch and loudness until 
he/she had need to breathe again, while he/she worn a 
headworn microphone and a contact microphone 
simultaneously; 

(2) participants repeated the previous task other two times, 
waiting few seconds of silence between the repetitions; 

(3) two otolaryngologists performed the clinical practice 
that included a careful case history, auditory-perceptual 
measures (GIRBAS scale) and the videolaringoscopy 
examination. 

The vowel /a/ was selected as speech material due to its 
large use in acoustic analysis of voice, as recommended in 

[32]. The duration of each phonation was always longer than 2 
s, as recommended in [33].  

C. Equipment for recording procedure 
The voice recordings were performed in a quiet room, 

where the A-weighted equivalent background noise level was 
measured with a calibrated class-1 sound level meter (NTi 
Audio XL2) over a period of 5 minutes in four different days, 
obtaining the average value of 51.0 dB (SD = 3 dB). Before 
performing the tasks described in steps (1) and (2), subjects 
worn the two microphones, that were: 

• an omni-directional headworn microphone Mipro MU-
55HN, which was placed at a distance of about 2.5 cm 
from the lips’ edges of the talker, slightly to the side of 
the mouth. The microphone, which exhibits a flatness of 
±3 dB in the range from 40 Hz to 20 kHz, was 
connected to a bodypack transmitter ACT-30T, which 
transmits to a wireless system Mipro ACT 311. The 
output signal of this system was recorded with an handy 
recorder ZOOM H1 (Zoom Corp., Tokyo, Japan), that 
use a sample rate of 44.1 kHz and 16 bit of resolution; 

• an Electret Condenser Microphone (ECM AE38 [Alan 
Electronics GmbH (Dreieich, Germany)]), which was 
fixed at the jugular notch of each talker by means of a 
surgical band. The microphone senses the skin 
vibrations induced by the vocal-fold activity and it was 
connected to the handy recorder ROLAND R05 
(Roland Corp., Milano, Italy), that samples the signal at 
a rate of 44.1 kHz using 16 bit of resolution. 

Table II shows the details related to the subjects who 
performed the experimental task with the two microphones. 

D. Data processing  
After each recording, data was downloaded from the handy 

recorders and stored in a Personal Computer in order to be 
post-processed. First, a suitable portion of the sustained /a/ 
samples has been selected for the features extraction, that is in 
the phonation interval from 1 s to 6 s. This preliminary 
operation has been performed using the software Adobe 
Audition (version 3.0). Then, we have developed a specific 

TABLE I. Diagnoses for the patient group 

Organic dysphonia N. Patients 
Cyst 5 

Edema 8 
Sulcus vocalis 3 

Polyp 3 
Chronic laryngitis 3 

Vocal fold hypostenia 2 
Vocal fold paresis 1 
Vocal fold nodul 1 

Neurological disorder 3 
Post-surgery dysphonia 2 

Overall 31 
 



MATLAB (R2014b, version 8.4) script that is able to calculate 
the Cepstral Peak Prominence Smoothed (CPPS) according to 
the definition given by Hillenbrand et al. [8]. The selected 
portion of signal was down-sampled to 22050 Hz and the 
CPPS has been estimated every 2 ms (frame) using a 1024-
point (46 ms) analysis window. For each window the following 
steps have been performed: starting from the signal in the time 
domain, the Fast Fourier Transform (FFT) algorithm has been 
implemented in order to obtain the spectrum amplitude; then, 
the FFT algorithm has been implemented again on the log 
power spectrum obtaining the cepstrum. Before extracting the 
cepstral peak, the cepstra corresponding to each analysis 
window are smoothed according to the following two-step 
procedure: cepstra are time averaged using a time-smoothing 
window of 14 ms (7 frames) and then the cepstral-magnitude 
average is obtained across quefrency with a seven-bin 
averaging window. After the smoothing steps, a regression line 
has been calculated in the quefrency vs cepstral magnitude 
domain between 1 ms and the maximum quefrency, as 
suggested in [9]. Quefrencies below 1 ms are more affected by 
the spectral envelope, which vary slowly, than by the spectrum 
periodicity [31]. Eventually, the Cepstral Peak Prominence 
Smoothed (CPPS) has been evaluated as the difference in dB 
between the peak in the cepstrum domain and the value of the 
regression line at the same quefrency. Since the quefrency at 
the cepstral peak generally corresponds to the inverse of the 
fundamental frequency, which is usually in the range from 60 
Hz to 300 Hz, the cepstral peak has been looked for in the 
range from 3.3 ms to 16.7 ms. 

A time series of 2500 CPPS values (5000 ms/2 ms) is 
available for each speech sample, which is treated as a 
distribution, as can be observed in Fig. 1. For each CPPS 

distribution, the following descriptive statistics have been 
calculated: mean (CPPSmean), median (CPPSmedian), mode 
(CPPSmode), 5th percentile (CPPS5prc) and 95th percentile 
(CPPS95prc) as measures of location of the distribution; 
standard deviation (CPPSstd) and the interval between the 
maximum and the minimum value (CPPSint) as measures of its 
variance, kurtosis (CPPSkurt) and skewness (CPPSskew) for the 
characterization of distribution shape.  

E. Analysis 
1) CPPS parameters in healthy and unhealthy voices 

Statistical differences between each coupled list of 
descriptive statistics related to the group of patient and control 
subjects have been investigated using the two-tailed Mann-
Whitney U-test, which is a non-parametric test based on 
independent samples [34]. The test does not require any 
specific assumptions on the distributions and the null 
hypothesis (H0) states that MD = 0, where MD is the median 
of the population of the differences between the sample data 
for the two group of patients and controls. If the null 
hypothesis is accepted, the two lists of values seems to come 
from the same population, i.e. it is not possible to distinguish 
healthy and unhealthy samples. The one-sample Kolmogorov-
Smirnov test verified that data in each list did not come from a 
normal distribution, except for the kurtosis values of the CPPS 
distributions (CPPSkurt) obtained from the patient group, thus 
justifying the use of a non-parametric test for the analysis. The 
two above-mentioned tests have been performed using the 
program MATLAB (R2014b, version 8.4). 

2) Best logistic regression model 
In order to deeply investigate the effectiveness of the 

selected descriptive statistics for CPPS distribution as 
discriminator between dysphonic and healthy voices, a binary 
classification approach has been implemented. Firstly, each 
individual value of the descriptive statistics for CPPS 
distribution have been labeled with a dichotomous variable, 
which has been coded as 0 or 1, representing the absence or the 
presence of dysphonic voice for each subject, respectively. The 
absence or the presence of the characteristic has been checked 
according to the outcome that was obtained from the 
videolaringoscopy examination. A single-variable logistic 
regression model has been performed for each descriptive 
statistic and the best model was selected based on the highest 
Mc Fadden’s R2 and Area Under Curve (AUC) [35]. The Mc 
Fadden’s R2 is one of the so-called pseudo R2, which are used 
to characterize the predictive power of a logistic regression 
model. The area under the Receiver Operating Characteristic 
(ROC) curve represents a description of classification accuracy 
of the model. Area Under Curve (AUC) is a numerical 
indicator of ROC analysis, which ranges from 0.5 to 1.0, and it 
provides a measure of the model’s ability to discriminate 
between those subjects with vocal problems versus those who 
have a healthy voice. An AUC close to 1 indicates a strong 
discriminatory power, while an AUC close to 0.5 indicates that 
the model has a poor ability to separate the two groups. 
Furthermore, we selected the optimal cutoff point for the 
purposes of classification, plotting sensitivity and specificity 
versus each possible cutoff point in the same graph. Sensitivity, 
that is the true positive rate, is the proportion of subjects with 

TABLE II. Number of subjects who undertook the experiments with the 
different devices Mipro MU-55HN headworn microphone and ECM 
AE38 contact microphone. Number of patients and controls and females 
(F) and males (M) are also reported. 

 Mipro MU-55HN ECM AE38 

 F M Overall F M Overall 
Patients 22 9 31 19 5 24 
Controls 4 18 22 4 18 22 
Overall 26 27 53 13 25 46 

 

 
Fig. 1. Two examples of CPPS distributions, which have been obtained 
from the monitoring of a sustained vowel /a/ acquired with the headworn 
microphone:  healthy voice shows a simmetric distribution with an higher 
mean (left side);  unheathy voice has a distribution with a negative skewness 
and a lower mean (right side). 



voice disorders who are correctly identified as positive. 
Specificity, that is the true negative rate, is the percentage of 
people with healthy normal voice who are correctly classified 
as negative. The authors avoid the usual choice of selecting 
where the sensitivity and specificity curves cross, since they 
selected the cutoff giving priority to the sensitivity that 
corresponds to a greater true positive rate. All the analysis 
related to the logistic regression model has been performed 
using the statistical program RStudio (Version 0.99.489). 

3) Intra-speaker variability 
With the purpose of investigating the repeatability of the 

descriptive statistics for CPPS distribution that have been 
included in the empirical fitted models, CPPS distributions 
have been calculated in the three repetitions of the sustained 
vowel /a/ for each subject. Forty subjects repeated correctly the 
second task described in paragraph II.B, while wearing both 
the headworn microphone and the ECM.  

4) Monte Carlo method 
The Monte Carlo method has been implemented for the 

uncertainty estimation of the threshold values, which have been 
obtained for each empirical fitted model by means of the ROC 
analysis. The Maximum Likelihood Estimation has been 
implemented in MATLAB in order to determine the best fitting 
distribution for the distributions of CPPS parameters that were 
included in the models, both in healthy and unhealthy voices. 
In this analysis, the values of the CPPS parameters in the three 
repetitions of the vowel for each subject have been considered.  
Then, 1000 trials have been repeated by randomly sampling 50 
values from each fitted distribution. For each Monte Carlo trial 
the best threshold value of the logistic model has been 
determined, setting the equality between the sensitivity and the 
specificity that were obtained from the ROC analysis.  

III. RESULTS 

A. Microphone in air 
The p-values of the Two-tailed Mann-Whitney U-test of the 

lists of descriptive statistics related to the two groups of 
subjects were lower than 0.05, which means null hypotheses 
rejected, except for skewness and kurtosis. These outcomes 
reveal that CPPS distributions are significantly different in 
location, with an average value of 15.4 dB and 18.4 dB for 
CPPSmean in patients and controls, respectively, and in 
variance, with an average value of 2.0 dB and 1.3 dB for 
CPPSstd in patients and controls, respectively. 

We assumed the presence/absence of dysphonia as 
dependent variable and the best logistic regression model 
between healthy and unhealthy voice includes CPPS5prc as 
independent variable. The best empirical fitted model is 
defined in terms of probability by the exponential expression:  

( )
( )
( )5prc

5prc

87.11.281

87.11.28

CPPSe

CPPSeUnhealthyP
⋅−+

⋅−
=   (1)  

where P(Unhealthy) is the probability of having unhealthy 
voice, which ranges from zero to one. The negative coefficient 
of CPPS5prc shows that the probability to have unhealthy voice 
decreases as the CPPS5prc increases. The empirical model has a 

Mc Fadden’s R2 equal to 0.63 and an AUC of 0.96, thus 
highlighting that there is a clear separation between patients 
and controls. Fig. 2 shows the fitted values obtained for each 
subject and most of patients are in the upper part of the graph, 
where the probability of having unhealthy voice is near to one, 
while most of controls have lower scores, near to zero. We also 
calculated the best classification threshold of P(Unhealthy) = 
0.48, that corresponds to 15.1 dB in terms of  CPPS5prc, with a 
sensitivity equal to 0.94 and a specificity of 0.86. 

Fig. 3 shows the average values and the relative 
experimental standard deviations of CPPS5prc in the three 
repetitions of the vowel /a/ acquired with the headworn 
microphone for each subject. The average of the standard 
deviations of the CPPS5prc is equal to 1.0 dB for the patient 
group and 0.4 dB for the control group. 

The best-fitted distributions of the parameter CPPS5prc for 
unhealthy and healthy voices acquired with the microphone in 
air are bimodal and normal, respectively. Their probability 
density functions have been used for the implementation of the 
Monte Carlo method. Fig. 4 shows the distribution of 
threshold-values, which has been obtained from 1000 trials. It 

 
Fig. 2. Fitted values of the best logistic regression model, in terms of 
probability of having unhealthy voice, for vocalizations acquired with the 
headworn microphone Mipro MU-55HN. Cross points indicate the patient 
group; diamond points represent the control group. The bold line indicates 
the threshold value (0.48), which best separates patients and control subjects. 

 

 

Fig. 3. Averaged values of CPPS5prc in the three repetitions of the vowel for 
each subject, acquired with the headworn microphone Mipro MU-55HN. 
Cross points indicate the patient group; diamond points represent the control 
group. Bars indicate the experimental standard deviation for each subject. 
The bold line indicates the threshold value (15.1 dB) and the gray area 
corresponds to its confidence interval obtained with a coverage factor k = 2. 

 



has a standard deviation of 0.18 dB that represents the standard 
uncertainty estimation of the CPPS5prc threshold value between 
healthy and unhealthy voices. The gray area around the 
CPPS5prc threshold in the Fig. 3 represents the confidence 
interval obtained with a coverage factor k = 2. 

B. Contact microphone  
The Two-tailed Mann-Whitney U-test stated that the lists of 

descriptive statistics for CPPS distributions related to the 
groups of patients and control subjects, who was recorded with 
ECM, resulted to be significantly different in CPPSmean, 
CPPSstd, CPPSrange and CPPS5prctile (p-values < 0.05). CPPS 
distributions were different in location, e.g. the average 
CPPSmean was equal to 18.2 dB for patients and 19.6 dB for 
controls, and in variance, e.g. the average CPPSstd was equal to 
1.8 dB and 1.0 dB for patients and controls, respectively. 

The best empirical fitted logistic model for voice samples 
acquired with ECM includes CPPSstd as independent variable 
and it is expressed as: 

( )
( )
( )std

std

CPPSe

CPPSeUnhealthyP
⋅+−+

⋅+−
= 60.431.51

60.431.5
 (2) 

where P(Unhealthy) is the probability of having unhealthy 
voice, which ranges from zero to one. The positive coefficient 
of CPPSstd shows that the probability to have unhealthy voice 
increases as CPPSstd increases. The empirical model has a 
moderate discrimination power, with a Mc Fadden’s R2 equal 
to 0.31 and an AUC of 0.83. Therefore, Fig. 5 shows that the 
fitted values of the two groups are not clearly separated. The 
best classification threshold is P(Unhealthy) = 0.43, that 
corresponds to 1.1 dB in terms of  CPPSstd, with a sensitivity of 
0.79 and a specificity of 0.59.  

Fig. 6 shows the average values and the relative experimental 
standard deviations of CPPSstd in the three repetitions of the 
vowel /a/ acquired with the ECM for each subject. The average 
of the standard deviations of the CPPSstd is equal to 0.3 dB for 
the patient group and 0.2 dB for the control group. 

The best-fitted distributions of the parameter CPPSstd for 
unhealthy and healthy voices acquired with ECM are bimodal 
and lognormal, respectively. Their probability density 
functions have been used for the implementation of the Monte 
Carlo method. The distribution of threshold-values, which has 
been obtained from 1000 trials, has a standard deviation of 0.04 
dB that represents the standard uncertainty estimation of the 
threshold value of CPPSstd between healthy and unhealthy 
voices. The gray area around the CPPSstd threshold in the Fig. 
6 represents the confidence interval obtained with a coverage 
factor k = 2. 

IV. CONCLUSION 
In this work, the descriptive statistics from individual 
distribution of Cepstral Peak Prominence Smoothed (CPPS) 
have been investigated as possible indicators of vocal health 
status. CPPS has been computed for sustained vowels /a/ 
acquired with a microphone in air and a contact sensor (ECM) 
from a patient group and a control group. The fifth percentile 
(CPPS5prc) of individual CPPS distributions resulted the best 
descriptive statistic that discriminates healthy and unhealthy 

 

Fig. 4.  Distribution of threshold-values between healthy and unhealthy 
voices for CPPS5prc. It has been obtained from 1000 trials of  the Monte 
Carlo method. 

 

 

Fig. 5. Fitted values of the best logistic regression model, in terms of 
probability of having unhealthy voice, for samples acquired with the contact 
microphone ECM AE38. Cross points indicate the patient group; diamond 
points represent the control group. The bold line indicates the selected 
threshold value, that is 0.43, which best separates patients and control 
subjects. 

 

Fig. 6. Averaged values of CPPSstd in the three repetitions of the vowel for 
each subject, acquired with the contact microphone ECM AE38. Cross 
points indicate the patient group; diamond points represent the control 
group. Bars indicate the experimental standard deviation for each subject. 
The bold line indicates the threshold value (1.1 dB) and the gray area 
corresponds to its confidence interval obtained with a coverage factor k = 2. 

 

 

 

 



voices for the vocal samples acquired with the microphone in 
air, showing a strong discrimination power (AUC = 0.96). Its 
threshold value was equal to 15.1 dB, with lower values 
indicating unhealthy status of voice. The standard deviation 
(CPPSstd) was instead the best CPPS parameter that separates 
the two groups for the vocal samples acquired with ECM. It 
has a moderate discrimination power, with AUC of 0.83. 
Differently from the results by Mehta et al. [30], the proposed 
method is able to classify healthy and unhealthy voice from 
both the microphone in air and ECM. Further investigations 
are needed to identify the reasons of the lower discrimination 
power found for ECM, which could be due to the different 
frequency behavior of the two microphones (flatness and/or 
bandwidth), as highlighted in [26].  
The intra-speaker variability of the two CPPS parameters was 
larger in the patients group than in the control one, as expected; 
its respective values were 1.0 dB and 0.4 dB for CPPS5prc and 
0.2 dB and 0.3 dB for CPPSstd. 
Preliminary results showed that the standard uncertainty of the 
threshold values between healthy and unhealthy voices is 
negligible for both the CPPS5prc and CPPSstd, which is equal of 
0.18 dB and 0.04 dB, respectively. 
Future works will extend the investigation to the descriptive 
statistics from individual distribution of CPPS in continuous 
speech acquired with the two types of sensor. 
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