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Summary

The aim of this work is the development of robust finite shell model suitable for numerical
applications in solid mechanics with a remarkable reduction in computational cost. Two-
dimensional (2D) structural models, commonly known as plates/shells, are for instance used
in many applications to analyze the structural behavior of thin and slender bodies such as
panels, domes, pressure vessels, and wing stiffened panels amongst others. These models re-
duce the three-dimensional 3D problem into a two-dimensional 2D problem, where variables
depend on the in-plane axis coordinates. Two-dimensional elements are simpler and com-
putationally more efficient than 3D (solid) models. This feature makes plate/shell theories
still very attractive for the static, dynamic response, free vibration, thermo-mechanical and
electro-mechanical analysis, despite the approximations which they introduce in the simu-
lation. Nevertheless, analytical solutions for three-dimensional elastic bodies are generally
available only for a few particular cases which represent rather coarse simplifications of re-
ality. In most of the practical problems, the solution demands applications of approximated
computational methods. The Finite Element Method (FEM) has a predominant role among
the computational techniques implemented for the analysis of layered structures. The ma-
jority of FEM theories available in the literature are formulated by axiomatic-type theories.
In this thesis, attention is focused on weak-form solutions of refined plate/shell theories. In
particular, higher-order plate/shell models are developed within the framework of the Uni-
fied Formulation by Carrera, according to which the three-dimensional displacement field
can be expressed as an arbitrary expansion of the generalized displacements. A robust finite
shell element for the analysis of plate and shell structures subjected to mechanical, thermal,
and/or electrical loadings is developed. A wide range of problems are considered, including
static analysis, free vibration analysis, different boundary conditions and different lamina-
tions schemes, distributed pressure loads, localized pressure loads or concentrated loads are
taken into account.
The high computational costs represent the drawback of refined plate/shell theories or three-
dimensional analyses. In recent years considerable improvements have been obtained to-
wards the implementation of innovative solutions for improving the analysis efficiency for a
global/local scenario. In this manner, the limited computational resources can be distributed
in an optimal manner to study in detail only those parts of the structure that require an
accurate analysis.
In the second part of the thesis two different methodology are presented to improve the
analysis efficiency, and at the same time keeping the finite higher-order plate/shell element
accuracy. The two approaches can be collocated in the simultaneous multi-model methodolo-
gies. The first is the Mixed ESL/LW variable kinematic method, where the primary variables
are described along the shell thickness selecting some plies with an ESL description and others
with a LW behaviour by using the Legendre polynomials for both the assembling approaches.
The second approach is a new simultaneous multi-model, here presented as Node-Dependent
Variable Kinematic method. The shell element with node-dependent capabilities enables one
to vary the kinematic assumptions within the same finite element. The expansion order (
along the shell thickness ) of the shell element is, in fact, a property of the FE node in the
present approach. Different kinematics can be coupled without the use of any mathematical
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artifice.
The theories developed in this thesis are validated by using some selected results from the
literature. The analyses suggest that Unified Formulation furnishes a reliable method to
implement refined theories capable of providing almost three-dimensional elasticity solution,
and that the two simultaneous multi-theories methods are extremely powerful and versatile
when applied to composite or sandwich structures subjected to various mutlifield loadings.
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a/h = 2 (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



9.48 Three-layered thin plates a/h = 100, transverse shear and normal stresses, σ̂xz
(a), σ̂zz (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.49 Three-layered thick plates a/h = 2, in-plane stress σ̂xx, Ta assumed linear (a),
Tc calculated via Fourier heat law (b). . . . . . . . . . . . . . . . . . . . . . . 213

9.50 Reference system of the quarter of the composite cylindrical shell panel with
symmetry condition applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

9.51 Ten-layered cylindrical shell panel. Temperature Profiles Comparison. . . . . 214
9.52 Ten-layered cylindrical shell panel R/a = 50, transverse shear stress σ̂αz, Ta

assumed linear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.53 Ten-layered cylindrical shell panel R/a = 5, transverse normal stress σ̂zz, Tc

calculate via Fourier heat conduction law. . . . . . . . . . . . . . . . . . . . . 217
9.54 Reference system of the quarter of the sandwich spherical shell panel with

symmetry condition applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.55 Five-layered sandwich spherical shell panel. Temperature Profiles Comparison.

a/h = 100 (a), a/h = 4 (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.56 Five-layered sandwich spherical panel transverse displacement ŵ with an as-
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in-plane stress σ̂xx = σ̂xx(a/2, b/2,±h/2), transverse shear stress σ̂xz = σ̂xz(a, b/2, 0)
and transverse normal stress σ̂zz = σ̂zz(a/2, b/2,+h/2). Variable kinematic
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.9 Convergence study. Composite cylinder with lamination [90◦/0◦/90◦] and with
radius to thickness ratio R/h = 500. The mesh is referred to one octave of the
cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.10 Locking study. Composite cylinder with lamination [90◦/0◦/90◦] and with ra-
dius to thickness ratio R/h = 500. All the present FEM analyses are computed
with a mesh of 8× 32 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.11 Composite three-layered cylinder with lamination [90◦/0◦/90◦]. Taylor vs Leg-
endre models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.12 Composite three-layered cylinder with [90◦/0◦/90◦] lamination. Comparison
of various models for thin cylinders. . . . . . . . . . . . . . . . . . . . . . . . . 190

9.13 Composite three-layered cylinder with [90◦/0◦/90◦] lamination. Comparison
of various models for thick cylinders. . . . . . . . . . . . . . . . . . . . . . . . 191

9.14 Composite ten-layered cylinder with [90◦/0◦/90◦/0◦/90◦]S lamination. Com-
parison of various models for thin cylinders. . . . . . . . . . . . . . . . . . . . 195

9.15 Composite ten-layered cylinder with [90◦/0◦/90◦/0◦/90◦]S lamination. Com-
parison of various models for thick cylinders. . . . . . . . . . . . . . . . . . . . 196

9.16 Convergence study. Composite spherical panel with lamination [0◦/90◦/0◦].
Radius-to-side length ratio R/a = 10 and side length-to-thickness ratio a/h = 10.199

9.17 Composite spherical panel with [0◦/90◦/0◦] and [0◦/90◦/90◦/0◦] laminations.
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Introduction

Shell models have been developed extensively over the last several decades for structural
analysis of thin and slender bodies such as panels, domes, pressure vessels, and wing stiff-
ened panels amongst others. These models reduce the three-dimensional 3D problem into a
two-dimensional 2D problem, where variables depend on the in-plane axis coordinates. 2D
plate/shell theories are simpler and computationally more efficient than 3D solid models,
meanwhile more accurate than 1D beam models.
Shell structures have a predominant role in a variety of engineering applications thanks to
their efficient load-carrying capabilities. On the other hand, the continuous development
of new structural materials, such as composite layered materials, leads to increasingly com-
plex structural designs that require careful analysis. Anisotropy, nonlinear analysis, as well
as complicating effects, such as the C0

z requirements (zig-zag effects in the displacements
and interlaminar continuity for the stresses), the couplings between in-plane and out-of-plane
strains, make the analysis of layered composite structures complicated in practice. Analytical,
closed form solutions are available in very few cases. In most of the practical problems, the
solution demands applications of approximated computational methods. The Finite Element
Method (FEM) has a predominant role among the computational techniques implemented for
the analysis of layered structures. The majority of FEM theories available in the literature
are formulated by axiomatic-type theories. The conventional FEM plate model is the classical
Kirchhoff-Love theory, and some examples are given in [1, 2], whose extension to laminates
is known to as the Classical Lamination Theory (CLT) [3]. Another classical plate element
is based on the First-order Shear Deformation Theory (FSDT), which rely on the works by
Reissner [4] and Mindlin [5]. To overcome the limitations of classical theories, a large variety
of plate finite element implementations of higher-order theories (HOT) have been proposed
in the last years. HOT-based C0 finite elements (C0 means that the continuity is required
only for the unknown variables and not for their derivatives) were discussed by Kant et al. [6]
and Kant and Kommineni [7]. Many other papers are available in which HOTs have been
implemented for plates, and more details can be found in the books from Reddy [8] and Pala-
zotto and Dennis [9]. The HOT type theories presented are Equivalent-Single-Layer (ESL)
models, the variables are indipendent from the number of layers. Differently the Layer-Wise
(LW) models permit to consider different sets of variables per each layer. A finite element im-
plementations of Layer-Wise theories in the framework of axiomatic-type theories have been
proposed by many authors, among which Noor and Burton [10], Reddy [11], Mawenya and
Davies [12], Rammerstorfer et al. [13]. One of the recent contributions to plate/shell theories
has been developed within the framework of the Unified Formulation by Carrera [14–16]. The
main novelty of Unified Formulation models is that the order of the theory is a free parameter,
or can be an input of the analysis and it can be chosen using a convergence study. Unified
Formulation can also be considered as a tool to evaluate the accuracy of any structural model
in a unified manner.
In aeronautics and space field such structures are subjected to several loadings: mechanical,
thermal and electrical ones, this fact leads to the definition of multifield problems. Studies
involving the thermo-elastic behavior using 2D classical or first-order theories are described
by Kant and Khare [17] and Khdeir and Reddy [18]. In recent years, several higher-order

31



Introduction

two-dimensional models have been developed for such problems, which consider only an as-
sumed temperature profile through the thickness. Among these, of particular interest is the
higher-order model by Whu and Chen [19]. The same temperature profile is used by Khare et
alii [20] to obtain a closed-form solution for the thermomechanical analysis of laminated and
sandwich shells. Khdeir [21] and Khdeir et alii [22] assume a linear or constant temperature
profile through the thickness. Barut et alii [23] analyze the nonlinear thermoelastic behavior
of shells using the Finite Element Method, but the assigned temperature profile is linear. In
the framework of the arbitrary distribution of temperature through the thickness, Miller et
alii [24] and Dumir et alii [25] are noteworthy, in the first a classical shell theory for composite
shells is given, the second remarks the importance of the zig-zag form of displacements in
the thermal analysis of composite shells. In the case of shells, further investigations were
made by Hsu et alii [26] for both closed form and Finite Element method, and by Ding [27]
for a weak formulation for the case of state equations including the boundary conditions. A
satisfactory thermal stress analysis is only possible if advanced and refined computational
models are developed to approximate the stiffness matrix correctly, and if a correct thermal
load is recognized. Sometimes the evaluation of a correct thermal load could be mandatory
on any further evaluation for the computational models. In other words, a wrong thermal
load invalidates the static response of plate and shell structures even when advanced compu-
tational models are employed. In the last few years many contributions have been proposed,
which are based on Unified Formulation, to investigate the thermal effects in composite struc-
tures [28–31].
The use of piezoelectric components as electro-mechanical transducers in sensor as well as
in actuator applications has been continuously increasing. More recently, piezoelectrics have
been considered among the most suitable materials for extending the structural capabilities
beyond the purely passive load carrying one. Some examples of the most important applica-
tions of these “intelligent” structural components are given in [32–34] for vibration and noise
suppression, controlled active deformation is treated in [35], and health monitoring in [36,37].
Analytical solution for general smart structural problems is a very tough task, and they ex-
ist, only, for very few specialized and idealized cases. Meanwhile, the finite element method
has become the most widely used technique to model various physical processes, including
piezoelectricity. The fundamentals of the modeling of piezoelectric materials have been given
in many contributions, in particular in the pioneering works of Mindlin [38], EerNisse [39],
Tiersten and Mindlin [40], and in the monograph of Tiersten [41]. The embedding of piezo-
electric layers into plates and shells sharpens the requirements of an accurate modeling of
the resulting adaptive structure due to the localized electro-mechanical coupling, see e.g. the
review of Saravanos and Heyliger [42]. Therefore, within the framework of two-dimensional
approaches, layerwise descriptions have been often proposed either for the electric field only
(see e.g. the works of Kapuria [43] and of Ossadzow-David and Touratier [44]) or for both the
mechanical and electrical unknowns (e.g. Heyliger et al. [45]). Ballhause et al. [46] showed
that a fourth order assumption for the displacements leads to the correct closed form solution.
They conclude that the analysis of local responses requires at least a layer-wise descriptions
of the displacements, see also [47]. Benjeddou et al. [48] emphasized that a quadratic electric
potential through the plate thickness satisfies the electric charge conservation law exactly.
Many contributions have been proposed, which are based on Unified Formulation, to investi-
gate the electrical effects in composite structures [49–51]
However, the high computational costs represent the drawback of refined plate/shell theories
or three-dimensional analyses. In recent years considerable improvements have been obtained
towards the implementation of innovative solutions for improving the analysis efficiency for a
global/local scenario. In this manner, the limited computational resources can be distributed
in an optimal manner to study in detail only those parts of the structure that require an
accurate analysis.

32



Introduction

Thesis objectives and outline :

The present work aims at providing a robust finite shell element for the analysis of plate
and shell structures subjected to mechanical, thermal, and/or electrical loadings. A wide
range of problems are considered, including static analysis, free vibration analysis, different
boundary conditions and different laminations schemes, distributed pressure loads, localized
pressure loads or concentrated loads are taken into account.

• Brief bibliographic surveys on classical and refined plate/shell modelling techniques for
multifield problem and related solution methods are given in this introductory chapter
1.

• Chapter 2 discusses the generalized Hooke law for the definition of the constitutive
equations and their extesion to multifield problems through the definition of the Gibbs
free-energy function. Therefore the geometrical relations for plate and shells are given
for multifield problems.

• In chapter 3 the kinematics of thin structures is developed. Starting from the classical
assumptions, refined plate and shell models are formulated as the natural consequences
of the additions of terms within the displacement field. The Unified Formulation is
introduced as an unified manner to formulate classical, higher-order and refined plate
and shell theories.

• Different problems are addressed depending on the adopted Variational statement, in
chapter 4. Some models are based on the principle of virtual displacements (PVD),
other advanced models employ Reissner’s mixed variational theorem (RMVT). Refined
models for multifield problems are obtained simply by adding the thermal and electrical
contributions to the well-known PVD for the pure mechanical case. In some cases, it
is necessary to a priori model some variables which cannot be obtained correctly via
post-processing (e.g transverse shear/normal stresses and normal electric displacement).
These variational statements, which are based on RMVT, are obtained by adding op-
portune Lagrange multipliers to the principle of virtual displacements, and coherently
rewriting the constitutive equations.

• The weak form governing equations of the generic, refined plate/shell model are de-
veloped in chapter 5. The Finite Element Method (FEM) is presented and a brief
overview of the most commone techniques to overcome the membrane and shear lock-
ing phenomena is given. The Mixed Interpolation of Tensorial Components (MITC)
is explained for the nine-nodes shell element. By using the Principle of Virtual Dis-
placements (PVD) or the Reissner Mixed Variational Theorem (RMVT) as variational
statements, various problems are addressed by either including or excluding the vir-
tual works due to inertial loadings and external loadings along with the virtual work
of the strain energy. According to Unified Formulation, the governing equations are
written in terms of the fundamental nuclei. These nuclei, given the theory order, can
be automatically expanded to obtain the equations of the desired theory.

• In Chapter 6, FEM solutions are provided for plate and shell structures subjected to
mechanical loadings. Attention is focused on the static problems of cross-ply lami-
nates structures with various boundary conditions and lamination stacking sequences,
although the procedure can be extended to other problems. Classical and refined Taylor
polynomials, advanced Legendre polynomials and new trigonometric and exponential
expansions through the thickness are employed to test the robustness of the shell ele-
ment.
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• In Chapter 7, plate and shell structures subjected to thermo-mechanical loadings are
analyzed. The static problems of cross-ply laminates structures with various boundary
conditions and lamination stacking sequences is taken into account. The importance of
the temperature profile load evaluation is underlined. Results obtained with an assumed
linear temperature profile are compared with those developed solving the Fourier heat
conduction law.

• In Chapter 8, plate and shell structures subjected to electro-mechanical loadings are
analyzed. The static problems of cross-ply laminates structures simply-supported and
the free-vibration analysis of cantilevered plate with piezoelectric patches is taken into
account. The robustness of the shell element is tested in Sensor and Actuator configu-
ration, where a mechanical external load is applied and an electrical load is considered,
respectively. Therefore the RMV T −Dz variational theorem is taken into account to
improve the transverse electric displacement description.

• The second part of the thesis is devoted to the developement of an efficient shell FEM
formulation. A brief overview of innovative solutions for improving the analysis ef-
ficiency for global/local scenario and the possible solutions with multi-theory models
is given in chapter 9. A simultaneous multi-model is presented as Mixed ESL/LW
variable kinematic method. The primary variables are described along the shell thick-
ness selecting some plies with an ESL description and others with a LW behaviour by
using the Legendre polynomials for both the assembling approaches. The efficiency
of the presented multi-model is tested for mechanical, thermo-mechanical and electro-
mechanical problems for various composite and sandwich plate/shell structures with
different lamination schemes, various boundary conditions and external loads.

• In chapter 10 other possible solutions for improving the analysis efficiency for global/local
scenario and its possible solution with multi-theory models are depicted. A new simul-
taneous multi-model is here presented as Node-Dependent Variable Kinematic method.
The shell element with node-dependent capabilities enables one to vary the kinematic
assumptions within the same finite element. The expansion order ( along the shell
thickness ) of the shell element is, in fact, a property of the FE node in the present
approach. Different kinematics can be coupled without the use of any mathemati-
cal artifice. The efficiency of the presented multi-model is tested for mechanical, and
electro-mechanical problems for various composite and sandwich plate/shell structures
with different lamination schemes, various boundary conditions and external loads.

• The conclusions are finally drawn in chapter 11.

Some appendices are provided for clarity and completeness.

• The fundamental nuclei obtained with the MITC method are provided in Appendix A.

• Finally, a list of publications arising from the research is provided in Appendix B.
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Chapter 2

Constitutive and Geometrical relations

2.1 Generalized Hooke law for mechanical case

The British physicist Robert Hooke, between 1660 and 1678 stated the law as a latin anagram
as: "ut tensio, sic vis" ("as the extension, so the force"). The Hooke law is a physical
principle that correlates the applied force to a spring or to a body with its extension or
compression. An elastic body or material for which the Hooke law can be assumed is said
to be linear-elastic. Hooke law is only a first-order linear approximation to the real response
of elastic bodies to applied forces. If eventually the forces exceed some material limit, some
permanent deformation or change of state will be appreciable. The relations that characterize
the material and its reaction to applied loads are called constitutive equations. The concepts
of stress and strain in a non-ambigous and more usefull manner has to be attributed to
Augustin Cauchy (1789-1857). Here, it has been considered the constitutive equations of
linear elasticity for the case of infinitesimal deformations, the so called generalized Hooke
law:

σij = Cijkl εkl + σ0
ij (2.1)

where σij is the Cauchy stress tensor, εkl is the strain tensor, Cijkl is called stiffness tensor
and it is a fourth-order tensor of material parameters, and σ0

ij represents a residual stress
state configuration term. For the sake of simplicity the residual stress term is omitted in
the following discussion. In general the stiffness tensor Cijkl has 81 scalar components. The
number of independent components of Cijkl can be reduced to 36 considering the symmetry
of the stress tensor (σij = σji), strain tensor (εkl = εlk), and stiffness tensor is symmetric in
the first two subscripts. If it has been assumed the material as hyperelastic, a strain energy
density function U0(εij) permits to have that Cijkl = Cklij . This facts permits to rewrite
the Eq. 2.1 using single subscripts notation for stresses and strains, and double subscript
notation for the material stiffness coefficients:

σi = Cij εj (2.2)

The single subscript notation for stresses and strains is called engineering notation or Voigt-
Kelvin notation. In matrix notation the Eq. 2.2 can be written as:

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





ε1
ε2
ε3
ε4
ε5
ε6


(2.3)

where the notation for stresses and strain components is:

σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 = σ23, σ5 = σ13, σ6 = σ12,

ε1 = ε11, ε2 = ε22, ε3 = ε33, ε4 = 2ε23, ε5 = 2ε13, ε6 = 2ε12
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Figure 2.1: Representation of Cauchy stress tensor components in a material body.

In Figure 2.1 the meaning of the stress tensor components is clearly represented in the
case of the six stress components expressed in material reference system. Therefore, the ma-
trix coefficients Cij in Eq. 2.3 are symmetric (Cij = Cji) for the assumption of hyperelastic
material. So, for the most general case of elastic material, it has been a reduction of the inde-
pendent stiffness coefficients from 36 to 21. The number of independent material parameters
can be further reducted if some material symmetries are taken into account.

Monoclinic materials: if the elastic coefficients at a point have the same value for every
pair of coordinate systems which are the mirror images of each other with respect to a plane,
the material is called a monoclinic material. Due to this symmetry hypothesis, the following
elastic coefficients are equal to zero: C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0.
So the independent parameters are 21− 8 = 13 and the Eq. 2.3 changes in:

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0
C16 C26 C36 0 0 C66





ε1
ε2
ε3
ε4
ε5
ε6


(2.4)

Orthotropic materials: if a material has three mutually orthogonal planes of symmetry
it is called orthotropic material. The number of independent elastic coefficients is reduced
from 13 to 9. Considering the Eq.2.4 and considering the symmetry hypothesis of orthotropic
material, the stress-strain relations change in:

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε1
ε2
ε3
ε4
ε5
ε6


(2.5)

The material properties are usually determined in a laboratory in terms of the engi-
neering constants such as Young’s modulus, shear modulus and Poisson’s ratios. The 9
independent material coefficients in Eq. 2.5 can be expressed by 9 independent material en-
gineering constants:E1, E2, E3, G12, G13, G23, ν12, ν13, ν23. The relations between material
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coefficients and engineering constants are:

C11 =
1− ν23ν32

E2E3∆
; C12 =

ν21 + ν31ν23

E2E3∆
=
ν12 + ν32ν13

E1E3∆

C13 =
ν31 + ν21ν32

E2E3∆
=
ν13 + ν12ν23

E1E2∆
; C22 =

1− ν13ν31

E1E3∆

C23 =
ν32 + ν12ν31

E1E3∆
=
ν23 + ν21ν13

E1E2∆
; C33 =

1− ν12ν21

E1E2∆

C44 = G23 ; C55 = G13 ; C66 = G12

∆ =
1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13

E1E2E3

For the Poisson coefficients the following ratios relation is valid:

νij
Ei

=
νji
Ej

(no sum on i,j)

Most simple mechanical property characterization tests are performed with a known load or
stress. Hence, it is convenient to write the inverse relations of Equation 2.5. The strain-stress
relations of an orthotropic material are given by:

ε1
ε2
ε3
ε4
ε5
ε6


=



S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66





σ1

σ2

σ3

σ4

σ5

σ6


(2.6)

where Sij are the compliance coefficients [C] = [S]−1

C11 =
S22S33 − S2

23

S
; C12 =

S13S23 − S12S33

S

C22 =
S33S11 − S2

13

S
; C13 =

S12S23 − S13S22

S

C33 =
S11S22 − S2

12

S
; C23 =

S12S13 − S23S11

S

C44 =
1

S44
; C55 =

1

S55
; C66 =

1

S66

S = S11S22S33 − S11S
2
23 − S22S

2
13 − S33S

2
12 + 2S12S23S13

The relations between the compliance coefficients Sij and engineering constants are the fol-
lowing:

S11 =
1

E1
; S12 = −ν12

E1
; S13 = −ν13

E1

S22 =
1

E2
; S23 = −ν23

E2
; S33 =

1

E3

S44 =
1

G23
; S55 =

1

G13
; S66 =

1

G12

The constitutive relations for an orthotropic material in Eq. 2.2 are written in terms of
stress and strain components that are referred to the material coordinate system (1, 2, 3).
In a composite laminates each layer has its material coordinate system, and these have
different orientations with respect to the most general laminate coordinates called problem
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coordinate system (x, y, z). For the orthotropic material case, Figure 2.2 shows that the
material reference system is supposed to be aligned with the fibers in an unidirectionally
reinforced lamina which lies in the 1−2 plane. In other words, axis 1 is the fiber longitudinal
direction L, axis 2 is aligned with the fiber transversal in-plane direction T (in the plane
of the lamina) and 3 is the transversal out-of-plane direction z. According to Figure 2.2,
material axes 1 and 2 are rotated by a positive counterclockwise angle θ about the z axis,
coincident to axis 3, from physical x and y axes.

Figure 2.2: General problem coordinate system and material reference system of an unidi-
rectionally reinforced lamina.

The relations between the two reference systems are:
1
2
3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


x
y
z

 =
[
L
]

x
y
z

 (2.7)

The inverse of Eq. 2.7 is:
x
y
z

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


1
2
3

 =
[
L
]T 

1
2
3

 (2.8)

The inverse of [L] is equal to its transpose: [L]−1 = [L]T . The relationship between the
components of stress in general problem σ and material σm coordinate systems is considered:

[σm] = [L] [σ] [L]T [σ] = [L]T [σm] [L] (2.9)

where [
σ
]

=

σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 [
σm
]

=

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 (2.10)

Their relationships via matrices [L] and [L]T derive from the transformations between
second-order tensors, more details can be found in [8]. Carrying out the matrix multiplications

40



CHAPTER 2. CONSTITUTIVE AND GEOMETRICAL RELATIONS

in Eq. 2.9 and rearranging in terms of single-subscript stress components:

σxx
σyy
σzz
σyz
σxz
σxy


=



cos2 θ sin2 θ 0 0 0 − sin 2θ
sin2 θ cos2 θ 0 0 0 sin 2θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

sin θ cos θ − sin θ cos θ 0 0 0 cos2 θ − sin2 θ





σ11

σ22

σ33

σ23

σ13

σ12


. (2.11)

in vectorial form: [σ] = [T ] [σm], and

σ11

σ22

σ33

σ23

σ13

σ12


=



cos2 θ sin2 θ 0 0 0 sin 2θ
sin2 θ cos2 θ 0 0 0 − sin 2θ

0 0 1 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 sin θ cos θ 0

− sin θ cos θ sin θ cos θ 0 0 0 cos2 θ − sin2 θ





σxx
σyy
σzz
σyz
σxz
σxy


. (2.12)

in vectorial form: [σm] = [T ]T [σ]. Similarly it is possibile to relate the components of the
strain vector referred to the material system in terms of the general problem system as follows:

[εm] = [T ]T [ε] (2.13)

Substituting Eq. 2.2, for the material system, and Eq. 2.13 in [σ] = [T ] [σm], a transformed
material stiffness matrix is therefore introduced as follows:

[σ] = [T ] [σm] = [T ] [Cm] [εm] = [T ] [Cm] [T ]T [ε] =
[
C̃
]

[ε] (2.14)

The transformed material stiffness matrix contains the elastic coefficients referred to the
general problem coordinate system: [

C̃
]

= [T ] [Cm] [T ]T (2.15)

The stress-strain relations of Eq. 2.14 referred to the general coordinate system can be
rewritten in terms of in-plane components σp = {σxx, σyy, σxy} , εp = {εxx, εyy, εxy} re-
lated to the plate/shell reference plane, and in terms of out-of-plane components σn =
{σxz, σyz, σzz} , εn = {εxz, εyz, εzz} related to the thickness direction of the plate/shell, as
follows:

σp = C̃pp εp + C̃pn εn

σn = C̃np εp + C̃nn εn
(2.16)

where matrices C̃pp, C̃pn, C̃np, C̃nn derive from matrix C̃:

C̃pp =

C̃11 C̃12 C̃16

C̃12 C̃22 C̃26

C̃16 C̃26 C̃66

 C̃pn =

0 0 C̃13

0 0 C̃23

0 0 C̃36


C̃np =

 0 0 0
0 0 0

C̃13 C̃23 C̃36

 C̃nn =

C̃55 C̃45 0

C̃45 C̃44 0

0 0 C̃33


(2.17)

Poisson’s locking phenomena:
The thickness locking mechanism, also known as Poisson’s locking (PL) phenomena, affects
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the plate/shell analysis [52], [53]. The PL doesn’t permit to an equivalent single layer theory
with transverse displacement w constant or linear through the thickness (that means trans-
verse strain εzz zero or constant) to lead to the 3D solution in thin plate/shell problems.
A known technique to contrast PL consists in modifying the elastic stiffness coefficients by
forcing the ’contradictory’ condition of transverse normal stress equal to zero: σzz = 0 .
By imposing this condition in the constitutive equations 2.16, the modified stiffness coeffi-
cients in material reference system (reduced stiffness coefficients) can be obtained:

Ĉ11 =
E1

1− ν12ν21
Ĉ22 =

E2

1− ν12ν21
Ĉ12 =

ν12E2

1− ν12ν21
(2.18)

In order to avoid the PL, these coefficients must be used in [Cm] in the place of C11, C22,
C12 and then rotated according to Eq. 2.15.

2.2 Costitutive equations for multifield problems

Constitutive equations for the electro-thermo-mechanical problem are obtained in this sec-
tion in according with that reported in [54] and [50]; then three particular cases are dis-
cussed: coupled electro-mechanical problem, uncoupled thermo-mechanical problem, mixed
coupled electro-mechanical problem. The coupling between the mechanical, thermal and
electrical fields can be determined by using thermodynamical principles and Maxwell’s rela-
tions [41,55–57]. For this aim, it is necessary to define a Gibbs free-energy function G and a
thermopiezoelectric enthalpy density H [58,59]:

G (εij , Ei, θ) = σijεij + EiDi + ηθ

H (εij , Ei, θ, ϑi) = G (εij , Ei, θ) − F (ϑi)
(2.19)

where σij and εij are the stress and strain components, Ei is the electric field vector, Di is
the electric displacement vector. η is the variation of entropy per unit of volume and θ the
temperature considered with respect to a reference temperature. The function F (ϑi) is the
dissipation function, it depends by the spatial temperature gradient ϑi.

Thermo-mechanical problem:
In case of thermo-mechanical problem, two physical fields interact, no electrical loads are
applied on the structure. The couplings between mechanical and electrical fields, and between
electrical and thermal fields are not considered. If a partial coupling is considered in the
structure and the temperature is only seen as an external load, the considered constitutive
equations are derived from the solution of Eq.2.19:

σp = Cpp εp + Cpn εn − λp θ
σn = Cnp εp + Cnn εn − λn θ

(2.20)

where matrices λp, λn represents the thermo-mechanical coupling coefficients: λ = Cα, α
vector contains the thermal expansion coefficients.

αp =
[
α1 α2 0

]
αn =

[
0 0 α3

]
λp =

[
λ1 λ2 λ6

]
λn =

[
0 0 λ3

] (2.21)

Electro-mechanical problem:
In case of electro-mechanical problem, two physical fields interact, no thermal loads and
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spatial temperature gradients are applied on the structure. The couplings between mechanical
and thermal fields, and between electrical and thermal fields are not considered. The solution
of Eq.2.19 degenerates in:

σp = Cpp εp + Cpn εn − epp Ep − epn En
σn = Cnp εp + Cnn εn − enp Ep − enn En
Dp = epp εp + epn εn + εpp Ep + εpn En
Dn = enp εp + enn εn + εnp Ep + εnn En

(2.22)

where matrices epp, epn, enp, enn represent the piezoelectric coupling coefficients: e = Cd,
where d matrix contains the piezoelectric coefficients. Matrices εpp, εpn, εnp, εnn represent
the permittivity coefficients εij :

epp =

[
e11 e12 e16

e21 e22 e26

]
epn =

[
e15 e14 e13

e25 e24 e23

]
enp =

[
e31 e32 e36

]
enn =

[
e35 e34 e33

] (2.23)

εpp =

[
ε11 ε12

ε12 ε22

]
εpn =

[
0
0

]
εnp =

[
0 0

]
εnn =

[
ε33

] (2.24)

Actuation modes

The piezoelettric effect are made avaible in polarisable crystalline materials through the
application of an intense electric field which imparts a net polarisation of the crystal cells.
Depending on the mutual direction of the polarisation and of the applied loading, two im-
portant actuation modes are taken into account in this work.

Actuation in 3-1 mode
Transverse extension mode (3-1 mode), the applied electric field is aligned with the polarisa-
tion axis but the major deformation occurs in the transverse plane due to the thinness of the
piezoelectric sheet, see Figure 2.3. The piezoelectric coefficients for the 3-1 mode are defined
as follows:

dpp =

[
0 0 0
0 0 0

]
dpn =

[
d15 0 0
0 d24 0

]
dnp =

[
d31 d32 0

]
dnn =

[
0 0 d33

] (2.25)

epp =

[
0 0 0
0 0 0

]
epn =

[
e15 e14 0
e25 e24 0

]
enp =

[
e31 e32 e36

]
enn =

[
0 0 e33

] (2.26)
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Figure 2.3: Representation of piezoelectric actuation modes taken into account. Transverse
extension mode (3-1 mode), and the shear mode (1-5 mode)

Actuation in 1-5 mode
Shear mode (1-5 mode), the applied electric field is perpendicular to the polarisation direction
and the principal mechanical effect is associated to a shear deformation, see Figure 2.3. The
piezoelectric coefficients for the 1-5 mode are defined as follows:

dpp =

[
d11 d12 0
0 0 d26

]
dpn =

[
0 0 d13

0 0 0

]
dnp =

[
0 0 0

]
dnn =

[
d35 0 0

] (2.27)

epp =

[
e11 e12 e16

e21 e22 e26

]
epn =

[
0 0 e13

0 0 e23

]
enp =

[
0 0 0

]
enn =

[
e35 e34 0

] (2.28)

Electro-mechanical problem using the Reissner Mixed Variational Theorem:

The Reissner Mixed Variational Theorem (RMVT) permits to add a new set of extensive
variables and to model them a priori in the thickness direction. In this work, for the case
of electro-mechanical problems, a particular extension of the RMVT is used: the transverse
normal electric displacement Dz as extensive variable without the modelization of the trans-
verse mechanical stresses, here called RMV T − Dz. The costitutive equations 2.22 can be
written in matrix form after the following vectors are defined as:
Ξa = {εp, εn,Ep} , Ξb = {En} , Σa = {σp,σn,Dp} , Σb = {Dn}

and the following matrix coefficients are defined as:

H(8×8)
aa =

Cpp Cpn −epp
Cnp Cnn −epn
epp epn εpp

 H
(8×1)
ab =

−enp−enn
εpn

 H
(1×8)
ba =

[
enp enn εnp

]
H

(1×1)
bb =

[
εnn
]
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H(8×8)
aa =



C11 C12 C16 0 0 C13 0 0
C12 C22 C26 0 0 C23 0 0
C16 C26 C66 0 0 C36 0 0
0 0 0 C55 C45 0 −e15 −e25

0 0 0 C45 C44 0 −e14 −e24

C13 C23 C36 0 0 C33 0 0
0 0 0 e15 e14 0 ε11 ε12

0 0 0 e25 e24 0 ε12 ε22


H

(8×1)
ab =



−e31

−e32

−e36

0
0
−e33

0
0


In compact form:

Σa = Haa Ξa +Hab Ξb

Σb = Hba Ξa +Hbb Ξb

(2.29)

The aim of this work is to permit the transverse electric displacement to be a priori modeled,
so the consitutive equations are rewritten as follows:

Σa = H̃aa Ξa + H̃ab Σb

Ξb = H̃ba Ξa + H̃bb Σb

(2.30)

where the new matrix coefficients are obtained as follows:

H̃aa = Haa −
HabHba

Hbb
, H̃ab =

Hab

Hbb
, H̃ba = −Hba

Hbb
, H̃bb =

1

Hbb

H̃
(8×8)

aa =



C11 +
e2

31

ε33
C12 +

e31e32

ε33
C16 +

e31e36

ε33
0 0 C13 +

e31e33

ε33
0 0

C12 +
e31e32

ε33
C22 +

e2
32

ε33
C26 +

e32e36

ε33
0 0 C23 +

e32e33

ε33
0 0

C16 +
e31e36

ε33
C26 +

e32e36

ε33
C66 +

e2
36

ε33
0 0 C36 +

e33e36

ε33
0 0

0 0 0 C55 C45 0 −e15 −e25

0 0 0 C45 C44 0 −e14 −e24

C13 +
e31e33

ε33
C23 +

e32e33

ε33
C36 +

e33e36

ε33
0 0 C33 +

e2
33

ε33
0 0

0 0 0 e15 e14 0 ε11 ε12

0 0 0 e25 e24 0 ε12 ε22
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H̃
(8×1)

ab =



−e31

ε33

−e32

ε33

−e36

ε33

0

0

−e33

ε33

0

0



H̃
(1×8)

ba =

[
−e31

ε33

−e32

ε33

−e36

ε33
0 0

−e33

ε33
0 0

]
H̃

(1×1)

bb =

[
1

ε33

]

The new constitutive equations are:

σpC = H̃
(1:3;1:3)
aa εpG + H̃

(1:3;4:6)
aa εnG + H̃

(1:3;7:8)
aa EpG + H̃

(1:3;1)
ab DnM

σnC = H̃
(4:6;1:3)
aa εpG + H̃

(4:6;4:6)
aa εnG + H̃

(4:6;7:8)
aa EpG + H̃

(4:6;1)
ab DnM

DpC = H̃
(7:8;1:3)
aa εpG + H̃

(7:8;4:6)
aa εnG + H̃

(7:8;7:8)
aa EpG + H̃

(7:8;1)
ab DnM

EnC = H̃
(1;1:3)
ba εpG + H̃

(1;4:6)
ba εnG + H̃

(1;7:8)
ba EpG + H̃

(1;1)
bb DnM

(2.31)



σp

σn

Dp

En



=



H̃aa H̃ab

H̃ba H̃bb





εp

εn

Ep

Dn
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2.3 Geometry of the shell

A thin shell as a three-dimensional body is bounded by two closely spaced curved surfaces,
the distance between the two surfaces must be small in comparison with the other dimen-
sions. The middle surface of the shell is the locus of points which lie midway between these
surfaces. The distance between the surfaces measured along the normal to the middle surface
is the thickness of the shell at that point [60]. Shells may be seen as generalizations of a
flat plate [61]; conversely, a flat plate is a special case of a shell having no curvature. In
this section the fundamental equations of thin shell theory are presented in order to obtain
the geometrical relations for multifield problems. Geometrical relations for plates are seen
as particular case of those for shells. The material is assumed to be linearly elastic and ho-
mogeneous, displacements are assumed to be small, thereby yielding linear equations; shear
deformation and rotary inertia effects are neglected, and the thickness is taken to be small.
The deformation of a thin shell is completely determined by the displacements of its mid-
dle surface [60]. The equation of the undeformed middle surface is given, in terms of two
independent parameters α and β, by the radius vector:

−→r = −→r (α, β) (2.32)

Eq.2.32 determines a space curve on the surface. Such curves are called β curves and α
curves, see Figure 2.4.

Figure 2.4: Displacements on the shell reference surface.

It is possible to assume that the parameters α and β always vary within a definite region,
and that a one-to-one correspondence exists between the points on this region and points on
the portion of the surface of interest:

−→r ,α =
δ−→r
δα

; −→r ,β =
δ−→r
δβ

(2.33)

The vectors −→r ,α and −→r ,β are tangent to the α and β curves, respectively. Their length is:

| −→r ,α |= A ; | −→r ,β |= B (2.34)
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Consequently
−→r ,α
A

and
−→r ,β
B

are unit vectors tangent to the coordinates curves. The angle
between the coordinate curves is χ:

−→r ,α
A

.
−→r ,β
B

= cosχ (2.35)

where −→r ,α
A

= îα ;
−→r ,β
B

= îβ ; în =
îα . îβ
sinχ

(2.36)

în is the unit vector of the normal to the surface and is orthogonal to the vectors îα and îβ .
The unit vectors îα, îβ and în are usually called the basic vectors of the surface [60].

First quadratic form

If we consider two points (α, β) and (α+ dα, β + dβ) arbitrarily near to each other and both
lying on the surface, the increment of the vector −→r in moving from the first point to the
second one is:

d−→r = −→r ,α dα+−→r ,β dβ (2.37)

By considering Eqs.2.34,2.35,2.36 and 2.37, we can obtain the square of the differential of the
arc length on the surface:

d−→r . d−→r = ds2 = A2dα2 + 2AB cosχdαdβ +B2dβ2 (2.38)

The right-hand side of Eq.2.38 is the first quadratic form of the surface. This form deter-
mines the infinitesimal lengths, the angle between the curves, and the area on the surface:
the intrinsic geometry of the surface. However, it does not determine a surface by itself. The
terms A2 , AB cosχ, and B2 are called first fundamental quantities.

Second quadratic form

The problem of finding the curvature of a curve which lies on the surface, can be solved by
considering the second quadratic form of the surface. −→r = −→r (s) is the vectorial equation of
a curve on the surface (s is the arc length from a certain origin). τ̂ is the unit vector along
the tangent to the curve:

τ̂ =
d−→r
ds

= −→r ,α
dα

ds
+−→r ,β

dβ

ds
(2.39)

According to Frenet’s formula [62], the derivative of this vector is:

dτ̂

ds
=
N̂

ρ
(2.40)

where
1

ρ
is the curvature of the curve, and N̂ is the unit vector of the principal normal to

the curve. By omitting the middle passages, detailed described in [60], is possible to obtain
the expression for the second quadratic form: Ldα2 + 2Mdαdβ +Ndβ2. L, M and N are the
coefficients of the form. The second quadratic form is thus related to the curvatures of the
curves on the surface. The curvatures of the α curves and the β curves take β = constant
and α = constant, respectively:

1

Rα
= − L

A2
;

1

Rβ
= − N

B2
(2.41)

When A, B, Rα and Rβ are given, they determine a surface uniquely, except to position and
orientation in space [60]. Rα and Rβ are the radii of curvature.
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Strain-displacement equations

To describe the location of an arbitrary point in the space occupied by a thin shell, the
position vector is defined as:

−→
R (α, β, z) = −→r (α, β) + zîn (2.42)

where z measures the distance of the point from the corresponding point on the middle

surface along în and varies over the thickness
(
−h

2
≤ z ≤ h

2

)
. The magnitude of an arbitrary

infinitesimal change in the vector
−→
R (α, β, z) is determined by:

(ds)2 = d
−→
R . d

−→
R = (d−→r + zdîn + îndz) (d−→r + zdîn + îndz) (2.43)

Remembering the orthogonality of the coordinate system and the chain rule:

dîn =
∂în
∂α

dα+
∂în
∂β

dβ (2.44)

one obtains:
(ds)2 = g1dα

2 + g2dβ
2 + g3dz

2 (2.45)

where

g1 =

[
A

(
1 +

z

Rα

)]2

; g2 =

[
B

(
1 +

z

Rβ

)]2

; g3 = 1 (2.46)

The quantities g1, g2, g3, A, B, Rα, Rβ are connected by the equations of Lamb [63], since
the three-dimensional space (the space in which the three independent variables α, β, z) is
an Euclidean space. The fundamental shell element is the differential element bounded by
two surfaces dz apart at a distance z from the middle surface, and four ruled surfaces whose
generators are the normals to the middle surface along the parametric curves α = α0 ,
α = α0 + dα, β = β0 and β = β0 + dβ [60]. The lengths of the edges of this fundamental
element are (see Figure 2.5):

dsα(z) = A

(
1 +

z

Rα

)
dα

dsβ(z) = B

(
1 +

z

Rβ

)
dβ

(2.47)

the differential areas of the edge faces of the fundamental element are (see Figure 2.5):

dAα(z) = A

(
1 +

z

Rα

)
dαdz

dAβ(z) = B

(
1 +

z

Rβ

)
dβdz

(2.48)

while the volume of the fundamental element is:

dV (z) =

[
A

(
1 +

z

Rα

)][
B

(
1 +

z

Rβ

)]
dαdβdz (2.49)
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Figure 2.5: General reference system and notations for shells.

The well-known strain-displacement equations of three-dimensional theory of elasticity in
orthogonal curvilinear coordinates have been obtained in [64]

εi =
∂

∂αi

(
Ui√
gi

)
+

1

2gi

3∑
k=1

∂gi
∂αk

Uk√
gk

, i = 1, 2, 3 (2.50)

γij =
1
√
gigj

[
gi

∂

∂αj

(
Ui√
gi

)
+ gj

∂

∂αi

(
Uj√
gj

)]
, i, j = 1, 2, 3 i 6= j (2.51)

where εi, γij and Ui are normal strains, shear strains, and displacement components, respec-
tively, at an arbitrary point. In the shell coordinates the indices 1, 2 and 3 are replaced by
α, β and z, respectively, except for the displacements U1, U2 and U3 , which are replaced
by u, v and w, respectively. Coefficients of the metric tensor are given by Eq. 2.46, thus
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yielding:

εα =
1(

1 +
z

Rα

) ( 1

A

∂u

∂α
+

v

AB

∂A

∂β
+

w

Rα

)
(2.52)

εβ =
1(

1 +
z

Rβ

) ( 1

B

∂v

∂β
+

u

AB

∂B

∂α
+

w

Rβ

)
(2.53)

εz =
∂w

∂z
(2.54)

γαβ =

A

(
1 +

z

Rα

)
B

(
1 +

z

Rβ

) ∂

∂β

 u

A

(
1 +

z

Rα

)
+

B

(
1 +

z

Rβ

)
A

(
1 +

z

Rα

) ∂

∂α

 v

B

(
1 +

z

Rβ

)
 (2.55)

γαz =
1

A

(
1 +

z

Rα

) ∂w
∂α

+A

(
1 +

z

Rα

)
∂

∂z

 u

A

(
1 +

z

Rα

)
 (2.56)

γβz =
1

B

(
1 +

z

Rβ

) ∂w
∂β

+B

(
1 +

z

Rβ

)
∂

∂z

 v

B

(
1 +

z

Rβ

)
 (2.57)

2.4 Geometrical shell relations for multifield problems

By considering Eqs.2.52-2.57, in case of shells with constant radii of curvature, the coefficients
A and B are equal to 1. In this section geometrical relations are written in matrix form.
The separation in in-plane (p) and out-plane (n) components of the mechanical strains is
considered too:

εp = [εαα, εββ , εαβ] = (Dp +Ap) u

εn = [εαz, εβz, εzz] = (Dnp +Dnz −An) u
(2.58)

where the vector of displacement components is u = (u, v, w). The explicit form of the
introduced arrays follows:

Dp =


∂α
Hα

0 0

0
∂β
Hβ

0
∂β
Hβ

∂α
Hα

0

 Dnp =


0 0 ∂α

Hα

0 0
∂β
Hβ

0 0 0

 Dnz =

∂z 0 0
0 ∂z 0
0 0 ∂z



Ap =

0 0 1
HαRα

0 0 1
HβRβ

0 0 0

 An =

 1
HαRα

0 0

0 1
HβRβ

0

0 0 0


(2.59)

In the proposed differential arrays the symbols ∂α, ∂β and ∂z indicate the partial derivatives
∂
∂α ,

∂
∂β , and

∂
∂z , respectively. The parameters Hα and Hβ are the shell metrics, and they

are defined as: Hα =
(

1 + z
Rα

)
, Hβ =

(
1 + z

Rβ

)
. Details on Eqs.2.58-2.59 are given in [65].
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In [65] geometrical relations, which link the electrical field E with the electric potential Φ ,
are also given:

Ep = [Eα, Eβ] = −DepΦ

En = [Ez] = −DenΦ
(2.60)

where the meaning of introduced arrays is:

Dep =

 ∂α
Hα

∂β
Hβ

 Den =
[
∂z
]

(2.61)
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Chapter 3

Classical, refined and hierarchical theories

Plates and shells are bi-dimensional structures in which one dimension (in general the thick-
ness in the z direction) is negligible with respect to the other two dimensions. A brief overview
of classical and higher-order plate/shell theories is given below. Then the Unified Formula-
tion is introduced to describe the displacement field, in the thickness direction, by arbitrary
functions at any desidered expansion order.

3.1 Classical and refined theories

Kirchoff’s hypothesis: The simplest plate/shell theory is based on the Kirchoff’s hypothe-
ses, and, when applied to composite laminates, it is usually referred to as Classical Lamination
Theory (CLT) [1–3]. In CLT, both transverse shear strains and transverse normal strains
are discarded, in usual applications being negligible with respect to the in-plane ones. The
displacement field of CLT is represented in Eq. 3.1 and its geometrical representation is
shown in Figure 3.1.

Figure 3.1: Geometrical representation of the
Kirchoff’s assumptions.

u(α, β, z) = u0(α, β)− z ∂w0

∂α

v(α, β, z) = v0(α, β)− z ∂w0

∂β

w(α, β, z) = w0(α, β)

(3.1)

Reissner-Mindlin theory : Based on the works by Reissner [4] and Mindlin [5], the in-
clusion of transverse shear strains leads to the plate theory best known as the First-order
Shear Deformation Theory (FSDT). The displacement field of the FSDT is represented in
Eq. 3.2 and its geometrical representation is depicted in Figure 3.2.

Figure 3.2: Geometrical rapresentation of the
Reissner-Mindlin theory.

u(α, β, z) = u0(α, β) + z u1(α, β)

v(α, β, z) = v0(α, β) + z v1(α, β)

w(α, β, z) = w0(α, β)

(3.2)
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Due to the inconsistency demanded by discarding the transverse normal stress in the mate-
rial constitutive equations, both CLT and FSDT are no reliable when 3D local effects play a
fundamental role, and the correct analysis of the stress field within the structure is needed.
To completely remove the inconsistencies of classical plate/shell theories, higher-order expan-
sions of the unknowns with respect to the z coordinate can be employed.

Higher Order Theories: Classical plate/shell models grant good results when small thick-
ness, homogeneous structures are considered. On the other hand, the analysis of thick
plates/shells and multilayered structures may require more sophisticated theories to achieve
sufficiently accurate results. As a general guideline, it is clear that the richer the kinematics
of the theory, the more accurate the 2D model becomes. In order to overcome the limitations
of classical theories, a large variety of plate/shell higher-order theories (HOT) have been pro-
posed in the past and recent literature. Eventually, higher-order theories can be expressed
by making use of Taylor-like expansions of the generalized unknowns along the thickness. In
the case of generic expansions of N terms, HOT displacement field can be expressed as in Eq.
3.3. Figure 3.3 pictorially shows the capabilities of HOT models, which can address complex
kinematics in the thickness direction.

Figure 3.3: Geometrical representation of the
Higher Order Theories.

u(α, β, z) = u0(α, β) + z u1(α, β) + ...+ zN uN (α, β)

v(α, β, z) = v0(α, β) + z v1(α, β) + ...+ zN vN (α, β)

w(α, β, z) = w0(α, β) + z w1(α, β) + ...+ zN wN (α, β)

(3.3)

The classical models, CLT and FSDT kinematics, are particular cases of the full linear expan-
sion, obtained from Eq. 3.3 imposing N = 1. Starting from the full linear expasion N = 1,
two possible techniques can be used to obtain FSDT, Eq. 3.2 the rearranging of rows and
columns of the stiffness matrix; the penalization of the stiffness terms related to w1 term.
Therefore, CLT model, Eq. 3.1, can be obtained through the penalization of γαz and γβz.
The condition can be imposed using a penalty value χ in the constitutive equations:

ταz = χC55γαz

τβz = χC44γβz

For more details see [66]. Therfore, it is well known in literature that linear models are af-
fected by the problem of the Poisson Locking (PL) phenomena. The remedy for the Poisson
locking, except to use higher-order theories, is to modify the Elastic Coefficients of the ma-
terial, see Eq. 2.18. The PL phenomena originates from constitutive laws which state the
intrinsic coupling between in- and out-of-plane strain components. Classical plate/shell the-
ories correct the locking phenomena by imposing that the out-of-plane normal stress is zero.
This hypothesis yields reduced material stiffness coefficients which have to be accountend in
the Hooke law. Therefore, in literature, the correction of the material coefficients does not
have a consistent theoretical proof. This means that the adoption of reduced material coef-
ficients does not necessarily lead to the exact 3D solution, as shown in [52]. For the sake of
clarity and simplicity of the present method explanation, the results presented in this work,
with the full linear expansion kinematics, are not corrected for the PL phenomena.
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3.2 Unified Formulation

According to Unified Formulation [15,66–68], refined models can be formulated in a straight-
forward manner by assuming an expansion of each of the primary variables by arbitrary
functions in the thickness direction. Thus, each variable can be treated independently from
the others, according to the required accuracy. In a displacement-based formulation, in fact,
the three-dimensional displacement field is the combination of through-the-thickness func-
tions weighted by the generalized unknown variables:

u(α, β, z) = F0(z)u0(α, β) + F1(z)u1(α, β) + ...+ FN (z)uN (α, β)

v(α, β, z) = F0(z) v0(α, β) + F1(z) v1(α, β) + ...+ FN (z) vN (α, β)

w(α, β, z) = F0(z)w0(α, β) + F1(z)w1(α, β) + ...+ FN (z)wN (α, β)

(3.4)

Similarly, in a compact form one has:

u(α, β, z) = Fs(z)us(α, β) s = 0, 1, ..., N (3.5)

where u(α, β, z) is the three-dimensional displacement vector defined in a general curvilinear
orthogonal reference system; Fs are the thickness functions depending only on z; us is the
generalized displacement vector of the variables; s is a sum index; and N is the number of
terms of the theory expansion. Depending on the choice of the thickness functions, Fs, and
the number of terms in the plate/shell kinematics, N , various theories can be implemented.

Taylor Higher-order Theories:

Classical shell models that are usually utilized in the literature and in commercial finite
element tools are based on Taylor expansions of the primary variables along the thickness
direction. As previously discussed, many attempts have been made to improve classical shell
models. Refined theories, in general, make use of second- to higher-order polynomials for
approximating the three-dimensional kinematic field along the shell thickness. Accordingly,
Unified Formulation models based on Taylor polynomials express the unknown variables in
terms of arbitrarily rich functions of the midplane position of the shell. This class of models
are particularly efficient for thin and homogeneous structures.

In this work, Taylor-based higher-order shell models are expressed as:

u = F0 u0 + F1 u1 + . . . + FN uN = Fs us, s = 0, 1, . . . , N. (3.6)

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN . (3.7)

This class of models is denoted to as ETN , where E stands for Equivalent-Single-Layer
(ESL), T stands for Taylor expansions, and N denotes the number of terms of the expansion
and the polynomial order, which is arbitrary in the Unified Formulation. For example, the
ET2 model corresponds to a second-order shell model with the following kinematics:

u(α, β, z) = u0(α, β) + z u1(α, β) + z2 u2(α, β) (3.8)

Classical models, such as the CLT and FSDT, can be obtained as a particular case of an
Equivalent-Single-Layer (ESL) theory with N = 1. Or, in other words, classical shell models
are degenerated cases of the ET1 model.

Legendre-like polynomial expansions:

Expanding the unknown variables as functions of the shell midplane position can result
in inaccurate results, especially when thick composite structures are addressed. A possible
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solution to this drawback can be expanding the displacement field in non-local sense through-
the-thickness by means, for example, of Legendre-like polynomials. These polynomial set, if
formulated opportunely, can allow one to express the unknown variables in function of the
top and bottom position of a given sub-domain of the shell thickness (i.e., each single layer or
group of layers). In the case of Legendre-like polynomial expansion models, the displacement
is defined as follows:

u = F0 u0 + F1 u1 + Fr ur = Fs us, s = 0, 1, r , r = 2, ..., N. (3.9)

F0 =
P0 + P1

2
, F1 =

P0 − P1

2
, Fr = Pr − Pr−2. (3.10)

in which Pj = Pj(ζ) is the Legendre polynomial of j-order defined in the ζ-domain: −1 ≤
ζ ≤ 1. P0 = 1, P1 = ζ, P2 = (3ζ2 − 1)/2, P3 = (5ζ3 − 3ζ)/2, P4 = (35ζ4 − 30ζ2 + 3)/8 .
For the Layer-Wise (LW) models, the Legendre polynomials and the relative top and bottom
position are defined for each layer.

Refined polynomials with Zig-Zag Function:

Due to the intrinsic anisotropy of multilayered structures, the first derivative of the dis-
placement variables in the z-direction is discontinuous. It is possible to reproduce the zig-zag
effect in the framework of the ESL description by employing the Murakami theory. According
to [69], a zig-zag term can be introduced into Eq. 3.6 as follows:

u = F0(z) u0 + . . . + FN−1(z) uN−1 + (−1)kζkuN . (3.11)

Equivalently, the zig-zag function can be introduce also into Eq. 3.9 for a further enhancement
of the Legendre polynomial expansions, if used in an Equivalent-Single-Layer approach:

u = F0 u0 + F1 u1 + Fr ur + (−1)kζkuN . (3.12)

0 = top, 1 = bottom, r = 2, ..., N − 1

The models outlined in Eqs. 3.11 and 3.12 are called zig-zag theories. The zig-zag func-
tion is defined in each layer k, where the non-dimensional term ζk takes value 1 and −1 at
the top and the bottom of each layer, respectively.

Advanced Trigonometric and Exponential expansion Theories:

The definition of new kinematic models using different or unconventional functions, to
improve the description of the displacement field along the thickness of the shell, is not a
difficult task in the framework of Unified Formulation. If a trigonometric sine series plus a
constant contribution is adopted, the displacement variables can be written as follows:

u = u0 + sin
(πz
h

)
u1 + ...+ sin

(nπz
h

)
uN (3.13)

where h is the whole thickness dimension and n is the half-waves number. If the linear
contribution is considered, the displacement expression is:

u = u0 + z u1 + sin
(πz
h

)
u2 + ...+ sin

(nπz
h

)
uN+1 (3.14)

A similar description can be provided using a trigonometric cosine series:

u = u0 + cos
(πz
h

)
u1 + ...+ cos

(nπz
h

)
uN (3.15)
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and with the linear contribution:

u = u0 + z u1 + cos
(πz
h

)
u2 + ...+ cos

(nπz
h

)
uN+1 (3.16)

A complete trigonometric series becomes:

u = u0 + sin
(πz
h

)
u1 + cos

(πz
h

)
u2 + ...+ sin

(nπz
h

)
u2N−1+

+ cos
(nπz
h

)
u2N

(3.17)

If the linear contribution is considered:

u = u0 + z u1 + sin
(πz
h

)
u2 + cos

(πz
h

)
u3 + .....+

+ sin
(nπz
h

)
u2N + cos

(nπz
h

)
u2N+1

(3.18)

If an exponential expansion is employed the displacement field is:

u = u0 + e(z/h) u1 + ...+ e(nz/h) uN (3.19)

and adding the linear contribution:

u = u0 + z u1 + e(z/h) u2 + ...+ e(nz/h) uN+1 (3.20)

Equivalently, the zig-zag function, Eq. 3.11, can be introduced also into trigonometric or
exponential polynomials for a further enhancement of the displacement field description. For
example, the theory ET1S2Z refers to the following displacement field:

u(α, β, z) = u0(α, β) + z u1(α, β) + sin

(
1πz

h

)
u2(α, β)+

+ sin

(
2πz

h

)
u3(α, β) + (−1)kζku4Z (α, β)

(3.21)

Multifield Formulation:

Unified Formulation becomes extremely useful when multifield problems are investigated
such as thermoelastic problems, and electroelastic applications of piezoelectric structures
[70–73]. In a displacement-based formulation for mechanical problems employing the
Principle of Virtual Displacement (PVD), see Sec. 4.2, the three-dimensional displacement
field is an approximation of the thickness functions weighted by the generalized unknown
variables expanded with N terms:

u(α, β, z) = F0(z)u0(α, β) + F1(z)u1(α, β) + ...+ FN (z)uN (α, β)

v(α, β, z) = F0(z) v0(α, β) + F1(z) v1(α, β) + ...+ FN (z) vN (α, β)

w(α, β, z) = F0(z)w0(α, β) + F1(z)w1(α, β) + ...+ FN (z)wN (α, β)

(3.22)

In a displacement-based formulation for partially coupled thermo-mechanical prob-
lems employing the Principle of Virtual Displacement (PVD), see Sec. 4.3, the primary
variables are only the three mechanical displacements (u, v, w) as the pure mechanical case,
see Eq. 3.22. The temperature profile θ(α, β, z) is an input of the uncoupled thermoelastic
analysis.
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In a displacement-based formulation for coupled electro-mechanical problems em-
ploying the Principle of Virtual Displacement (PVD), see Sec. 4.4, the primary variables are
the three mechanical displacements (u, v, w) and the electric potential Φ:

u(α, β, z) = F0(z)u0(α, β) + F1(z)u1(α, β) + ...+ FN (z)uN (α, β)

v(α, β, z) = F0(z) v0(α, β) + F1(z) v1(α, β) + ...+ FN (z) vN (α, β)

w(α, β, z) = F0(z)w0(α, β) + F1(z)w1(α, β) + ...+ FN (z)wN (α, β)

Φ(α, β, z) = F0(z) Φ0(α, β) + F1(z) Φ1(α, β) + ...+ FN (z) ΦN (α, β)

(3.23)

In a mixed formulation for mechanical problems employing the Reissner Mixed Vari-
ational Theorem (RMVT), see Sec. 4.6, the primary variables are the three mechanical dis-
placements (u, v, w), and in addition a new set of extensive variables: the transverse stresses
σn. Three possible extensions of the PVD for mechanical problems are possible: the three
mechanical displacements (u, v, w) plus the transverse shear stresses σαz and σβz:

u(α, β, z) = F0(z)u0(α, β) + F1(z)u1(α, β) + ...+ FN (z)uN (α, β)

v(α, β, z) = F0(z) v0(α, β) + F1(z) v1(α, β) + ...+ FN (z) vN (α, β)

w(α, β, z) = F0(z)w0(α, β) + F1(z)w1(α, β) + ...+ FN (z)wN (α, β)

σαz(α, β, z) = F0(z)σαz0(α, β) + F1(z)σαz1(α, β) + ...+ FN (z)σαzN (α, β)

σβz(α, β, z) = F0(z)σβz0(α, β) + F1(z)σβz1(α, β) + ...+ FN (z)σβzN (α, β)

(3.24)

The second possibility is the three mechanical displacements (u, v, w) plus the transverse
normal stress σzz:

u(α, β, z) = F0(z)u0(α, β) + F1(z)u1(α, β) + ...+ FN (z)uN (α, β)

v(α, β, z) = F0(z) v0(α, β) + F1(z) v1(α, β) + ...+ FN (z) vN (α, β)

w(α, β, z) = F0(z)w0(α, β) + F1(z)w1(α, β) + ...+ FN (z)wN (α, β)

σzz(α, β, z) = F0(z)σzz0(α, β) + F1(z)σzz1(α, β) + ...+ FN (z)σzzN (α, β)

(3.25)

The last extension is the three mechanical displacements (u, v, w) plus all the transverse
stresses σαz, σβz and σzz:

u(α, β, z) = F0(z)u0(α, β) + F1(z)u1(α, β) + ...+ FN (z)uN (α, β)

v(α, β, z) = F0(z) v0(α, β) + F1(z) v1(α, β) + ...+ FN (z) vN (α, β)

w(α, β, z) = F0(z)w0(α, β) + F1(z)w1(α, β) + ...+ FN (z)wN (α, β)

σαz(α, β, z) = F0(z)σαz0(α, β) + F1(z)σαz1(α, β) + ...+ FN (z)σαzN (α, β)

σβz(α, β, z) = F0(z)σβz0(α, β) + F1(z)σβz1(α, β) + ...+ FN (z)σβzN (α, β)

σzz(α, β, z) = F0(z)σzz0(α, β) + F1(z)σzz1(α, β) + ...+ FN (z)σzzN (α, β)

(3.26)

In a mixed formulation for coupled electro-mechanical problems employing the Reiss-
ner Mixed Variational Theorem (RMVT), see Sec. 4.7, the primary variables are the three
mechanical displacements (u, v, w), and in addition two new set of extensive variables: the
mechanical transverse stresses σn, and the electric transverse displacement Dz. As previ-
ously discussed for the RMVT for mechanical case, several combinations of the extensive
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variables are possible. In this work the attention is focused only on the use of the electric
extensive variable, the electric transverse displacement Dz. The primary variables are the
three mechanical displacements (u, v, w) and the electric transverse displacement Dz:

u(α, β, z) = F0(z)u0(α, β) + F1(z)u1(α, β) + ...+ FN (z)uN (α, β)

v(α, β, z) = F0(z) v0(α, β) + F1(z) v1(α, β) + ...+ FN (z) vN (α, β)

w(α, β, z) = F0(z)w0(α, β) + F1(z)w1(α, β) + ...+ FN (z)wN (α, β)

Dz(α, β, z) = F0(z)Dz0(α, β) + F1(z)Dz1(α, β) + ...+ FN (z)DzN (α, β)

(3.27)

Acronyms

A system of acronyms is given to denote the considered kinematic models. The first letters
indicate the used approach, the Equivalent Single Layer is denoted by the letter E, differently
if the layer-wise approach is used, the first letters become LW . For the Equivalent Single
Layer approaches, the second letter indicates the kind of employed function, T for Taylor
polynomials, L for Legendre polynomials, S for sines expansions, C for cosines expansions,
and Exp for the exponential polynomials. The number N indicates the number of the ex-
pansion terms (except the constant term) used in the thickness direction. The last letter Z
is added if the zig-zag term is considered. If the Navier analytical method is employed the
subscript (a) is used.
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3.3 Modelling Approaches

Two different types of modelling approaches are usually adopted in the literature for the
formulation of composite structure theories; i.e., ESL and LW. Nevertheless, it is important
to mention that choice of the modelling approach (i.e., ESL, LW) is independent of the type
of the polynomials employed in the theory expansion within Unified Formulation.

ESL models

In an ESL model, the stiffness matrices of each layer are homogenized by simply summing
the various contributions trough the thickness. This approach leads to a model that has a set
of variables that is assumed for the whole multilayer, and thus is independent of the number of
layers. In this work, ESL models that make use of both Taylor and Legendre-like polynomials
are used. For illustrative purposes, the general behaviour of the primary mechanical variables
along the thickness of the structure in the case of ESL is depicted in Figure 3.4.

Figure 3.4: Equivalent-Single-Layer behaviour of the primary variables along the
thickness of the shell.

LW models

In the case of LW, different sets of variables are assumed per each layer and the continuity
of the displacements is imposed at the layer interface. The LW capability of describing cor-
rectly the discontinuous behaviour of the derivatives of the primary unknowns is graphically
shown in in Figure 3.5. In this work, LW models are implemented by using Legendre-like
polynomial sets. In particular, the kinematic expansion is made by using Lagrange and Leg-
endre polynomials, see Eq. 3.9. The Lagrange polynomials F0 and F1, in fact, are necessary
for interpolating the displacements at the top (t) and bottom (b) position of the layer, re-
spectively. Hence, the unknown variables at the top (t) and bottom (b) position are used to
impose the following compatibility conditions:

ukt = uk+1
b , k = 1, Nl − 1. (3.28)

where k indicates the layer, and Nl is the number of layers.

Figure 3.5: Layer-Wise behaviour of the primary variables along the thickness of
the shell.
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Chapter 4

Variational Principles

Thermo-electro-mechanical problems for multilayered structures had a growing interest in
recent years [74]. For this reason several three-dimensional solutions are available in litera-
ture [75–77] for problems considering three different involved physical fields. Other interesting
reference solutions are those related to the electro-mechanical problem [78–82], and those for
thermo-mechanical coupling [83–86]. However, by considering the introduction of new materi-
als in aerospace field, i.e. composites, sandwiches and functionally graded materials, the pure
mechanical problem remains a fundamental topic, as illustrated in several works about the
three-dimensional analysis of plates and shells [87–89]. The possibility of treating in a unified
manner the refined and advanced two-dimensional models for multifield problems could rep-
resent a fundamental topic in the structural analysis. In this chapter the refined models are
obtained by means of the Principle of Virtual Displacement (PVD) and its extensions to mul-
tifield problems. The most general case is the PVD written for the thermo-electro-mechanical
case, the other PVD applications (thermo-mechanical case, electro-mechanical case, and so
on) can be considered as particular cases of the most general thermo-electro-mechanical appli-
cation [50]. Reissner’s Mixed Variational Theorem (RMVT) [90] extended to thermo-electro-
mechanical problems gives several advanced two-dimensional models, where some transverse
variables such as the transverse shear/normal stresses [91] and/or transverse normal electrical
displacement are a priori modelled: in the PVD case these variables are obtained with an
opportune post-processing via constitutive equations. The variables obtained a priori sat-
isfy the Interlaminar Continuity (IC). The extension of RMVT to thermo-electro-mechanical
problems is not so intuitive as the PVD case; problems such as the thermo-mechanical or the
electro-mechanical ones, are not always particular cases of the most general thermo-electro-
mechanical RMVT extension. In order to clarify these aspects, PVD and RMVT extensions
for multifield problems are discussed in this chapter for each possible combination (one, two
or three involved physical fields). Governing equations are written in a general form in order
to simplify the relationships between general and particular cases.

4.1 Principle of Virtual Displacements for multifield problems

In the recent past, several two-dimensional approaches have been successfully extended to
multilfield problems [92–94]. Refined models, obtained via the extension of the Principle of
Virtual Displacements (PVD) to thermo-electro-mechanical case and employing the Unified
Formulation, give the possibility to choose the order of expansion in the thickness direction
and the multilayer description (Equivalent Single Layer (ESL) or Layer Wise (LW)). The
PVD for a thermo-electro-elastic medium can be derived from the Hamilton’s principle as
indicated in [50] and [54]:

δ

∫ t

t0

(Ec − Ep) dt = 0 ⇒ δ

∫ t

t0

Ep dt = δ

∫ t

t0

Ec dt (4.1)

61



CHAPTER 4. VARIATIONAL PRINCIPLES

where Ec and Ep are the kinetic and potential energy, respectively. δ is the variational
symbol, t0 the initial time and t a generic instant [54]. The variation of the kinetic energy
Ec is the well-known relation [54], [50]:

δ

∫ t

t0

Ec dt = δ

∫ t

t0

[
1

2
ρu̇iu̇i dV

]
dt = −

∫ t

t0

∫
V
ρüiδui dV dt = −

∫ t

t0

δLin dt (4.2)

where V is the volume, ρ is the mass density, u̇i and üi are the first and the second temporal
derivative of displacement ui, respectively. δLin is the virtual variation of the work done by
the inertial loads. The total potential energy Ep includes the thermopiezoelectric enthalpy
density H as described in Eq.2.19 and the work done by surface tractions tj , and electric
charge Q on the displacements uj , and the electric potential Φ, respectively:

Ep =

∫
V
HdV −

∫
V

(
tiui −QΦ

)
dV (4.3)

The variation of the potential energy Ep can be rewritten in according to Eq 4.3:

δ

∫ t

t0

Ep dt = δ

∫ t

t0

[∫
V
HdV −

∫
V

(
tiui −QΦ

)
dV

]
dt (4.4)

The contribution given by the structure stiffness is the virtual variation of the internal work:

δLi =

∫
V
HdV (4.5)

The contribution given by the external loads is the virtual variation of the external work:

δLe =

∫
V

(
δuiti − δΦQ

)
dV (4.6)

Rewriting the Hamilton principle of Eq. 4.1 in terms of work variations:∫ t

t0

δLi dt =

∫ t

t0

δLe dt−
∫ t

t0

δLin dt (4.7)

By discarding the dependency by the time t and introducing the vectorial form of Eqs.2.20,
2.22, Eq.4.7 can be rewritten as:∫

V
[δεij (σij − σT )− δEiDi] dV =

∫
V

(
δuiti − δΦQ

)
dV −

∫
V
ρüiδui dV (4.8)

where the array σT is the partially thermo-mechanical coupling σT = λθ. Therefore, splitting
the in-plane (p) and out-plane (n) components, Eq. 4.8 becomes:∫

V

[
δεTpG (σpC − σpT ) + δεTnG (σnC − σnT )− δETpGDpC − δE

T
nGDnC

]
dV =

=

∫
V

(
δuiti − δΦQ

)
dV −

∫
V
ρüiδui dV

(4.9)

where the upscript T means the transpose of a vector. Subscript C and G suggest the substi-
tution of constitutive and geometrical relations, respectively. The general form of governing
equations of the PVD for thermo-electro-mechanical problems is:

Kuu u + KuΦ Φ = Pu + Pθ −Muu ü
KΦu u + KΦΦ Φ = PΦ

(4.10)

The stiffness matrices K represent the contributions of the internal work variation, where
the subscripts uu, ΦΦ, uΦ and Φu indicate the mechanical part, the electrical part and cou-
plings of the mechanical and electrical parts respectively. The vectors contain the degrees
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of freedom for the displacement u, and the electric potential Φ. Muu is the inertial matrix
and ü is the second temporal derivative of the displacement vector. Pu and PΦ are the
mechanical and electrical load vectors respectively, due to the variation of the external work.
Pθ is the thermal load vector due to the partial thermo-mechanical coupling of the internal
work. The extension of PVD, as illustrated in Eqs.4.9, 4.10, has some particular cases which
are discussed in the following sections.

4.2 PVD for mechanical problems

In the case of pure mechanical problems the PVD has only the displacement u as primary
variable. The variational statement, the constitutive equations and the governing equations
can be considered as particular cases of the most general case of PVD for multifield problems.
From Eq. 4.9, the variational statement is simplified by discarding the thermal and electrical
works: ∫

V

(
δεTpG σpC + δεTnG σnC

)
dV = δLe − δLin (4.11)

the governing equation for the pure mechanical case is:

Kuu u = Pu −Muu ü (4.12)

It is important to notice that Eq. 4.12 can be obtained in a simpler way by delating in Eq.
4.10 the second line and the second column of the stiffness matrix, in fact the matrix Kuu is
the same of the general PVD for multifield problems of Eq. 4.10.

4.3 PVD for partially coupled thermo-mechanical problems

A possibility to study the thermal loads applied to elastic structures [20–22, 28, 95–99] is
to consider the stress components as an algebraic summation of mechanical stresses and
thermal ones as given in Eq. 2.20. The variational statement, the constitutive equations and
the governing equations can be considered as particular cases of the most general case of PVD
for multifield problems. From Eq. 4.9, the variational statement is simplified by discarding
the electrical works:∫

V

[
δεTpG (σpC − σpT ) + δεTnG (σnC − σnT )

]
dV = δLe − δLin ⇒

⇒
∫
V

(
δεTpG σpC + δεTnG σnC

)
dV =

[
δLe +

∫
V

(
δεTpG σpT + δεTnG σnT

)
dV

]
− δLin

(4.13)

the governing equation for the partially coupled thermo-mechanical case is:

Kuu u = Pu + Pθ −Muu ü (4.14)

where the external thermal load vector is Pθ = Kuθ θ. In the case of partially coupled
thermo-mechanical problems the PVD has only the displacement u as primary variable.
The thermal load can be determined by considering a temperature profile θ through the
thickness direction imposed a priori [100] or calculated by solving Fourier’s heat conduction
equation [101], [28]. The two cases of assumed temperature profile ( Ta ) and calculated
temperature profile ( Tc ) are discussed in Sec. 7.1.
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4.4 PVD for electro-mechanical problems

In the case of electro-mechanical coupling, for example the use of piezoelectric materials
and/or the application of an electrical load [39, 42, 45, 102–109], the relative PVD can be
simply obtained by discarding the thermal work in Eq. 4.9:∫

V

(
δεTpG σpC + δεTnG σnC − δE

T
pGDpC − δE

T
nGDnC

)
dV = δLe − δLin (4.15)

the governing equation for the electro-mechanical case is:

Kuu u + KuΦ Φ = Pu −Muu ü
KΦu u + KΦΦ Φ = PΦ

(4.16)

In the case of electro-mechanical problems the PVD has the displacement u and the electric
potential Φ as primary variables. The variational statement, the constitutive equations and
the governing equations can be considered as particular cases of the most general case of
PVD for multifield problems.

4.5 Reissner Mixed Variational Theorem for multifield prob-
lems

The Reissner Mixed Variational Theorem (RMVT) [90] permits to assume two independent
sets of variables: a set of primary unknowns as the PVD case, and a set of extensive variables
which are modelled a priori in the thickness direction. The main advantage of using the
RMVT is a priori and complete fulfillment of the C0

z -requirements for the modelled exten-
sive variables [91]. In literature different extensions of RMVT are given by starting from the
PVD: transverse shear stresses σxz, σyz as extensive variables, transverse normal stress σzz as
extensive variable, and both transverse shear and normal stresses as extensive variables. The
way to obtain these cases is to add a Lagrange multiplier. When a new Lagrange multiplier
is added [90], the constitutive equations must be rearranged in order to explicit the modelled
variables.
In the case of multifield problems [110], [111] the RMVT can be extended in a general way.
In particular starting from the PVD for electro-mechanical problems different extensions are
possible: transverse shear stresses σxz, σyz, and transverse normal electric displacement Dz as
extensive variables, transverse normal stress σzz, and transverse normal electric displacement
Dz as extensive variables, and both transverse shear and normal stresses, and transverse nor-
mal electric displacement Dz as extensive variables, and the last possibility is the transverse
normal electric displacement Dz as extensive variable. The way to obtain these cases is to
add two different kinds of Lagrange multipliers, one for the transverse mechanical stresses,
and another one for the transverse electric displacement.

4.6 RMVT for mechanical problems

By considering the variational statement in Eq. 4.12 for the PVD of mechanical problems,
the RMVT is obtained modelling a priori the transverse shear/normal stresses σnM (the new
subscript M is introduced to remark that the transverse stresses are now modelled and not
obtained via constitutive equations). The added Lagrange multiplier is δσTnM (εnG − εnC).
The condition to add this multiplier is that the transverse strains εn calculated by means of
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geometrical relations (G) and by using the constitutive equations (C) must be the same or
almost the same. In this way the balance of the internal work does not change or remains
almost the same.∫

V

[
δεTpG σpC + δεTnG σnM + δσTnM (εnG − εnC)

]
dV = δLe − δLin (4.17)

The relative constitutive equations are obtained from Eq. 2.16 considering in them the trans-
verse stresses σn as modelled (M) and the transverse strains εn as obtained from constitutive
equations (C).

σp = Ĉσpεp εpG + Ĉσpσn σnM
εn = Ĉεnεp εpG + Ĉεnσn σnM

(4.18)

The coefficients in the proposed constitutive equations are rearranged as follows:

Ĉσpεp = C̃pp − C̃pnC̃−1
nn C̃np ; Ĉσpσn = C̃pnC̃

−1
nn

Ĉεnεp = −C̃−1
nn C̃np ; Ĉεnσn = C̃−1

nn

(4.19)

The governing equations can be obtained by using the Eqs. 4.17, 4.18 [201], [202]:

Kuu u + Kuσn σn = Pu −Muu ü
Kσnu u + Kσnσn σn = 0

(4.20)

The matrix Kuu is completely different from that in Eq. 4.12 for the PVD because of the
introduction of a Lagrange multiplier and the consequently rearrangement of constitutive
equations.

4.7 RMVT for electro-mechanical problems

For piezo-laminated structures among the various variables, the evaluation of the transverse
normal electric displacement is of particular interest. The Dz is, in fact, closely related to
the electrical charge:

Q =

∫
Ω
Dz dΩ

where Ω is the plate/shell surface. The charge consists of a fundamental input/output in
a closed-loop control of a smart structure. Faster and accurate evaluation of Q is a key
point in the development of an efficient and reliable closed-loop control algorithm. However,
Dz , in classical applications, is only given a posteriori via post-processing of the primary
variables (the mechanical displacements and the electrical potential). An extended RMVT
application, with Dz assumed as primary variable, has been employed in this work, which
has been called RMV T −Dz. By considering the variational statement in Eq. 4.15 for the
PVD of electro-mechanical problems, the RMVT is obtained modelling a priori the transverse
normal electric displacement DnM (the new subscript M is introduced to remark that the
transverse normal electric displacement is now modelled and not obtained via constitutive
equations). The added Lagrange multiplier is δDTnM (EnG − EnC).∫
V

[
δεTpG σpC + δεTnG σnC − δE

T
pGDpC − δE

T
nGDnM − δD

T
nM (EnG − EnC)

]
dV = δLe−δLin

(4.21)
Substituing in Eq. 4.21 the rearranged constitutive Eq. 2.31 for the RMV T − Dz, the
governing equations for the electro-mechanical case are:

Kuu u + KuΦ Φ + KuDn Dn = Pu −Muu ü
KΦu u + KΦΦ Φ + KΦDn Dn = PΦ

KDnu u + KDnΦ Φ + KDnDn Dn = 0
(4.22)
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The matrices Kuu, KuΦ, KΦu, KΦΦ are completely different from that in Eq. 4.16 for the
PVD because of the introduction of a Lagrange multiplier and the consequently rearrange-
ment of constitutive equations.
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Chapter 5

Weak formulation for shell problems

The Finite Element Methods are based on a weak approximation of the structural problem.
In other words, some considerations on the solution error are introduced, the error has a
integral meaning over the whole finite element. For this reason the balance of an element is
reached only in an integral sense, the element is globally in equilibrium, but locally it should
be out of balance. A simple proof is when the stresses are evaluated in a shared point between
more than one elements, the stresses should be different depending on the finite element con-
sidered for the evaluation postprocess cycle. The formulations that take into account the
satisfaction of the balance at both global and local level are called strong formulations.

5.1 Finite Element Method

A Finite Element Method (FEM) [6,112–114] approximation can be formulated independently
from the choice of the thickness functions adopted. According to FEM, the generalized
displacements can be expressed as a linear combinations of the shape functions,in compact
form, as follows:

u = N juj δu = N iδui with i, j = 1, ..., (n◦nodes) (5.1)

where uj and δui are the nodal displacements and their virtual variations. Introducing in
Eq. 5.1 the Unified Formulation, Eq. 3.5, with the thickness functions, one has:

us = F sN j usj δuτ = F τ N i δuτi

with i, j = 1, ..., (n◦ nodes) and τ, s = 1, ..., N (expansion order)
(5.2)

In this work, a 9-node finite plate/shell element is employed and Lagrangian shape functions
Ni, Nj are used to interpolate the primary variables. These lagrangian shape functions are
expressed in a local reference system of the finite element (ξ, η), see Figure 5.1, where Ni

assume value 1 in i-nodes and value 0 in the other nodes.

Figure 5.1: 9-node element, local reference system.
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where the lagrangian shape functions for a 9-node element are the following:

N1 = 1
4

(
ξ2 − ξ

)(
η2 − η

)
N2 = 1

2

(
1− ξ2

)(
η2 − η

)
N3 = 1

4

(
ξ2 + ξ

)(
η2 − η

)
N4 = 1

2

(
ξ2 + ξ

)(
1− η2

)
N5 = 1

4

(
ξ2 + ξ

)(
η2 + η

)
N6 = 1

2

(
1− ξ2

)(
η2 + η

)
N7 = 1

4

(
ξ2 − ξ

)(
η2 + η

)
N8 = 1

2

(
ξ2 − ξ

)(
1− η2

)
N9 =

(
1− ξ2

)(
1− η2

)
(5.3)

In classical FEM techniques, the strain components are computed from displacements by
using geometrical relations Eq. 2.58. In particular, by substituting Unified Formulation Eq.
3.5 and FEM approximation Eq. 5.1 into Eq. 2.58, one has:

εp =Fτ (Dp +Ap)(NiI)uτi ,

εn =Fτ (Dnp −An)(NiI)uτi + Fτ,zDnz(NiI)uτi ,
(5.4)

where I is the 3× 3 identity matrix. This procedure may result in some numerical problems
related to the shear and membrane lockings. The Shear Locking Phenomena, in classical
FEM analysis, lead to a “blocking effect” by the shear, in other words, the stiffness due to
the shear contributions becomes too relevant. The Shear Locking is a convergence problem,
and it is a pure numerical problem. The locking effect grows proportionally to the decreasing
of the plate/shell thickness, the structure becomes infinitely stiff to the shear for h → 0. A
possible way to contrast the shear locking is to increase the mesh, but if the structure be-
comes thinner, the number of elements needed to contrast the locking phenomena increases
exponentially. This solution is not practicable for the analysis of thin plate/shell structure.
In literature many methods were developed to contrast the shear locking phenomena [115],
the most commons are based on a modification of the Gauss quadrature numerical integration
method, a brief overview is given below:

Reduced Integration:

If the shell thickness decrease h→ 0, the shear strain energy grows, and the finite element
becomes too stiff. This locking problem implies that the shear strain conditions εαz = 0 and
εβz = 0 are not satisfied. A possible solution is to calculate the integrals, on the shell surface
with the Guass quadrature method, only in the points where it is more probable to satifsy
the shear strain conditions εαz = 0 and εβz = 0. The number of integration points is less
than the nodes element number, this leads to underestimate the shear strain integrals, and
it contrast the shear locking phenomena, this is the main idea of the Reduced Integration
method [116–118]. For example, for a 4-node element the reduced integration point is only
1, for a 9-node element the reduced integration points are 4.
The Reduced Integration method could lead to some singularities [Kreduced] = 0, the pres-
ence of spurius modes, and for dynamical analysis the presence of some negative harmonic
solutions ω < 0.

Selective reduced Integration:

The variation of the internal work can be splitted into the bending contribution and the
shear contribution as follows:

δLibending + δLishear ⇒ [Kbending] + [Kshear]

To avoid the shear locking phenomena the reduced integration have to be used for the shear
contribution, but it is not necessary for the bending contribution. Consequently, it is possible
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to use full integration for the bending contribution, one has:

[Kbending]→ Full integration

[Kshear]→ Reduced integration

Throughout this splitted integration [119, 120], it is possible: to avoid the singularities in
the major part of the possible structural cases, and the elimination of the negative harmonic
solutions ω < 0 in dynamic analysis. It is not possible to completely avoid the spurius modes
that are still present.

A different approach to the shear locking problem is the Assumed Shear Strain Field
Concept, or well known Mixed Interpolation of Tensorial Components (MITC) method. The
key of the MITC method is the evalution, by a new re-interpolation process, of the shear
strains in the element points where the shear strain conditions εαz = 0 and εβz = 0 could be
probably satisfied.
In this work a 9-nodes shell finite element with the MITC method is employed for the mul-
tifield analysis, and its implementation is described below in Sec. 5.2.

5.2 MITC9 Finite Shell Element

In this work, a MITC technique [107,121–124] is used to overcome the shear locking problem.
According to the MITC method, the strain components are re-interpolated employing a new
set of Lagrangian shape function N :

εp =Nmεpm

εn =Nmεnm
(5.5)

where m indicates summation over the new set of points called tying points; εpm and εnm
are the strain vectors evaluated at the tying point m; and Nm are the assumed interpolation
functions satisfying

N
n
m = δnm, δnm =

{
1 if m = n
0 otherwise (5.6)

where m and n go from 1 to the number of tying points within the element. It should be
underlined that the position and the number of tying points are different for each strain
component, see Figure 5.2. Moreover, the normal transverse strain εzz is excluded from this
procedure, and it is directly calculated from the displacements.

Figure 5.2: Tying points location for the MITC9 shell element.
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The stress components εαα and εαz are interpolated in the tying points named: A1, B1,
C1, D1, E1, F1, see Figure 5.2, by the following new lagrangian functions:

NA1 = 5
√

3
12 η

(
η −

√
3
5

)(
1√
3
− ξ
)

NB1 = 5
√

3
12 η

(
η −

√
3
5

)(
1√
3

+ ξ
)

NC1 = −5
√

3
6

(
η +

√
3
5

)(
η −

√
3
5

)(
1√
3
− ξ
)

ND1 = −5
√

3
6

(
η +

√
3
5

)(
η −

√
3
5

)(
1√
3

+ ξ
)

NE1 = 5
√

3
12

(
η +

√
3
5

)
η
(

1√
3
− ξ
)

NF1 = 5
√

3
12

(
η +

√
3
5

)
η
(

1√
3

+ ξ
)

(5.7)

For the stress components εββ and εβz, the interpolation functions defined in the tying
points A2, B2, C2, D2, E2, F2, see Figure 5.2, are the following:

NA2 = 5
√

3
12 ξ

(
ξ −

√
3
5

)(
1√
3
− η
)

NB2 = 5
√

3
12 ξ

(
ξ −

√
3
5

)(
1√
3

+ η
)

NC2 = −5
√

3
6

(
ξ +

√
3
5

)(
ξ −

√
3
5

)(
1√
3
− η
)

ND2 = −5
√

3
6

(
ξ +

√
3
5

)(
ξ −

√
3
5

)(
1√
3

+ η
)

NE2 = 5
√

3
12

(
ξ +

√
3
5

)
ξ
(

1√
3
− η
)

NF2 = 5
√

3
12

(
ξ +

√
3
5

)
ξ
(

1√
3

+ η
)

(5.8)

The functions defined in the points P , Q, R, S, see Figure 5.2, for the interpolation of
the strain εαβ , are the following:

NP = 3
4

(
1√
3
− ξ
)(

1√
3
− η
)

NQ = 3
4

(
1√
3

+ ξ
)(

1√
3
− η
)

NR = 3
4

(
1√
3
− ξ
)(

1√
3

+ η
)

NS = 3
4

(
1√
3

+ ξ
)(

1√
3

+ η
) (5.9)

The strain components εzz is computed directly from the displacements.
For the sake of convenience, the interpolating functions are organized in the following vectors:

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]

Nm3 = [NP , NQ, NR, NS ]

(5.10)

According to the MITC method Eq. 5.5, for example, the strain components εαα are defined
as:

εαα = NA1εαα (ξA1, ηA1) + NB1εαα (ξB1, ηB1) + NC1εαα (ξC1, ηC1) + ND1εαα (ξD1, ηD1) +

+ NE1εαα (ξE1, ηE1) + NF1εαα (ξF1, ηF1)

(5.11)

Equivalently, in compact form in according of Eq. 5.5, one has:

εαα = Nm1εαα (ξm1, ηm1) (5.12)

The reinterpolation of the strain components have to be taken into account also in the con-
stitutive equations of the post-processed stresses.
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5.3 Governing Equations for shell weak formulation

Governing equations for shell weak formulation are developed in terms of some few basic ele-
ments called fundamental nuclei. Expanding them by means of opportune indexes and loops,
it is possible to obtain the stiffness matrices of the considered multilayered structures. The
use of such nuclei permits to obtain in a unified manner several refined and advanced models
which differ for the chosen order of expansion in the thickness direction, for the choice of the
modelled multifield variables, and for the multilayer approach description: equivalent single
layer (ESL) or layer wise (LW). Some of the proposed variational statements in the previous
chapter are here developed to obtain the governing equations for the analysis which will be
proposed in the next three chapters. Both plate and shell geometries are considered.

5.3.1 PVD for mechanical problems

The variational statement in the case of PVD for pure mechanical problems in Eq. 4.11, is
written in terms of the integrals in the reference plane Ω and the integrals along the thickness
of the shell A: ∫

Ω

∫
A

(
δεTpG σpC + δεTnG σnC

)
HαHβ dα dβ dz = δLe − δLin (5.13)

By considering a laminate of Nl layers, and the integral on the volume V of each layer k as
an integral on the in plane domain Ωk plus the integral in the thickness-direction domain Ak,
it is possible to write:

Nl∑
k=1

∫
Ωk

∫
Ak

(
δεk

T

pG σ
k
pC + δεk

T

nG σ
k
nC

)
Hk
αH

k
β dα

k dβk dzk =

Nl∑
k=1

δLke −
Nl∑
k=1

δLkin (5.14)

Substituting the constitutive equations for pure mechanical problems Eq. 2.16, the strain
components computed from displacements by using geometrical relations Eq. 2.58, applying
the Unified Formulation Eq. 3.5 and the FEM approximation Eq. 5.1, one obtains the
following governing equations in compact form:

δuτi : Kkτsij
uu uksj = P kτiu −Mkτsij

uu üksj (5.15)

whereKkτsij
uu is a 3×3 matrix, called fundamental nucleus of the mechanical stiffness matrix.

The nucleus is the basic element from which the stiffness matrix of the whole structure is
computed. The fundamental nucleus is expanded on the indexes τ and s to obtain the stiffness
matrix of each layer k. Then, the matrixes of each layer are assembled at the multi-layer level
depending on the approach considered, see Sec. 3.3. The fundamental nucleus of the mass
matrix,Mkτsij

uu a 3× 3 matrix, has the main diagonal components different from zero. P kτiu

is a 3 × 1 matrix, called fundamental nucleus of the external load. The explicit expression
of the stiffness matrix and external load nuclei are given below with classical FEM method,
and in Appendix A for mechanical nuclei with the reinterpolation of the strain components
via the MITC method Eq. 5.5. The stiffness matrix Kkτsij

uu nucleus is defined as follows:

Kkτsij
uu =

Kuuαα Kuuαβ Kuuαz

Kuuβα Kuuββ Kuuβz

Kuuzα Kuuzβ Kuuzz

kτsij (5.16)
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Kkτsij
uuαα = C̃k55

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k + C̃k66

∫
Ωk

Ni,βNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ C̃k16

∫
Ωk

Ni,αNj,β dα
k dβk

∫
Ak

FτFs dz
k + C̃k16

∫
Ωk

Ni,βNj,α dα
k dβk

∫
Ak

FτFs dz
k +

+ C̃k11

∫
Ωk

Ni,αNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk − C̃k55

Rkα

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k −

− C̃k55

Rkα

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k − C̃k55

(Rkα)2

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
uuαβ = C̃k45

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k + C̃k26

∫
Ωk

Ni,βNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ C̃k12

∫
Ωk

Ni,αNj,β dα
k dβk

∫
Ak

FτFs dz
k + C̃k66

∫
Ωk

Ni,βNj,α dα
k dβk

∫
Ak

FτFs dz
k +

+ C̃k16

∫
Ωk

Ni,αNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk − C̃k45

Rkβ

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k −

− C̃k45

Rkα

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k − C̃k45

RkαR
k
β

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
uuαz = C̃k45

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + C̃k55

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ C̃k36

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + C̃k13

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k −

− C̃k45

Rkα

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

FτFs dz
k − C̃k55

Rkα

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk +

+
C̃k26

Rkβ

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +
C̃k16

Rkα

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs dz
k +

+
C̃k12

Rkβ

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs dz
k +

C̃k11

Rkα

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
uuβα = C̃k45

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k + C̃k26

∫
Ωk

Ni,βNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ C̃k66

∫
Ωk

Ni,αNj,β dα
k dβk

∫
Ak

FτFs dz
k + C̃k12

∫
Ωk

Ni,βNj,α dα
k dβk

∫
Ak

FτFs dz
k +

+ C̃k16

∫
Ωk

Ni,αNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk − C̃k45

Rkα

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k −

− C̃k45

Rkβ

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k +
C̃k45

RkαR
k
β

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs dz
k
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Kkτsij
uuββ = C̃k44

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k + C̃k22

∫
Ωk

Ni,βNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ C̃k26

∫
Ωk

Ni,αNj,β dα
k dβk

∫
Ak

FτFs dz
k + C̃k26

∫
Ωk

Ni,βNj,α dα
k dβk

∫
Ak

FτFs dz
k +

+ C̃k66

∫
Ωk

Ni,αNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk − C̃k44

Rkβ

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k −

− C̃k44

Rkβ

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k +
C̃k44(
Rkβ

)2

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk

Kkτsij
uuβz = C̃k44

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + C̃k45

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ C̃k23

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + C̃k36

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k −

− C̃k44

Rkβ

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk − C̃k45

Rkβ

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

FτFs dz
k +

+
C̃k22

Rkβ

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +
C̃k12

Rkα

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs dz
k +

+
C̃k26

Rkβ

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs dz
k +

C̃k16

Rkα

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
uuzα = C̃k36

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + C̃k13

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ C̃k45

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + C̃k55

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k +

+
C̃k26

Rkβ

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +
C̃k16

Rkα

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

FτFs dz
k +

+
C̃k12

Rkβ

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

FτFs dz
k +

C̃k11

Rkα

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk −

− C̃k45

Rkα

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs dz
k − C̃k55

Rkα

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
uuzβ = C̃k23

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + C̃k36

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ C̃k44

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + C̃k45

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k +

+
C̃k22

Rkβ

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +
C̃k12

Rkα

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

FτFs dz
k +

+
C̃k26

Rkβ

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

FτFs dz
k +

C̃k16

Rkα

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk −

− C̃k44

Rkβ

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk − C̃k45

Rkβ

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs dz
k
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Kkτsij
uuzz = C̃k33

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k + C̃k44

∫
Ωk

Ni,βNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ C̃k45

∫
Ωk

Ni,αNj,β dα
k dβk

∫
Ak

FτFs dz
k + C̃k45

∫
Ωk

Ni,βNj,α dα
k dβk

∫
Ak

FτFs dz
k +

+ C̃k55

∫
Ωk

Ni,αNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk +
C̃k23

Rkβ

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k +

+
C̃k13

Rkα

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +
C̃k23

Rkβ

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k +

+
C̃k13

Rkα

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k +
2C̃k12

RkαR
k
β

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs dz
k +

+
C̃k22(
Rkβ

)2

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +
C̃k11

(Rkα)2

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

In the proposed nucleus components the symbols (Ni,α, Nj,α, Ni,β, Nj,β) and (Fτ,z, Fs,z),
where comma denote partial derivatives, indicate the following shape and thickness functions
derivatives respectively:(
∂Ni

∂α
,
∂Nj

∂α
,
∂Ni

∂β
,
∂Nj

∂β

)
and

(
∂Fτ
∂z

,
∂Fs
∂z

)
.

The mass matrix Mkτsij
uu nucleus is defined as follows:

Mkτsij
uu =

Muuαα 0 0
0 Muuββ 0

0 0 Muuzz

kτsij (5.17)

Mkτsij
uuαα = Mkτsij

uuββ
= Mkτsij

uuzz = ρk
∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFsH
k
αH

k
β dz

k

where ρk is the material density of the kth lamina of the multilayer. The external load vector
P kτiu nucleus is defined as follows:

P kτiu =

PuαPuβ
Puz

kτi (5.18)

If, for example, the external load is a transverse pressure to the reference shell plane, one
has:

P kτiuα = P kτiuβ
= 0 P kτiuz = P k (α, β)Hk

αH
k
β Fτ

∫
Ωk

Ni dα
k dβk

where P k (α, β) is the pressure behaviour in the shell reference in-plane directions. If, for
example, the external load is a concentrated in-plane load in β direction, one has:

P kτiuα = P kτiuz = 0 P kτiuβ
= P kHk

αH
k
β Fτ Ni

where P k is the concentrated load magnitude.
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5.3.2 PVD for partially coupled thermo-mechanical problems

The variational statement in the case of PVD for partially coupled thermo-mechanical prob-
lems in Eq. 4.13, is written in terms of the integrals in the reference plane Ω and the integrals
along the thickness of the shell A:∫

Ω

∫
A

(
δεTpG σpC + δεTnG σnC

)
HαHβ dα dβ dz = [δLe+

+

∫
Ω

∫
A

(
δεTpG σpT + δεTnG σnT

)
HαHβ dα dβ dz

]
− δLin

(5.19)

By considering a laminate of Nl layers, and the integral on the volume V of each layer k as
an integral on the in plane domain Ωk plus the integral in the thickness-direction domain Ak,
it is possible to write:

Nl∑
k=1

∫
Ωk

∫
Ak

(
δεk

T

pG σ
k
pC + δεk

T

nG σ
k
nC

)
Hk
αH

k
β dα

k dβk dzk =

Nl∑
k=1

δLke+

+

Nl∑
k=1

∫
Ωk

∫
Ak

(
δεk

T

pG σ
k
pT + δεk

T

nG σ
k
nT

)
Hk
αH

k
β dα

k dβk dzk −
Nl∑
k=1

δLkin

(5.20)

Substituting the constitutive equations for partially coupled thermo-mechanical problems Eq.
2.20, the strain components computed from displacements by using geometrical relations Eq.
2.58, applying the Unified Formulation Eq. 3.5 and the FEM approximation Eq. 5.1, one
obtains the following governing equations in compact form:

δuτi : Kkτsij
uu uksj = P kτiu + P kτiθ −Mkτsij

uu üksj (5.21)

where the stiffness matrix nucleusKkτsij
uu , the mass matrix nucleusMkτsij

uu , and the mechan-
ical external load vector nucleus P kτiu are the same defined for the pure mechanical problems
in the previous subsection 5.3.1. The external thermal load vector is P kτiθ = Kkτi

uθ θ
kτi. In

the case of partially coupled thermo-mechanical problems the PVD has only the displacement
u as primary variable. The thermal load can be determined by considering a temperature pro-
file θ through the thickness direction imposed a priori [100] or calculated by solving Fourier’s
heat conduction equation [101], [28]. The two cases of assumed temperature profile ( Ta )
and calculated temperature profile ( Tc ) are discussed in Sec. 7.1.

The thermal load matrix Kkτi
uθ nucleus is defined as follows:

Kkτi
uθ =

Kuθα

Kuθβ

Kuθz

kτi (5.22)

Kkτi
uθα = λ̃k6

∫
Ωk

Ni,β dα
k dβk

∫
Ak

FτH
k
α dz

k + λ̃k1

∫
Ωk

Ni,α dα
k dβk

∫
Ak

FτH
k
β dz

k

Kkτi
uθβ

= λ̃k2

∫
Ωk

Ni,β dα
k dβk

∫
Ak

FτH
k
α dz

k + λ̃k6

∫
Ωk

Ni,α dα
k dβk

∫
Ak

FτH
k
β dz

k
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Kkτi
uθz = λ̃k3

∫
Ωk

Ni dα
k dβk

∫
Ak

Fτ,zH
k
αH

k
β dz

k +
λ̃k2
Rkβ

∫
Ωk

Ni dα
k dβk

∫
Ak

FτH
k
α dz

k +

+
λ̃k1
Rkα

∫
Ωk

Ni dα
k dβk

∫
Ak

FτH
k
β dz

k

5.3.3 PVD for electro-mechanical problems

The variational statement in the case of PVD for coupled electro-mechanical problems in Eq.
4.15, is written in terms of the integrals in the reference plane Ω and the integrals along the
thickness of the shell A:∫

Ω

∫
A

(
δεTpG σpC + δεTnG σnC − δE

T
pGDpC − δE

T
nGDnC

)
HαHβ dα dβ dz = δLe − δLin

(5.23)
By considering a laminate of Nl layers, and the integral on the volume V of each layer k as
an integral on the in plane domain Ωk plus the integral in the thickness-direction domain Ak,
it is possible to write:

Nl∑
k=1

∫
Ωk

∫
Ak

(
δεk

T

pG σ
k
pC + δεk

T

nG σ
k
nC − δE

kT

pGD
k
pC − δE

kT

nGD
k
nC

)
Hk
αH

k
β dα

k dβk dzk =

=

Nl∑
k=1

δLke −
Nl∑
k=1

δLkin

(5.24)

Substituting the constitutive equations for coupled electro-mechanical problems Eq. 2.22,
the strain components computed from displacements by using geometrical relations Eq. 2.58,
the electric field computed from the electric potential by using electric geometrical relations
Eq. 2.60, applying the Unified Formulation Eq. 3.5 and the FEM approximation Eq. 5.1,
one obtains the following governing equations in compact form:

δuτi : Kkτsij
uu uksj + Kkτsij

uΦ Φksj = P kτiu −Mkτsij
uu üksj

δΦτi : Kkτsij
Φu uksj + Kkτsij

ΦΦ Φksj = P kτiΦ

(5.25)

where the stiffness matrix nucleus Kkτsij
uu , the mass matrix nucleus Mkτsij

uu , and the me-
chanical external load vector nucleus P kτiu are the same defined for the pure mechanical
problems in the previous subsection 5.3.1. Kkτsij

uΦ and Kkτsij
Φu are a 3 × 1 and 1 × 3 ma-

trices, called fundamental nuclei of the electro-mechanical coupling, therefore Kkτsij
ΦΦ is the

fundamental nucleus of the pure electric contribution. The explicit expression of the stiffness
electro-mechanical coupling matrices and the pure electric nucleus are given below with clas-
sical FEM method, and in Appendix A for electro-mechanical nuclei with the reinterpolation
of the strain components via the MITC method Eq. 5.5. The pure electric contribution is
defined as follows:

Kkτsij
ΦΦ = − ε̃k33

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k − ε̃k22

∫
Ωk

Ni,βNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk −

− ε̃k12

∫
Ωk

Ni,αNj,β dα
k dβk

∫
Ak

FτFs dz
k − ε̃k12

∫
Ωk

Ni,βNj,α dα
k dβk

∫
Ak

FτFs dz
k −

− ε̃k11

∫
Ωk

Ni,αNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk
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The stiffness electro-mechanical coupling matrices Kkτsij
uΦ and Kkτsij

Φu are defined as
follows:

Kkτsij
uΦ =

KuΦα

KuΦβ

KuΦz

kτsij (5.26)

Kkτsij
Φu =

[
KΦuα KΦuβ KΦuz

]kτsij (5.27)

Actuation in 3-1 mode

Kkτsij
uΦα

= ẽk25

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + ẽk15

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ ẽk36

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + ẽk31

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k −

− ẽk25

Rkα

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

FτFs dz
k − ẽk15

Rkα

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
uΦβ

= ẽk24

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + ẽk14

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ ẽk32

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + ẽk36

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k −

− ẽk24

Rkβ

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk − ẽk14

Rkβ

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

FτFs dz
k

Kkτsij
uΦz

= ẽk33

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k +
ẽk32

Rkβ

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k +

+
ẽk31

Rkα

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k + ẽk24

∫
Ωk

Ni,βNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ ẽk25

∫
Ωk

Ni,αNj,β dα
k dβk

∫
Ak

FτFs dz
k + ẽk14

∫
Ωk

Ni,βNj,α dα
k dβk

∫
Ak

FτFs dz
k +

+ ẽk15

∫
Ωk

Ni,αNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
Φuα

= ẽk36

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + ẽk31

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ ẽk25

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + ẽk15

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k −

− ẽk25

Rkα

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs dz
k − ẽk15

Rkα

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk
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Kkτsij
Φuβ

= ẽk32

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + ẽk36

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ ẽk24

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + ẽk14

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k −

− ẽk24

Rkβ

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk − ẽk14

Rkβ

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs dz
k

Kkτsij
Φuz

= ẽk33

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k +
ẽk32

Rkβ

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k +

+
ẽk31

Rkα

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k + ẽk24

∫
Ωk

Ni,βNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ ẽk14

∫
Ωk

Ni,αNj,β dα
k dβk

∫
Ak

FτFs dz
k + ẽk25

∫
Ωk

Ni,βNj,α dα
k dβk

∫
Ak

FτFs dz
k +

+ ẽk15

∫
Ωk

Ni,αNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Actuation in 1-5 mode

Kkτsij
uΦα

= ẽk35

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k − ẽk35

Rkα

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k +

+ ẽk26

∫
Ωk

Ni,βNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk + ẽk21

∫
Ωk

Ni,αNj,β dα
k dβk

∫
Ak

FτFs dz
k +

+ ẽk16

∫
Ωk

Ni,βNj,α dα
k dβk

∫
Ak

FτFs dz
k + ẽk11

∫
Ωk

Ni,αNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
uΦβ

= ẽk34

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k − ẽk34

Rkβ

∫
Ωk

NiNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k +

+ ẽk22

∫
Ωk

Ni,βNj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk + ẽk26

∫
Ωk

Ni,αNj,β dα
k dβk

∫
Ak

FτFs dz
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∫
Ωk

Ni,αNj,β dα
k dβk

∫
Ak

FτFs dz
k +

+ ẽk26
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Chapter 6

Results on Mechanical Problems

This chapter discusses the results for the pure mechanical analysis of multilayered composite
and sandwich plates/shells. First, some preliminary assessments are given in order to demon-
strate the capability of the refined and advanced models to obtain the quasi-3D results. Then,
some new benchmarks are proposed. Therefore different polynomials for the thickness func-
tion are employed, as trigonometric, exponential and miscellaneous polynomials.

6.1 Doubly-Curved Shell

6.1.1 Assessment

In order to assess the robustness of the present shell element and show its efficiency in
the analysis of laminated composites, some numerical results for simply-supported cross-ply
square shells are presented. These are compared with the 3D solutions given in [125] and
the solutions of the higher-order shell theory (HSDT1) discussed in [126]. The analytical
solution LW4a is also provided as reference solution. This is obtained using the LW4 theory
and the Navier’s method to solve the governing equations in closed form. In [127], it was
demonstrated that the LW4a solutions can be considered quasi-3D.
Being a the length of the edge and R = Rα = Rβ the curvature radius, deep (R/a = 1, 2) and
shallow (R/a = 5) shells are examined. The lamination schemes (0◦, 90◦ . . .) are of symmetric
and anti-symmetric type with number of layersNl = 3, 5 andNl = 4, respectively. The shell is
subjected to a bi-sinusoidal pressure applied at the top surface p+

z = p̂+
z sin(πα/a)sin(πβ/a),

where m,n are the numbers of half-waves. The lamina material properties and the load
parameters are given in Table 6.1.

Table 6.1: Elastic and Geometrical properties

Spherical panel
E11/E22 25
G12/E22 = G13/E22 0.5
G23/E22 0.2
ν12 = ν13 = ν23 0.25
p̂+
z 1
m,n 1,1
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The following nondimensionalized deflections and stresses are considered:

w̄ =w(a/2, a/2)
100E22 h

3

a4 p̂+
z

; σ̄αα = σαα(a/2, a/2)
h2

a2 p̂+
z

σ̄αz = σαz(0, a/2)
h

a p̂+
z

; σ̄zz = σzz(a/2, a/2)
1

p̂+
z

(6.1)

For brevity reasons, the convergence study is here omitted, but it has been verified that a
mesh (9 × 9) permits the convergence solution to be reached. All the results are calculated
using this mesh. Tables 6.2-6.4 present results in terms of transversal displacement w̄ for the
three lamination cases. Different thickness ratios a/h and curvature ratios R/a are consid-
ered and various theories contained in the Unified Formulation are used. One can note that,
in thin shells (a/h = 100), all the theories, comprising CLT and FSDT, match the reference
solutions (3D, HSDT1 and LW4a). While, increasing the thickness, higher-order models
are required. In particular, higher-order zig-zag models work better than ESL ones and LW
better than zig-zag. The LW4 theory is able to reproduce the reference solutions in all the
cases considered. There are no differences in the behavior of the element between deep and
shallow shells because, in the formulation of the models, no assumptions have been made
about the curvature. The same considerations can be made considering both symmetric and
anti-symmetric laminations.

Table 6.2: Transversal displacement w̄(z = 0). Three-layered shell, symmetric lamination
(0◦, 90◦, 0◦).

R/a = 1 R/a = 2 R/a = 5

3D [125] − − − 1.482 0.6087 − 1.549 0.7325 −
HSDT1 [126] 1.208 0.3761 − 1.482 0.6090 − 1.546 0.7340 −
LW4a 1.2081 0.3766 0.0054 1.4824 0.6087 0.0208 1.5494 0.7325 0.1036

a/h 5 10 100 5 10 100 5 10 100

LW4 1.2081 0.3767 0.0054 1.4824 0.6087 0.0208 1.5494 0.7325 0.1036
LW1 1.1839 0.3732 0.0054 1.4413 0.5990 0.0208 1.5019 0.7179 0.1036

ET3Z 1.2015 0.3760 0.0054 1.4772 0.6081 0.0208 1.5452 0.7322 0.1036

ET4 1.1656 0.3693 0.0054 1.4038 0.5858 0.0208 1.4564 0.6974 0.1036
ET2 1.0342 0.3504 0.0054 1.1776 0.5315 0.0208 1.1961 0.6174 0.1036

FSDT 1.0491 0.3507 0.0054 1.1968 0.5326 0.0208 1.2129 0.6191 0.1036
CLT 0.5148 0.2947 0.0054 0.4748 0.3934 0.0208 0.4487 0.4295 0.1034
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Table 6.3: Transversal displacement w̄(z = 0). Four-layered shell, antisymmetric lamination
(0◦, 90◦, 0◦, 90◦).

R/a = 1 R/a = 2 R/a = 5

3D [125] − − − 1.434 0.6128 − 1.495 0.7408 −
HSDT1 [126] 1.179 0.3748 − 1.433 0.6085 − 1.488 0.7345 −

LW4a 1.1768 0.3763 0.0054 1.4344 0.6128 0.0208 1.4951 0.7408 0.1067

a/h 5 10 100 5 10 100 5 10 100

LW4 1.1769 0.3763 0.0054 1.4343 0.6128 0.0208 1.4951 0.7408 0.1067

ET3Z 1.1650 0.3746 0.0054 1.4152 0.6079 0.0208 1.4733 0.7333 0.1067

ET4 1.1190 0.3689 0.0054 1.3295 0.5899 0.0208 1.3719 0.7054 0.1067

FSDT 0.9943 0.3543 0.0054 1.1096 0.5452 0.0208 1.1154 0.6383 0.1067
CLT 0.5823 0.3173 0.0054 0.5522 0.4478 0.0208 0.5261 0.5016 0.1066

Table 6.4: Transversal displacement w̄(z = 0). Five-layered shell, symmetric lamination
(0◦, 90◦, 0◦, 90◦, 0◦).

R/a = 1 R/a = 2 R/a = 5

3D [125] − − − 1.376 0.5671 − 1.417 0.6707 −
HSDT1 [126] 1.151 0.3615 − 1.379 0.5670 − 1.425 0.6708 −

LW4a 1.1397 0.3617 0.0054 1.3674 0.5671 0.0207 1.4165 0.6707 0.1032

a/h 5 10 100 5 10 100 5 10 100

LW4 1.1397 0.3617 0.0054 1.3674 0.5671 0.0207 1.4165 0.6706 0.1032

ET3Z 1.1315 0.3608 0.0054 1.3543 0.5647 0.0207 1.4017 0.6672 0.1032

ET4 1.0476 0.3504 0.0054 1.2052 0.5341 0.0207 1.2286 0.6219 0.1032

FSDT 0.9794 0.3413 0.0054 1.0873 0.5090 0.0207 1.0910 0.5862 0.1032
CLT 0.5133 0.2937 0.0054 0.4744 0.3929 0.0207 0.4486 0.4294 0.1031

In the symmetric case with Nl = 3, the normal stress σ̄αα is also evaluated (see Table 6.5).
The behavior of the element is the same. Higher-order models are necessary in the analysis
of thick shells. The LW4 theory doesn’t match perfectly the reference solutions but provides
very good results. The shear stress σ̄αz is reported in Table 6.6 for the different laminations
and considering R/a = 2. Good results are obtained also in this case using higher-order
layer-wise theories, especially for thick shells. A slightly higher error can be observed only in
the case of antisymmetric lamination. Figures 6.1a-6.2b and 6.3a-6.4b show the distributions
along the thickness of the shear stress σ̄αz and the normal stress σ̄zz for different combinations
of R/a and a/h in the symmetric Nl = 3 and the antisymmetric Nl = 4 case. In all the cases,
one can note that only the layer-wise model is able to fulfill the continuity conditions of the
transverse stresses at the interface between layers.
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Table 6.5: In-plane stress σ̄αα(z = −h/2). Three-layered shell, symmetric lamination
(0◦, 90◦, 0◦).

R/a = 1 R/a = 2 R/a = 5

HSDT1 [126] -0.4699 − − -0.6706 − − -0.7399 − −
LW4a -0.5080 -0.2362 0.0012 -0.6740 -0.4433 -0.0112 -0.7128 -0.5616 -0.1003

a/h 5 10 100 5 10 100 5 10 100

LW4 -0.5055 -0.2351 0.0012 -0.6706 -0.4411 -0.0112 -0.7092 -0.5588 -0.0999
LW1 -0.4579 -0.2300 0.0012 -0.6079 -0.4291 -0.0112 -0.6432 -0.5415 -0.1001

ET3Z -0.5042 -0.2355 0.0012 -0.6692 -0.4415 -0.0112 -0.7080 -0.5593 -0.0999

ET4 -0.5144 -0.2418 0.0012 -0.6661 -0.4433 -0.0112 -0.6972 -0.5543 -0.0999
ET2 -0.3464 -0.2306 0.0012 -0.4446 -0.4048 -0.0112 -0.4644 -0.4938 -0.1000

FSDT -0.3592 -0.2293 0.0012 -0.4569 -0.4037 -0.0112 -0.4769 -0.4941 -0.1000
CLT -0.6317 -0.3149 0.0012 -0.6031 -0.4681 -0.0114 -0.5659 -0.5281 -0.1005

Table 6.6: Shear stress σ̄αz evaluated in (z = 0) for Nl = 3, 5 and (z = −h/8) for Nl = 4.
Curvature ratio R/a = 2.

Nl = 3 Nl = 4 Nl = 5

LW4a 0.2744 0.2821 0.0184 0.2380 0.2090 0.0077 0.2654 0.2378 0.0145

a/h 5 10 100 5 10 100 5 10 100

LW4 0.2771 0.2849 0.0186 0.2168 0.1663 0.0112 0.2681 0.2401 0.0146
LW1 0.2791 0.2863 0.0186 0.1972 0.1557 0.0107 0.2590 0.2351 0.0143

ET3Z 0.2787 0.2881 0.0188 0.2005 0.1587 0.0113 0.2729 0.2487 0.0153

ET4 0.2175 0.2114 0.0132 0.2508 0.2040 0.0146 0.4335 0.4570 0.1176
ET2 0.1266 0.1145 0.0067 0.2211 0.1826 0.0138 0.2740 0.2509 0.0148

FSDT 0.1270 0.1141 0.0067 0.2363 0.1977 0.0141 0.2752 0.2502 0.0147
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Figure 6.1: Three-layered shell, symmetric lamination, R/a = 1 and a/h = 5. Transverse
shear and normal stresses σ̄αz, σ̄zz.
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Figure 6.2: Three-layered shell, symmetric lamination, R/a = 5 and a/h = 100. Transverse
shear and normal stresses σ̄αz, σ̄zz.
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Figure 6.3: Four-layered shell, symmetric lamination, R/a = 1 and a/h = 5. Transverse
shear and normal stresses σ̄αz, σ̄zz.
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Figure 6.4: Four-layered shell, symmetric lamination, R/a = 5 and a/h = 100. Transverse
shear and normal stresses σ̄αz, σ̄zz.

6.1.2 FEM benchmark solutions

Similar spherical shells are analyzed, considering three new problems that have not reference
analytical solutions:

1. Shell with anti-symmetric lamination (45◦/−45◦) under bi-sinusoidal load and simply-
supported boundary conditions.

2. Shell with clamped-free boundary conditions: edges parallel to β-direction clamped
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and those parallel to α-direction free. The lamination is (0◦, 90◦, 0◦) and the load is
bi-sinusoidal.

3. Shell subjected to a concentrated load (intensity P = a2), applied in the central point
at the top surface, with (0◦, 90◦, 0◦) lamination and simply-supported boundary condi-
tions.

The material properties and load parameters are given in Table 6.1. The solutions are cal-
culated using a (9× 9) mesh and the LW4 model. In order to get more accurate results, two
fictitious layers are considered per each layer.
In Tables 6.7-6.9, the results are given in terms of w, σαα, σββ , σαβ , σαz, σβz and σzz for
different thickness ratios a/h and curvature ratios R/a. Depending on the problem analyzed,
these quantities are evaluated in different points. For problem 1, one has:

w → (a/2, a/2, 0)

σαα , σββ → (a/2, a/2,±h/2)

σαβ → (0, 0,±h/2)

σαz → (0, a/2,−h/12)

σβz → (a/2, 0, h/12)

σzz → (a/2, a/2, h/12)

(6.2)

for problem 2:

w → (a/2, a/2, 0)

σαα , σββ → (a/2, a/2,±h/2)

σαβ → (0, 0,±h/2)

σαz → (0, a/2,−h/4)

σβz → (a/2, 0, h/4)

σzz → (a/2, a/2, h/4)

(6.3)

and for problem 3:

w → (a/2, a/2, 0)

σαα , σββ → (a/2, a/2,±h/2)

σαβ → (0, 0,±h/2)

σαz → (0, a/2,−h/4)

σβz → (a/2, 0, h/4)

σzz → (a/2, a/2, h/4)

(6.4)

Figures 6.5a-6.6b and 6.7a-6.8b show the distributions along the thickness of the shear stress
σαz and the normal stress σzz for different combinations of thickness ratio a/h and curvature
ratio R/a for problem 1 and 2, respectively. For comparison purposes, also the ET3Z solution
is represented. As in the assessment analysis, the ET3Z model is not able to satisfy the
continuity conditions of transverse stresses at the interface between layers. In some cases,
neither the LW4 model is efficient in this sense. This fact suggests the use of mixed models
based on Reissner’s Mixed Variational Theorem, in which the trasverse stresses are modelled
a-priori (see the works [67], [68]) and future companion works can be devoted to this subject.
Finally, figures 6.9a-6.10b show the distributions of the shear stress σαz and the normal
stress σzz by varying a/h for R/a = 2 and R/a for a/h = 10, in the case of concentrated load
(problem 3).
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Table 6.7: Antisymmetric lamination (45◦/−45◦) with simply-supported boundary conditions
and bi-sinusoidal load. Theory LW4.

R/a = 1 R/a = 2 R/a = 5

a/h 5 10 100 5 10 100 5 10 100

w 0.4476 0.1115 0.0009 0.8614 0.3017 0.0036 1.1633 0.5738 0.0236

σαα
0.1917 0.0819 0.0051 0.2881 0.1693 0.0101 0.3256 0.2547 0.0308
0.0025 0.0238 0.0047 -0.1040 -0.0260 0.0086 -0.2190 -0.1443 0.0164

σββ
0.1917 0.0819 0.0051 0.2881 0.1693 0.0101 0.3256 0.2547 0.0308
0.0025 0.0238 0.0047 -0.1040 -0.0260 0.0086 -0.2190 -0.1443 0.0164

σαβ
-0.0154 -0.0120 -0.0017 -0.0473 -0.0415 -0.0115 -0.0722 -0.0723 -0.0476
1.0585 0.5024 0.0308 1.3171 0.7804 0.0726 1.1315 0.8170 0.2007

σαz 0.1074 0.0766 0.0081 0.1761 0.1628 0.0207 0.2220 0.2727 0.0780

σβz 0.0967 0.0641 0.0019 0.1651 0.1427 0.0052 0.2168 0.2563 0.0290

σzz 0.5515 0.5720 0.6319 0.5061 0.4884 0.7049 0.5296 0.4886 0.9962

Table 6.8: Symmetric lamination (0◦/90◦/0◦) with clamped-free boundary conditions and
bi-sinusoidal load. Theory LW4.

R/a = 1 R/a = 2 R/a = 5

a/h 5 10 100 5 10 100 5 10 100

w 0.3119 0.0819 0.0013 0.6495 0.1936 0.0042 1.0508 0.3618 0.0190

σαα
0.3731 0.1748 0.0166 0.5077 0.2787 0.0359 0.5627 0.3530 0.0929
0.0531 0.0326 0.0069 -0.0206 -0.0032 0.0099 -0.2283 -0.1378 0.0058

σββ
0.0252 0.0082 0.0004 0.0353 0.0138 0.0008 0.0434 0.0206 0.0022
-0.0084 -0.0024 0.0002 -0.0192 -0.0077 0.0001 -0.0296 -0.0155 -0.0006

σαβ
0.0020 0.0006 -0.0003 0.0007 0.0007 0.0000 -0.0049 -0.0021 0.0006
0.0090 0.0029 -0.0002 0.0155 0.0065 0.0002 0.0170 0.0085 0.0009

σαz -0.0015 -0.0188 -0.0618 0.1363 0.1078 -0.0681 0.2923 0.2986 -0.0126

σβz -0.0009 -0.0025 -0.0020 0.0011 -0.0008 -0.0019 0.0033 0.0014 -0.0016

σzz 0.6672 0.6347 0.6140 0.6986 0.6565 0.5755 0.7532 0.7381 0.5398
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Table 6.9: Symmetric lamination (90◦/0◦/90◦) with simply-supported boundary conditions
and concentrated load. Theory LW4.

R/a = 1 R/a = 2 R/a = 5

a/h 5 10 100 5 10 100 5 10 100

w 35.5844 3.2329 0.0012 43.3005 4.5602 0.0027 46.4546 5.3029 0.0083

σαα
24.6050 1.9587 0.0016 26.7568 2.1125 0.0023 28.0121 2.1866 0.0034
-2.8433 -0.5929 -0.0012 -3.4302 -0.7221 -0.0018 -3.6722 -0.7921 -0.0029

σββ
129.4768 11.3214 0.0186 138.6554 12.4595 0.0243 143.2570 12.9911 0.0334
-22.2940 -4.5605 -0.0108 -26.8411 -5.8998 -0.0153 -28.5773 -6.6941 -0.0239

σαβ
0.2677 0.0688 0.0001 -0.0895 0.0261 0.0002 -0.4274 -0.0471 0.0005
1.1584 0.1536 0.0001 1.0927 0.1823 0.0003 0.8786 0.1542 0.0007

σαz 0.8085 0.0831 0.0003 0.7397 0.0770 0.0004 0.5528 0.0449 0.0004

σβz 1.9680 0.2951 -0.0013 3.2534 0.7891 -0.0037 3.7429 1.0684 -0.0017

σzz 4.7550 2.0643 0.0255 4.9643 2.1359 0.0262 5.1002 2.1881 0.0268
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Figure 6.5: Two-layered shell, lamination (45◦,−45◦), R/a = 1. Transverse shear stress σ̄αz
for aspect ratios a/h = 5 and a/h = 100.
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Figure 6.6: Two-layered shell, lamination (45◦,−45◦), R/a = 5. Transverse normal stress σ̄zz
for aspect ratios a/h = 5 and a/h = 100.
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Figure 6.7: Three-layered shell, clamped-free boundary conditions, R/a = 1. Transverse
shear stress σ̄αz for aspect ratios a/h = 5 and a/h = 100.
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Figure 6.8: Three-layered shell, clamped-free boundary conditions, R/a = 5. Transverse
normal stress σ̄zz for aspect ratios a/h = 5 and a/h = 100.
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Figure 6.9: Three-layered shell, concentrated load, by varying a/h for R/a = 2. Transverse
shear and normal stresses σ̄αz and σ̄zz.
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Figure 6.10: Three-layered shell, concentrated load, by varying R/a for a/h = 10. Transverse
shear and normal stresses σ̄αz and σ̄zz.
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6.2 Trigonometric and Exponential Thickness Functions

To assess the trigonometric and the exponential polynomial expansions the following reference
problems have been considered in this section:

• A three-layer cross-ply square plate with lamination (0◦/90◦/0◦)

• A two-layer cross-ply square plate with lamination (0◦/90◦)

• A four-layer cross-ply square plate with lamination (0◦/90◦/90◦/0◦)

• A three-layer rectangular sandwich plate

A system of acronyms is given in section 3.2 to denote the considered kinematic models.
For the present numerical section, the considered expansion are summarized in Table 6.10.

Table 6.10: Expansion terms of the proposed theories.

cost zN (−1)kζk sin
(
N
zπ

h

)
cos
(
N
zπ

h

)
e

(
N
z

h

)

N = 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 6
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√ √ √ √ √

. . . . . . . . . . . . . . . .
ES5

√
. . . . .

√ √ √ √ √
. . . . . . . . . .
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√ √

. . . .
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. . . . . . . . . . . . . .
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√ √
. . . . . . . . .
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. . . . . . . . .

EExp3
√

. . . . . . . . . . . . . .
√ √ √

. . .
ET1Exp2

√ √
. . . . . . . . . . . . .

√ √
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√ √
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. . .
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√
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. .
√ √ √

. . . . . . .
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√
. . . . .
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.
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. . . . . .

ET1S1C1
√ √

. . . .
√

. . . .
√

. . . . . . . . .
ET1S2C2

√ √
. . . .

√ √
. . .

√ √
. . . . . . . .

ET3Z
√ √ √ √

.
√

. . . . . . . . . . . . . . .
ES4Z

√
. . . .

√ √ √ √ √
. . . . . . . . . . .

ES5Z
√

. . . .
√ √ √ √ √ √

. . . . . . . . . .
ET1S2Z

√ √
. . .

√ √ √
. . . . . . . . . . . . .

ET1S3Z
√ √

. . .
√ √ √ √

. . . . . . . . . . . .
ET1C2Z

√ √
. . .

√
. . . . .

√ √
. . . . . . . .

EExp5Z
√

. . . .
√

. . . . . . . . .
√ √ √ √ √

.
EExp6Z

√
. . . .

√
. . . . . . . . .

√ √ √ √ √ √

ET1Exp4Z
√ √

. . .
√

. . . . . . . . .
√ √ √ √

. .
ET1Exp5Z

√ √
. . .

√
. . . . . . . . .

√ √ √ √ √
.

ES4C4Z
√

. . . .
√ √ √ √ √

.
√ √ √ √

. . . . . .
ET1S3C3Z

√ √
. . .

√ √ √ √
. .

√ √ √
. . . . . . .

6.2.1 Three-layer cross-ply square plate (0◦/90◦/0◦)

A three layered cross-ply square plate with lamination (0◦/90◦/0◦) and simply-supported
boundary condition is considered. The applied load is:

p (x, y, ztop) = p̂ sin
(mπx

a

)
sin
(nπy

b

)
(6.5)

where m = n = 1, see Figure 6.11. The mechanical properties of the material are:
EL/ET = 25 ; GLT /ET = 0, 5 ; GTT /ET = 0, 2 ; νLT = νTT = 0, 25. The geometrical
dimensions are: a = b = 1.0. The mechanical load amplitude at the top position is: p̂ = 1.0.
The results are presented for different thickness ratios a/h = 4, 10, 100, and reported in non-
dimensional form:

ŵ =
100wETh

3

p̂ a4
; σ̂xx =

σxx

p̂
(
a
h

)2 ; σ̂xz/yz =
σxz/yz

p̂
(
a
h

) (6.6)
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Figure 6.11: Reference system of the plate with a bi-sinusoidal loading.

Convergence and locking study

First of all, a convergence study on the plate element has been performed. A composite plate
with thickness ratio a/h = 100, is evaluated. The Navier-type solution with a Taylor polyno-
mials expansion of the 4th order has been taken as reference solution. It can be noticed that,
evaluating the transverse displacement w and transverse shear stress σxz, the convergence
is not depending on the different kinds of employed polynomials, see Table 6.11. A mesh
grid of 10× 10 elements ensures the convergence. Then a locking study has been performed
evaluating different types of integration methods [115] for the same plate structure to prove
that the element is locking free, see Table 6.12. The plate element with the MITC9 method
leads to accurate results in terms of both transverse displacement and shear stress.

Table 6.11: Convergence study. Plate with lamination [0◦/90◦/0◦] and with thickness ratio
a/h = 100.

Mesh 4× 4 6× 6 8× 8 10× 10 ET4a LW4 3DExactElasticity [128]

ET4
w 0.4344 0.4343 0.4342 0.4342 0.4342 0.4347 -
σxz 0.295 0.287 0.284 0.282 0.281 0.398 0.395

ET1S1
w 0.4294 0.4292 0.4292 0.4292
σxz 0.308 0.300 0.297 0.295

ET1Exp3
w 0.4345 0.4343 0.4343 0.4343
σxz 0.315 0.307 0.304 0.302

ET3Z
w 0.420 0.4347 0.4347 0.4347
σxz 0.4349 0.409 0.405 0.403

ET1C2Z
w 0.4347 0.4346 0.4345 0.4345
σxz 0.414 0.403 0.399 0.397
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Table 6.12: Locking study. Plate with lamination [0◦/90◦/0◦] and with thickness ratio a/h =
100. All the cases are computed with a mesh of 10× 10 elements.

Reduced Selective MITC9 ET4a LW4 3DExactElasticity [128]

ET4
w 0.4342 0.4334 0.4342 0.4342 0.4347 -
σxz 0.501 0.510 0.282 0.281 0.398 0.395

ET1S1
w 0.4292 0.4284 0.4292
σxz 0.511 0.526 0.295

ET1Exp3
w 0.4343 0.4335 0.4343
σxz 0.521 0.538 0.302

ET3Z
w 0.4347 0.4339 0.4347
σxz 0.621 0.673 0.403

ET1C2Z
w 0.4345 0.4337 0.4345
σxz 0.614 0.675 0.397

For thick and thin plates a/h = 4 , 100 the results are presented in Table 6.13 for various
expansions. The values of the transversal displacement w, in-plane stress σxx and transverse
shear stresses σxz and σyz are compared with the exact 3D elasticity solution [128], the ana-
lytical solution calculated with a Taylor’s polynomial expansion of the 4th order (ET4a), and
the FEM solution obtained with a Layer-Wise approach using a Legendre expansion of the
4th order (LW4).
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Table 6.13: Plate with lamination [0◦/90◦/0◦]. Transverse displacement ŵ =
ŵ(a/2, b/2,+h/2), in-plane principal stress σ̂xx = σ̂xx(a/2, b/2,±h/2), transverse shear stress
σ̂xz = σ̂xz(a, b/2, 0) and σ̂yz = σ̂yz(a/2, b, 0) .

a/h = 4 a/h = 100 DOFs

ŵ σ̂xx σ̂xz σ̂yz ŵ σ̂xx σ̂xz σ̂yz

top bottom top bottom

3DExactElasticity [128] - 0.801 -0.755 0.256 0.2172 - 0.539 -0.539 0.395 0.0828
LW4 2.1216 0.807 -0.761 0.258 0.2197 0.4347 0.544 -0.544 0.398 0.0836 17199
ET4a 2.0083 0.786 -0.740 0.205 0.1830 0.4342 0.539 -0.539 0.281 0.0734
ET4 2.0082 0.793 -0.746 0.207 0.1845 0.4342 0.543 -0.543 0.283 0.0742 6615
ES5 2.0765 0.774 -0.779 0.293 0.2110 0.4294 0.541 -0.541 0.413 0.0451 7938
ET1S1 2.0089 0.772 -0.776 0.214 0.1857 0.4292 0.541 -0.541 0.295 0.0771 3969
ET1C1 1.6497 0.470 -0.426 0.122 0.1257 0.4332 0.543 -0.543 0.144 0.0605 3969
EExp3 1.9105 0.777 -0.604 0.177 0.1657 0.3945 0.497 -0.495 -0.303 -0.547 5292
ET1Exp2 1.9794 0.801 -0.696 0.198 0.1801 0.4341 0.544 -0.544 0.265 0.0731 5292
EExp4 2.0266 0.785 -0.747 0.223 0.1860 0.4323 0.541 -0.541 0.414 0.1664 6615
ET1Exp3 2.0199 0.785 -0.757 0.215 0.1850 0.4343 0.544 -0.544 0.302 0.0743 6615
ES3C3 2.0416 0.777 -0.732 0.245 0.1760 0.3781 0.474 -0.474 -0.435 -0.840 9261
ES4C4 2.0841 0.798 -0.752 0.287 0.1994 0.4324 0.541 -0.541 0.605 0.281 11907
ET1S1C1 2.0176 0.796 -0.752 0.213 0.1868 0.4342 0.544 -0.544 0.296 0.0747 5292
ET1S2C2 2.0448 0.788 -0.742 0.241 0.1821 0.4345 0.544 -0.544 0.376 0.0712 7938
ET3Z 2.1078 0.802 -0.756 0.259 0.1856 0.4347 0.544 -0.544 0.403 0.0709 6615
ES4Z 2.1116 0.783 -0.788 0.257 0.2209 0.4274 0.538 -0.538 0.586 0.2283 7938
ES5Z 2.1117 0.783 -0.788 0.257 0.2233 0.4295 0.541 -0.541 0.370 0.0591 9261
ET1S2Z 2.1084 0.782 -0.787 0.253 0.1975 0.4296 0.541 -0.541 0.401 0.0775 6615
ET1S3Z 2.1110 0.783 -0.788 0.255 0.2167 0.4296 0.541 -0.541 0.399 0.0843 7938
ET1C2Z 2.0461 0.709 -0.663 0.259 0.1741 0.4345 0.544 -0.544 0.397 0.0673 6615
EExp5Z 2.1134 0.805 -0.755 0.259 0.1899 0.4346 0.544 -0.544 0.426 0.1229 9261
EExp6Z 2.1180 0.805 -0.759 0.253 0.2032 0.4347 0.544 -0.544 0.403 0.0791 10584
ET1Exp4Z 2.1152 0.805 -0.758 0.257 0.1897 0.4347 0.544 -0.544 0.403 0.0725 9261
ET1Exp5Z 2.1186 0.806 -0.760 0.253 0.2023 0.4347 0.544 -0.544 0.402 0.0772 10584
ES4C4Z 2.1211 0.807 -0.761 0.257 0.2213 0.4324 0.541 -0.541 0.590 0.2283 13230
ET1S3C3Z 2.1206 0.807 -0.761 0.254 0.2172 0.4347 0.544 -0.544 0.401 0.0826 11907

For thin plates, a/h = 100, the following considerations are drawn:

• Regarding the transverse displacement w the exponential function (EExp4), the cosine
expansion (ET1C1) and its combinations with series of sine functions (ES4C4) are
more accurate than sine functions (ES5), see Figure 6.12a. It can be noticed that the
use of the linear term (ET1Exp3, ET1S2C2) determines a significant improvement of
the results with a lower number of degrees of freedom (DOFs). The addition of the
zig-zag term improves the accuracy even if for the sine function (ES5Z, ET1S3Z), and
its combination with cosine (ES4C4Z) the improvement is lower, see Figure 6.12b.

• The in-plane stress σxx is accurately described by all functions with or without the
zig-zag term.

• For the transverse shear stress σxz the sine and the exponential functions, with the
linear contribution, are close to the Taylor polynomial series of the 4th order, but at
interfaces the continuity is not fulfilled. To overcome this problem, it has been employed
the zig-zag function, see Figure 6.13. As expected the zig-zag term improves the results,
this is true excepting for the cosine function, the sine, and their combination.

• The transverse normal stress σzz is accurately described by the cosine function and its
combination with the sine series, see Figure 6.14. It can be noticed that the sine series
and its combination with the linear contribution lead to a completely wrong description
of the transverse normal stress.
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Figure 6.12: Three-layered plate, transverse displacement w along the thickness, with thick-
ness ratio ( a / h ) = 100.
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Figure 6.13: Three-layered plate, transverse shear stress σxz along the thickness, with thick-
ness ratio ( a / h ) = 100.

97



CHAPTER 6. RESULTS ON MECHANICAL PROBLEMS

-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ
-

zz

z

LW4
ET4
ES5

ET1S1
ET1C1
EExp4

ET1Exp3
ES4C4

ET1S2C2

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5
-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

z

Figure 6.14: Three-layered plate, transverse normal stress σzz along the thickness, with
thickness ratio ( a / h ) = 100.

For thick plates, a/h = 4, the following considerations are drawn:

• Regarding the transverse displacement w, the increase of the performance of exponential
series, and the sine function instead of cosine ones is more evident than the thin case.
Furthermore using the zig-zag term the results are very close to the exact solution,
except for the cosine (ET1C2Z), see Figure 6.15. Moreover, it can be observed that the
sine series (ES5Z, ET1S3Z) predict a linear displacement profile, while the exponential
expansion is the best approximation of the solution.

• The in-plane stress σxx is not accurately described by the cosine function (ET1C1),
see Figure 6.16a. It can be noticed that the Taylor results at the lower interface give
a minor discontinuity. Only adding the zig-zag function the results strongly agree with
the solution, see Figure 6.16b.

• For the transverse shear stress σxz at interfaces the continuity is not fulfilled, see Figure
6.17a. Also in this case only the addition of the zig-zag term is able to improve the
results, see Figure 6.17b. Exept for the cosine series, all the employed functions can
lead to good results. The discontinuity is very reduced and it is smaller than ones
obtained by using Taylor polynomials.

• The transverse normal stress σzz, unlike the previous case a/h = 100, can be described
correctly by the sine series too, see Figure 6.18a. Adding the zig-zag term the results
are closer to the exact solution, expecially the exponential expansion and the sine and
cosine combination lead to very accurate results, see Figure 6.18b.
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Figure 6.15: Three-layered plate, transverse displacement w along the thickness, with thick-
ness ratio ( a / h ) = 4.
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Figure 6.16: Three-layered plate, in-plane stress σxx along the thickness, with thickness ratio
( a / h ) = 4.
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Figure 6.17: Three-layered plate, transverse shear stress σxz along the thickness, with thick-
ness ratio ( a / h ) = 4.
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Figure 6.18: Three-layered plate, transverse normal stress σzz along the thickness, with
thickness ratio ( a / h ) = 4.

For the thickness ratio a/h = 10 the results are presented in Table 6.14. The values of the
transversal displacement w, in-plane stress σxx and transverse shear stresses σxz and σyz are
compared with the exact 3D elasticity solution and with different reference solutions taken
in the literature. For moderately thin plate, the following considerations are drawn:

• Regarding the transverse displacement w, the exponential series, and in particular the
sine functions are more efficient than the cosine series. Furthermore, using the zig-zag
term, except the cosine (ET1C2Z) and the sine series (ES5Z, ET1S3Z), the results
are closer to the exact solution.
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• The in-plane stress σxx is not correctly described as for thin plate a/h = 100, moreover
the cosine function (ET1C1) does not match the solution. Only adding the zig-zag
function the results match the exact solution.

• For the transverse shear stress σxz, also in this case, the addition of the zig-zag term to
functions series is able to improve the results and to reduce the discontinuity. Execpt
for the cosine series, all the functions employed can lead to accurate results.

• The transverse normal stress σzz is not accurately described by sine functions, see Fig-
ure 6.19, but this problem is reduced compared to the thin plate a/h = 100.
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Table 6.14: Plate with lamination [0◦/90◦/0◦] and thickness ratio a/h = 10. Transverse dis-
placement ŵ = ŵ(a/2, b/2, 0), in-plane principal stress σ̂xx = σ̂xx(a/2, b/2,±h/2), transverse
shear stress σ̂xz = σ̂xz(a, b/2, 0) and σ̂yz = σ̂yz(a/2, b, 0) .

ŵ σ̂xx σ̂xz σ̂yz DOFs

top bottom

3DExactElasticity [129] 0.7530 0.590 -0.590 0.357 0.1228
L&S [130] 0.7546 0.580 -0.580 0.367 0.127

Moriya [131] 0.7512 0.5759 -0.5785 0.3993 0.1296
R−H [132] 0.7125 0.5684 - 0.1033 -
H&L [133] 0.7531 0.5884 -0.5879 0.3627 0.1284

ET4(IS) [129] 0.7268 0.5776 -0.5753 0.2948 0.1464
LW4 0.7530 0.595 -0.595 0.3602 0.1238 17199

ET4 0.7151 0.588 -0.587 0.2639 0.1038 6615
ES5 0.7380 0.591 -0.592 0.4038 0.1194 7938
ET1S1 0.7142 0.588 -0.589 0.2746 0.1066 3969
ET1C1 0.6294 0.521 -0.521 0.1387 0.0759 3969
EExp3 0.6817 0.577 -0.550 0.2104 0.0852 5292
ET1Exp2 0.7066 0.588 -0.577 0.2484 0.1013 5292
EExp4 0.7254 0.589 -0.591 0.2993 0.1066 6615
ET1Exp3 0.7203 0.588 -0.591 0.2804 0.1046 6615
ES3C3 0.7310 0.586 -0.586 0.3434 0.0860 9261
ES4C4 0.7430 0.593 -0.592 0.4015 0.1149 11907
ET1S1C1 0.7192 0.591 -0.590 0.2754 0.1051 5292
ET1S2C2 0.7338 0.591 -0.590 0.3400 0.1030 7938
ET3Z 0.7528 0.596 -0.595 0.3646 0.1038 6615
ES4Z 0.7478 0.594 -0.594 0.3624 0.1273 7938
ES5Z 0.7478 0.594 -0.594 0.3583 0.1265 9261
ET1S2Z 0.7477 0.594 -0.594 0.3607 0.1122 6615
ET1S3Z 0.7478 0.594 -0.594 0.3598 0.1230 7938
ET1C2Z 0.7381 0.575 -0.575 0.3606 0.0973 6615
EExp5Z 0.7527 0.595 -0.594 0.3662 0.1072 9261
EExp6Z 0.7529 0.595 -0.594 0.3622 0.1142 10584
ET1Exp4Z 0.7528 0.595 -0.594 0.3642 0.1062 9261
ET1Exp5Z 0.7529 0.595 -0.594 0.3620 0.1136 10584
ES4C4Z 0.7530 0.595 -0.595 0.3636 0.1265 13230
ET1S3C3Z 0.7530 0.595 -0.595 0.3611 0.1222 11907
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Figure 6.19: Three-layered plate, transverse normal stress σzz along the thickness, with
thickness ratio ( a / h ) = 10.

6.2.2 Two-layer (0◦/90◦) and four-layer (0◦/90◦/90◦/0◦) cross-ply square
plate

The plates are simply-supported and different thickness ratios are studied. The geometrical
and material properties are the same of the previous three-layer plate. The plate structures
are loaded by the same bi-sinusoidal load pressure applied at the top surface.
For the 2 layered plate the results are listed in Table 6.15. As expected, for thin plates,
a/h = 100, all the functions lead to accurate results. Despite the transverse displacement w
and the in-plane principal stress σxx match the exact solution, the shear stresses σxz and σyz
are not correctly described. For thick plates a/h = 4, the ET4 expansion underestimates the
transverse displacement and the in-plane stress compared to the reference solution given by a
layer-wise approach. All the results obtained by the proposed trigonometric and exponential
expansions are close to the layer-wise solution more than the Taylor polynomial one. Further-
more, adding the zig-zag term to the expansion series, all the FE results achieve significant
accuracy, also in terms of shear stresses. For the 4 layered plate the results are listed in Table
6.16. The values of the transversal displacement w are compared with the exact 3D elasticity
solution and with different reference solutions available in the literature. It is clear that for
thin plate all the FE results are close to the exact solution, conversely for thick plates the re-
sults match the exact solution only by adding the zig-zag function. It can be noticed that the
zig-zag function strongly improves the solution, especially for thick plates. The reduction of
computational costs is particularly relevant in some cases compared to the layer-wise solution.
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Table 6.15: Plate with lamination [0◦/90◦]. Transverse displacement ŵ = ŵ(a/2, b/2,+h/2),
in-plane principal stress σ̂xx = σ̂xx(a/2, b/2,±h/2), transverse shear stress σ̂xz =
σ̂xz(a, b/2, 0) and σ̂yz = σ̂yz(a/2, b, 0) .

a/h = 4 a/h = 100

ŵ σ̂xx σ̂xz σ̂yz ŵ σ̂xx σ̂xz σ̂yz

top bottom top bottom

LW4 2.1699 0.1106 -0.7960 0.1451 0.1215 1.0652 0.0851 -0.7217 0.1234 0.1234
ET4a 2.1282 0.1093 -0.7708 0.2878 0.1091 1.0651 0.0842 -0.7157 0.2800 0.1120
ET4 2.1281 0.1100 -0.7770 0.2901 0.1100 1.0651 0.0849 -0.7215 0.2829 0.1132
ES5 2.1376 0.1031 -0.8334 0.2259 0.0831 1.0388 0.0905 -0.7124 0.1279 0.0511
ET1S1 2.0924 0.0990 -0.8109 0.3007 0.1149 1.0388 0.0905 -0.7124 0.3046 0.1218
ET1C1 2.0403 0.1025 -0.6585 0.2255 0.0871 1.0643 0.0867 -0.7231 0.2229 0.0891
EExp3 2.1144 0.1095 -0.7249 0.2846 0.1022 0.8801 0.0713 -0.5948 -0.8887 -0.9132
ET1Exp2 2.1204 0.1101 -0.7544 0.2965 0.1109 1.0650 0.0854 -0.7222 0.2924 0.1155
EExp4 2.1228 0.1080 -0.7546 0.3036 0.1012 1.0508 0.0832 -0.7125 0.9537 0.0877
ET1Exp3 2.1279 0.1090 -0.7683 0.3003 0.1041 1.0651 0.0848 -0.7218 0.2974 0.1070
ES3C3 2.1569 0.1101 -0.7917 0.2452 0.0902 0.8020 0.0640 -0.5429 -1.9729 -0.7892
ES4C4 2.1574 0.1104 -0.7911 0.2500 0.0917 1.0508 0.0838 -0.7119 0.7852 0.3141
ET1S1C1 2.1170 0.1109 -0.7657 0.2961 0.1142 1.0644 0.0867 -0.7233 0.2956 0.1182
ET1S2C2 2.1515 0.1119 -0.7897 0.2537 0.0940 1.0651 0.0852 -0.7219 0.2400 0.0960
ET3Z 2.1261 0.1095 -0.7674 0.2648 0.1293 1.0651 0.0851 -0.7217 0.2752 0.1351
ES4Z 2.1425 0.1087 -0.8103 0.2551 0.0824 1.0418 0.0872 -0.7109 0.9506 0.3623
ES5Z 2.1445 0.1090 -0.8112 0.2438 0.0777 1.0573 0.0885 -0.7214 0.1370 0.0352
ET1S2Z 2.1408 0.1088 -0.8102 0.2678 0.0879 1.0573 0.0885 -0.7214 0.2616 0.0850
ET1S3Z 2.1430 0.1089 -0.8106 0.2555 0.0827 1.0573 0.0885 -0.7214 0.2427 0.0775
ET1C2Z 2.0789 0.1042 -0.6984 0.1437 0.1207 1.0650 0.0853 -0.7219 0.1360 0.1233
EExp5Z 2.1595 0.1105 -0.7883 0.1770 0.1481 1.0642 0.0851 -0.7212 0.1654 0.2802
EExp6Z 2.1672 0.1098 -0.7960 0.1702 0.1352 1.0651 0.0850 -0.7217 0.0912 0.1205
ET1Exp4Z 2.1638 0.1107 -0.7940 0.1735 0.1443 1.0652 0.0851 -0.7217 0.1668 0.1499
ET1Exp5Z 2.1675 0.1099 -0.7963 0.1814 0.1358 1.0652 0.0851 -0.7217 0.1739 0.1399
ES4C4Z 2.1686 0.1103 -0.7957 0.1622 0.1386 1.0519 0.0840 -0.7127 0.1466 0.7019
ET1S3C3Z 2.1685 0.1105 -0.7956 0.1725 0.1352 1.0652 0.0851 -0.7218 0.1594 0.1382
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Table 6.16: Plate of 4 layers [0◦/90◦/90◦/0◦] with various thickness ratios a/h. Transverse
displacement ŵ = ŵ(a/2, b/2, 0).

a/h 4 10 20 100 DOFs

3DExactElasticity [129] 1.937 0.737 0.513 0.435

R−H [132] 1.8937 0.7147 0.5060 0.4343
R− C [134] 1.7100 0.6628 0.4912 0.4337
P&K [135] 1.8744 0.7185 - 0.4346
D&R [136] 1.9530 0.7377 0.5122 0.4333
A&S [137] - 0.6693 - -
LH&X [138] 1.7095 0.6627 0.4912 0.4337
ET4(IS) [129] 1.9506 0.7272 0.5112 0.4366

LW4 1.9367 0.7370 0.5130 0.4346 22491

ET4 1.8708 0.7179 0.5073 0.4344 6615
ES5 1.9333 0.7267 0.5062 0.4294 7938
ET1S1 1.8995 0.7167 0.5032 0.4293 3969
ET1C1 1.4894 0.6244 0.4811 0.4332 3969
EExp3 1.7668 0.6844 0.4919 0.3953 5292
ET1Exp2 1.8435 0.7098 0.5050 0.4343 5292
EExp4 1.8905 0.7252 0.5095 0.4324 6615
ET1Exp3 1.8826 0.7218 0.5085 0.4344 6615
ES3C3 1.8956 0.7258 0.5074 0.3825 9261
ES4C4 1.9013 0.7273 0.5097 0.4318 11907
ET1S1C1 1.8818 0.7210 0.5082 0.4343 5292
ET1S2C2 1.8977 0.7271 0.5101 0.4345 7938
ET3Z 1.8715 0.7179 0.5073 0.4344 6615
ES4Z 1.9207 0.7235 0.5055 0.4277 7938
ES5Z 1.9336 0.7273 0.5070 0.4303 9261
ET1S2Z 1.9171 0.7233 0.5058 0.4303 6615
ET1S3Z 1.9214 0.7237 0.5059 0.4303 7938
ET1C2Z 1.4912 0.6244 0.4811 0.4332 6615
EExp5Z 1.8908 0.7254 0.5097 0.4344 9261
EExp6Z 1.9013 0.7275 0.5102 0.4345 10584
ET1Exp4Z 1.8912 0.7257 0.5097 0.4345 9261
ET1Exp5Z 1.9004 0.7274 0.5102 0.4345 10584
ES4C4Z 1.9014 0.7273 0.5097 0.4318 13230
ET1S3C3Z 1.9022 0.7275 0.5102 0.4345 11907

6.2.3 Three-layer rectangular sandwich plate

A 3 layered, unsymmetrically laminated, rectangular sandwich plate has been analyzed. The
plate is loaded by a constant uniform pressure P topz = −0.1MPa applied to the whole top
surface. The geometrical dimensions are: a = 100mm, b = 200mm, h = 12mm. The
faces have different thickness: htop = 0.1mm, hbottom = 0.5mm, and the core thickness is
hcore = 11.4mm. The two faces have the following material data: E1 = 70000MPa, E2 =
71000MPa, E3 = 69000MPa, G12 = G13 = G23 = 26000MPa, ν12 = ν13 = ν23 = 0.3.
The core made of metallic foam has the following data: E1 = E2 = 3MPa, E3 = 2.8MPa,
G12 = G13 = G23 = 1MPa, ν12 = ν13 = ν23 = 0.25.
The results of local values at top and bottom surfaces are listed in Table 6.17. It can be
observed that although moderately thick plates are considered a/h = (100/12), lower order
theories as ET1a lead to completely wrong results. Very accurate models are required to

105



CHAPTER 6. RESULTS ON MECHANICAL PROBLEMS

capture the stress distribution in the two faces, and the importance of the zig-zag term has
to be underlined for this type of layered structure.

Table 6.17: Sandwich rectangular plate. Transverse displacement w = w(a/2, b/2,±h/2),
in-plane principal stresses σxx = σxx(a/2, b/2) and σyy = σyy(a/2, b/2) .

w σxx σyy

top bottom Top Skin Bottom Skin Top Skin Bottom Skin
top bottom top bottom top bottom top bottom

LW4a [139] -9.142 -8.968 -112.4 -48.435 -133.21 166.27 -52.824 -23.320 -54.327 69.915
LW4 -9.140 -8.968 -110.7 -51.073 -132.85 166.10 -50.519 -25.617 -53.664 69.254

ET1a [139] -0.1022 -0.1020 -89.63 -88.715 15.508 20.008 -51.453 -50.932 8.4375 11.041
ET4 -6.138 -6.031 -83.62 -81.92 -84.42 114.60 -28.265 -50.032 -35.270 46.817
ES5 -7.305 -7.286 -112.7 -56.801 -105.96 158.63 -66.121 -38.325 -42.071 81.605
ET1S1 -1.731 -1.638 -85.10 -85.295 -47.978 84.448 -35.870 -42.617 -43.629 58.979
ET1C1 -0.127 -0.129 -88.45 -87.420 14.642 20.492 -41.521 -40.932 6.314 9.564
EExp3 -4.371 -4.323 -92.47 -78.557 -76.505 113.58 -39.169 -41.849 -44.857 62.113
ET1Exp2 -2.765 -2.730 -90.87 -79.453 -45.443 82.566 -40.886 -39.775 -29.510 46.796
EExp4 -4.497 -4.434 -64.32 -104.42 -63.669 99.959 -11.174 -68.260 -30.944 47.640
ET1Exp3 -4.835 -4.756 -68.21 -98.110 -64.585 98.892 -15.117 -63.323 -28.370 43.578
ES3C3 -7.167 -7.043 -86.88 -82.210 -100.75 132.40 -28.679 -51.200 -41.649 54.757
ES4C4 -7.725 -7.584 -100.2 -64.880 -108.01 143.89 -42.273 -36.314 -43.099 60.993
ET1S1C1 -1.873 -1.859 -92.42 -80.000 -24.335 61.361 -43.735 -38.237 -16.651 34.028
ET1S2C2 -6.630 -6.513 -87.24 -78.839 -90.690 124.87 -30.876 -47.612 -36.754 52.577
ET3Z -7.402 -7.273 -124.6 -35.263 -106.73 140.18 -68.284 -7.0972 -44.822 59.631
ES4Z -7.362 -7.184 -123.1 -42.628 -114.88 126.33 -65.387 -12.490 -54.109 47.247
ES5Z -7.482 -7.303 -119.7 -45.595 -110.17 135.74 -61.693 -15.638 -48.151 55.481
ET1S2Z -6.334 -6.166 -115.7 -51.880 -92.06 116.54 -59.280 -18.998 -41.748 47.515
ET1S3Z -7.142 -6.968 -124.3 -42.770 -113.80 119.94 -66.762 -11.918 -55.304 42.962
ET1C2Z -7.650 -7.516 -105.2 -54.839 -109.73 143.35 -48.303 -27.188 -45.287 60.373
EExp5Z -7.606 -7.473 -108.1 -52.184 -108.58 142.57 -51.282 -24.240 -44.719 60.114
EExp6Z -8.278 -8.126 -107.1 -52.842 -119.37 150.98 -48.835 -26.058 -48.859 62.350
ET1Exp4Z -7.805 -7.665 -107.7 -52.359 -111.53 144.39 -50.512 -24.802 -45.700 60.124
ET1Exp5Z -8.379 -8.225 -107.7 -52.612 -121.51 152.06 -49.329 -25.945 -50.000 62.425
ES4C4Z -8.561 -8.403 -107.9 -52.185 -123.22 156.43 -49.162 -25.942 -49.863 65.144
ET1S3C3Z -8.508 -8.351 -108.7 -51.973 -121.82 156.16 -49.995 -25.507 -49.019 65.342
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Chapter 7

Results on Thermo-Mechanical Problems

This chapter considers the thermal stress analysis of multilayered composite plates and shells.
In order to determine the thermal load two different cases are considered: - the temperature
distribution in the thickness direction is assumed linear; - the temperature distribution in
the thickness direction is calculated via Fourier’s heat conduction equation. Some results are
given in order to demonstrate the capability of the refined and advanced models to obtain
the quasi-3D results.

7.1 Heat conduction problem in layered structures

The heat conduction problem is investigated by solving the Fourier heat conduction equation
as described in [83] for the plate case. Here the solution is given for the shell case as proposed
in [31]. If the values of the temperature are known at the top and bottom surface of the shell,
the temperature profile through the thickness can be considered in two different ways. The
first method introduces an assumed profile θ̂ (z) that varies linearly from the top to the
bottom as follows:

θ̂ (z) = θbottom +
θtop − θbottom

h
∗
(
z +

h

2

)
z ∈

[
−h
2

;
h

2

]
(7.1)

Independetly by the number of considered layers the linear profile is always the same.
The second one computes θ̂ (z) by solving the Fourier heat conduction equation. In case of
multi-layered structures, in general for the kth homogeneous orthotropic layer, the differential
Fourier equation of heat conduction reads:(

Kk1
(Hk

α)2

)
δ2θ

δα2
+

(
Kk2

(Hk
β)2

)
δ2θ

δβ2
+
(
Kk3
) δ2θ

δz2
= 0 (7.2)

where Kk1 , Kk2 , Kk3 are the thermal conductivities coefficients in material coordinates (1, 2, 3)
for each orthotropic layer k and then rotated in the general curvilinear reference system
(α, β, z). In case of multi-layered structures, continuity conditions for the temperature θ and
the transverse normal heat flux qz hold in the thickness direction at each kth layer interface,
reading:

θkt = θk+1
b qkzt = qk+1

zb for k = 1, ..., Nl − 1 (7.3)

where Nl is the number of layers in the considered structure. The relationshp between the
transverse heat flux and the temperature is given as:

qkz = Kk3
δθ

δz
(7.4)
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For the kth layer of the shell structure it is supposed that Kk1 , Kk2 , Kk3 are constant because
in each layer Hk

α, H
k
β are calculated. For each layer both governing equations and boundary

conditions are satisfied by assuming the following temperature field:

θ (α, β, z) = f (z) sin
(mπα

a

)
sin

(
nπβ

b

)
(7.5)

where f (z) is assumed as:
f (z) = θ0 exp

(
skz
)

(7.6)

where θ0 is a constant and sk a parameter. Substituting 7.5 in 7.2 and solving for sk:

sk1,2 = ±

√√√√√√ Kk1
(Hk

α)2

(mπ
a

)2
+
Kk2

(Hk
β)2

(nπ
b

)2

Kk3
(7.7)

Therefore:

f (z) = θk01 exp
(
sk1z
)

+ θk02 exp
(
sk1z
)
or

f (z) = Ck1 cosh
(
sk1z
)

+ Ck2 sinh
(
sk1z
)

(7.8)

The solution for a layer k can be written as:

θc (α, β, z) = θk =
[
Ck1 cosh

(
sk1z
)

+ Ck2 sinh
(
sk1z
)]

sin
(mπα

a

)
sin

(
nπβ

b

)
(7.9)

wherein the coefficients Ck1 and Ck2 are constant for each layer k. In 7.8 for each layer k two
unknowns ( Ck1 and Ck2 ) remain. Therefore, if the number of layers is Nl, the number of
unknowns is (2Nl) and (2Nl) equations to determine the unknowns are needed. The first
two conditions are given by the temperature at the top and the bottom of the shell structure:

f (zbottom) = θ̂bottom = C1
1 cosh

(
s1

1zbottom
)

+ C1
2 sinh

(
s1

1zbottom
)

f (ztop) = θ̂top = CNl1 cosh
(
sNl1 ztop

)
+ CNl2 sinh

(
sNl1 ztop

) (7.10)

Another (Nl− 1) equations can be obtained from the continuity of temperature at each layer
interface as follows:

Ck1 cosh
(
sk1z

k
t

)
+Ck2 sinh

(
sk1z

k
t

)
−Ck+1

1 cosh
(
sk+1

1 zk+1
b

)
−Ck+1

2 sinh
(
sk+1

1 zk+1
b

)
= 0 (7.11)

and another (Nl − 1) equations can be obtained from the continuity of heat flux through the
interfaces as follows:

sk1Kk3
[
Ck1 sinh

(
sk1z

k
t

)
+ Ck2 cosh

(
sk1z

k
t

)]
− sk+1

1 Kk+1
3

[
Ck+1

1 sinh
(
sk+1

1 zk+1
b

)
+

+Ck+1
2 cosh

(
sk+1

1 zk+1
b

)]
= 0

(7.12)

In 7.11 and 7.12 subscripts t and b indicate the top and bottom of each layer. Solving the
system given by 7.10, 7.11 and 7.12 the (2Nl) coefficients Ck1 and Ck2 are obtained. The
temperature amplitude in the thickness shell direction is given by:

θ̂c (z) = θ̂k = Ck1 cosh
(
sk1z
)

+ Ck2 sinh
(
sk1z
)

for k = 1, ..., Nl (7.13)
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7.2 Thermal Profile Assumed Linear

To assess the robustness of this shell element three reference problems are considered: the first
is a cross-ply square multilayered plate with lamination (0◦/90◦/0◦) and simply-supported
boundary conditions, compared with the ones obtained with the 3D elasticity approach by
Bhaskar et al. [96]. The second is a cylindrical panel, analytically analyzed, with three
different layout configurations: 1 isotropic layer of Aluminium, 2 isotropic layer of Titanium
and Aluminium, 2 composite layer with lamination (0◦/90◦). The third is a square, spherical
panel, analytically analyzed, made of 2 composite layers with lamination (0◦/90◦). The
boundary condition is simply-supported. Both of them are evaluated applying a temperature
distribution with a bi-sinusoidal in-plane behavior:

θ (α, β, z) = θ̂ (z) sin
(mπα

a

)
sin

(
nπβ

b

)
(7.14)

where m = n = 1 and an assumed linear behavior through the thickness:

θ̂ (z) = θbottom +
θtop − θbottom

h
∗
(
z +

h

2

)
z ∈

[
−h
2

;
h

2

]
(7.15)

The three problems are briefly described in the following sections.

7.2.1 Multilayered plate

The structure analyzed by Bhaskar et al. [96] (see Figure 7.1) is a composite multilayered
square plate with lamination (0◦/90◦/0◦). The physical properties of the material of the
plate, Composite, are given in Table 7.1. The geometrical dimensions are: a = b = 1.0. The
temperature boundary conditions are: θtop = +1.0, θbottom = −1.0. The results are presented
for different thickness ratios a/h = 2, 10, 50, 100. A mesh grid of 10× 10 elements is taken to
ensure the convergence of the solution.

α

β

z

Figure 7.1: Reference system of the plate.
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Material Composite Aluminium Titanium Carbon

E11 25.0 70.3E9 110.0E9 25.0
E22 1.0 70.3E9 110.0E9 1.0
E33 1.0 70.3E9 110.0E9 1.0
ν12 0.25 0.33 0.32 0.25
ν13 0.25 0.33 0.32 0.25
ν23 0.25 0.33 0.32 0.25
G12 0.5 26.429E9 41.667E9 0.5
G13 0.5 26.429E9 41.667E9 0.5
G23 0.2 26.429E9 41.667E9 0.2
α1 1.0 24.0E − 6 8.6E − 6 1.0
α2 1125.0 24.0E − 6 8.6E − 6 3.0
α3 1125.0 24.0E − 6 8.6E − 6 3.0

Table 7.1: Material data for multilayered plate, cylindrical and spherical shell.

The values of the transversal displacement w, the principal in-plane stress σαα and the
transverse shear stress σαz are listed in Table 7.2 for the assumed linear temperature profile.
Other results in terms of transverse shear stress and transverse principal stress are shown
in Figures 7.2a-7.3b. All the FEs lead to accurate results with respect to the 3D [96] and
analytical solutions for all the thickness ratios except for FSDT . In fact, plate elements that
present a constant transverse normal strain such as FSDT lead to inaccurate results for both
thick and thin plates. It is confirmed what found in [28]: at least a parabolic expansion for
the displacements (u, v, w) is required to capture the linear thermal strains that are related to
a linear through-the-thickness temperature distribution. In general, LW theories work better
than ESLZ theories, and these last perform better than ESL ones and often also with a lower-
order expansion of the unknowns. Equivalent single layer analyses are quite satisfactory only
for the transverse displacement or in-plane stresses if applied to thin plates a/h = 100, but
not for the solution of the transverse normal and shear stresses, as shown in Figures 7.2a-
7.3b. On the other hand, higher-order theories lead to better results but computationally
more expensive.

110



CHAPTER 7. RESULTS ON THERMO-MECHANICAL PROBLEMS

Table 7.2: Plate with lamination (0◦/90◦/0◦). Transverse displacement w = w(a/2, b/2)∗htot
and principal in-plane stress σαα = σαα(a/2, b/2), evaluated at z = ±h/2. Transverse shear
stress σαz = σαz(a, b/2), evaluated at z = +h/6.

a/h 2 10 50 100

w 3D [96] 96.79 17.39 10.50 10.26
σαα 3D [96] 1390 1026 967.5 965.4
σαz 3D [96] 63.92 60.54 14.07 7.073

w

LW4a 96.78 17.39 10.50 10.26
LW4 96.77 17.39 10.50 10.26
LW1 89.23 17.62 11.14 10.91
ET3Z 94.85 17.37 10.50 10.26
ET4a 98.21 16.90 10.47 10.25
ET4 98.20 16.90 10.47 10.25
ET2 83.45 14.96 10.38 10.23
FSDT 41.27 18.33 15.17 15.06

σαα

LW4 1392 1029 970.1 968.0
LW1 641.5 906.7 896.2 895.7
ET3Z 1281 1028 970.1 968.0
ET4 1338 1022 969.7 967.9
ET2 189.1 870.3 963.0 966.2
FSDT 161.8 1065 1190 1194

σαz

LW4a 63.82 60.54 14.07 7.073
LW4 63.93 60.66 14.10 7.088
LW1 42.54 58.78 13.69 6.883
ET3Z 27.42 52.61 12.45 6.263
ET4a 37.25 36.33 8.251 4.143
ET4 37.30 36.41 8.268 4.152
ET2 11.58 16.21 3.624 1.819
FSDT 44.48 28.00 6.127 3.073
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Figure 7.2: Three-layered plate, by varying a/h. Transverse shear stress σ̄αz.
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Figure 7.3: Three-layered plate, by varying a/h. Transverse normal stress σ̄zz.

The same structure is analyzed with a thermal load with the same bi-sinusoidal in-plane
behavior and a constant temperature profile θ̂ (z) = +1.0. The results are presented for
different thickness ratios a/h = 10, 100. The values of the transversal displacement w, the
principal in-plane stress σαα, the transverse shear stress σαz and the transverse normal stress
σzz are listed in Table 7.3 for the constant temperature profile case.
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Table 7.3: Constant thermal profile. Plate with lamination (0◦/90◦/0◦) and cylindrical and
spherical panel with lamination (0◦/90◦), transverse displacement w = w(a/2, b/2), in-plane
stress σαα = σαα(a/2, b/2), transverse shear stress σαz = σαz(a, b/2), transverse normal stress
σzz = σzz(a/2, b/2). Only for the cylindrical and spherical panel the transverse displacement
w = w 10, transverse shear stress σαz = σαz 102, transverse normal stress σzz = σzz 102.

Plate Cylindrical Spherical

a/h 10 100 R/h 10 100 10 100

z = +h/2 z = +h/2 z = +h/2

w

LW4a 68.754 6.8879 4.9843 1.4408 4.6505 1.9888
LW4 68.753 6.8876 4.9846 1.4409 4.6505 1.9890
LW1 68.783 6.8877 4.8907 1.4232 4.5876 1.9551
ET3Z 68.839 6.8877 4.9628 1.4366 4.6369 1.9805
ET4a 68.777 6.8879 4.9593 1.4366 4.6312 1.9804
ET4 68.777 6.8877 4.9596 1.4367 4.6313 1.9806
ET2 68.839 6.8877 4.9015 1.4273 4.5873 1.9618
FSDT 0.0000 0.0000 4.9736 0.6770 4.4581 1.3244

z = +h/2 z = 0− z = 0−

σαα

LW4 612.81 454.01 2.5036 0.2558 3.4327 0.6358
LW1 567.69 453.56 2.3516 0.1301 3.2901 0.5051
ET3Z 593.28 453.82 2.7386 0.4523 3.7287 0.8255
ET4 609.56 454.48 2.5096 0.2868 3.4389 0.6595
ET2 595.93 453.54 2.5005 0.2623 3.4476 0.6400
FSDT 553.43 553.43 3.6316 0.9261 3.6614 1.2794

z = +h/3 z = 0+ z = 0+

σαz

LW4a 30.066 2.6696 6.1495 6.5682 7.5142 5.9752
LW4 30.128 2.6752 6.1582 6.5773 7.5241 5.9833
LW1 29.251 2.6743 5.0680 5.8966 5.6191 5.5013
ET3Z 26.748 2.4338 4.2012 5.4270 5.0108 4.7507
ET4a 44.361 4.2101 1.6141 3.2464 1.8457 2.6573
ET4 44.452 4.2188 1.6161 3.2508 1.8478 2.6607
ET2 26.728 2.4298 0.4314 2.0210 0.3309 1.5369
FSDT 0.0000 0.0000 0.5730 2.7948 1.7815 2.3323

z = 0 z = 0+ z = −h/4

σzz

LW4 3.2666 0.0558 -4.2134 -0.2811 -4.9017 -0.1503
LW1 1.2709 0.0361 -11.732 -2.0980 -3.8270 -0.3264
ET3Z 2.4211 0.0481 -5.1615 0.1098 -3.2337 0.1982
ET4 3.0754 1.1539 -5.4135 -0.3486 -3.9658 -0.1466
ET2 -0.9299 2.4817 -4.3722 -0.7267 -3.3934 -0.1670

7.2.2 Multilayered cylindrical panel

In this section, a cylindrical panel is analysed (see Figure 7.4). Three different layout config-
uration are considered:
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• 1 layered isotropic cylindrical panel made of Aluminium.

• 2 layered isotropic cylindrical panel made of Titanium and Aluminium.

• 2 layered composite cylindrical panel with lamination (0◦/90◦).

Figure 7.4: Reference system of the cylindrical shell.

The temperature boundary conditions are: θtop = +0.5, θbottom = −0.5 for all the cases. The
results are compared with the correspondent closed form solution. A mesh grid of 10 × 10
elements is taken to ensure the convergence of the solution. For the 1 and 2 layered isotropic
cylindrical panel the geometrical dimensions are: a = 1.0 and b =

π

3
Rβ = 10.47197551,

curvature radii Rα = ∞ and Rβ = 10. The results are presented for different radius to
thickness ratios Rβ/htot = (4 ; 10 ; 100 ; 1000) with the corresponding thicknesses htot =
(2.5 ; 1.0 ; 0.1 ; 0.01). For the 2 layered isotropic case the bottom layer is made of Aluminium
and the top layer is made of Titanium. The physical properties of the Aluminium and
Titanium are given in Table 7.1. The values of the transversal displacement w are listed in
Table 7.4 for the assumed linear temperature profile. All the FEs lead to accurate results with
respect to the analytical solutions for all the thickness ratios except for LW1, ET1, FSDT
elements. For the 2 layered composite cylindrical panel the geometrical dimensions are:
a = 1.0 and b = 1.0, global thickness htot = 0.1, curvature radius Rα = ∞. The physical
properties of the Carbon are given in Table 7.1. The results are presented for different radius
to thickness ratios Rβ/htot = (10 ; 50 ; 100 ; 500) with the corresponding curvature radius
Rβ = (1.0 ; 5.0 ; 10.0 ; 50.0). The lamination angle is 0◦ for the bottom layer and 90◦ for the
top layer. The values of the transversal displacement w, the principal in-plane stress σαα,
the transverse shear stress σαz and the transverse normal stress σzz are listed in Table 7.5
for the assumed linear temperature profile.
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Table 7.4: Cylindrical panel with 1 layer made of isotropic materials Aluminum, Nl = 1.
Transverse displacement w = w(a/2, b/2) ∗ 10htot /αAl a

2∆T , evaluated along the thickness
in z = 0. Cylindrical panel with 2 layers made of isotropic materials Aluminum-Titanium,
Nl = 2. Transverse displacement w = w(a/2, b/2) ∗ 10htot /αAl a

2∆T , evaluated along the
thickness in z = +h/4.

Nl Rβ/h 4 10 100 1000

1

ET4a -1.0091 0.9468 1.2007 0.1151
ET4 -1.0091 0.9468 1.2008 0.1151
ET3 -0.9787 0.9603 1.2008 0.1151
ET2 -1.0679 1.9784 1.1995 0.1151
ET1 1.9502 1.9784 1.8359 0.2189
FSDT 1.9838 1.9818 1.7943 0.1715

2

LW4a 0.4002 0.7472 0.7468 0.0325
LW4 0.4001 0.7472 0.7468 0.0326
LW3 0.4242 0.7487 0.7468 0.0326
LW2 0.3998 0.7355 0.7468 0.0326
LW1 0.3512 0.7318 0.8630 0.0487
ET4a 0.4053 0.7386 0.7469 0.0325
ET4 0.4054 0.7386 0.7469 0.0326
ET3 0.4142 0.7405 0.7471 0.0326
ET2 -0.2781 0.5087 0.7466 0.0327
ET1 1.1306 1.1949 1.1524 0.0957
FSDT 1.2350 1.2673 1.1056 0.0463
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Table 7.5: Cylindrical panel with lamination (0◦/90◦). Transverse displacement w =
w(a/2, b/2), in-plane stress σαα = σαα(a/2, b/2) ∗ 10, transverse shear stress σαz =
σαz(a, b/2) ∗ 102, transverse normal stress σzz = σzz(a/2, b/2) ∗ 103. The variables are evalu-
ated at z = 0.

Rβ/h 10 50 100 500

w

LW4a 0.7450 1.1192 1.1359 1.1412
LW4 0.7450 1.1192 1.1359 1.1412
LW1 0.7712 1.1538 1.1706 1.1759
ET3Z 0.7454 1.1177 1.1342 1.1396
ET4a 0.7461 1.1194 1.1360 1.1413
ET4 0.7461 1.1194 1.1360 1.1413
ET2 0.7455 1.1152 1.1316 1.1369
FSDT 0.8745 1.2781 1.2941 1.2979

σαα

LW4a 0.1802+ 0.4204+ 0.3855+ 0.3446+

LW4 0.1805+ 0.4213+ 0.3864+ 0.3454+

LW1 2.6963+ 2.7995+ 2.7627+ 2.7235+

ET3Z 0.3280+ 0.4736+ 0.4290+ 0.3807+

ET4a 0.2305+ 0.4192+ 0.3823+ 0.3404+

ET4 0.2309+ 0.4200+ 0.3831+ 0.3411+

ET2 0.2010+ 0.4247+ 0.3911+ 0.3519+

FSDT 0.4683+ 0.7037+ 0.6587+ 0.6086+

σαz

LW4a −10.901+ −3.7541+ −2.8789+ −2.2428+

LW4 −10.923+ −3.7615+ −2.8845+ −2.2471+

LW1 −8.3115+ −4.0011+ −3.5188+ −3.1781+

ET3Z −10.522+ −3.5686+ −2.7832+ −2.2277+

ET4a −6.8978+ −1.7276+ −1.2097+ −0.8599+

ET4 −6.9120+ −1.7309+ −1.2120+ −0.8614+

ET2 −5.6195+ −1.7814+ −1.4294+ −1.2006+

FSDT −4.8037+ −0.6032+ −0.2571+ −0.0436+

σzz

LW4a 16.981+ 3.5138+ 1.9186+ 0.4215+

LW4 17.007+ 3.5359+ 1.9369+ 0.4370+

LW1 991.25+ 913.40+ 910.39+ 909.18+

ET3Z 28.853+ 2.5312+ 1.3325+ 0.2854+

ET4a 26.667+ 0.1818+ −1.3515+ −2.5631+

ET4 26.682+ 0.1809+ −1.3563+ −2.5703+

ET2 17.342+ −1.3994+ −2.2390+ −2.8356+

Other results in terms of transverse shear stress and transverse principal stress are shown
in Figures 7.5a-7.6b. All the FEs lead to accurate results with respect to the analytical
solutions for all the thickness ratios except for FSDT elements. In general, LW theories
work better than ESLZ theories, and these last perform better than ESL ones and often
also with a lower-order expansion of the unknowns. Equivalent single layer analyses are
quite satisfactory only for the transverse displacement also for lower radii to thickness ratios
R/h = 10, but not for the solutions of the stresses, as shown in Figures 7.5a-7.6b.

116



CHAPTER 7. RESULTS ON THERMO-MECHANICAL PROBLEMS

The same composite cylindrical panel is analyzed with a thermal load with the same bi-
sinusoidal in-plane behavior and a constant temperature profile θ̂ (z) = +0.5. The results
are presented for different thickness ratios R/h = 10, 100. The values of the transversal
displacement w, the principal in-plane stress σαα, the transverse shear stress σαz and the
transverse normal stress σzz are listed in Table 7.3 for the constant temperature profile case.
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Figure 7.5: Two-layered cylindrical shell, by varying R/h. Transverse shear stress σ̄αz.
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Figure 7.6: Two-layered cylindrical shell, by varying R/h. Transverse normal stress σ̄zz.

7.2.3 Multilayered spherical panel

In this section, a square, spherical panel is analysed (see Figure 7.7). The temperature
boundary conditions are: θtop = +0.5, θbottom = −0.5 for all the cases. The results are
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compared with an analytical solution. A mesh grid of 10 × 10 elements is taken to ensure
the convergence of the solution. The geometrical dimensions are: a = 1.0 and b = 1.0, global
thickness htot = 0.1, curvature radii Rα = Rβ = R. The physical properties of the Carbon
are given in Table 7.1.

Figure 7.7: Reference system of the spherical shell.

The results are presented for different radius to thickness ratiosR/htot = (10 ; 50 ; 100 ; 500)
with the corresponding curvature radius R = (1.0 ; 5.0 ; 10.0 ; 50.0). The lamination angle
is 0◦ for the bottom layer and 90◦ for the top layer. The values of the transversal displace-
ment w, the principal in-plane stress σαα, the transverse shear stress σαz and the transverse
normal stress σzz are listed in Table 7.6 for the assumed linear temperature profile. Other
results in terms of transverse shear stress and transverse principal stress are shown in Figures
7.8a-7.9b. All the FEs lead to accurate results with respect to the analytical solutions for all
the thickness ratios except for FSDT elements. In general, LW theories work better than
ESLZ theories, and these last perform better than ESL ones and often also with a lower-order
expansion of the unknowns. Equivalent single layer analyses are quite satisfactory only for
the transverse displacement also for lower radii to thickness ratios R/h = 10, but not for the
solutions of the stresses, as shown in Figures 7.8a-7.9b.
The same composite spherical panel is analyzed with a thermal load with the same bi-
sinusoidal in-plane behavior and a constant temperature profile θ̂ (z) = +0.5. The results are
presented for different thickness ratios R/h = 10, 100. The values of the transversal displace-
ment w, the principal in-plane stress σαα, the transverse shear stress σαz and the transverse
normal stress σzz are listed in Table 7.3 for the constant temperature profile case.
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Table 7.6: Spherical panel with lamination (0◦/90◦). Transverse displacement w =
w(a/2, b/2), in-plane stress σαα = σαα(a/2, b/2) ∗ 10 and transverse normal stress σzz =
σzz(a/2, b/2) ∗ 103 evaluated at z = 0, transverse shear stress σαz = σαz(a, b/2) ∗ 102 evalu-
ated at z = −h/4.

R/h 10 50 100 500

w

LW4a 0.3299 1.0507 1.1174 1.1404
LW4 0.3299 1.0507 1.1174 1.1405
LW1 0.3386 1.0836 1.1516 1.1751
ET3Z 0.3306 1.0496 1.1159 1.1388
ET4a 0.3309 1.0511 1.1176 1.1406
ET4 0.3309 1.0511 1.1176 1.1406
ET2 0.3315 1.0477 1.1134 1.1361
FSDT 0.3927 1.1967 1.2709 1.2965

σαα

LW4a −25.208− 10.291− 11.875− 11.363−

LW4 −25.244− 10.305− 11.892− 11.379−

LW1 −29.322− 9.5416− 11.413− 11.072−

ET3Z −21.884− 12.316− 13.447− 12.579−

ET4a −24.080− 10.619− 12.076− 11.486−

ET4 −24.114− 10.634− 12.093− 11.502−

ET2 −25.115− 10.823− 12.399− 11.876−

FSDT −17.466− 19.697− 21.054− 20.123−

σαz

LW4a 24.096 1.1199 -1.3854 -2.5674
LW4 24.131 1.1212 -1.3877 -2.5714
LW1 19.500 1.5598 -0.5309 -1.5931
ET3Z 21.061 2.4154 0.1275 -1.0771
ET4a 21.281 0.8662 -1.3842 -2.4603
ET4 21.312 0.8673 -1.3865 -2.4641
ET2 20.284 3.0723 0.9925 -0.0983
FSDT 21.845 3.9515 1.5581 0.2307

σzz

LW4a 76.657+ 9.2085+ 4.3230+ 0.8525+

LW4 76.652+ 9.2360+ 4.3451+ 0.8698+

LW1 1100.7+ 928.03+ 915.09+ 909.73+

ET3Z 98.145+ 8.8651+ 3.9948+ 0.7759+

ET4a 111.83+ 6.3462+ 0.8566+ −2.2210+

ET4 111.83+ 6.3530+ 0.8569+ −2.2255+

ET2 76.502+ 2.4683+ −0.9816+ −2.6625+
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Figure 7.8: Two-layered spherical shell, by varying R/h. Transverse shear stress σ̄αz.

 0

 20

 40

 60

 80

 100

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ-
z
z
*
1
0

3

z

LW4

ET3Z

ET4

(a) (R/h ) = 10

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ-
z
z
*
1
0

3

z

LW4

ET3Z

ET4

(b) (R/h ) = 500

Figure 7.9: Two-layered spherical shell, by varying R/h. Transverse normal stress σ̄zz.

7.3 Calculated Thermal Profile

This section is composed of two parts. The first one is devoted to the assessment of the
shell element based on the Unified Formulation by the static analysis of simply supported
plates, cylindrical shells and spherical shells. Both of them are evaluated applying a ther-
mal load with a bi-sinusoidal in-plane behavior. Before the assessment results of the static
analysis a briefly discussion about the evaluation of the temperature profile is given. Using
the theory that provides the most accurate results, the second part presents some benchmark
solutions relative to plates, cylindrical shells and spherical shells with particular lamination
and boundary conditions.
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In the following numerical section, the results obtained with an assumed linear temperature
profile are indicated with the letters Ta, otherwise if the Fourier heat conduction law is used,
the results are marked with the letters Tc.

7.3.1 Temperature profile evalution

The temperature profile along the thickness direction, for the plate structure and the cylindri-
cal shell panel, is evaluated for both the assumed linear profile and the calculated temperature
profile via Fourier heat conduction law. For the three layered composite plate structure, see
Figure 7.10, the calculated profile is plotted for different thickness ratios a/h. It is evident
that for thin plates the temperature profile can be assumed almost linear, conversely for thick
plates the temperature behavior is very far from the linear ones, and large errors computing
the thermal load can be committed if the temperature profile is assumed as linear.
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Figure 7.10: Temperature Profiles for different thickness ratios ( a / h ). Composite plate.

For the two layered composite cylindrical shell panel, see Figure 7.11, the calculated
profile is plotted for different thickness to radius ratios R/h and all for the same thickness
ratio a/h = 10. It is evident that the effect of the curvature is negligible for the approximation
of the temperature profile and the difference respect to the linear profile is due only to the
thickness ratio a/h = 10.
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Figure 7.11: Temperature Profiles for different radius to thickness ratios (R/h ). Composite
cylinder.

The proposed temperature profile evaluations clarify the importance of a calculated tem-
perature profile for thick plates and shells to avoid large errors for the approximation of
thermal load.

7.3.2 Assessment

To assess the robustness of this shell element three reference problems are considered: the first
is a cross-ply square multilayered plate with lamination (0◦/90◦/0◦) and simply-supported
boundary condition, compared with the ones obtained with the 3D elasticity approach by
Bhaskar et al. [96]. The second is a square cylindrical panel, analytically analyzed, with lam-
ination (0◦/90◦) and simply-supported boundary condition. The third is a square spherical
panel, analytically analyzed, with lamination (0◦/90◦). The boundary condition is simply-
supported. Both of them are evaluated applying a thermal load with a bi-sinusoidal in-plane
behavior:

θ (α, β, z) = θ̂ (z) sin
(mπα

a

)
sin

(
nπβ

b

)
(7.16)

where m = n = 1. The three problems are briefly described in the following sections.

Multilayered plate

The structure analyzed by Bhaskar et al. [96] is a composite multilayered square plate with
lamination (0◦/90◦/0◦). The physical properties of the material of the plate, Composite, are
given in Table 7.7. The geometrical dimensions are: a = b = 1.0. The temperature boundary
conditions are: θ̂top = +1.0, θ̂bottom = −1.0.

Table 7.7: Physical data for multilayered plate, cylindrical and spherical shell.

Material E11 E22 E33 ν12 ν13 ν23 G12 G13 G23 α1 α2 α3 K1 K2 K3

Composite 25.0 1.0 1.0 0.25 0.25 0.25 0.5 0.5 0.2 1.0 1125.0 1125.0 36.42 0.96 0.96
Carbon 25.0 1.0 1.0 0.25 0.25 0.25 0.5 0.5 0.2 1.0 3.0 3.0 36.42 0.96 0.96
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The results are presented for different thickness ratios a/h = 2, 10, 50, 100. A mesh grid of
10×10 elements is taken to ensure the convergence of the solution, see Table 7.8. The accuracy
of the shell element is tested and compared with different type of integration methods [115]
for a thin plate to prove that the element is locking free, see Table 7.9.

Table 7.8: Convergence study. Plate with thickness ratio a/h = 100, cylindrical panel and
spherical panel with radius to thickness ratio R/h = 500. All the cases are computed for the
calculated temperature profile Tc and with a LW4 theory.

Mesh 4× 4 6× 6 8× 8 10× 10 Analytical

P late
w 10.27 10.26 10.25 10.25 10.25
σαz 7.466 7.213 7.102 7.084 7.069

Cylindrical
w 1.0966 1.0955 1.0953 1.0952 1.0953
σαz -1.7090 -1.7131 -1.7093 -1.6983 -1.6957

Spherical
w 1.0958 1.0948 1.0946 1.0945 1.0945
σαz -2.2848 -2.2065 -2.1562 -2.1461 -2.1403

Table 7.9: Locking study. Plate with thickness ratio a/h = 100. All the cases are computed
for the calculated temperature profile Tc, with a mesh of 10× 10 elements.

Reduced Selective MITC9

LW4
w 10.1368 10.2515 10.2532
σαz 10.512 8.737 7.084

ET4
w 10.2273 10.2446 10.2464
σαz 5.554 5.489 4.149

The values of the transversal displacement w and the transverse shear stress σαz are
listed in Table 7.10 for the temperature profile calculated solving the Fourier heat conduction
equation and compared with the assumed linear temperature profile. Other results in terms
of transverse shear stress and transversal displacement are shown in Figures 7.12a-7.13b.
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Table 7.10: Plate with lamination (0◦/90◦/0◦). Transverse displacement w = w(a/2, b/2) ∗
htot, evaluated at z = ±h/2. Transverse shear stress σαz = σαz(a, 0), evaluated at z = +h/6.

a/h 2 10 50 100

w 3D [96] 96.79 17.39 10.50 10.26
σαz 3D [96] 63.92 60.54 14.07 7.073

w

LW4a
Ta 96.78 17.39 10.50 10.26
Tc 49.09 16.39 10.47 10.25

LW4
Ta 96.77 17.39 10.50 10.26
Tc 48.85 16.39 10.47 10.25

LW1
Ta 89.23 17.62 11.14 10.91
Tc 44.17 16.69 11.11 10.91

ET3Z
Ta 94.85 17.37 10.50 10.26
Tc 50.08 16.41 10.47 10.25

ET4a
Ta 98.21 16.90 10.47 10.25
Tc 49.55 15.93 10.44 10.25

ET4
Ta 98.20 16.90 10.47 10.25
Tc 49.29 15.93 10.44 10.25

ET2
Ta 83.45 14.96 10.38 10.23
Tc 40.87 14.09 10.35 10.22

FSDT
Ta 41.27 18.33 15.17 15.06
Tc 20.35 17.26 15.13 15.05

σαz

LW4a
Ta 63.82 60.54 14.07 7.073
Tc 30.11 57.07 14.04 7.069

LW4
Ta 63.93 60.66 14.10 7.088
Tc 30.00 57.18 14.07 7.084

LW1
Ta 42.54 58.78 13.69 6.883
Tc 31.69 56.35 13.21 6.879

ET3Z
Ta 27.42 52.61 12.45 6.263
Tc 23.42 50.43 12.43 6.260

ET4a
Ta 37.25 36.33 8.251 4.143
Tc 24.04 34.47 8.232 4.140

ET4
Ta 37.30 36.41 8.268 4.152
Tc 23.96 34.55 8.250 4.149

ET2
Ta 11.58 16.21 3.624 1.819
Tc 6.065 15.31 3.616 1.818

FSDT
Ta 44.48 28.00 6.127 3.073
Tc 22.09 26.41 6.112 3.071

All the FEs, with an assumed linear temperature profile, lead to accurate results with
respect to the 3D [96], that makes use of the same linear profile assumption, and analytical
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solutions for all the thickness ratios except for FSDT . In fact, plate elements that present
a constant transverse normal strain such as FSDT lead to inaccurate results for both thick
and thin plates. It is confirmed what found in [28]: at least a parabolic expansion for
the displacements (u, v, w) is required to capture the linear thermal strains that are related
to a linear through-the-thickness temperature distribution. The results obtained with the
calculated temperature profile are close to them of the assumed linear profile for plates with
thickness ratios a/h = 50, 100, instead for plates with thickness ratios a/h = 2, 10 the thermal
profile behavior is clearly non linear and results are different respect to linear profile cases
even if the variables are approximated in a refined way.

In general, LW theories perform better than ESL ones and often also with a lower-order
expansion of the unknowns. Equivalent single layer analyses are quite satisfactory only for
the transverse displacement if applied to thin plates a/h = 100, but not for the solution of the
transverse shear stresses, as shown in Figures 7.12a-7.13b. On the other hand, higher-order
theories lead to better results but computationally more expensive.
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Figure 7.12: Three-layered plate, by varying a/h. Transverse displacement w.
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Figure 7.13: Three-layered plate, by varying a/h. Transverse shear stress σαz.

Multilayered cylindrical panel

In this section, a cylindrical composite panel with lamination (0◦/90◦) is analysed. The
lamination angle is 0◦ for the bottom layer and 90◦ for the top layer. The geometrical
dimensions are: a = 1.0 and b = 1.0, global thickness htot = 0.1, curvature radius Rα = ∞.
The physical properties of the Carbon are given in Table 7.7. The temperature boundary
conditions are: θ̂top = +0.5, θ̂bottom = −0.5 for all the cases. The results are compared
with the correspondent closed form solution and they are presented for different radius to
thickness ratios Rβ/htot = (10 ; 50 ; 100 ; 500) with the corresponding curvature radius Rβ =
(1.0 ; 5.0 ; 10.0 ; 50.0). A mesh grid of 10× 10 elements is taken to ensure the convergence of
the solution, see Table 7.8. The values of the transversal displacement w and the transverse
shear stress σαz are listed in Table 7.11 for the temperature profile calculated solving the
Fourier heat conduction equation and compared with the assumed linear temperature profile.
Other results in terms of transverse shear stress and transversal displacement are shown in
Figures 7.14a-7.15b.
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Table 7.11: Cylindrical panel with lamination (0◦/90◦). Transverse displacement w =
w(a/2, b/2), transverse shear stress σαz = σαz(a, 0) ∗ 102, evaluated at z = 0.

Rβ/h 10 50 100 500

w

LW4a
Ta 0.7450 1.1192 1.1359 1.1412
Tc 0.7188 1.0748 1.0904 1.0953

LW4
Ta 0.7450 1.1192 1.1359 1.1412
Tc 0.7158 1.0743 1.0902 1.0952

LW1
Ta 0.7712 1.1538 1.1706 1.1759
Tc 0.7412 1.1082 1.1243 1.1293

ET3Z
Ta 0.7454 1.1177 1.1342 1.1396
Tc 0.7147 1.0717 1.0875 1.0926

ET4a
Ta 0.7461 1.1194 1.1360 1.1413
Tc 0.7199 1.0751 1.0907 1.0955

ET4
Ta 0.7461 1.1194 1.1360 1.1413
Tc 0.7170 1.0746 1.0904 1.0955

ET2
Ta 0.7455 1.1152 1.1316 1.1369
Tc 0.7150 1.0695 1.0852 1.0902

FSDT
Ta 0.8745 1.2781 1.2941 1.2979
Tc 0.8367 1.2229 1.2382 1.2419

σαz

LW4a
Ta −10.901+ −3.7541+ −2.8789+ −2.2428+

Tc −10.051 −3.1516 −2.3086 −1.6957

LW4
Ta −10.923+ −3.7615+ −2.8845+ −2.2471+

Tc −10.011+ −3.1485+ −2.3086+ −1.6983+

LW1
Ta −8.3115+ −4.0011+ −3.5188+ −3.1781+

Tc −7.7544+ −3.6140+ −3.1507+ −2.8235+

ET3Z
Ta −10.522+ −3.5686+ −2.7832+ −2.2277+

Tc −9.7816+ −3.1176+ −2.3651+ −1.8329+

ET4a
Ta −6.8978+ −1.7276+ −1.2097+ −0.8599+

Tc −6.3568 −1.3735 −0.8747 −0.5374

ET4
Ta −6.9120+ −1.7309+ −1.2120+ −0.8614+

Tc −6.3345+ −1.3701+ −0.8732+ −0.5377+

ET2
Ta −5.6195+ −1.7814+ −1.4294+ −1.2006+

Tc −5.3090+ −1.6296+ −1.2921+ −1.0727+

FSDT
Ta −4.8037+ −0.6032+ −0.2571+ −0.0436+

Tc −4.5916+ −0.5767+ −0.2457+ −0.0418+

All the FEs, both the calculated profile and the assumed linear ones, lead to accurate
results with respect to the analytical solutions for all the thickness ratios except for FSDT el-
ements. The difference between the calculated temperature profile solutions and the assumed
linear profile ones is costant and it is not affected by the thickness to radii ratio Rβ/h, this
difference is due to the thickness ratio which is a/h = 10 for all the shell cases. In general,
LW theories perform better than ESL ones and often also with a lower-order expansion of
the unknowns. Equivalent single layer analyses are quite satisfactory only for the transverse
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displacement also for lower radii to thickness ratios R/h = 10, but not for the solutions of
the transverse shear stress, as shown in Figures 7.14a-7.15b.
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Figure 7.14: Cylindrical panel, by varying R/h. Transverse displacement w.
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Figure 7.15: Cylindrical panel, by varying R/h. Transverse shear stress σαz.

Multilayered spherical panel

In this section, a square, spherical panel is analysed. The temperature boundary conditions
are: θ̂top = +0.5, θ̂bottom = −0.5 for all the cases. The results are compared with an analytical
solution. A mesh grid of 10×10 elements is taken to ensure the convergence of the solution, see
Table 7.8. The geometrical dimensions are: a = 1.0 and b = 1.0, global thickness htot = 0.1,
curvature radii Rα = Rβ = R. The physical properties of the Carbon are given in Table 7.7.
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The results are presented for different radius to thickness ratios R/htot = (10 ; 50 ; 100 ; 500)
with the corresponding curvature radius R = (1.0 ; 5.0 ; 10.0 ; 50.0). The lamination angle is
0◦ for the bottom layer and 90◦ for the top layer. The values of the transversal displacement
w and the transverse shear stress σαz are listed in Table 7.12 for the temperature profile
calculated solving the Fourier heat conduction equation and compared with the assumed
linear temperature profile. Other results in terms of transverse shear stress and transversal
displacement are shown in Figures 7.16a-7.17b.

129



CHAPTER 7. RESULTS ON THERMO-MECHANICAL PROBLEMS

Table 7.12: Spherical panel with lamination (0◦/90◦). Transverse displacement w =
w(a/2, b/2), evaluated at z = 0, transverse shear stress σαz = σαz(a, 0) ∗ 102 evaluated
at z = −h/4.

R/h 10 50 100 500

w

LW4a
Ta 0.3299 1.0507 1.1174 1.1404
Tc 0.3203 1.0087 1.0725 1.0945

LW4
Ta 0.3299 1.0507 1.1174 1.1405
Tc 0.3240 1.0091 1.0726 1.0945

LW1
Ta 0.3386 1.0836 1.1516 1.1751
Tc 0.3325 1.0414 1.1062 1.1285

ET3Z
Ta 0.3306 1.0496 1.1159 1.1388
Tc 0.3235 1.0071 1.0701 1.0918

ET4a
Ta 0.3309 1.0511 1.1176 1.1406
Tc 0.3213 1.0093 1.0728 1.0947

ET4
Ta 0.3309 1.0511 1.1176 1.1406
Tc 0.3250 1.0096 1.0729 1.0947

ET2
Ta 0.3315 1.0477 1.1134 1.1361
Tc 0.3248 1.0054 1.0679 1.0895

FSDT
Ta 0.3927 1.1967 1.2709 1.2965
Tc 0.3837 1.1459 1.2163 1.2406

σαz

LW4a
Ta 24.096 1.1199 -1.3854 -2.5674
Tc 23.379 1.3972 -1.0041 -2.1403

LW4
Ta 24.131 1.1212 -1.3877 -2.5714
Tc 23.289 1.3831 -1.0122 -2.1461

LW1
Ta 19.500 1.5598 -0.5309 -1.5931
Tc 18.818 1.6718 -0.3315 -1.3536

ET3Z
Ta 21.061 2.4154 0.1275 -1.0771
Tc 20.328 2.5096 0.3181 -0.8407

ET4a
Ta 21.281 0.8662 -1.3842 -2.4603
Tc 20.593 1.0635 -1.0932 -2.1270

ET4
Ta 21.312 0.8673 -1.3865 -2.4641
Tc 20.521 1.0521 -1.1000 -2.1325

ET2
Ta 20.284 3.0723 0.9925 -0.0983
Tc 19.598 3.1406 1.1473 0.0970

FSDT
Ta 21.845 3.9515 1.5581 0.2307
Tc 21.011 3.8024 1.5047 0.2240

All the FEs, both the calculated profile and the assumed linear ones, lead to accurate
results with respect to the analytical solutions for all the thickness ratios except for FSDT el-
ements. The difference between the calculated temperature profile solutions and the assumed
linear profile ones is costant and it is not affected by the thickness to radii ratio Rβ/h, this
difference is due to the thickness ratio which is a/h = 10 for all the shell cases. In general,
LW theories perform better than ESL ones and often also with a lower-order expansion of
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the unknowns. Equivalent single layer analyses are quite satisfactory only for the transverse
displacement also for lower radii to thickness ratios R/h = 10, but not for the solutions of
the transverse shear stress, as shown in Figures 7.16a-7.17b.
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Figure 7.16: Spherical panel, by varying R/h. Transverse displacement w.
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Figure 7.17: Spherical panel, by varying R/h. Transverse shear stress σαz.

7.3.3 FEM benchmark solutions

Similar plates, cylindrical shells and spherical shells are analyzed, considering two new prob-
lems that have not reference analytical solutions:

1. Structures with anti-symmetric lamination ±45◦ under bi-sinusoidal load and simply-
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supported boundary conditions.

2. Structures with clamped-free boundary conditions: edges parallel to β-direction clamped
and those parallel to α-direction free. The lamination is equal to the assessment cases.

Anti-simmetric lamination ±45◦

The first structure analyzed is a composite multilayered square plate with lamination (−45◦

/ 45◦ / −45◦). The physical properties of the material, the geometrical data and the tem-
perature boundary conditions are the same of the assessment cases. The structure is simply
supported. The results are presented for different thickness ratios a/h = 10, 100. The same
mesh grid of 10 × 10 elements of the assessment cases is taken to ensure the convergence of
the solution. The values of the transversal displacement w and the transverse shear stress
σαz are listed in Table 7.13.
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Table 7.13: Benchmark problems. Case 1 with anti-simmetric lamination ±45◦. Plate, cylin-
drical and spherical panel, transverse displacement w = 10w(a/2, b/2,+h/2) and transverse
shear stress σαz = 102 σαz(a, b/2, 0).

Plate Cylindrical Spherical

a/h 10 100 R/h 10 100 10 100

w

LW4
Ta 1375.4 4607.8 4.8796 7.4058 2.6295 7.4971
Tc 1293.5 4604.7 4.5741 7.0165 2.5533 7.1029

LW1
Ta 1274.3 4895.2 4.7358 7.5077 2.4930 7.6005
Tc 1203.2 4892.2 4.4477 7.1343 2.4305 7.2202

ET3Z
Ta 1307.7 4586.4 4.7120 7.3351 2.5257 7.4200
Tc 1232.7 4583.4 4.4154 6.9528 2.4542 7.0325

ET4
Ta 1250.8 4550.1 4.7274 7.3978 2.5388 7.4776
Tc 1177.8 4547.1 4.4239 7.0045 2.4615 7.0793

ET2
Ta 1164.1 4501.7 4.7187 7.2171 2.5756 7.3229
Tc 1096.3 4498.8 4.4192 6.8330 2.5029 6.9316

FSDT
Ta 1294.9 7222.5 5.0729 7.5539 2.6941 7.6548
Tc 1219.4 7217.9 4.8079 7.2151 2.6483 7.3099

σαz

LW4
Ta -85.932 -56.181 15.624 2.4665 24.592 3.7828
Tc -81.708 -56.148 14.483 1.9577 22.964 3.2169

LW1
Ta -98.335 -56.066 17.223 5.5156 23.450 6.7916
Tc -93.436 -56.033 16.299 5.1621 22.161 6.3780

ET3Z
Ta -97.289 -55.800 17.350 2.6837 26.823 4.0857
Tc -92.420 -55.767 16.512 2.5503 25.369 3.8853

ET4
Ta -80.357 -52.295 16.651 0.3544 27.067 1.8573
Tc -76.298 -52.264 15.711 0.2248 25.347 1.6474

ET2
Ta -61.532 -37.094 15.936 2.8891 23.900 4.2028
Tc -58.089 -37.072 15.343 2.9668 22.689 4.2054

FSDT
Ta -92.857 -45.626 12.861 2.2035 20.014 3.2885
Tc -87.595 -45.598 12.219 2.0645 18.994 3.0974

The second structure analyzed is a composite square cylindrical panel with lamination
(−45◦/45◦). The lamination angle is −45◦ for the bottom layer and 45◦ for the top layer.
The physical properties of the material, the geometrical data and the temperature boundary
conditions are the same of the assessment cases. The structure is simply supported. The
results are presented for different radius to thickness ratios R/h = 10, 100. The same mesh
grid of 10 × 10 elements of the assessment cases is taken to ensure the convergence of the
solution. The values of the transversal displacement w and the transverse shear stress σαz
are listed in Table 7.13.

The last structure analyzed is a composite square spherical panel with lamination (−45◦/45◦).
The lamination angle is −45◦ for the bottom layer and 45◦ for the top layer. The physical
properties of the material, the geometrical data and the temperature boundary conditions
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are the same of the assessment cases. The structure is simply supported. The results are
presented for different radius to thickness ratios R/h = 10, 100. The same mesh grid of
10 × 10 elements of the assessment cases is taken to ensure the convergence of the solution.
The values of the transversal displacement w and the transverse shear stress σαz are listed
in Table 7.13.

Clamped-free boundary conditions

In this part the structures are considered with clamped-free boundary conditions: edges
parallel to β-direction clamped and those parallel to α-direction free.
The first structure analyzed is a composite multilayered square plate. The physical properties
of the material, the lamination angle, the geometrical data and the temperature boundary
conditions are the same of the assessment cases. The results are presented for different
thickness ratios a/h = 10, 100. The same mesh grid of 10×10 elements of the assessment cases
is taken to ensure the convergence of the solution. The values of the transversal displacement
w and the transverse shear stress σαz are listed in Table 7.14.

The second structure analyzed is a composite square cylindrical panel. The physical
properties of the material, the lamination angle, the geometrical data and the temperature
boundary conditions are the same of the assessment cases. The results are presented for
different radius to thickness ratios R/h = 10, 100. The same mesh grid of 10 × 10 elements
of the assessment cases is taken to ensure the convergence of the solution. The values of the
transversal displacement w and the transverse shear stress σαz are listed in Table 7.14.

The last structure analyzed is a composite square spherical panel. The physical properties
of the material, the lamination angle, the geometrical data and the temperature boundary
conditions are the same of the assessment cases. The results are presented for different radius
to thickness ratios R/h = 10, 100. The same mesh grid of 10 × 10 elements of the assess-
ment cases is taken to ensure the convergence of the solution. The values of the transversal
displacement w and the transverse shear stress σαz are listed in Table 7.14.
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Table 7.14: Benchmark problems. Case 2 with clamped-free boundary condition. Plate, cylin-
drical and spherical panel, transverse displacement w = 10w(a/2, b/2,+h/2) and transverse
shear stress σαz = 102 σαz(a, b/2, 0).

Plate Cylindrical Spherical

a/h 10 100 R/h 10 100 10 100

w

LW4
Ta 1226.8 3096.9 4.5476 5.3307 -0.3479 3.7373
Tc 1157.7 3094.9 4.3447 5.1018 -0.1750 3.6265

LW1
Ta 1210.9 3274.4 4.6164 5.3874 -0.3642 3.8575
Tc 1145.2 3272.3 4.4100 5.1571 -0.1923 3.7404

ET3Z
Ta 1222.0 3096.8 4.5239 5.2945 -0.3407 3.7334
Tc 1155.2 3094.9 4.3237 5.0705 -0.1681 3.6250

ET4
Ta 1183.3 3083.9 4.5479 5.3215 -0.3423 3.7477
Tc 1116.2 3081.9 4.3460 5.0941 -0.1696 3.6368

ET2
Ta 986.40 3048.6 4.5152 5.2473 -0.3369 3.7263
Tc 929.51 3046.7 4.3093 5.0195 -0.1652 3.6119

FSDT
Ta 1039.7 4356.4 4.7747 5.5564 -0.5836 3.9916
Tc 979.72 4353.6 4.5553 5.3129 -0.4107 3.8624

σαz

LW4
Ta -2619.8 -522.26 -3.9875 -5.1179 15.086 0.2373
Tc -2519.9 -522.01 -3.9154 -5.0207 13.754 -0.0535

LW1
Ta -2655.5 -579.97 -1.5318 -2.3709 14.765 1.8361
Tc -2520.6 -579.67 -1.5150 -2.3397 13.594 1.5630

ET3Z
Ta -2436.3 -537.18 -2.9825 -3.9052 14.614 0.8821
Tc -2303.2 -536.90 -2.8354 -3.7432 13.481 0.6988

ET4
Ta -2695.3 -465.54 -3.3266 -4.2840 14.134 0.4614
Tc -2582.7 -465.30 -3.2708 -4.2082 12.905 0.1929

ET2
Ta -2287.1 -240.08 -2.8190 -3.6334 13.936 0.7940
Tc -2159.2 -239.94 -2.7079 -3.5120 12.809 0.5937

FSDT
Ta -4195.5 -446.19 -6.0953 -6.9657 13.570 -2.0926
Tc -3955.6 -445.91 -5.7896 -6.6468 12.506 -2.1219
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Chapter 8

Results on Electro-Mechanical Problems

In case of smart structures, obtained by the inclusion of some piezoelectric layers, the electro-
mechanical analysis is a fundamental aspect in their design. In this chapter refined and
advanced models are validated in case of multilayered smart structures, and applied to inves-
tigate their physical behavior. In the proposed cases both sensor and actuator configurations
are analyzed. The use of advanced mixed models permits to obtain a priori the transverse
normal electric displacement, with the possibility of imposing its continuity at interfaces.

8.1 Static piezo-composite plates and shells

The model introduced, unlike 3-D degenerate approach, does not involve an approximation
of the geometry of the shell and it describes accurately the curvature of the shell. However,
the locking phenomenon is still present. In this work, such a model is combined with a sim-
ple displacement formulation for the analysis of composite structures. In electro-mechanical
problems it is necessary to impose the value of the electric potential variable at top and bot-
tom position. To obtain this, Layer-Wise models with Legendre polynomials are employed.
The efficiency of Layer-Wise models is tested with the finite element scheme, and the nu-
merical results are compared with the ones obtained with the 3D elasticity approach. In this
direction, two kind of reference problems are considered: the composite square plate embed-
ding piezoelectric layers at top and bottom position, analytically analyzed in [46], and single
and multilayered cylinders embedding piezoelectric layers, analytically analyzed. Both of
them are evaluated in sensor and actuator configuration. For the sensor case, a bi-sinusoidal
transverse normal pressure is applied at the top surface for the plate and at the bottom
surface for the shells:

p±z = p̂±z sin(mπα/a)sin(nπβ/b) (8.1)

with amplitude p̂±z = 1 and wave numbers m = 1, n = 1 for the plate and n = 8 for the
shell. The potential at top and bottom position is imposed Φt = Φb = 0.

For the actuator case, a bi-sinusoidal electric potential is imposed at top surface:

Φ+ = φ̂+
z sin(mπα/a)sin(nπβ/b) (8.2)

with amplitude φ̂+
z = 1 and wave numbers m = 1, n = 1 for the plate and n = 8 for the

shell. The potential at bottom position is imposed Φb = 0. No mechanical load is applied.
The two problems are briefly described in the following sections.
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8.1.1 Multilayered plate

The assessment is based on the plate structure analyzed in [46] (see Figure 8.1). It has
been considered a composite square plate embedding piezoelectric layers made globally of
four layers, a core in Gr/Ep composite material by two orthotropic layers with lamination
(0◦/90◦), and the skins in PZT-4 by two piezoelectric layers. In respect to the total thickness,
a single piezoelectric skin is thick hp = 0.1htot, while the single core layer is thick hc = 0.4htot.
The physical properties of the shell are given in Table 8.1.

Φ =0

Φb=0

p(x,y)=pz sin( x/a) sin( y/b)

Φb=0

Φ(x,y)=Φz sin(πx/a) sin(πy/b)

Figure 8.1: Multilayered plate structure. Sensor Case, and Actuator Case configuration.

Properties PZT-4 Gr/EP

E11 [GPa] 81.3 132.38
E22 [GPa] 81.3 10.756
E33 [GPa] 64.5 10.756
ν12 [−] 0.329 0.24
ν13 [−] 0.432 0.24
ν23 [−] 0.432 0.49
G44 [GPa] 25.6 3.606
G55 [GPa] 25.6 5.6537
G66 [GPa] 30.6 5.6537
e15 [C/m2] 12.72 0
e24 [C/m2] 12.72 0
e31 [C/m2] -5.20 0
e32 [C/m2] -5.20 0
e33 [C/m2] 15.08 0
ε̃11/ε0 [−] 1475 3.5
ε̃22/ε0 [−] 1475 3.0
ε̃33/ε0 [−] 1300 3.0
ε0 [C/V m] 8.85 ∗ 10−12 8.85 ∗ 10−12

Table 8.1: Physical data for multilayered plate and cylindrical shell.

Due to the symmetry of both the geometry and the load, a quarter of plate is analysed
and the following symmetry and boundary conditions (simply-supported) are applied:
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uτ (0, y) = 0

vτ (x, 0) = 0

wτ (x, b/2) = 0

wτ (a/2, y) = 0

uτ (x, b/2) = 0

vτ (a/2, y) = 0

(8.3)

with τ = 0, 1, ..., N .
The results are presented for different thickness ratios a/h = 2, 4, 10, 100.
A mesh grid of 12 × 12 elements is taken to ensure the convergence of the solution. In

general the results approach to the exact solution by increasing the order of expansion N
for the various thickness ratios, see Tables 8.2, 8.3 . One can note that the element doesn’t
suffer the locking phenomenon even when the plate is very thin (a/h = 100), see Tables 8.4,
8.5. Only the LW4 model is able to exactly reproduce the analitycal solution in the case of
thick shell.

a / h 2 4 10 100

Ref. [46]

w
LW4a 4.9113 30.029 582.06 4675300
FSDTa 2.8575 18.488 423.29 3668700

Φ
LW4a 0.9103 6.1084 44.471 4580.2
FSDTa 0.78657 2.6580 15.044 1470.3

Dz

LW4a 0.0256 0.0161 0.0139 0.0136
FSDTa 0.0615 0.0401 -0.1174 -18.729

w

LW4 4.9112 30.0286 582.1298 4675118.5
LW3 4.9112 30.0285 582.1298 4675118.5
LW2 4.8954 29.9812 581.8951 4675095.5
LW1 4.8087 29.8512 579.2426 4647075.5

Φ

LW4 0.9106 6.1107 44.4934 4586.8311
LW3 0.9103 6.1102 44.4920 4586.8311
LW2 0.8948 6.0899 44.4760 4586.7891
LW1 0.8599 6.0320 44.1802 4559.1191

Dz

LW4 0.0252 0.0140 0.0051 -0.0140
LW3 0.0255 0.0142 0.0054 -0.0144
LW2 0.0271 0.0156 0.0064 -0.0205
LW1 -0.0665 -0.0890 -0.2905 -23.8867

Table 8.2: Transverse normal displacement w ∗1011 evaluated along the thickness in (z = 0).
Electric potential Φ∗103 evaluated along the thickness in (z = 0). Transverse normal electric
displacement Dz ∗ 109 evaluated along the thickness at top (z = +h/2). Plate with 4 layers.
Sensor case.
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a / h 2 4 10 100

Ref. [46]

w
LW4a -1.7475 -1.4707 -1.3697 -1.3493
FSDTa -13.923 -14.107 -14.159 -14.169

Φ
LW4a 0.3330 0.4477 0.4910 0.4999
FSDTa 0.3219 0.4461 0.4908 0.4999

Dz

LW4a -9.4085 -2.4184 -0.4168 -0.0370
FSDTa -3.6667 -0.9566 -0.1816 -0.0347

w

LW4 -1.7476 -1.4708 -1.3697 -1.3494
LW3 -1.7476 -1.4707 -1.3697 -1.3494
LW2 -1.7291 -1.4663 -1.3691 -1.3493
LW1 -2.1030 -1.5963 -1.4297 -1.3971

Φ

LW4 0.3330 0.4477 0.4910 0.4999
LW3 0.3330 0.4477 0.4910 0.4999
LW2 0.3331 0.4477 0.4910 0.4999
LW1 0.3241 0.4468 0.4910 0.4999

Dz

LW4 -9.4104 -2.4185 -0.4167 -0.0370
LW3 -9.4047 -2.4182 -0.4167 -0.0370
LW2 -9.3822 -2.4167 -0.4166 -0.0370
LW1 -5.2969 -1.3815 -0.2504 -0.0353

Table 8.3: Transverse normal displacement w ∗1011 evaluated along the thickness in (z = 0).
Electric potential Φ evaluated along the thickness in (z = 0). Transverse normal electric
displacement Dz ∗ 109 evaluated along the thickness at top (z = +h/2). Plate with 4 layers.
Actuator case.
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a / h 2 4 10 100

Ref. [46]
σαα LW4a 3.2207 6.5642 32.771 3142.1

σαz LW4a -0.26995 -0.68720 -1.8540 -18.832

σαα

LW4 3.2240 6.5710 32.8145 3146.8381
LW3 3.2263 6.5719 32.8153 3146.8376
LW2 3.2088 6.5659 32.8137 3146.8433
LW1 3.5228 7.0093 34.3028 3271.7583

σαz

LW4 -0.2758 -0.6902 -1.8576 -18.8640
LW3 -0.2697 -0.6862 -1.8560 -18.8638
LW2 -0.3620 -0.8157 -2.1371 -21.6073
LW1 -0.3165 -0.7094 -1.8693 -18.9304

σzz

LW4 1.0001 1.0001 1.0001 0.9955
LW3 1.0052 1.0015 1.0008 0.9957
LW2 1.0334 1.0268 1.0270 1.0757
LW1 2.1237 2.3562 5.1631 342.3075

Table 8.4: Principal stresses σαα, σzz evaluated along the thickness at top (z = +h/2) and
shear stress σαz evaluated along the thickness in (z = 0). Plate with 4 layers. Sensor case.
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a / h 2 4 10 100

Ref. [46]
σαα LW4a 3.8162 1.1180 0.1680 -0.0246

σαz LW4a 0.0864 0.0239 0.0020 0.0000

σαα

LW4 3.8404 1.1249 0.1693 -0.0246
LW3 3.8618 1.1262 0.1693 -0.0246
LW2 3.9439 1.1312 0.1695 -0.0246
LW1 12.4636 3.3532 0.5272 -0.0210

σαz

LW4 0.0929 0.0241 0.0020 0.0000
LW3 0.0651 0.0227 0.0020 0.0000
LW2 0.1824 0.0359 0.0028 0.0000
LW1 0.0215 0.0029 0.0004 0.0000

σzz

LW4 0.0006 0.0001 0.0000 0.0000
LW3 0.0271 0.0019 0.0001 0.0000
LW2 0.0547 0.0045 0.0001 0.0000
LW1 8.1925 2.1772 0.3540 0.0036

Table 8.5: Principal stresses σαα, σzz evaluated along the thickness at top (z = +h/2) and
shear stress σαz evaluated along the thickness in (z = 0). Plate with 4 layers. Actuator case.

The behavior of transverse shear and normal stresses σαz, σzz is non-linear along the
thickness of the plate. The continuity conditions are reached only by increasing the order
of expansion N , see Figures 8.2a-8.3b. For the description of the electric potential Φ it
is necessary to use higher-order models to describe the non-linear behavior in thick plates
(a/h = 2), see Figures 8.4a, 8.4b. On the other hand for thin plates (a/h = 100) a layer-wise
description of lower order is sufficient. The electric displacement Dz has a non-linear behavior
in the sensor case, it is necessary an higher-order model to obtain the continuity interface,
see Figure 8.5a. For the actuator case, due to its linear behavior, the electric displacement
can be descripted by lower-order layer-wise model, see Figure 8.5b.
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Figure 8.2: Four-layered plate, with thickness ratio ( a / h ) = 100. Transverse shear stress
σαz.
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Figure 8.3: Four-layered plate, with thickness ratio ( a / h ) = 2. Transverse normal stress
σzz.
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Figure 8.4: Four-layered plate, with thickness ratio ( a / h ) = 2. Electric potential Φ.
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Figure 8.5: Four-layered plate, with thickness ratio ( a / h ) = 100. Electric displacement Dz.

8.1.2 Multilayered piezoelectric cylinder.

The shell structure considered is taken from [140] (see Figure 8.6). The first assessment is a
mono-layered piezoelectric cylinder, with the same material properties of the previous plate
example, given in Table 8.1. Moreover a 3 layer configuration cylinder with the core in Gr/Ep
composite material is analyzed. For multilayered cases, reference solutions are evaluated with
an analytical Layer-Wise Full Mixed approach (LWFM). With the LWFM it is possible to
impose the interface continuity of both mechanical transverse stresses and normal electric
displacement.
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Traction

Compression

p(x,y)=pz sin( x/a) sin( y/b)

b=0

t=0

Traction

Compression b=0

Φ(x,y)=Φz sin(πx/a) sin(πy/b)

Figure 8.6: Multilayered cylindrical shell. Sensor Case, and Actuator Case configuration.

The geometrical parameters of the considered cylinder are: a = 40 , b = 2πRβ , Rβ = 10.
Due to the symmetry of both the geometry and the load, an octave of the cylinder is studied
(1/2 in the axial direction and 1/4 in the hoop direction). The following symmetry conditions
are applied:

vτ (α, 0) = 0

uτ (0, β) = 0

vτ (α,Rβπ/2) = 0

(8.4)

and the following boundary conditions are prescribed:

vτ (a/2, β) = wτ (a/2, β) = 0 (8.5)

with τ = 0, 1, ..., N . The results are presented for these cases for different thickness ratios
R/h = 2, 4, 10, 100. A mesh grid of 12×12 elements is taken to ensure the convergence of the
solution. The results are presented in tabular form for the mono-layered cylinder, and the
three-layered shell in Tables 8.6-8.7, and 8.8-8.9 respectively. The following considerations,
similar to the comments made for the plate case, can be drawn: the solution converges to the
exact solution by increasing the order of expansion N ; the LW models are able to give good
results. If one considers the stresses the behavior is the same: higher-order layer wise models
are necessary to match the reference solution in the thick shells. In this case, the use of the
LW4 model becomes preferable.
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R/h 2 4 10 100

Ref. [140]

w (109) LWFM4a 0.0566 0.3332 4.5483 3016.6

σzz LWFM4a -1.1392 -1.0671 -1.0269 -1.0018

Φ LWFM4a 0.0153 0.0355 0.0942 0.6513

Dz (109) LWFM4a 0.0095 0.0028 -0.1646 -111.76

w (109) LW4 0.0566 0.3331 4.5473 3017.2876

σαα LW4 0.4332 2.3837 17.5910 2055.6587
-1.4003 -3.3497 -17.0300 -316.7597

σββ LW4 0.9068 4.9006 35.0550 2567.2803
-2.0590 -6.5066 -38.7790 -2542.8062

σαβ LW4 0.0008 0.0039 0.0291 1.3707
-0.0008 -0.0040 -0.0329 -4.0802

σαz LW4 -0.1084 -0.2644 -0.7242 -5.1421

σβz LW4 0.0046 0.0194 0.0750 0.2104

σzz LW4 -0.0798 -0.0469 0.0317 3.2476
-1.1658 -1.0914 -1.0992 -5.2059

Φ LW4 0.0153 0.0356 0.0949 0.6696

Dz (109) LW4 0.0054 -0.0179 -0.2668 -111.1786

Table 8.6: Transverse normal displacement w ∗ 109, electric potential Φ, shear stresses σαz,
σβz evaluated along the thickness in (z = 0). Transverse normal electric displacement
Dz ∗ 109 evaluated along the thickness at top (z = +h/2). In-plane stresses σαα, σββ,
σαβ and transverse normal stress σzz evaluated along the thickness at (z = ±h/2). Shell
mono-layered piezoelectric cylinder. Mesh (10× 10). Sensor case.
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R/h 2 4 10 100

Ref. [140]

w (1011) LWFM4a -9.6220 -11.285 6.4540 11277

σzz LWFM4a 0.0431 0.0114 0.0004 -0.0001

Φ LWFM4a 0.3431 0.4611 0.5037 0.5254

Dz (1011) LWFM4a -584.80 -783.99 -1615.6 -16266

w (1011) LW4 -9.6219 -11.2852 6.4451 11275.3779

σαα LW4 -3.2642 -4.4933 -8.9704 -18.4390
-0.9616 -3.5544 -10.3507 -106.9489

σββ LW4 0.3518 0.3624 1.3358 94.4157
0.4177 0.0395 -1.4200 -94.1954

σαβ LW4 0.0036 0.0042 0.0082 0.1075
0.0005 0.0019 0.0054 -0.0114

σαz LW4 -0.0207 -0.0207 -0.0324 -0.1905

σβz LW4 0.0023 0.0027 0.0014 0.0072

σzz LW4 0.0731 0.0311 0.0090 0.1865
0.1009 0.0371 0.0047 0.0454

Φ LW4 0.3432 0.4611 0.5037 0.5259

Dz (1011) LW4 -586.0881 -786.2541 -1621.7268 -16310.8350

Table 8.7: Transverse normal displacement w ∗ 1011, electric potential Φ, shear stresses
σαz, σβz evaluated along the thickness in (z = 0). Transverse normal electric displacement
Dz ∗ 1011 evaluated along the thickness at top (z = +h/2). In-plane stresses σαα, σββ,
σαβ and transverse normal stress σzz evaluated along the thickness at (z = ±h/2). Shell
mono-layered piezoelectric cylinder. Mesh (10× 10). Actuator case.
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R/h 2 4 10 100

w (1011) LWFM4a 30.225 111.91 969.70 403190

σαz LWFM4a -0.1193 -0.2575 -0.6365 -3.1560

σzz LWFM4a -0.415 -0.661 -1.150 -3.997

Φ LWFM4a 0.00497 0.0195 0.0602 0.3127

Dz (1011) LWFM4a 0.752 1.104 1.325 -5.495

w (1011)
LW4 30.223 111.906 969.672 403287
LW1 31.60 111.731 947.779 397293

σαz
LW4 -0.1195 -0.2579 -0.6385 -3.2162
LW1 -0.1144 -0.2383 -0.5845 -2.9859

σzz
LW4 -0.4129 -0.6597 -1.1529 -4.0875
LW1 -0.4033 -0.6466 -1.1245 -3.9824

Φ
LW4 0.0050 0.0195 0.0604 0.3190
LW1 0.0072 0.0212 0.0604 0.3143

Dz (1011)
LW4 0.1516 -0.8323 -3.0984 -23.473
LW1 -2.950 -8.7942 -36.282 -1648.83

Table 8.8: Transverse normal displacement w ∗ 1011, electric potential Φ, shear stresse σαz
and transverse normal stress σzz evaluated along the thickness in (z = 0). Transverse normal
electric displacementDz∗1011 evaluated along the thickness at top (z = +h/2). Shell cylinder
with 3 layers. Sensor case.
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R/h 2 4 10 100

w (1011) LWFM4a -1.306 -1.400 -1.4667 5.5418

σαz (104) LWFM4a 19.176 8.4776 1.5865 -0.5423

σzz (104) LWFM4a -116.36 -17.086 -0.5748 -0.5571

Φ LWFM4a 0.4058 0.4826 0.5029 0.5009

Dz (1011) LWFM4a -106.61 -66.035 -32.684 -36.209

w (1011)
LW4 -1.3066 -1.4007 -1.4662 5.5418
LW1 -1.3646 -1.4450 -1.4849 5.4331

σαz (104)
LW4 19.250 8.5036 1.5412 -0.5538
LW1 11.005 5.5673 0.9585 -0.5193

σzz (104)
LW4 -119.606 -18.605 3.309 -0.357
LW1 -82.662 -8.323 5.147 -0.490

Φ
LW4 0.4058 0.4827 0.5029 0.5009
LW1 0.4917 0.4975 0.4996 0.500

Dz (1011)
LW4 -106.851 -66.045 -32.642 -36.201
LW1 -62.002 -38.432 -19.998 -34.863

Table 8.9: Transverse normal displacement w ∗ 1011, electric potential Φ, shear stresse σαz ∗
104 and transverse normal stress σzz∗104 evaluated along the thickness in (z = 0). Transverse
normal electric displacementDz ∗1011 evaluated along the thickness at top (z = +h/2). Shell
cylinder with 3 layers. Actuator case.

The LW4 model only is able to fulfill the continuity conditions of shear stresses σαz at
the interfaces between layers, while lower-order model gives a completely wrong result, even
if the shell is very thin (R/h = 100), see Figures 8.7a- 8.7b. The LW4 model is not able
to fulfill the continuity conditions of transverse stresses σzz at the interfaces between layers,
see Figures 8.8a-8.8b. To overcome this problem a mixed variational principle could be used.
For the description of the electric potential Φ it is necessary to use the higher-order model,
LW4, to describe the non-linear behavior of thick shell (R/h = 2), see Figures 8.9a-8.9b,
on the other hand for thin shell (R/h = 100) a layer-wise description of lower order is
sufficient. Concerning the electric displacement Dz, for the thin cylinder (R/h = 100), the
continuity interface cannot be reached, see Figure 8.10a. For the actuator case, in spite of
its linear behavior, it is necessary an higher-order model to obtain the continuity interface of
the electric displacement, see Figures 8.10b. To overcome this problem a mixed variational
principle could be used.
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Figure 8.7: Four-layered cylinder, with radius to thickness ratio (R/h ) = 100. Transverse
shear stress σαz.
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Figure 8.8: Four-layered cylinder, with radius to thickness ratio (R/h ) = 2. Transverse
normal stress σzz.
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Figure 8.9: Four-layered cylinder, with radius to thickness ratio (R/h ) = 2. Electric po-
tential Φ.
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Figure 8.10: Four-layered cylinder, with radius to thickness ratio (R/h ) = 100. Electric
displacement Dz.

8.2 RMVT-Dz for shells

In the study of electro-mechanical problems, it is usually necessary to impose the values of
the electric potential at top and bottom surfaces of the shell. To obtain this, a simple way is
to use Layer-Wise models with Legendre polynomials. The efficiency of Layer-Wise models
is tested with the finite element scheme, and the numerical results are compared with the
ones obtained with the 3D elasticity approach. In this direction, the reference problem of
the previous numerical section is considered: multilayered cylinders embedding piezoelectric
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layers analytically evaluated in sensor and actuator configuration.
In this work the Principle of Virtual Displacements and the Reissner Mixed Variational The-
orem −Dz (transverse electric displacement is a priori modelled) are used, for the considered
variational theorem the layer-wise models are indicated with the letters (LW ) and (LWM)
respectively. Reference solutions are calculated with Full Reissner Mixed Variational Theory
(both transverse stresses and transverse electric displacement are a priori modelled), so the
model acronyms are (LWFM) and subscript (a) is added if the Navier analytical method is
employed.
A three layered configuration cylinder with the core in Gr/Ep composite material and the
skins made of piezoelectric material PZT is analysed: the material properties are the same
of the previous numerical section, and they are given in Table 8.1. The reference solutions
are evaluated with an analytical Layer-Wise Full Mixed approach (LWFM). The geometrical
parameters of the considered cylinder are: a = 40 , b = 2πRβ , Rβ = 10. In respect to the
total thickness, a single piezoelectric skin is thick hp = 0.1htot, while the core layer is thick
hc = 0.8htot. For the sensor case, a bi-sinusoidal transverse normal pressure is applied at the
inner surface of the cylinder:

p−z = p̂−z sin(mπα/a)sin(nπβ/b) (8.6)

with amplitude p̂−z = 1 and wave numbers m = 1, n = 8. The potential at top and bottom
position is imposed: Φt = Φb = 0. For the actuator case, a bi-sinusoidal electric potential is
imposed at top surface:

Φ+ = φ̂+
z sin(mπα/a)sin(nπβ/b) (8.7)

with amplitude φ̂+
z = 1 and wave numbers m = 1, n = 8. The potential at bottom position is

imposed Φb = 0. No mechanical load is applied. Due to the symmetry of both the geometry
and the load, an octave of the cylinder is studied (1/2 in the axial direction and 1/4 in the
hoop direction). The following symmetry conditions are applied:

vτ (α, 0) = 0

uτ (0, β) = 0

vτ (α,Rβπ/2) = 0

(8.8)

and the following boundary conditions are prescribed:

vτ (a/2, β) = wτ (a/2, β) = 0 (8.9)

Φτ (a/2, β) = Dnτ (a/2, β) = 0 (8.10)

with τ = 0, 1, ..., N . The results are presented for different thickness ratiosR/h = 2, 4, 10, 100.
A mesh grid of 6 × 22 elements is taken to ensure the convergence of the solution for the
mechanical displacement and stresses and the electric potential for the actuator configuration,
see Table 8.10. The solution for the electric displacement is not exactly reached for the sensor
case, this is due to the machine limitations, but increasing the mesh grid value a more accurate
solution can be reached, see Table 8.11.
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Mesh 6× 6 10× 10 6× 10 6× 14 6× 18 6× 20 6× 22 LWFM4a

w ∗ 1011 5.5407 5.5417 5.5417 5.5418 5.5418 5.5418 5.5419 5.5418

σzz ∗ 104 1.0829 -0.2981 -0.2974 -0.3583 -0.3450 -0.3405 -0.3373 -0.5571

Φ ∗ 102 50.093 50.093 50.093 50.093 50.093 50.093 50.093 50.093

Dz ∗ 1011 -36.214 -36.199 -36.199 -36.202 -36.205 -36.205 -36.206 -36.209

Table 8.10: Convergence study for transverse mechanical displacement w ∗ 1011, electric
potential Φ∗102 and transverse normal stress σzz∗104 evaluated at the midsurface (z = 0), and
electric displacement Dz ∗ 1011 evaluated at top (z = +h/2). All the variables are evaluated
in
(
α = a

2m ; β = b
2n ± r

b
n

)
, r = 0, ...n− 1. Thickness ratio (R/h ) = 100. Actuator case.

Mesh 6× 6 10× 10 6× 10 6× 14 6× 18 6× 20 6× 22 LWFM4a

w ∗ 1011 30.193 30.221 30.221 30.224 30.225 30.225 30.225 30.225

σzz ∗ 10 -4.0810 -4.1201 -4.1199 -4.1342 -4.1405 -4.1424 -4.1438 -4.1498

Φ ∗ 104 49.659 49.728 49.728 49.725 49.722 49.721 49.720 49.717

Dz ∗ 1012 -3.2131 0.3878 0.3425 2.8149 4.2432 4.7330 5.1244 7.5228

Table 8.11: Convergence study for transverse mechanical displacement w ∗ 1011, electric
potential Φ ∗ 104 and transverse normal stress σzz ∗ 10 evaluated at the midsurface (z = 0),
and electric displacement Dz ∗ 1012 evaluated at top (z = +h/2). All the variables are
evaluated in

(
α = a

2m ; β = b
2n ± r

b
n

)
, r = 0, ...n − 1. Thickness ratio (R/h ) = 2. Sensor

case.

The results are presented in tabular form in terms of mechanical transverse displacement,
electric potential, mechanical transverse normal stress, electric transverse displacement, see
Tables 8.12-8.13. Similar comments as the previous numerical section can be drawn. For the
sensor and actuator cases the results can reach an accuracy close to the exact solution by
increasing the order of expansion N .
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R/h 2 4 10 100

w (1011)
LWFM4a 30.225 111.91 969.70 403190

LW4 30.223 111.91 969.67 403287

σzz (10)
LWFM4a -4.1498 -6.6147 -11.496 -39.970

LW4 -4.1289 -6.5970 -11.529 -40.875

Φ (104)
LWFM4a 49.717 195.10 601.80 3127.6

LW4 49.727 195.16 603.92 3190.3

w (1011)

LWM4 30.225 111.91 969.72 403196
LWM3 30.267 111.93 969.73 403196
LWM2 30.334 111.85 969.42 403195
LWM1 31.572 111.71 947.77 397191

σzz (10)

LWM4 -4.1438 -6.6081 -11.492 -40.191
LWM3 -4.1248 -6.5981 -11.488 -40.190
LWM2 -4.3702 -6.5022 -10.708 -35.511
LWM1 -4.0397 -6.4720 -11.210 -39.152

Φ (104)

LWM4 49.720 195.13 602.00 3146.4
LWM3 49.543 194.94 601.63 3146.4
LWM2 48.374 194.33 601.37 3146.4
LWM1 83.725 218.84 606.95 3146.6

Table 8.12: Transverse normal displacement w∗1011, electric potential Φ∗104 and transverse
normal stress σzz ∗ 10 evaluated at the midsurface (z = 0). Transverse normal electric
displacement Dz ∗ 1012 evaluated at top (z = +h/2). All the variables are evaluated in(
α = a

2m ; β = b
2n ± r

b
n

)
, r = 0, ...n− 1. Sensor case. Mesh 6× 22.
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R/h 2 4 10 100

w (1011)
LWFM4a -1.3062 -1.4004 -1.4667 5.5418

LW4 -1.3065 -1.4006 -1.4662 5.5418

σzz (104)
LWFM4a -116.36 -17.086 -0.5748 -0.5571

LW4 -119.60 -18.605 3.3095 -0.3576

Φ (102)
LWFM4a 40.585 48.265 50.288 50.093

LW4 40.584 48.265 50.289 50.093

Dz (1011)
LWFM4a -106.61 -66.035 -32.684 -36.209

LW4 -106.85 -66.045 -32.642 -36.201

w (1011)

LWM4 -1.3062 -1.4004 -1.4667 5.5419
LWM3 -1.3080 -1.4008 -1.4667 5.5418
LWM2 -1.3127 -1.3995 -1.4661 5.5418
LWM1 -1.3180 -1.4226 -1.4717 5.4381

σzz (104)

LWM4 -117.25 -17.825 -0.3725 -0.3373
LWM3 -117.62 -17.964 -0.3700 -0.3316
LWM2 -60.609 -12.151 -0.8932 -0.3545
LWM1 -76.196 -8.9195 0.3516 -0.3932

Φ (102)

LWM4 40.585 48.265 50.288 50.093
LWM3 40.662 48.288 50.290 50.093
LWM2 40.475 48.247 50.287 50.093
LWM1 48.826 49.645 49.937 50.000

Dz (1011)

LWM4 -106.75 -66.079 -32.676 -36.206
LWM3 -106.74 -66.076 -32.675 -36.205
LWM2 -106.60 -66.018 -32.649 -36.202
LWM1 -108.43 -66.779 -32.787 -36.086

Table 8.13: Transverse normal displacement w∗1011, electric potential Φ∗102 and transverse
normal stress σzz ∗ 104 evaluated at the midsurface (z = 0). Transverse normal electric
displacement Dz ∗ 1011 evaluated at top (z = +h/2). All the variables are evaluated in(
α = a

2m ; β = b
2n ± r

b
n

)
, r = 0, ...n− 1. Actuator case. Mesh 6× 22.

Concerning the transverse normal stress σzz, higher-order layer wise models are necessary
to match the reference solution. In this work no mechanical stresses continuity conditions are
used; but imposing a transverse electric displacement continuity, a benefit for the mechanical
transverse normal stress is obtained. This is evident compared to the PVD layer-wise solution,
for shells with radius to thickness ratio R/h = 100, see Figures 8.11a-8.11b. For the thick
shells with radius to thickness ratio R/h = 2 the necessity of higher order models is evident,
see Figures 8.12a-8.12b.
For the description of the electric potential Φ it is necessary to use the higher-order model,
LWM4, to describe the non-linear behavior in the thick shell (R/h = 2), see Figures 8.13a-
8.13b; on the other hand, for thin shell (R/h = 100), a layer-wise description of lower order
is sufficient.
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The transverse electric displacement Dz has a non-linear behavior in the sensor case, and
PVD models are not sufficient to describe it correctly along the thickness for thick shell
(R/h = 2), see Figure 8.14a. For the thin cylinder (R/h = 100) the continuity interface
cannot be reached with PVD models, see Figure 8.14b. The RMVT-Dz with the transverse
electric displacement continuity conditions allows to guarantee good results, but an higher
mesh grid is necessary to reach to exact solution. For the actuator case, the transverse electric
displacement has a linear behavior and the mesh grid employed is sufficient to reach the exact
solution.
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Figure 8.11: Three-layered cylinder, with radius to thickness ratio (R/h ) = 100. Transverse
normal stress σzz.
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Figure 8.12: Three-layered cylinder, with radius to thickness ratio (R/h ) = 2. Transverse
normal stress σzz.
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Figure 8.13: Three-layered cylinder, with radius to thickness ratio (R/h ) = 2. Electric
potential Φ.
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Figure 8.14: Three-layered cylinder, Sensor Case. Transverse electric displacement Dz.

8.3 Plate with piezoelectric Patches

Vibration and noise suppression, controlled active deformation and health monitoring are
among the most important applications of the piezoelectric structural components. A plate
finite element is presented in this section for the free-vibration analysis of isotropic plate
structures with piezo-patches. In this direction, two kind of reference problems are considered:
the aluminum rectangular plate with 8 piezoelectric patches, 4 on the top and 4 on the bottom
surface symmetrically with patches short circuited in the first case and in open circuit mode
for the second case.
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8.3.1 Cantilevered plate with piezo-patches

To assess the plate element for the free-vibration analysis of plate structures with piezo-
patches, it is taken into account the structure analyzed by Yasin et al. [141], see Figure 8.15.
It is a cantilevered aluminum plate with 8 piezoelectric patches, 4 on the top surface and
symmetrically 4 on the bottom ones. The plate is clamped on one short edge and free on the
other three sides. The material and geometrical properties of the plate are given in Table
8.14. A mesh grid of 20×8 elements is adopted, see Figure 8.16, after a convergence analysis,
see Table 8.15.

Figure 8.15: Geometry of the plate.
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Material PZT Aluminum

a [m] 0.075 0.3
b [m] 0.025 0.2
h [m] 0.63× 10−3 0.8× 10−3

Density [Kg/m3] 7600.0 2700.0
E11 [N/m2] 63.0× 109 70.0× 109

E22 [N/m2] 63.0× 109 70.0× 109

E33 [N/m2] 63.0× 109 70.0× 109

ν12 [−] 0.28 0.32
ν13 [−] 0.28 0.32
ν23 [−] 0.28 0.32
G12 [N/m2] 24.8× 109 26.515× 109

G13 [N/m2] 24.8× 109 26.515× 109

G23 [N/m2] 24.8× 109 26.515× 109

d15 [m/V ] 670.0× 10−12 0
d24 [m/V ] 670.0× 10−12 0
d31 [m/V ] −220.0× 10−12 0
d32 [m/V ] −220.0× 10−12 0
d33 [m/V ] 374.0× 10−12 0
ε11 [F/m] 15.3× 10−9 30.975× 10−12

ε22 [F/m] 15.3× 10−9 26.55× 10−12

ε33 [F/m] 15.0× 10−9 26.55× 10−12

Table 8.14: Material and geometrical data for cantilevered plate with piezoelectric patches

Table 8.15: Frequency of cantileverd Plate with piezo-patches. Open Circuit case. Conver-
gence study. LW4 model.

Mode Q4 Q9

1 7.6526 7.6074
2 25.967 25.351
3 46.379 45.790
4 92.789 90.454
5 126.01 123.76
6 153.40 149.00
7 189.47 184.88
8 249.12 235.48
9 316.52 327.03
10 347.66 332.31
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Figure 8.16: Isotropic plate with piezo patches, mesh grid representation.

Short Circuit Mode

For the first case the piezoelectric patches are short circuited thereby rendering ineffective
the piezoelectric coupling effect that enhances the stiffness of otherwise passive structure.
This case includes only the pure structural stiffness of the PZT patches and modal analysis,
made by Yasin et al. [141], involves the solution of simplified following Eigen value problem:

(Kuu − ω2
nM ) qn = 0

In this work two methods are used for short circuit mode, free-vibration analysis using me-
chanical stiffness only as Yasin et al. [141] and free-vibration analysis with complete stiffness
matrix applying penalty technique for the electrical degrees of freedom of the top and bot-
tom surface of piezoelectric patches. One can note that the element doesn’t suffer the locking
phenomenon for the examinated thin plate a/h = 300, see Table 8.16.

Table 8.16: Frequency of cantileverd Plate with piezo-patches comparing different locking
correction methods. For all the cases a LW4 model is adopted.

Short Circuit Open Circuit

Mode MITC Selective Reduced MITC Selective Reduced

1 7.6059 7.5897 7.5125 7.6074 7.5914 7.5167
2 25.346 25.306 11.955 25.351 25.313 16.443
3 45.787 45.732 12.038 45.790 45.737 16.614
4 90.446 90.250 12.110 90.454 90.274 16.854
5 123.76 123.62 12.116 123.76 123.64 17.478
6 148.93 148.23 12.133 149.00 148.28 17.739
7 184.69 184.02 25.168 184.88 184.09 17.873
8 235.50 234.94 25.451 235.48 235.01 17.994
9 328.22 327.38 25.468 327.03 327.46 25.218
10 332.49 329.79 25.549 332.31 329.96 45.375

160



CHAPTER 8. RESULTS ON ELECTRO-MECHANICAL PROBLEMS

In general the results approach to the exact solution by increasing the order of expansion
N , see Table 8.17. The mechanical solution obtained by using Layer-Wise models of higher
order only is able to reach the correct solution, there are few differences with the references
ones due to different description of the field of displacement employed, higher in this work
than the reference solution one. A three dimensional representation of the first four modes are
shown in Figures 8.17-8.20. The solution with the penalty technique applied to the electrical
DOFs shows few differences with the mechanical results, see Table 8.18, this is due to the
higher order modeling of the electric potential along the thickness of the patches.

Table 8.17: Frequency of cantileverd Plate with piezo-patches. Pure Mechanical case.

Mode Ref [141] LW4 LW3 LW2 LW1

1 7.5236 7.5639 7.5640 7.5661 8.2918
2 25.195 25.312 25.324 25.356 26.324
3 45.542 45.718 45.723 45.736 50.113
4 90.215 90.236 90.277 90.386 96.301
5 123.03 123.66 123.69 123.76 133.99
6 147.62 147.08 147.09 147.18 161.14
7 183.16 182.65 182.69 182.85 194.84
8 234.05 235.40 235.51 235.76 254.69
9 326.93 325.14 325.15 325.27 347.75
10 328.04 326.98 327.13 327.52 364.35

Mode ESL4 ESL3 ESL2 ESL1 FSDT

1 7.7235 7.7318 7.7413 7.6713 7.6882
2 25.654 25.689 25.814 25.737 25.781
3 46.004 46.035 46.072 45.830 45.855
4 91.347 91.459 91.864 91.545 91.667
5 124.78 124.87 125.05 124.75 124.87
6 152.86 153.06 153.45 152.02 152.63
7 188.45 188.61 189.26 187.96 188.51
8 240.23 240.33 241.04 239.63 240.24
9 329.53 329.71 331.25 329.07 329.19
10 343.19 346.92 347.63 342.85 345.16
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Figure 8.17: Natural frequency
7.5639Hz. Mode 1.

Figure 8.18: Natural frequency
25.312Hz. Mode 2.

Figure 8.19: Natural frequency
45.718Hz. Mode 3.

Figure 8.20: Natural frequency
90.236Hz. Mode 4.

Table 8.18: Frequency of cantileverd Plate with piezo-patches. Short Circuit case.

Mode Ref [141] LW4 LW3 LW2 LW1

1 7.5236 7.6059 7.6061 7.6083 8.3386
2 25.195 25.346 25.359 25.393 26.363
3 45.542 45.787 45.792 45.805 50.190
4 90.215 90.446 90.490 90.607 96.513
5 123.03 123.76 123.79 123.86 134.22
6 147.62 148.93 148.94 149.04 162.99
7 183.16 184.69 184.73 184.91 196.96
8 234.05 235.50 235.62 235.88 254.79
9 326.93 328.22 328.37 328.78 355.13
10 328.04 332.49 332.50 332.64 365.61
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Open Circuit Mode

For the second case the piezoelectric patches are acting as sensors, so in open circuit mode no
electric potential is imposed. A static condensation of the electrical DOFs is made by Yasin
et al. [141]:

(
{
Kuu −KuΦK

−1
ΦΦK

T
Φu

}
− ω2

nM ) qn = 0

For the open circuit mode, in this work, free-vibration analysis with complete stiffness matrix
is done, see Table 8.19. In general the results approach to the exact solution by increasing
the order of expansion N . The Layer-Wise model of higher order only is able to reach the
correct solution, there are few differences with the references ones due to different description
of the field of displacement employed, higher in this work than the reference solution one.

Table 8.19: Frequency of cantileverd Plate with piezo-patches. Open Circuit case.

Mode Ref [141] LW4 LW3 LW2 LW1

1 7.5639 7.6074 7.6076 7.6098 8.3402
2 25.221 25.351 25.362 25.396 26.368
3 45.591 45.790 45.795 45.808 50.194
4 90.371 90.454 90.500 90.617 96.526
5 123.10 123.76 123.80 123.87 134.24
6 149.56 149.00 148.98 149.08 163.03
7 185.11 184.88 184.77 184.96 197.01
8 234.05 235.48 235.65 235.91 254.83
9 328.18 327.03 328.40 328.81 355.22
10 335.68 332.31 332.59 332.73 365.65
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Chapter 9

Variable Kinematic Mixed ESL/LW

Although the enormous improvements and formulations of higher-order plate/shell structural
theories, considerable work has been recently directed towards the implementation of inno-
vative solutions for improving the analysis efficiency for complex geometries and assemblies,
possibly in a global/local scenario. In this manner, the limited computational resources can
be distributed in an optimal manner to study in detail only those parts of the structure that
require an accurate analysis. The main concept of the global/local analysis is to formulate
multi-model methods, in which different subregions of the structure are analysed with differ-
ent mathematical models. In general, multi-theory methods can be divided into sequential
or multistep methods, and simultaneous methods. In a sequential multi-model, the global
region is analysed with an adequate model with a cheap computational cost to determine the
displacement or force boundary conditions for a subsequent analysis at the local level. The
simultaneous multi-model methods are characterized by the analysis of the entire structural
domain, where different subregions are modeled with different mathematical models and/or
distinctly different levels of domain discretization, in a unique step. One of the simplest
type of simultaneous multi-model methods for composite laminates analysis, is the concept
of selective ply grouping or sublaminates [142–144]. In the literature, the local region (i.e.,
the region where accurate stress analysis is desired) is generally modeled by using 3-D finite
elements in the domain of selective ply grouping method.
The concept of the present Mixed ESL/LW multi-model element, with variable kinematic
through-the-thickness approximation, is to use 2-D finite elements for both local and global
regions. According to the present modelling technique, in fact, the plate kinematics can
vary through the thickness of the finite element. The main novelty of the present work is
that Legendre-like polynomial expansions are used to indiscriminately implement ESL, LW
as well as variable kinematics with combined ESL/LW capabilities. Therefore, refined ap-
proximations and layer-wise descriptions of the primary mechanical variables can be utilized
only in the portion of the structure that requires a more detailed analysis. In the work by
Botshekanan Dehkordi et al. [145], a variable description in the thickness direction was em-
ployed for the static analysis of sandwich plates. That model was derived from the RMVT in
order to describe a-priori the transverse shear and normal stresses. The transverse stresses
were described with a LW approach, whereas the displacement were approximated through a
combined LW/ESL approach. The same combined LW/ESL approach with RMVT was then
used in [146] for nonlinear dynamic analysis of sandwich plates with flexible core and com-
posite faces embedded with shape memory alloy wires. As it will be clear later in following
numerical sections, the variable kinematics allows to accurately capture the mechanical be-
haviour of selected areas of multi-layer structures with LW resolution. On the other hand, as
the number of layers increases, full LW models may require a very large computational effort
if compared to variable kinematics plate/shell theory, which can be extremely useful in prob-
lems where localized phenomena play an important role (e.g., delamination and low-velocity
impact).
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9.1 Modeling Approaches Comparison

Two different types of modeling approaches are usually used in the literature:

• The Equivalent Single Layer approach, here referred to as ESL;

• The Layer Wise approach, here referred to as LW.

In this chapter, a variable kinematic model, with combined ESL/LW capabilities, is also used.
However, it is worth mentioning that the choice of the modeling approach does not depend
on the type of thickness functions used in the structural theory.

9.1.1 ESL models

In an ESL model, a homogenization of the properties of each layer is conducted by summing
the contributions of each layer in the stiffness matrix. This process leads to a model that
has a set of variables that is assumed for the whole multilayer, see Figure 9.1. Therefore,
the number of degrees of freedom does not depend on the number of layers. In this work
the ESL model is employed using both Taylor and Legendre polynomials. The ESL assembly
procedure of the stiffness matrix in the framework of Unified Formulation is shown in Figure
9.2.

Figure 9.1: Equivalent-Single-Layer behaviour of the primary variables along the thickness
of the shell.

Figure 9.2: Equivalent-Single-Layer assembling scheme for a second-order (N = 2) plate
model: The fundamental nucleus of the stiffness matrix, Kkτs, is expanded for each layer k.
The laminate stiffness matrix is then obtained by summing, term by term, the contribution
of each layer. The dimension of the global matrix does not depend on the number of layers.

9.1.2 LW models

LW considers different sets of variables per each layer, and the homogenization is just con-
ducted at the interface level, see Figure 9.3. The LW assembly procedure is presented in
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Figure 9.4. In this work, the LW model is employed using the Legendre-like polynomials.
The Lagrange polynomials F0 and F1 interpolate the displacements at the top (t) and bottom
(b) position of the layer, respectively. The unknown variables at the top (t) and bottom (b)
position are, thus, used to impose the following compatibility conditions:

ukt = uk+1
b , k = 1, Nl − 1. (9.1)

where Nl is the number of layers. Refined LW models can be obtained by further expanding
the displacement field according to Equation (3.9).

Figure 9.3: Layer-Wise behaviour of the primary variables along the thickness of the shell.

Figure 9.4: Layer-Wise assembling scheme for a second-order (N = 2) plate model: The
fundamental nucleus of the stiffness matrix,Kkτs, is expanded for each layer k. The laminate
stiffness matrix is then obtained by assembling the contribution of each layer at the layer/layer
interface. The dimension of the global matrix depends on the number of layers.

9.1.3 Variable kinematics Mixed ESL/LW

In this chapter a variable kinematic approach with combined ESL/LW capabilities is also
taken into account. Different sets of Fτ and Fs functions can be employed through the
thickness of the laminate, resulting in variable kinematic theories. Thus, advanced models
combining the advantages of both ESL and LW approach can be easily obtained. In particular,
in this work, ESL and LW approaches are combined by employing structural theories based
on Legendre-like polynomials. In a multilayered structures some layers can be modeled with
a homogenization of the properties and modeled with an ESL assembling procedure, whereas
for some layers the homogenization is conducted just at the interface level, see Figure 9.5.
The variable-kinematic assembling, developed in the framework of the Unified Formulation,
is very simple to integrate, for example in a FORTRAN code, with few code statements.
The code lines of the equations of the nucleus, in fact, are the same for both ESL, LW
and for variable kinematic assembling. For clarity purposes, the variable-kinematic assembly
procedure of the stiffness matrix in the framework of Unified Formulation is shown in Figure
9.6, where the two bottom layers of a three-layer structure are homogenized in an ESL sense
and then assembled at the interface with the top layer.
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Figure 9.5: Variable-Kinematics behaviour of the primary variables along the thickness of
the shell.

Figure 9.6: Variable-kinematic assembling scheme for a second-order (N = 2) plate model:
The fundamental nucleus of the stiffness matrix, Kkτs, is expanded for each layer k. De-
pending on the modelling choice, the laminate stiffness matrix is then obtained by adopting
a combined ESL/LW approach. In this example, layers 2 and 3 are homogenized by ESL
and then assembled with layer 1 by LW. The dimension of the global matrix depends on the
modelling choice.
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9.2 Mechanical Analysis Results

In this section, the static mechanical analysis of plate and shell structures are performed to
assess the variable-kinematics mixed ESL/LW plate/shell element. To study the effectiveness
of the proposed approach several reference problems were considered. The following composite
multilayered plates and sandwich plate structures have been analyzed:

• A three-layer cross-ply square plate with lamination (0◦/90◦/0◦)

• An eight-layer cantilevered beam

• A three-layer rectangular sandwich plate

• A five-layer composite sandwich plate

Moreover the following reference problems have been considered for assessing the novel vari-
able kinematic shell element:

• A three-layer simply-supported cylinder with (90◦/0◦/90◦) lamination.

• A ten-layer simply-supported cylinder with (90◦/0◦/90◦/0◦/90◦)S lamination.

• A composite square simply-supported spherical panel with three-layer configuration
(0◦/90◦/0◦) and four-layer configuration (0◦/90◦/90◦/0◦).

• An eleven-layer simply-supported sandwich cylindrical panel with
(0◦/90◦/0◦/Core/0◦/ 90◦/0◦/Core/0◦/90◦/0◦) lamination.

Wherever possible, solutions from variable-kinematic models are compared with those from
higher-order ESL models, LW models, 3D elasticity solutions and analytical results.

9.2.1 Three-layer composite plate

A three-layer cross-ply (0◦/90◦/0◦) square plate with simply-supported boundary condition
is considered as the first assessment. The plate is subjected to the following load condition:

p (x, y, ztop) = p̂ sin
(πx
a

)
sin
(πy
b

)
(9.2)

The load amplitude at the top position is: p̂ = 1. The mechanical properties of the material
are such that: EL/ET = 25 ; GLT /ET = 0, 5 ; GTT /ET = 0, 2 ; νLT = νTT = 0, 25. The
geometrical dimensions are: a = b = 1. The results are presented for different thickness
ratios, namely a/h = 4 and a/h = 100, and they are given in non-dimensional form:

ŵ =
100wETh

3

p̂+a4
; σ̂xx =

σxx

p̂+
(
a
h

)2 ; σ̂xz/yz =
σxz/yz

p̂+
(
a
h

) (9.3)

Table 9.1: Convergence study. Composite plate with lamination [0◦/90◦/0◦] and with thick-
ness ratio a/h = 100.

Mesh 4× 4 6× 6 8× 8 10× 10

LW4
w 0.4349 0.4347 0.4347 0.4347
σxz 0.415 0.404 0.400 0.398

EL4
w 0.4344 0.4343 0.4342 0.4342
σxz 0.295 0.287 0.284 0.283

ET4
w 0.4344 0.4343 0.4342 0.4342
σxz 0.295 0.287 0.284 0.282
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First a convergence study versus the number of plate elements was performed by consid-
ering the case a/h = 100 and fourth-order (N = 4) ESL and LW models. As shown in Table
9.1, a mesh grid of 10 × 10 elements ensures the FEM convergence. Subsequently, in order
to prove that the proposed element is locking free, various integrations schemes [115] were
considered and the results are shown in Table 9.2.

Table 9.2: Locking study. Composite plate with lamination [0◦/90◦/0◦] and with thickness
ratio a/h = 100. All the cases are computed with a mesh of 10× 10 elements.

Reduced Selective MITC9 Analytical

3D [128] w -
σxz 0.395

LW4
w 0.4347 0.4339 0.4347 0.4347
σxz 0.616 0.664 0.398 0.395

EL4
w 0.4342 0.4334 0.4342
σxz 0.501 0.510 0.283

ET4
w 0.4342 0.4334 0.4342 0.4342
σxz 0.501 0.510 0.283 0.282

In this table, the results from the present higher-order finite elements are compared to
various 2D and 3D analytical solutions. It is clear that the plate element with the MITC9
method ensures acceptable accuracy on both the transverse displacement and the shear stress.

Table 9.3: Composite plate with lamination [0◦/90◦/0◦]. Transverse displacement ŵ =
ŵ(a/2, b/2,+h/2), in-plane stress σ̂xx = σ̂xx(a/2, b/2,±h/2), transverse shear stress σ̂xz =
σ̂xz(a, b/2, 0) and σ̂yz = σ̂yz(a/2, b, 0). Taylor vs Legendre models.

a/h = 4 a/h = 100 DOFs

ŵ σ̂xx σ̂xz σ̂yz ŵ σ̂xx σ̂xz σ̂yz

top bottom top bottom

3D [128] - 0.801 -0.755 0.256 0.2172 - 0.539 -0.539 0.395 0.0828
LW4a [147] 2.1216 0.801 -0.755 0.256 0.2180 0.4347 0.539 -0.539 0.395 0.0828
LW4 2.1216 0.807 -0.761 0.258 0.2197 0.4347 0.544 -0.544 0.398 0.0836 17199
ET4a [147] 2.0083 0.786 -0.740 0.205 0.1830 0.4342 0.539 -0.539 0.281 0.0734 15

ET4 2.0082 0.7926 -0.7461 0.2067 0.1845 0.4342 0.5435 -0.5436 0.2830 0.0742 6615
ET3 2.0069 0.7940 -0.7479 0.2068 0.1845 0.4342 0.5436 -0.5436 0.2830 0.0742 5292
ET2 1.6499 0.4714 -0.4252 0.1219 0.1258 0.4333 0.5428 -0.5428 0.1436 0.0603 3969
ET1∗ 1.6574 0.4484 -0.4537 0.1234 0.1237 0.4333 0.5428 -0.5428 0.1428 0.0592 2646
ET1− 1.6448 0.4465 -0.4517 0.1227 0.1258 0.4282 0.5404 -0.5404 0.1421 0.0614 2646

EL4 2.0082 0.7926 -0.7461 0.2067 0.1845 0.4342 0.5435 -0.5436 0.2830 0.0742 6615
EL3 2.0069 0.7940 -0.7479 0.2068 0.1845 0.4342 0.5436 -0.5436 0.2830 0.0742 5292
EL2 1.6499 0.4714 -0.4252 0.1219 0.1258 0.4333 0.5428 -0.5428 0.1436 0.0603 3969
EL1 1.6448 0.4465 -0.4517 0.1227 0.1258 0.4282 0.5404 -0.5404 0.1421 0.0614 2646

∗ thickness locking correction
− no correction

An assessment of the Legendre-like polynomial expansion theories with a full ESL ap-
proach was performed subsequently. All the results presented in Table 9.3, for thick and thin
plates, show that the Legendre polynomials lead to the same results as the Taylor-based ESL
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models. Regarding the Taylor linear model, if the thickness locking correction is applied,
ET1∗, a moderate difference in the results is noticeable, with respect to the EL1 theory.
Nevertheless, the use of either polynomials is invariant respect to the solution accuracy, see
Figures 9.7 to 9.10. Therefore, Legendre polynomials are employed hereafter to implement
ESL, LW and variable kinematic plates.
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z

(a) Case 1 (b) Case 2

Figure 9.11: Variable Kinematic Models for the three-layer plate. Case 1 and Case 2.

Different variable kinematic models were used to perform the analysis of the plate struc-
tures, see Figures 9.11a and 9.11b. In this case, the acronyms was modified adding a subscript
for clarity purposes. In particular, two different variable kinematic models of the structure
under consideration are addressed:

• Case1 = {layer1} {layer2, layer3}

• Case2 = {layer1, layer2} {layer3}

In Case1 (Figure 9.11a), the two bottom layers are homogenized and then assembled at
the top layer in a LW sense. Vice versa, in Case2 (Figure 9.11b), the two top layers are
homogenized.
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Table 9.4: Composite plate with lamination [0◦/90◦/0◦]. Transverse displacement ŵ =
ŵ(a/2, b/2,+h/2), in-plane stress σ̂xx = σ̂xx(a/2, b/2,±h/2), transverse shear stress σ̂xz =
σ̂xz(a, b/2, 0) and σ̂yz = σ̂yz(a/2, b, 0). Variable kinematic models.

a/h = 4 a/h = 100 DOFs

ŵ σ̂xx σ̂xz σ̂yz ŵ σ̂xx σ̂xz σ̂yz

top bottom top bottom

3D [128] - 0.801 -0.755 0.256 0.2172 - 0.539 -0.539 0.395 0.0828
LW4 2.1216 0.807 -0.761 0.258 0.2197 0.4347 0.544 -0.544 0.398 0.0836 17199

EL4,Case1 2.0865 0.7970 -0.7524 0.2548 0.1954 0.4346 0.5436 -0.5436 0.4006 0.0750 11907
EL4,Case2 2.0862 0.7986 -0.7506 0.2530 0.1951 0.4346 0.5436 -0.5436 0.4006 0.0750 11907
EL3,Case1 2.0803 0.7962 -0.7577 0.2395 0.1858 0.4345 0.5436 -0.5436 0.3568 0.0727 9261
EL3,Case2 2.0818 0.8034 -0.7500 0.2398 0.1889 0.4345 0.5436 -0.5436 0.3568 0.0727 9261
EL2,Case1 2.0671 0.7851 -0.7431 0.2378 0.1750 0.4345 0.5436 -0.5436 0.3569 0.0679 6615
EL2,Case2 2.0675 0.7901 -0.7394 0.2380 0.1759 0.4345 0.5436 -0.5436 0.3569 0.0679 6615
EL1,Case1 1.7328 0.6288 -0.3581 0.1480 0.1386 0.4317 0.5425 -0.5430 0.1795 0.0635 3969
EL1,Case2 1.6925 0.3774 -0.5854 0.1411 0.1339 0.4317 0.5430 -0.5425 0.1795 0.0635 3969

EL4 2.0082 0.7926 -0.7461 0.2067 0.1845 0.4342 0.5435 -0.5436 0.2830 0.0742 6615
EL3 2.0069 0.7940 -0.7479 0.2068 0.1845 0.4342 0.5436 -0.5436 0.2830 0.0742 5292
EL2 1.6499 0.4714 -0.4252 0.1219 0.1258 0.4333 0.5428 -0.5428 0.1436 0.0603 3969
EL1 1.6448 0.4465 -0.4517 0.1227 0.1258 0.4282 0.5404 -0.5404 0.1421 0.0614 2646

The results from these variable kinematic models are listed in Table 9.4. The following
considerations can be drawn:

• As far as the transverse displacement w is considered, the theories EL4,Case1 and
EL4,Case2 lead a significant improvement of the solution respect to the EL4, see Figures
9.12 and 9.17.

• Regarding the σxx stress component, the theories EL4,Case1 and EL4,Case2 improve
the results in the interface zones (see Figures 9.13 and 9.18) with respect to EL4.

• As shown in Figures 9.14,9.19, the variable kinematics does not improve the accuracy
of the transverse normal stress σzz.

• Figures 9.15, 9.16, 9.20 and 9.21 show that, if the shear stress σxz is considered, variable
kinematic models can be used to locally refine the solution in order to obtain a LW
accuracy in the parts of the structure that require a more detailed analysis. Eventually,
as it is clear from Table 9.4, variable kinematic models provide high accuracy with less
degrees of freedom with respect to full LW models.
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9.2.2 Eight-layer composite beam

The cantilever eight-layer beam shown in Figure 9.22 is analysed as the second assessment.
The structure was loaded at the free end with a concentrated load equal to Pz = −0, 2N
and it was applied at top position. The geometrical dimensions are: a = 90mm, b = 1mm,
h = 10mm. The mechanical properties of the material labeled with the number 1 (see Figure
9.22) are: EL = 30GPa, ET = 1GPa, GLT = GTT = 0, 5GPa, νLT = νTT = 0, 25. Whereas
the mechanical properties of the material labeled with the number 2 are: EL = 5GPa,
ET = 1GPa, GLT = GTT = 0, 5GPa, νLT = νTT = 0, 25. The material stacking sequence
is [1/2/1/2]s. The FEM results of the present paper are compared with some solutions from
the literature, and with the analytical solution derived by theory of elasticity as presented
in [148] and here referred to as Lekhnitskii.

First, a convergence study on the plate model was performed (see Table 9.5). It is clear
that a mesh grid of 12× 2 elements ensures the convergence.

Table 9.5: Convergence study. Eight-layer cantilever beam. Transverse displacement w =
−102w(a, b/2, 0), in-plane stress σxx = 103σxx(a/2, b/2,+h/2), transverse shear stress σxz =
102σxz(a/2, b/2, 0).

Mesh 2× 2 4× 2 6× 2 8× 2 10× 2 12× 2

LW4
w 3.031 3.032 3.031 3.030 3.030 3.030
σxx 651 690 716 725 728 730
σxz 2.991 2.797 2.792 2.791 2.790 2.789

EL4
w 3.029 3.029 3.029 3.028 3.028 3.028
σxx 684 723 730 731 731 731
σxz 3.054 2.829 2.821 2.822 2.822 2.822

Various variable kinematic models have then been used to perform the analysis of the
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proposed plate structure, and they are summarized in the following:

• Case1 = {layer1} {layer2, layer3, layer4, layer5, layer6, layer7} {layer8}

• Case2 = {layer1, layer2} {layer3, layer4, layer5, layer6} {layer7, layer8}

• Case3 = {layer1} {layer2} {layer3, layer4, layer5, layer6} {layer7} {layer8}

• Case4 = {layer1, layer2, layer3} {layer4, layer5} {layer6, layer7, layer8}

As in the previous analysis case, the curl brackets are used to group layer that are homogenized
according to an ESL approach.

Table 9.6: Eight-layer cantilever beam. Transverse displacement w = w(a, b/2, 0), in-plane
stress σxx = σxx(a/2, b/2,+h/2), transverse shear stress σxz = σxz(a/2, b/2, 0).

−w × 102 (mm) σxx × 103 (MPa) σxz × 102 (MPa) DOFs

Nguyen and Surana [149] 3.031 720
Davalos et al. [150] 3.029 700
Xiaoshan [151] 3.060 750
Vo and Thai [152] 3.024
Lekhnitskii [148] 730 2.789
LW4 3.030 730 2.789 12375

EL4,Case1 3.029 730 2.773 4875
EL4,Case2 3.029 731 2.854 4875
EL4,Case3 3.030 730 2.854 7875
EL4,Case4 3.029 731 2.788 4875

EL3,Case1 3.029 731 2.773 3750
EL3,Case2 3.029 731 2.854 3750
EL3,Case3 3.030 731 2.854 6000
EL3,Case4 3.028 731 2.788 3750

EL2,Case1 3.021 731 2.360 2625
EL2,Case2 3.025 731 2.593 2625
EL2,Case3 3.027 731 2.593 4125
EL2,Case4 3.026 731 2.775 2625

EL1,Case1 3.017 730 2.357 1500
EL1,Case2 3.012 731 2.592 1500
EL1,Case3 3.023 730 2.592 2250
EL1,Case4 2.996 731 2.774 1500

EL4 3.028 731 2.822 1875
EL3 3.027 731 2.822 1500
EL2 2.980 731 2.005 1125
EL1 2.981 729 2.000 750

Some noteworthy results are listed in Table 9.6. The conducted analysis suggests the
following comments:

• As shown in Figure 9.23, the theories EL4,Case1, EL4,Case2, EL4,Case3 and EL4,Case4
lead a significant improvement of the solution with respect to the EL4 if the transverse
displacement w is considered.
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• As far as the in-plane stress σxx is concerned, all the considered theories show exactly
the same accuracy (see Figure 9.24).

• The distribution of the transverse normal stress σzz is significantly improved byEL4,Case1
and EL4,Case3with respect to EL4. On the other hand, as depicted in Figure 9.25, al-
though the theories EL4,Case2 and EL4,Case4 show an improvement of the solution
in the top layer of the beam, they also introduce a discontinuity of the σzz along the
thickness.

• Regarding the shear stress σxz, the LW4 model is able to reproduce the exact analyt-
ical solution (Lekhnitskii), see Figure 9.26(a). Conversely, the results by the present
variable kinematic models accurately describe the shear stress only within the layers
that are modelled via a LW approach; namely, the top and bottom layers for EL4,Case1
(Figure 9.26(a)), the first two top layers and last two bottom layers for EL4,Case3
(Figure 9.26(c)), the two central layers for EL4,Case4 (Figure 9.26(d)). Contrarily, the
layers that are modelled via an ESL approach present a loss of accuracy, see Figures
9.26(a,b,c,d).
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Figure 9.22: Reference system of
the eight-layer beam with a concen-
trated load. The material lamination
scheme is indicated with label 1 and
label 2.
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9.2.3 Three-layer sandwich plate

A three-layer, unsymmetrically laminated, rectangular sandwich plate was also considered.
The plate is simply-supported and loaded by a constant uniform pressure P topz = −0.1MPa
applied to the whole top surface. The geometrical dimensions are: a = 100mm, b = 200mm,
h = 12mm. The faces have different thicknesses, i.e. htop = 0.1mm and hbottom = 0.5mm,
and the thickness of the core is hcore = 11.4mm. The two faces have the following orthotropic
material data: E1 = 70000MPa, E2 = 71000MPa, E3 = 69000MPa, G12 = G13 =
G23 = 26000MPa, ν12 = ν13 = ν23 = 0.3. The core is made of a metallic foam with
the following data: E1 = E2 = 3MPa, E3 = 2.8MPa, G12 = G13 = G23 = 1MPa,
ν12 = ν13 = ν23 = 0.25. The mesh adopted in the analysis is the same of the three-layer
composite plate, 10× 10 elements.

Table 9.7: Sandwich rectangular plate. Transverse displacement w = w(a/2, b/2,±h/2),
in-plane stresses σxx = σxx(a/2, b/2) and σyy = σyy(a/2, b/2) .

w σxx σyy DOFs

top bottom Top Skin Bottom Skin Top Skin Bottom Skin
top bottom top bottom top bottom top bottom

LW4a [139] -9.142 -8.968 -112.4 -48.435 -133.21 166.27 -52.824 -23.320 -54.327 69.915
LW4 -9.140 -8.968 -110.7 -51.073 -132.85 166.10 -50.519 -25.617 -53.664 69.254 17199
ET1a [139] -0.1022 -0.1020 -89.63 -88.715 15.508 20.008 -51.453 -50.932 8.4375 11.041
ET4 -6.138 -6.031 -83.621 -81.922 -84.422 114.60 -28.265 -50.032 -35.270 46.817 6615

EL4,Case1 -7.0933 -6.9667 -103.84 -57.814 -100.44 131.90 -47.740 -28.419 -41.748 54.605 11907
EL4,Case2 -8.1492 -7.9967 -88.077 -78.083 -115.99 149.22 -28.613 -49.735 -46.729 62.324 11907
EL3,Case1 -5.6061 -5.5118 -98.957 -62.599 -77.967 112.48 -45.764 -30.385 -33.885 49.155 9261
EL3,Case2 -8.0258 -7.8758 -97.903 -69.009 -113.98 147.20 -38.471 -40.344 -45.904 61.499 9261
EL2,Case1 -4.7261 -4.6580 -97.159 -66.531 -86.447 123.39 -45.014 -31.995 -51.271 68.389 6615
EL2,Case2 -6.9117 -6.7812 -109.20 -61.634 -96.204 129.19 -51.057 -30.000 -38.608 54.121 6615
EL1,Case1 -0.1271 -0.1255 -88.364 -87.142 14.684 20.341 -40.693 -40.007 5.8738 9.0807 3969
EL1,Case2 -0.1570 -0.1631 -88.379 -87.267 13.850 21.281 -40.930 -40.298 6.0253 10.149 3969

EL4 -6.1381 -6.0307 -83.621 -81.922 -84.422 114.60 -28.265 -50.032 -35.270 46.817 6615
EL3 -1.4379 -1.4206 -90.232 -82.528 -17.848 54.888 -42.125 -39.696 -14.416 31.674 5292
EL2 -0.1264 -0.1286 -88.361 -87.534 15.110 19.996 -41.420 -41.038 6.7722 9.0627 3969
EL1 -0.1022 -0.1019 -90.065 -89.146 15.589 20.182 -51.489 -50.967 8.4427 11.048 2646

Different variable-kinematic models have been used to perform the analysis of the sand-
wich. Namely,

• Case1 = {layer1} {layer2, layer3}

• Case2 = {layer1, layer2} {layer3}

Some results at top and bottom surfaces by the present variable kinematic models, ESL as
well as LW theories are listed in Table 9.7. In the same table, also some analytical solutions
are given for comparison purposes. It can be observed that, although moderately thick plates
are considered (a/h = (100/12)), lower order theories as ET1a, EL1, EL2, EL1,Case1 and
EL1,Case2 lead to completely wrong results. ESL theories modelled with Taylor or Legendre
polynomials, even with higher order expansions, do not allow to obtain acceptable results, see
ET4, EL3, EL4. On the other hand, variable-kinematics models lead to some improvements
starting from the second order of expansion, i.e. EL2,Case1, EL2,Case2, EL3,Case1, and so on.
Anyway, regardless from the theory expansion, it should be noted that the (Case2) among
the variable kinematic models have a better approximation of the results than (Case1).
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9.2.4 Five-layer composite sandwich plate

A five-layer composite sandwich plate was analyzed as the last assessment. The plate was
simply-supported and it underwent the same bi-sinusoidal load as the three-layer composite
plate, see Equation 9.2.1. The mechanical load amplitude at the top position was p̂ =
1000Pa. A thickness ratio a/h = 100 was considered. The results are reported in a non-
dimensional form as follows:

ŵ =
100wETh

3

p̂ a4
; σ̂xx =

σxx

p̂
(
a
h

)2 ; σ̂xz/yz =
σxz/yz

p̂
(
a
h

) ; σ̂zz =
σzz
p̂

(9.4)
The top and bottom skins of the sandwich plates are made of two orthotropic layers each.
The thickness of the four sheets is h1 = h2 = h4 = h5 = 0.5mm. The ply sequences of
the bottom and top skins are 0◦/90◦ and 90◦/0◦, respectively. Their material properties are:
E1 = 50GPa, E2 = E3 = 10GPa, G12 = G13 = G23 = 5GPa, ν12 = ν13 = ν23 = 0.25. The
Nomex core has thickness h3 = 8mm. The properties of the material of the core are: E1 =
E2 = 0.01MPa, E3 = 75.85MPa, G12 = G13 = G23 = 22.5MPa, ν12 = ν13 = ν23 = 0.25.
The adopted mesh is the same as the one used for the three-layer composite plate in Section
9.2.1, i.e. 10× 10 elements are employed.

Several variable kinematic models have been utilized in the analysis of the present sand-
wich structure and they are named as in the following:

• Case1 = {layer1} {layer2, layer3, layer4} {layer5}

• Case2 = {layer1, layer2} {layer3} {layer4, layer5}

• Case3 = {layer1} {layer2} {layer3, layer4, layer5}

• Case4 = {layer1, layer2, layer3} {layer4} {layer5}

The results by the proposed variable kinematic models are listed in Table 9.8 and they
are compared to those from an higher-order LW model and full ESL models. Stress and
through-the-thickness displacement distributions are also shown in Figures 9.27 to 9.29. Some
interesting comments stem from the analysis of the composite sandwich plate.

• The adoption of higher-order variable kinematic models, i.e. EL4,Case1, EL4,Case2,
EL4,Case3 and EL4,Case4, lead to a significant improvement of the out-of-plane dis-
placement w with respect to the full ESL fourth-order model EL4. It is evident that
EL4,Case2 is able to reproduce the exact solution reducing the computational costs in
terms of DOFs with respect to the LW4 model.

• As shown in Figure 9.28, all the theories presented give the same degree of accuracy if
the in-plane stress σxx is considered.

• For the evaluation of the transverse normal stress σzz, higher-order theories are neces-
sary. The linear ESL model gives completely wrong results. However, even higher-order
ESL models present errors ranging from approximately −1600% to +153% with respect
the reference solution (LW4). Variable-kinematic models with higher-order terms can
lead to significant benefits for the description of the σzz. The variable-kinematic theo-
ries Case1 and Case3, which are modelled with a LW approach in the top layer, can
obtain noticeable improvements. The models denoted as Case2 show better accuracy
of the results respect the ESL models. Conversely, Case4 models are not able to obtain
an improvement of the solution of the σzz with respect to the full ESL models.

• Figure 9.29(a) shows that the present LW4 FEM solution perfectly match the analyt-
ical one provided by [153]. Regarding the proposed variable kinematic models, it is
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interesting to note that they can provide the exact solution only in the layers that are
described through a LW approach. For example, it is interesting to note that EL4,Case3
provide analytical accuracy in the top LW layers, whereas the solution worsens close
to the bottom layers, where an ESL approach is used (see Figure 9.29(d)). Also, par-
ticular attention should be focused on the model EL4,Case2, which has been obtained
by using an ESL approach for the top and bottom composite skins and a LW approach
for assembling outer ESL sheets and the inner core. This model clearly gives the exact
solution with an evident DOFs reduction with respect to the LW4 theory.

Table 9.8: Composite sandwich plate. Transverse displacement ŵ = ŵ(a/2, b/2,+h/2), in-
plane stress σ̂xx = σ̂xx(a/2, b/2,±h/2), transverse shear stress σ̂xz = σ̂xz(a, b/2, 0) and trans-
verse normal stress σ̂zz = σ̂zz(a/2, b/2,+h/2). Variable kinematic models.

ŵ σ̂xx σ̂xz σ̂zz DOFs

top bottom

LW4 3.1167 0.7805 -0.7819 0.1825 1.1715 27783

EL4,Case1 3.0978 0.7802 -0.7804 0.1853 1.1838 17199
EL4,Case2 3.1167 0.7805 -0.7819 0.1825 1.1288 17199
EL4,Case3 3.0842 0.7799 -0.7691 0.1923 1.1736 17199
EL4,Case4 3.1202 0.8007 -0.7808 0.1930 630.46 17199
EL3,Case1 3.0978 0.7802 -0.7804 0.1853 1.1838 13230
EL3,Case2 3.1167 0.7805 -0.7819 0.1825 1.2289 13230
EL3,Case3 3.0579 0.7793 -0.7980 0.1415 1.1790 13230
EL3,Case4 3.0926 0.7722 -0.7807 0.1379 -255.07 13230
EL2,Case1 2.9474 0.7771 -0.7773 0.0071 1.1793 9261
EL2,Case2 3.1167 0.7805 -0.7819 0.1859 1.2445 9261
EL2,Case3 3.1004 0.7803 -0.7846 0.1333 1.1840 9261
EL2,Case4 3.1001 0.7780 -0.7802 0.1334 -77.333 9261
EL1,Case1 2.8922 0.7640 -0.7641 0.0070 46.798 5292
EL1,Case2 3.1236 0.7837 -0.7852 0.1824 99.587 5292
EL1,Case3 2.9477 0.7787 -0.7799 0.0071 47.671 5292
EL1,Case4 2.9465 0.7798 -0.7787 0.0071 94.022 5292

EL4 3.0220 0.7782 -0.7795 0.0917 -18.676 6615
EL3 3.0220 0.7784 -0.7796 0.0917 -14.282 5292
EL2 2.9432 0.7771 -0.7771 0.0038 2.975 3969
EL1 2.8221 0.7731 -0.7732 0.0037 891.70 2646
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Figure 9.27: Transverse displacement
w along the thickness. Composite
Sandwich Plate.
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9.2.5 Three-layer composite cylinder

A three-layer cross-ply cylinder with lamination (90◦/0◦/90◦) and simply-supported boundary
conditions is considered as the first numerical example. The applied load for the whole
cylinder is a pressure applied at the inner surface of the shell, defined as follows:

p (α, β, zbottom) = p̂ sin
(mπα

a

)
cos

(
nπβ

b

)
(9.5)

where p̂ = 1.0 is the pressure amplitude; m = 1 and n = 8 are the half-waves number. Note
that a is the length of the cylinder in the axial direction in this example. The mechanical
properties of the material are such that EL/ET = 25 ; GLT /ET = 0.5 ; GTT /ET = 0.2
; νLT = νTT = 0.25. For all the considered cases, the length-to-radius ratio is a/R = 4,
b = 2πR. On the other hand, the layers are of equal thickness and htotal = 1, 0. The results
are presented below for different radius-to-thickness ratios R/h = 2, 4, 10, 50, 100, 500, and
reported in the following non-dimensional form:

ŵ =
10wEL
p̂h(R/h)4

σ̂αα/ββ/αβ =
10σαα/ββ/αβ

p̂(R/h)2
σ̂αz/βz =

10σαz/βz

p̂(R/h)
σ̂zz =

σzz
p̂

Due to the geometrical symmetry of the cylinder, the symmetry of the load pressure and
boundary conditions, and the symmetry of the lamination stacking sequence, only one octave
of the cylinder is analysed; i.e., only one half of the cylinder along the α axis direction and
one quarter along the β circumferential axis direction is considered. The applied load for an
octave of the cylinder is, therefore, defined as follows:

p (α, β, zbottom) = p̂ cos
(mπα

a

)
cos

(
nπβ

b

)
(9.6)

where m = 0, 5 and n = 2. The FEM results coming from the present refined shell elements
are compared with a 3D elasticity solution [88] and a layer-wise analytical model [68].

First, a convergence study on the shell element was performed. A representative composite
shell with radius-to-thickness ratio R/h = 500 was evaluated. According to Table 9.9, a
mesh grid of 8 × 32 elements ensures the convergence and accuracy on both the transverse
displacement and the stresses. Thus, this mesh size is used in the subsequent analyses.
Furthermore, in order to prove that the proposed element is locking free, various integrations
schemes (see Huges et al. [115]) were considered and the results are shown in Table 9.10.
In this table, the results from the present higher-order finite elements are compared to 3D
analytical solutions. It is clear that the shell element with the MITC9 method ensures
acceptable accuracy on both the transverse displacement, the transverse shear stress and the
transverse normal stress. In both Tables 9.9 and 9.10, superscript + denotes that stress is
measured at the layer interface and the top value is given.
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Table 9.9: Convergence study. Composite cylinder with lamination [90◦/0◦/90◦] and with
radius to thickness ratio R/h = 500. The mesh is referred to one octave of the cylinder.

Mesh 2× 8 4× 16 6× 24 8× 32 3DElasticity [88]

LW4

ŵ (z = 0) 0.1029 0.1027 0.1027 0.1027 0.1027
σ̂αα (z = +h/2) 0.0586 0.0566 0.0562 0.0560 0.0559
σ̂ββ (z = +h/2) 0.8279 0.7994 0.7940 0.7921 0.7895
σ̂αz (z+ = −h/6) 0.1107 0.1066 0.1058 0.1055 0.1051

σ̂zz (z = 0) -7.15 -9.04 -9.13 -9.13 -9.12

ET4

ŵ (z = 0) 0.1029 0.1027 0.1027 0.1027
σ̂αα (z = +h/2) 0.0589 0.0568 0.0564 0.0563
σ̂ββ (z = +h/2) 0.8283 0.7998 0.7944 0.7925
σ̂αz (z+ = −h/6) 0.1400 0.1348 0.1338 0.1334

σ̂zz (z = 0) 15.41 12.84 12.61 12.56

EL4

ŵ (z = 0) 0.1029 0.1027 0.1027 0.1027
σ̂αα (z = +h/2) 0.0589 0.0568 0.0564 0.0563
σ̂ββ (z = +h/2) 0.8283 0.7998 0.7944 0.7925
σ̂αz (z+ = −h/6) 0.1400 0.1348 0.1338 0.1334

σ̂zz (z = 0) 15.41 12.84 12.61 12.56

Table 9.10: Locking study. Composite cylinder with lamination [90◦/0◦/90◦] and with radius
to thickness ratio R/h = 500. All the present FEM analyses are computed with a mesh of
8× 32 elements.

Reduced Selective MITC9 Analytical

3DElasticity [88]
w (z = 0) 0.1027

σαz (z+ = −h/6) 0.1051
σzz (z = 0) -9.12

LW4
w (z = 0) 0.1027 0.1023 0.1027

σαz (z+ = −h/6) 1.2767 0.1070 0.1055
σzz (z = 0) -52.14 -9.70 -9.13

EL4
w (z = 0) 0.1027 0.1023 0.1027

σαz (z+ = −h/6) 1.3152 0.1368 0.1334
σzz (z = 0) -30.52 15.00 12.56

ET4
w (z = 0) 0.1027 0.1023 0.1027

σαz (z+ = −h/6) 1.3152 0.1368 0.1334
σzz (z = 0) -30.52 15.00 12.56

An assessment of the Legendre-like and Taylor based ESL models is performed next. All
the results presented in Table 9.11, for thick and thin shells, show that the Legendre poly-
nomials lead to the same results of the Taylor polynomials. Regarding the linear expansion
ESL model, e.g. ET1, if the thickness locking correction is applied (see [66]), a moderate
difference in the results is noticeable. Nevertheless, the use of either polynomials is invariant
with respect to the solution accuracy, thus, Legendre-like models are indistinctly used to
implement ESL, LW as well as variable-kinematic models in the analyses below.
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Table 9.11: Composite three-layered cylinder with lamination [90◦/0◦/90◦]. Taylor vs Leg-
endre models.

ŵ σ̂αα σ̂ββ σ̂αβ σ̂αz σ̂βz σ̂zz DOFs
z = 0 +h/2 −h/2 +h/2 −h/2 +h/2 −h/2 −h/6 0 0

R
/h

=
50

0

3DElasticity [88] 0.1027 0.0559 0.0379 0.7895 -0.7542 -0.0766 -0.0889 0.1051 -0.691 -9.12
LW4 0.1027 0.0560 0.0380 0.7921 -0.7567 -0.0771 -0.0894 0.1055 -0.693 -9.13 43095

EL3Z 0.1027 0.0561 0.0380 0.7921 -0.7567 -0.0771 -0.0894 0.0586 -0.703 -9.47 16575
EL4 0.1027 0.0563 0.0383 0.7925 -0.7563 -0.0771 -0.0894 0.1334 -0.494 12.56 16575
EL3 0.1027 0.0564 0.0383 0.7925 -0.7563 -0.0771 -0.0894 0.0615 -0.494 12.56 13260
EL2 0.1027 0.0557 0.0377 0.7918 -0.7571 -0.0771 -0.0894 0.0611 -0.250 43.39 9945
EL1 0.1026 0.0584 0.0349 0.7945 -0.7597 -0.0770 -0.0894 0.0106 -0.250 43.23 6630

ET3Z 0.1027 0.0561 0.0380 0.7921 -0.7567 -0.0771 -0.0894 0.0586 -0.703 -9.47 16575
ET4 0.1027 0.0563 0.0383 0.7925 -0.7563 -0.0771 -0.0894 0.1334 -0.494 12.56 16575
ET3 0.1027 0.0564 0.0383 0.7925 -0.7563 -0.0771 -0.0894 0.0615 -0.494 12.56 13260
ET2 0.1027 0.0557 0.0377 0.7918 -0.7571 -0.0771 -0.0894 0.0611 -0.250 43.39 9945
ET1− 0.1026 0.0584 0.0349 0.7945 -0.7597 -0.0770 -0.0894 0.0106 -0.250 43.23 6630
ET1∗ 0.1032 0.0529 0.0348 0.7971 -0.7585 -0.0770 -0.0894 0.0100 -0.250 43.42 6630

R
/h

=
2

3DElasticity [88] 10.11 0.1761 -0.8428 7.168 -18.19 0.1797 -0.2922 0.3006 -1.379 -0.34
LW4 10.10 0.1741 -0.8730 7.179 -18.17 0.1807 -0.2934 0.3018 -1.382 -0.34 43095

EL3Z 9.65 0.1487 -0.8951 6.848 -14.15 0.1728 -0.2653 0.2679 -1.294 -0.32 16575
EL4 9.59 0.1425 -0.9572 6.568 -15.63 0.1775 -0.2783 0.4244 -1.219 -0.35 16575
EL3 9.54 0.1431 -0.9179 7.048 -14.65 0.1785 -0.2706 0.3704 -1.216 -0.35 13260
EL2 8.16 0.0965 -0.6479 0.981 -5.88 0.1208 -0.2025 0.3183 -0.847 -0.43 9945
EL1 8.82 -0.1046 -0.3218 2.441 -3.79 0.1542 -0.2152 0.2941 -0.927 -0.37 6630

ET3Z 9.65 0.1487 -0.8951 6.848 -14.15 0.1728 -0.2653 0.2679 -1.294 -0.32 16575
ET4 9.59 0.1425 -0.9572 6.568 -15.63 0.1775 -0.2783 0.4244 -1.219 -0.35 16575
ET3 9.54 0.1431 -0.9179 7.048 -14.65 0.1785 -0.2706 0.3704 -1.216 -0.35 13260
ET2 8.16 0.0965 -0.6479 0.981 -5.88 0.1208 -0.2025 0.3183 -0.847 -0.43 9945
ET1− 8.82 -0.1046 -0.3218 2.441 -3.79 0.1542 -0.2152 0.2941 -0.927 -0.37 6630
ET1∗ 8.83 -0.1193 -0.3081 2.442 -3.79 0.1556 -0.2160 0.2922 -0.927 -0.37 6630

∗ thickness locking correction
− no correction

Different variable kinematic models are used to perform the global/local analysis of the
cylindrical shell structures and they are graphically depicted in Figure 9.30. Two different
sublaminate groupings are considered here and they are denoted to as:

• Case 1 = {layer1} {layer2, layer3}

• Case 2 = {layer1, layer2} {layer3}

In Case 1, for example, layers number 2 and 3 are grouped in an ESL manner and then
assembled to layer 1 in a LW sense, see Figure 9.30. Case 1 and Case 2 are used as subscripts
together with the usual acronym notation, which also indicates the theory order N .
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Figure 9.30: Variable-kinematic assembly schemes for the three-layered cylindrical shell.

The results from present variable kinematic models are listed in Tables 9.12 and 9.13 and
Figures 9.31a to 9.34b for various radius to thickness ratios R/h. For the shell structures
analysed, the following considerations can be drawn:

• Regarding the transverse displacement w, the theories EL4,Case 1 and EL4,Case 2 lead a
significant improvement of the solution with respect to EL4 for large radius-to-thickness
ratios R/h = 500, see Figure 9.31a. On the other hand, if small ratios R/h = 2 are
considered, differences among the various models adopted are barely observable from
Figure 9.31b.

• For the in-plane stress σββ , no accuracy differences are appreciable between models for
ratios R/h = 500, see Figure 9.32a. For small ratios R/h = 2 the theories EL4,Case 1

and EL4,Case 2 improve the results with respect to the EL4 model, especially where a
layer-wise description within the variable-kinematics is adopted; i.e., the top layer for
EL4,Case 1 and the bottom layer for EL4,Case 2, see Figure 9.32b.

• As far as the shear stress σαz is concerned, Figures 9.33a and 9.33b show that the
variable kinematic models provide exact solution accuracy for every radius-to-thickness-
ratios within the layers that have a layer-wise assembling. Conversely, the remaining
layers with an equivalent-single-layer assembling have a loss of accuracy.

• Regarding the transverse normal stress σzz and for large ratios R/h = 500, the results
reach the exact solution in the layers that have a layer-wise assembling and a variable
kinematic approach, see Figure 9.34a. Instead, for small ratios R/h = 2 the theories
EL4,Case 2 approximate very well the layer-wise solution along the thickness, see Figure
9.34b.

• For all the considered cases, the variable kinematic models have a number of degrees of
freedom, and thus a computational cost, which is lower that full LW models.
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Table 9.12: Composite three-layered cylinder with [90◦/0◦/90◦] lamination. Comparison of
various models for thin cylinders.

ŵ σ̂αα σ̂ββ σ̂αβ σ̂αz σ̂βz σ̂zz DOFs
z = 0 +h/2 −h/2 +h/2 −h/2 +h/2 −h/2 −h/6 0 0

R
/h

=
5
00

3DElasticity [88] 0.1027 0.0559 0.0379 0.7895 -0.7542 -0.0766 -0.0889 0.1051 -0.691 -9.12
LW4 0.1027 0.0560 0.0380 0.7921 -0.7567 -0.0771 -0.0894 0.1055 -0.693 -9.13 43095
LW1 0.1027 0.0569 0.0370 0.7931 -0.7578 -0.0771 -0.0894 0.0092 -0.692 -9.12 13260
EL3Z 0.1027 0.0561 0.0380 0.7921 -0.7567 -0.0771 -0.0894 0.0586 -0.703 -9.47 16575
EL4 0.1027 0.0563 0.0383 0.7925 -0.7563 -0.0771 -0.0894 0.1334 -0.494 12.56 16575
EL1 0.1026 0.0584 0.0349 0.7945 -0.7597 -0.0770 -0.0894 0.0106 -0.250 43.23 6630

EL4Case 1 0.1027 0.0560 0.0379 0.7921 -0.7569 -0.0771 -0.0894 0.1323 -0.698 -16.56 29835
EL1Case 1 0.1027 0.0569 0.0357 0.7930 -0.7590 -0.0771 -0.0894 0.0445 -0.311 119.23 9945
EL4Case 2 0.1027 0.0559 0.0380 0.7919 -0.7567 -0.0771 -0.0894 0.0965 -0.699 -11.98 29835
EL1Case 2 0.1027 0.0574 0.0370 0.7936 -0.7579 -0.0771 -0.0894 -0.0244 -0.316 -58.85 9945

R
/h

=
10

0

3DElasticity [88] 0.4715 0.0838 0.0018 3.507 -3.507 -0.0478 -0.1038 0.1223 -3.127 -8.30
LW2a [68] 0.4715 - - - - - - - -3.127 -8.29
ESL2a [68] 0.4694 - - - - - - - - -

LW4 0.4715 0.0841 0.0018 3.518 -3.518 -0.0481 -0.1045 0.1228 -3.137 -8.32 43095
LW1 0.4711 0.0869 -0.0034 3.518 -3.520 -0.0481 -0.1044 0.0385 -3.131 -8.31 13260
EL3Z 0.4715 0.0842 0.0017 3.518 -3.518 -0.0481 -0.1045 0.0781 -3.183 -8.63 16575
EL4 0.4708 0.0841 0.0021 3.517 -3.517 -0.0480 -0.1043 0.1576 -2.237 -8.00 16575
EL1 0.4674 0.0939 -0.0121 3.512 -3.512 -0.0477 -0.1036 0.0450 -1.131 -4.32 6630

EL4Case 1 0.4714 0.0841 0.0017 3.518 -3.518 -0.0481 -0.1044 0.1627 -3.161 -9.06 29835
EL1Case 1 0.4688 0.0866 -0.0083 3.513 -3.514 -0.0478 -0.1039 0.0732 -1.416 10.77 9945
EL4Case 2 0.4714 0.0841 0.0018 3.518 -3.517 -0.0481 -0.1044 0.1223 -3.160 -8.23 29835
EL1Case 2 0.4691 0.0898 -0.0035 3.513 -3.517 -0.0478 -0.1040 0.0120 -1.424 -21.35 9945

R
/h

=
50

3DElasticity [88] 0.5495 0.0712 -0.0225 3.930 -3.987 -0.0118 -0.0760 0.0894 -3.491 -4.85
LW2a [68] 0.5495 - - - - - - - -3.492 -4.73
ESL2a [68] 0.5384 - - - - - - - - -

LW4 0.5495 0.0715 -0.0225 3.943 -3.999 -0.0119 -0.0765 0.0897 -3.502 -4.86 43095
LW1 0.5479 0.0732 -0.0297 3.933 -3.995 -0.0118 -0.0763 0.0439 -3.497 -4.85 13260
EL3Z 0.5495 0.0718 -0.0229 3.943 -4.000 -0.0119 -0.0765 0.0626 -3.554 -5.03 16575
EL4 0.5458 0.0711 -0.0225 3.937 -3.993 -0.0117 -0.0761 0.1161 -2.501 -5.02 16575
EL1 0.5358 0.0799 -0.0390 3.900 -3.957 -0.0115 -0.0748 0.0508 -1.265 -3.39 6630

EL4Case 1 0.5487 0.0714 -0.0225 3.941 -3.998 -0.0119 -0.0764 0.1237 -3.529 -5.07 29835
EL1Case 1 0.5385 0.0724 -0.0348 3.916 -3.954 -0.0115 -0.0751 0.0650 -1.582 0.69 9945
EL4Case 2 0.5488 0.0715 -0.0225 3.942 -3.998 -0.0118 -0.0764 0.0949 -3.527 -4.84 29835
EL1Case 2 0.5391 0.0752 -0.0298 3.896 -3.979 -0.0115 -0.0752 0.0313 -1.593 -8.17 9945
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Table 9.13: Composite three-layered cylinder with [90◦/0◦/90◦] lamination. Comparison of
various models for thick cylinders.

ŵ σ̂αα σ̂ββ σ̂αβ σ̂αz σ̂βz σ̂zz DOFs
z = 0 +h/2 −h/2 +h/2 −h/2 +h/2 −h/2 −h/6 0 0

R
/
h

=
1
0

3DElasticity [88] 1.223 0.0739 -0.0791 4.683 -5.224 0.0374 -0.0729 0.0826 -3.264 -1.27
LW2a [68] 1.223 - - - - - - - -3.283 -1.24
ESL2a [68] 0.944 - - - - - - - - -

LW4 1.223 0.0741 -0.0793 4.698 -5.240 0.0376 -0.0734 0.0829 -3.274 -1.27 43095
LW1 1.190 0.0626 -0.0950 4.456 -4.972 0.0363 -0.0707 0.0717 -3.281 -1.27 13260
EL3Z 1.223 0.0791 -0.0882 4.705 -5.241 0.0376 -0.0733 0.0680 -3.321 -1.30 16575
EL4 1.143 0.0703 -0.0820 4.578 -5.106 0.0363 -0.0692 0.1068 -2.422 -1.35 16575
EL1 0.953 0.0448 -0.0840 3.744 -4.107 0.0303 -0.0566 0.0713 -1.262 -1.08 6630

EL4Case 1 1.204 0.0733 -0.0784 4.660 -5.206 0.0372 -0.0725 0.1238 -3.280 -1.27 29835
EL1Case 1 0.985 0.0534 -0.0799 4.123 -3.923 0.0324 -0.0573 0.0738 -1.534 -1.04 9945
EL4Case 2 1.205 0.0733 -0.0788 4.673 -5.200 0.0374 -0.0723 0.0973 -3.276 -1.27 29835
EL1Case 2 0.992 0.0387 -0.0886 3.547 -4.578 0.0301 -0.0600 0.0661 -1.584 -1.22 9945

R
/h

=
4

3DElasticity [88] 4.009 0.1270 -0.2701 6.545 -9.323 0.1081 -0.1609 0.1736 -2.349 -0.62
LW2a [68] 4.007 - - - - - - - -2.399 -0.60
ESL2a [68] 2.917 - - - - - - - - -

LW4 4.009 0.1271 -0.2725 6.565 -9.354 0.1088 -0.1619 0.1742 -2.356 -0.62 43095
LW1 3.852 0.0826 -0.2772 5.585 -7.702 0.1020 -0.1491 0.1663 -2.360 -0.62 13260
EL3Z 3.970 0.1352 -0.3140 6.519 -9.056 0.1072 -0.1593 0.1496 -2.353 -0.62 16575
EL4 3.772 0.1124 -0.3026 6.342 -9.094 0.1050 -0.1545 0.2332 -1.936 -0.67 16575
EL1 3.004 -0.0052 -0.1676 3.210 -4.024 0.0787 -0.1085 0.1512 -1.147 -0.62 6630

EL4Case 1 3.917 0.1244 -0.2796 6.434 -9.155 0.1065 -0.1594 0.2708 -2.269 -0.59 29835
EL1Case 1 3.084 0.0549 -0.1711 4.505 -3.311 0.0839 -0.1085 0.1571 -1.272 -0.72 9945
EL4Case 2 3.940 0.1232 -0.2706 6.475 -9.213 0.1079 -0.1588 0.2078 -2.305 -0.62 29835
EL1Case 2 3.151 -0.0065 -0.2510 2.334 -6.233 0.0768 -0.1201 0.1484 -1.389 -0.54 9945

R
/h

=
2

3DElasticity [88] 10.11 0.1761 -0.8428 7.168 -18.19 0.1797 -0.2922 0.3006 -1.379 -0.34
LW2a [68] 10.33 - - - - - - - -1.421 -0.33
ESL2a [68] 8.95 - - - - - - - - -

LW4 10.10 0.1741 -0.8730 7.179 -18.17 0.1807 -0.2934 0.3018 -1.382 -0.34 43095
LW1 9.51 0.0738 -0.6604 5.079 -10.67 0.1630 -0.2339 0.2974 -1.328 -0.33 13260
EL3Z 9.65 0.1487 -0.8951 6.848 -14.15 0.1728 -0.2653 0.2679 -1.294 -0.32 16575
EL4 9.59 0.1425 -0.9572 6.568 -15.63 0.1775 -0.2783 0.4244 -1.219 -0.35 16575
EL1 8.82 -0.1046 -0.3218 2.441 -3.79 0.1542 -0.2152 0.2941 -0.927 -0.37 6630

EL4Case 1 9.80 0.1690 -0.9187 6.955 -16.58 0.1756 -0.2859 0.4837 -1.191 -0.30 29835
EL1Case 1 8.48 0.0335 -0.3866 3.356 -3.10 0.1391 -0.2029 0.3104 -0.875 -0.50 9945
EL4Case 2 9.97 0.1703 -0.8701 6.931 -17.98 0.1798 -0.2894 0.3561 -1.318 -0.34 29835
EL1Case 2 8.71 -0.0647 -0.6301 0.711 -8.71 0.1380 -0.2087 0.2700 -1.031 -0.26 9945
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Figure 9.31: Composite three-layered cylinder, by varying R/h. Transverse displacement w.
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Figure 9.32: Composite three-layered cylinder, by varying R/h. In-plane stress σββ .
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Figure 9.33: Composite three-layered cylinder, by varying R/h. Transverse shear stress σαz.
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Figure 9.34: Composite three-layered cylinder, by varying R/h. Transverse normal stress
σzz.

9.2.6 Ten-layer composite cylinder

As a second assessment, a ten-layer cross-ply cylinder with lamination (90◦/0◦/90◦/0◦/90◦)S
and simply-supported boundary condition is considered. The geometrical and material data
and the applied load at the inner surface of the shell are the same as those defined for
the previous analysis case. Also, because of the geometrical symmetry of the cylinder, the
symmetry of the load pressure and boundary condition, and the symmetry of the lamination
stacking sequence, only one octave of the cylinder is analysed. A mesh grid of 8×32 elements
is used, as in the case of the three-layered cylinder of the previous section.
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Different variable kinematic models are employed to show the global/local capabilities of
the present methodology. Depending on the sublaminates grouping, the acronyms have been
modified adding a subscript to them in the case of variable kinematics. The list of subscripts
is given below for the sake of completeness:

• Case 1 = {layer1} {layer2, layer3, layer4, layer5, layer6, layer7, layer8, layer9} {layer10}

• Case 2 = {layer1, layer2} {layer3, layer4, layer5, layer6, layer7, layer8} {layer9, layer10}

• Case 3 = {layer1, layer2, layer3} {layer4, layer5, layer6, layer7} {layer8, layer9, layer10}

• Case 4 = {layer1, layer2, layer3, layer4} {layer5, layer6} {layer7, layer8, layer9, layer10}

• Case 5 = {layer1} {layer2, layer3} {layer4, layer5, layer6, layer7} {layer8, layer9} {layer10}

• Case 6 = {layer1} {layer2, layer3, layer4} {layer5, layer6} {layer7, layer8, layer9} {layer10}

The results from the present models are reported in non-dimensional form, as in the
previous case, and they are listed in Tables 9.14 and 9.15 and Figures 9.35b to 9.38b for various
radius-to-thickness ratios R/h. The present FEM results are compared with those from 3D
elasticity solution [88] and a layer-wise analytical model [68]. The following comments can
be made from the analysis of the results

• Regarding the transverse displacement w, all the variable-kinematic models lead a sig-
nificant improvement of the solution with respect to EL4 and for every radius-to-
thickness ratios, see Figures 9.35a and 9.35b.

• As in the previous analysis case and according to Figure 9.36a, no accuracy differences
are appreciable in terms of in-plane stress σββ between the various models of the thin
cylinders. Conversely, for small ratios R/h = 2, the theories EL4,Case1, EL4,Case4 and
EL4,Case6 improve the results with respect to the global EL4 model, especially in the
layers that have a layer-wise assembling, see Figure 9.36b.

• In the case of shear stress σαz and variable kinematic models, the results reach the exact
solution in the layers that have a layer-wise assembling for both thin and thick cylinders.
On the contrary, the remaining layers with an equivalent-single-layer assembling have
a loss of accuracy, see Figures 9.37a and 9.37b.

• As far as the transverse normal stress σzz is concerned and for large ratios R/h = 500,
the variable kinematics results reach the exact and full LW solutions in the layers that
have a layer-wise assembling, see Figure 9.38a. On the other hand, Figure 9.38b shows
that the shell theory EL4,Case6 approximates very well the layer-wise solution along
the thickness in the case of thin structures.
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Table 9.14: Composite ten-layered cylinder with [90◦/0◦/90◦/0◦/90◦]S lamination. Compar-
ison of various models for thin cylinders.

ŵ σ̂αα σ̂ββ σ̂αβ σ̂αz σ̂βz σ̂zz DOFs
z = 0 +h/2 −h/2 +h/2 −h/2 +h/2 −h/2 0 0 0

R
/
h

=
50

0

3DElasticity [88] 0.1006 0.0516 0.0340 0.7770 -0.7351 -0.0829 -0.0949 0.0102 -0.4670 -6.32
LW4 0.1006 0.0518 0.0341 0.7795 -0.7374 -0.0834 -0.0956 0.0103 -0.4685 -6.33 135915
LW1 0.1006 0.0520 0.0338 0.7798 -0.7378 -0.0834 -0.0956 0.0264 -0.4587 -32.36 36465
EL3Z 0.1006 0.0517 0.0338 0.7794 -0.7377 -0.0834 -0.0956 0.0057 -0.6194 -49.00 16575
EL4 0.1006 0.0516 0.0339 0.7793 -0.7376 -0.0834 -0.0956 0.0065 -0.6196 -37.69 16575
EL1 0.1005 0.0541 0.0311 0.7819 -0.7404 -0.0834 -0.0955 0.0044 -0.4438 -31.93 6630

EL4Case 1 0.1006 0.0518 0.0341 0.7795 -0.7374 -0.0834 -0.0956 0.0069 -0.5528 -24.37 43095
EL4Case 2 0.1006 0.0517 0.0339 0.7794 -0.7376 -0.0834 -0.0956 0.0064 -0.6123 -35.38 43095
EL4Case 3 0.1006 0.0519 0.0346 0.7797 -0.7369 -0.0834 -0.0956 0.0091 -0.4281 -8.35 43095
EL4Case 4 0.1006 0.0520 0.0346 0.7797 -0.7368 -0.0834 -0.0956 0.0103 -0.4685 -6.33 43095
EL4Case 5 0.1006 0.0518 0.0341 0.7795 -0.7374 -0.0834 -0.0956 0.0091 -0.4281 -8.35 69615
EL4Case 6 0.1006 0.0518 0.0341 0.7795 -0.7374 -0.0834 -0.0956 0.0103 -0.4685 -6.33 69615

R
/h

=
1
00

3DElasticity [88] 0.6261 0.1076 -0.0015 4.677 -4.670 -0.0734 -0.1479 0.0631 -2.884 -7.69
LW2a [68] 0.6261 - - - - - - - -2.884 -7.69
ESL2a [68] 0.6252 - - - - - - - - -

LW4 0.6261 0.1080 -0.0016 4.692 -4.685 -0.0738 -0.1489 0.0634 -2.893 -7.71 135915
LW1 0.6261 0.1090 -0.0038 4.693 -4.687 -0.0738 -0.1489 0.0831 -2.830 -13.96 36465
EL3Z 0.6254 0.1079 -0.0027 4.693 -4.686 -0.0737 -0.1487 0.0393 -3.830 -12.10 16575
EL4 0.6254 0.1075 -0.0022 4.692 -4.686 -0.0737 -0.1487 0.0402 -3.827 -9.29 16575
EL1 0.6221 0.1218 -0.0195 4.689 -4.681 -0.0733 -0.1480 0.0269 -2.732 -7.02 6630

EL4Case 1 0.6255 0.1079 -0.0016 4.692 -4.685 -0.0737 -0.1487 0.0424 -3.414 -8.53 43095
EL4Case 2 0.6255 0.1082 -0.0021 4.692 -4.685 -0.0737 -0.1488 0.0393 -3.782 -9.19 43095
EL4Case 3 0.6259 0.1075 -0.0002 4.692 -4.683 -0.0738 -0.1488 0.0560 -2.643 -7.67 43095
EL4Case 4 0.6258 0.1072 -0.0003 4.692 -4.683 -0.0738 -0.1488 0.0634 -2.893 -7.71 43095
EL4Case 5 0.6260 0.1079 -0.0016 4.692 -4.685 -0.0738 -0.1488 0.0560 -2.643 -7.67 69615
EL4Case 6 0.6259 0.1079 -0.0016 4.692 -4.685 -0.0738 -0.1488 0.0634 -2.893 -7.71 69615

R
/h

=
50

3DElasticity [88] 0.7622 0.0971 -0.0340 5.529 -5.606 -0.0223 -0.1120 0.0760 -3.425 -4.76
LW2a [68] 0.7622 - - - - - - - -3.425 -4.76
ESL2a [68] 0.7564 - - - - - - - - -

LW4 0.7622 0.0974 -0.0341 5.546 -5.624 -0.0225 -0.1128 0.0763 -3.436 -4.77 135915
LW1 0.7620 0.0980 -0.0374 5.545 -5.626 -0.0225 -0.1127 0.0880 -3.360 -6.54 36465
EL3Z 0.7580 0.0972 -0.0358 5.544 -5.624 -0.0222 -0.1123 0.0477 -4.553 -5.86 16575
EL4 0.7580 0.0965 -0.0351 5.543 -5.623 -0.0222 -0.1123 0.0483 -4.545 -5.02 16575
EL1 0.7517 0.1118 -0.0563 5.524 -5.599 -0.0220 -0.1113 0.0321 -3.243 -3.77 6630

EL4Case 1 0.7585 0.0972 -0.0342 5.543 -5.621 -0.0222 -0.1123 0.0508 -4.055 -4.86 43095
EL4Case 2 0.7589 0.0977 -0.0346 5.543 -5.620 -0.0223 -0.1124 0.0472 -4.492 -5.01 43095
EL4Case 3 0.7607 0.0967 -0.0327 5.546 -5.623 -0.0224 -0.1126 0.0673 -3.139 -4.70 43095
EL4Case 4 0.7604 0.0962 -0.0330 5.546 -5.624 -0.0223 -0.1125 0.0761 -3.436 -4.77 43095
EL4Case 5 0.7614 0.0974 -0.0341 5.546 -5.623 -0.0224 -0.1127 0.0673 -3.140 -4.70 69615
EL4Case 6 0.7611 0.0974 -0.0341 5.546 -5.624 -0.0224 -0.1126 0.0762 -3.436 -4.77 69615
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Table 9.15: Composite ten-layered cylinder with [90◦/0◦/90◦/0◦/90◦]S lamination. Compar-
ison of various models for thick cylinders.

ŵ σ̂αα σ̂ββ σ̂αβ σ̂αz σ̂βz σ̂zz DOFs
z = 0 +h/2 −h/2 +h/2 −h/2 +h/2 −h/2 0 0 0

R
/h

=
10

3DElasticity [88] 1.380 0.0877 -0.0927 5.875 -6.462 0.0406 -0.0869 0.1084 -3.479 -1.32
LW2a [68] 1.380 - - - - - - - -3.475 -1.32
ESL2a [68] 1.200 - - - - - - - - -

LW4 1.380 0.0879 -0.0929 5.893 -6.483 0.0408 -0.0874 0.1087 -3.490 -1.32 135915
LW1 1.375 0.0835 -0.1029 5.855 -6.453 0.0407 -0.0870 0.1127 -3.395 -1.32 36465
EL3Z 1.265 0.0856 -0.1007 5.795 -6.382 0.0397 -0.0819 0.0656 -4.624 -1.37 16575
EL4 1.265 0.0806 -0.0958 5.788 -6.380 0.0397 -0.0820 0.0656 -4.584 -1.33 16575
EL1 1.205 0.0715 -0.1102 5.420 -5.947 0.0375 -0.0771 0.0415 -3.309 -1.09 6630

EL4Case 1 1.282 0.0849 -0.0914 5.778 -6.352 0.0397 -0.0826 0.0698 -4.095 -1.31 43095
EL4Case 2 1.293 0.0860 -0.0909 5.772 -6.339 0.0398 -0.0831 0.0650 -4.547 -1.33 43095
EL4Case 3 1.339 0.0876 -0.0913 5.895 -6.490 0.0406 -0.0857 0.0944 -3.167 -1.30 43095
EL4Case 4 1.330 0.0853 -0.0937 5.888 -6.490 0.0405 -0.0853 0.1060 -3.471 -1.32 43095
EL4Case 5 1.357 0.0873 -0.0927 5.872 -6.458 0.0407 -0.0864 0.0955 -3.179 -1.30 69615
EL4Case 6 1.351 0.0872 -0.0927 5.877 -6.467 0.0406 -0.0861 0.1074 -3.485 -1.32 69615

R
/h

=
4

3DElasticity [88] 4.206 0.1243 -0.2674 6.635 -8.970 0.0972 -0.1652 0.2117 -3.154 -0.71
LW2a [68] 4.206 - - - - - - - -3.137 -0.71
ESL2a [68] 3.240 - - - - - - - - -

LW4 4.206 0.1247 -0.2678 6.656 -8.998 0.0978 -0.1663 0.2124 -3.164 -0.71 135915
LW1 4.175 0.1116 -0.2913 6.473 -8.712 0.0967 -0.1640 0.2161 -3.027 -0.65 36465
EL3Z 3.566 0.1177 -0.2955 6.215 -8.109 0.0900 -0.1457 0.1239 -4.053 -0.70 16575
EL4 3.563 0.0957 -0.2771 6.128 -8.231 0.0898 -0.1465 0.1236 -3.952 -0.70 16575
EL1 3.335 0.0136 -0.1942 4.635 -5.818 0.0817 -0.1241 0.0748 -3.012 -0.63 6630

EL4Case 1 3.705 0.1150 -0.2600 6.223 -8.394 0.0917 -0.1510 0.1347 -3.578 -0.70 43095
EL4Case 2 3.768 0.1161 -0.2583 6.202 -8.358 0.0923 -0.1529 0.1256 -4.003 -0.70 43095
EL4Case 3 3.973 0.1243 -0.2700 6.635 -8.997 0.0958 -0.1602 0.1825 -2.791 -0.69 43095
EL4Case 4 3.923 0.1210 -0.2755 6.614 -8.979 0.0952 -0.1589 0.2020 -3.079 -0.70 43095
EL4Case 5 4.088 0.1227 -0.2663 6.572 -8.876 0.0968 -0.1631 0.1873 -2.842 -0.70 69615
EL4Case 6 4.052 0.1224 -0.2664 6.584 -8.893 0.0966 -0.1623 0.2082 -3.137 -0.71 69615

R
/h

=
2

3DElasticity [88] 11.44 0.1691 -0.8532 7.202 -18.31 0.1545 -0.3363 0.3019 -2.608 -0.42
LW2a [68] 11.44 - - - - - - - -2.581 -0.42
ESL2a [68] 9.39 - - - - - - - - -

LW4 11.44 0.1696 -0.8554 7.225 -18.37 0.1555 -0.3384 0.3029 -2.618 -0.42 135915
LW1 11.28 0.1442 -0.8850 6.750 -16.42 0.1518 -0.3265 0.3062 -2.426 -0.36 36465
EL3Z 9.42 0.1369 -0.8804 6.101 -11.96 0.1418 -0.2877 0.1876 -3.039 -0.39 16575
EL4 9.39 0.0967 -0.8775 5.485 -13.08 0.1382 -0.2952 0.1874 -2.820 -0.39 16575
EL1 9.46 -0.1091 -0.3480 3.509 -5.46 0.1368 -0.2097 0.1245 -2.449 -0.39 6630

EL4Case 1 10.13 0.1561 -0.8409 6.555 -17.04 0.1484 -0.3205 0.2095 -2.671 -0.40 43095
EL4Case 2 10.31 0.1562 -0.8490 6.528 -17.12 0.1494 -0.3243 0.1912 -3.009 -0.40 43095
EL4Case 3 10.76 0.1675 -0.8962 7.109 -18.21 0.1527 -0.3305 0.2666 -2.229 -0.40 43095
EL4Case 4 10.61 0.1667 -0.9099 7.081 -18.14 0.1524 -0.3312 0.2911 -2.484 -0.41 43095
EL4Case 5 11.11 0.1666 -0.8518 7.067 -18.03 0.1544 -0.3340 0.2739 -2.298 -0.41 69615
EL4Case 6 11.02 0.1665 -0.8519 7.072 -17.99 0.1548 -0.3351 0.3006 -2.568 -0.42 69615
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Figure 9.35: Composite ten-layered cylinder, by varying R/h. Transverse displacement w.
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Figure 9.36: Composite ten-layered cylinder, by varying R/h. In-plane stress σββ .
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Figure 9.37: Composite ten-layered cylinder, by varying R/h. Transverse shear stress σαz.
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Figure 9.38: Composite ten-layered cylinder, by varying R/h. Transverse normal stress σzz.

9.2.7 Composite spherical panel

A preliminary analysis of cross-ply spherical panels with (0◦/90◦/0◦) and (0◦/90◦/90◦/0◦)
laminations and simply-supported boundary conditions are considered next. The load is a
pressure applied at the outer surface of the shell and it is defined as follows:

p (α, β, ztop) = p̂ sin
(mπα

a

)
sin

(
nπβ

b

)
(9.7)

where p̂ = 1.0,m = 1 and n = 1. The mechanical properties of the material are: EL/ET = 25
; GLT /ET = 0.5 ; GTT /ET = 0.2 ; νLT = νTT = 0.25. Different radius-to-side length
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ratios R/a = 5, 10, 50, 100 and different side length-to-thickness ratios a/h = 10, 100 are
considered. The panel is square such that a/b = 1 and Rα/Rβ = 1. The layers are of equal
thickness and htotal = 1.0. The results are given in terms of transverse displacements and
reported in non-dimensional form as follows:

ŵ = −103wET h
3

p̂ a4
σ̂αz =

104σαz
p̂(R/h)

σ̂zz =
σzz
p̂

Even for this analysis case, different variable kinematic models are used to perform the
analysis of the shell structures. Usual acronyms are enriched with the following subscripts
which indicate the sublaminates grouping. For the three-layered spherical shell we consider

• Case1 = {layer1} {layer2, layer3}

• Case2 = {layer1, layer2} {layer3}

On the other hand, for the four-layered shell we have

• Case1 = {layer1} {layer2, layer3, layer4}

• Case2 = {layer1, layer2, layer3} {layer4}

• Case3 = {layer1, layer2} {layer3, layer4}

• Case4 = {layer1} {layer2, layer3} {layer4}

First, a convergence study on the shell element was performed. A composite shell with
radius to side length ratio R/a = 10 and side length to thickness ratio a/h = 10 is considered
for this purpose. As demonstrated in Table 9.16 in the case of a full LW model, a mesh
grid of 12 × 12 elements ensures the convergence. The results from the other full kinematic
and variable kinematic models are reported in non-dimensional form for the transverse dis-
plcament in Table 9.17, and for the transverse shear and normal stresses in Table 9.18 for
different thickness ratios a/h and radius-to-side length ratio R/a. The present FEM results
are compared with higher-order models from the literature, i.e. [154] and [155], and a layer-
wise analytical model by Carrera [68]. It can be observed that changing the R/a ratio, the
transverse displacement variation is higher for thin shells with ratio a/h = 100 than for thick
shells with ratio a/h = 10. Therefore it can be seen that the best approximation compro-
mise is given by the theory EL4,Case1, where the loaded layer is described by a layer-wise
model and the remaining layers are described by equivalent single layer approach. For the
four-layered shell, the theory EL4,Case4 is more accurate then EL4,Case1 model. This is due
only to the fact that a symmetric lamination scheme is considered.

Table 9.16: Convergence study. Composite spherical panel with lamination [0◦/90◦/0◦].
Radius-to-side length ratio R/a = 10 and side length-to-thickness ratio a/h = 10.

Mesh 4× 4 6× 6 8× 8 10× 10 12× 12

LW4 ŵ (z = 0) 7.5175 7.5129 7.5121 7.5118 7.5117
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Table 9.17: Composite spherical panel with [0◦/90◦/0◦] and [0◦/90◦/90◦/0◦] laminations.
Transverse displacement ŵ = ŵ(a/2, b/2, 0). Results presented for different R/a and a/h
ratios.

a/h = 10 a/h = 100

R/a 5 10 50 100 5 10 50 100 DOFs

3
L
a
y
er
s

HSDT 1 [154] 6.7688 7.0325 7.1212 7.1240 1.0321 2.4099 4.2071 4.3074
HSDT 2 [155] 6.8201 7.0459 7.1213 7.1237 1.0321 2.4020 4.1249 4.2603
LW2a [68] 7.121 7.392 7.504
LW4 7.3252 7.5117 7.5408 7.5365 1.0364 2.4166 4.2132 4.3131 24375
LW1 7.1793 7.3568 7.3835 7.3792 1.0360 2.4143 4.2061 4.3057 7500
EL3Z 7.3219 7.5089 7.5382 7.5339 1.0364 2.4166 4.2132 4.3131 9375
EL4 6.9739 7.1376 7.1606 7.1564 1.0362 2.4152 4.2087 4.3085 9375
EL1 6.1234 6.2381 6.2489 6.2450 1.0327 2.3962 4.1514 4.2485 3750

EL4Case 1 7.2331 7.4092 7.4327 7.4279 1.0364 2.4163 4.2121 4.3120 16875
EL4Case 2 7.2309 7.4080 7.4324 7.4278 1.0364 2.4163 4.2121 4.3120 16875

4
L
a
y
er
s

HSDT 1 [154] 6.7865 7.0536 7.1436 7.1464 1.0264 2.4024 4.2071 4.3082
HSDT 2 [155] 6.8380 7.0670 7.1436 7.1459 1.0254 2.3866 4.1284 4.2418

LW4 7.1738 7.3528 7.3801 7.3758 1.0306 2.4083 4.2111 4.3117 31875
LW1 7.0820 7.2554 7.2811 7.2769 1.0303 2.4070 4.2071 4.3075 9375
EL3Z 6.9973 7.1651 7.1894 7.1852 1.0304 2.4076 4.2088 4.3093 9375
EL4 6.9971 7.1648 7.1891 7.1849 1.0304 2.4076 4.2088 4.3093 9375
EL1 6.0771 6.1912 6.2020 6.1982 1.0269 2.3884 4.1503 4.2480 3750

EL4Case 1 7.1141 7.2877 7.3127 7.3083 1.0305 2.4081 4.2103 4.3108 16875
EL4Case 2 7.1086 7.2850 7.3124 7.3083 1.0305 2.4080 4.2102 4.3108 16875
EL4Case 3 7.0925 7.2663 7.2921 7.2879 1.0305 2.4080 4.2100 4.3106 16875
EL4Case 4 7.1738 7.3528 7.3801 7.3758 1.0306 2.4083 4.2111 4.3117 24375

Table 9.18: Composite spherical panel with [0◦/90◦/0◦] and [0◦/90◦/90◦/0◦] lamina-
tions. Transverse shear stress σ̂αz = σ̂αz(a/2, b/2, 0), and transverse normal stress σ̂zz =
σ̂αz(a/2, b/2,+h/2). Results presented for different R/a and a/h ratios.

a/h = 10 a/h = 100

σ̂αz σ̂zz σ̂αz σ̂zz

R/a 5 100 5 100 5 100 5 100 DOFs

3
L
a
y
er
s

LW4 -0.4909 -0.0254 -1.0003 -1.0005 -0.1270 -0.0308 -1.0041 -1.0125 24375
LW1 -0.5225 -0.0270 -1.3539 -1.5057 -0.1295 -0.0312 -10.839 -43.924 7500
EL3Z -0.5328 -0.0276 -1.2200 -1.2358 -0.1350 -0.0323 -1.0997 -1.2631 9375
EL4 -0.3635 -0.0188 -1.0383 -1.0505 -0.0911 -0.0231 -1.2561 -1.1229 9375
EL1 -0.1581 -0.0081 -1.7265 -1.9412 -0.0215 -0.0082 -30.651 -127.85 3750

EL4Case 1 -0.4928 -0.0255 -1.0003 -1.0005 -0.1297 -0.0320 -1.0041 -1.0125 16875
EL4Case 2 -0.4946 -0.0255 -0.9581 -0.9690 -0.1387 -0.0321 -0.8627 -0.9513 16875

4
L
a
y
er
s

LW4 -0.4156 -0.0215 -1.0003 -1.0003 -0.1014 -0.0263 -1.0041 -1.0127 31875
LW1 -0.4250 -0.0217 -1.2889 -1.4107 -0.1204 -0.0277 -8.3048 -33.237 9375
EL3Z -0.4070 -0.0209 -1.2260 -1.2282 -0.1043 -0.0254 -1.0603 -1.2434 9375
EL4 -0.3942 -0.0204 -1.0547 -1.0545 -0.0979 -0.0255 -1.0206 -1.0782 9375
EL1 -0.1616 -0.0083 -1.6803 -1.8929 -0.0202 -0.0086 -30.687 -127.84 3750

EL4Case 1 -0.4406 -0.0228 -1.0003 -1.0003 -0.1093 -0.0288 -1.0041 -1.0127 16875
EL4Case 2 -0.4433 -0.0228 -0.9935 -1.0043 -0.1192 -0.0289 -1.0082 -1.0272 16875
EL4Case 3 -0.3894 -0.0202 -0.9690 -0.9760 -0.0647 -0.0222 -0.9956 -0.9831 16875
EL4Case 4 -0.4157 -0.0215 -1.0003 -1.0003 -0.1011 -0.0262 -1.0041 -1.0127 24375
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9.2.8 Eleven-layer sandwich cylindrical panel

An eleven-layer simply-supported sandwich cylindrical panel with
(0◦/90◦/0◦/Core/0◦/ 90◦/0◦/Core/0◦/90◦/0◦) lamination and simply-supported boundary
condition is considered. The load is a pressure applied at the outer surface of the shell, and
it is defined as follows:

p (α, β, ztop) = p̂ sin
(mπα

a

)
sin

(
nπβ

b

)
(9.8)

where m = 1 and n = 1, whereas p̂ = 1.0. Different axis length-to-circumferential length
ratios b/a = 1, 2 and circumferential length-to-thickness ratios a/h = 5, 10 are considered.
The radius-to-circumferential length ratio is fixed for all the cases and it is assumed to be
equal to Rα/a = 2. Each face sheet of the shell has a thickness of 0.015× htotal and is made
of composite material with the following properties: E1 = 172.5GPa, E2 = E3 = 6.9GPa,
G12 = G13 = 3.45GPa, G23 = 2.76GPa, ν12 = ν13 = ν23 = 0.25 . On the other hand,
each core has a thickness of 0.4325 × htotal and the material properties are the following:
E1 = E2 = 0.276GPa, E3 = 3.45GPa, G12 = 0.1104GPa, G13 = G23 = 0.414GPa,
ν12 = 0.25, ν13 = ν23 = 0.02. The total thickness is assumed to be htotal = 1.0. As in the
previous analysis cases, the results are reported in non-dimensional form:

ŵ =
102wE2(face sheets)

h3

p̂ a4
(σ̂αα, σ̂ββ , σ̂αβ) =

(σαα, σββ , σαβ)h2

p̂ a2
σ̂αz =

σαz h

p̂ a

Different variable kinematic models have been used to perform the analyses of the shell
structures. These models make use of various sublaminate groupings, which are summarized
in the following by using the usual notation:

• Case1 = {layer1} {layer2, layer3, layer4, layer5, layer6, layer7, layer8, layer9, layer10} {layer11}

• Case2 = {layer1} {layer2} {layer3, layer4, layer5, layer6, layer7, layer8, layer9} {layer10} {layer11}

• Case3 = {layer1} {layer2} {layer3} {layer4, layer5, layer6, layer7, layer8} {layer9} {layer10} {layer11}

• Case4 = {layer1, layer2, layer3} {layer4, layer5, layer6, layer7, layer8} {layer9, layer10, layer11}

• Case5 = {layer1, layer2, layer3} {layer4} {layer5, layer6, layer7} {layer8} {layer9, layer10, layer11}

• Case6 = {layer1, layer2, layer3, layer4} {layer5, layer6, layer7} {layer8, layer9, layer10, layer11}

• Case7 = {layer1, layer2, layer3, layer4} {layer5} {layer6} {layer7} {layer8, layer9, layer10, layer11}

First a convergence study on the shell element was performed and it is shown in Table 9.19.
For this analysis case, a composite sandwich cylindrical panel with circumferential length to
thickness ratio a/h = 5 and side length ratio b/a = 1 is considered. Clearly, a mesh grid of
12 × 12 elements ensures the convergence in terms of both transverse displacement and the
stresses. This mesh size is, thus, utilized for the remaining analyses.

Table 9.19: Convergence study. Composite sandwich cylindrical panel with circumferential
length-to-thickness ratio a/h = 5 and side length ratio b/a = 1.

Mesh 4× 4 6× 6 8× 8 10× 10 12× 12 ZIGTa [25] 3DElasticity [156]

LW4

ŵ (z = 0) 5.2621 5.2593 5.2588 5.2587 5.2586 5.2616 5.2824
σ̂αα (z = −h/2) -2.1441 -2.0947 -2.0758 -2.0668 -2.0618 -2.1337 -2.0731

10× σ̂ββ (z = +h/2) 1.5573 1.5216 1.5086 1.5024 1.4990 1.4423 1.5395
σ̂αβ (z = −h/2) 1.7780 1.6917 1.6603 1.6456 1.6375 1.6588 1.6409
σ̂αz (z = 0) 0.2140 0.2081 0.2061 0.2051 0.2046 0.2170 0.2001
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The results from the variable kinematic models and from complete ESL and LWmodels are
listed in Table 9.20 for various axis length-to-circumferential length ratios b/a and different
circumferential length-to-thickness ratios a/h. In this table, the present FEM results are
compared with a 3D elasticity solution [156] and a layer-wise theory, called the zigzag theory
(ZIGT). In particular, both analytical [25] and FEM [157] ZIGT solutions are given for
comparison purposes. For the sake of completeness, the through-the-thickness behaviour of
the stress components are also illustrated in Figures 9.39 to 9.43. The behaviour of the
variables along the thickness is invariant with respect to the b/a or a/h ratios. Thus, the
case b/a = 1 and a/h = 10 is taken into account to plot the variables behaviour along the
thickness in those figures. For the shell structures analysed in this section, the following
considerations can be drawn:

• In terms of transverse displacement w, variable kinematic models with combined ESL/LW
assumptions (i.e., EL4,Case1, EL4,Case2, EL4,Case3, and EL4,Case4) provide better ac-
curacy with respect to the full ESL models, such as EL4, see Figure 9.39. However, the
best accuracy is reached assembling the sandwich cores with a layer-wise scheme while
keeping the face composite sheets as ESL, i.e. EL4,Case5. In this case, it is possible
to reduce the computational costs in terms of degrees of fredoom as high as 53.33%
with respect to a full LW reference solution. Variable kinematic models EL4,Case6
and EL4,Case7 still provide an improvement of the solution accuracy with respect to
EL4,Case1 to EL4,Case4. Moreover, it is interesting to note that the EL4,Case4 model
has the same accuracy of the EL4,Case3 model but with a DOFs reduction of 55.17%.
Equivalently, EL4,Case6 model has the same accuracy of the EL4,Case7 model with a
DOFs reduction of 38.09%.

• Figures 9.40 to 9.42 show that very small differences in terms of accuracy of σαα,
σββ and σαβ distributions are visible in the composite sheets layers if EL4,Case1 and
EL4,Case2 models are compared to EL4,Case5, and EL4,Case6 models. Nevertheless,
EL4,Case5, and EL4,Case6 models provide the same solution of full refined LW model
with a considerable reduction of the computational costs. For these stress components,
the distribution within the core is roughly the same for all the models considered.

• As far as the shear stress σαz distribution is considered, Figure 9.43 shows that all
the variable-kinematic models provide results as accurate as the reference solutions in
those layers that are approximated with a LW accuracy. This allows the analyst to
choose the approximation accuracy in each thickness subdomain independently and
save, eventually, computational costs but still having accurate solution in localized
zones. For the analysis case under consideration, however, the best compromise between
an accurate solution and an huge reduction of computational cost in terms of DOFs
with respect to the full layer-wise solution, is obtained with the EL4,Case5 model, whose
DOFs reduction is 53.33%.
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Table 9.20: Sandwich eleven-layered cylinder. Transverse displacement ŵ(α, β) =
ŵ(a/2, b/2), in-plane stresses σ̂αα(α, β) = σ̂αα(a/2, b/2), σ̂ββ(α, β) = σ̂ββ(a/2, b/2), in-plane
shear stress σ̂αβ(α, β) = σ̂αβ(0, 0) and transverse shear stress σ̂αz(α, β) = σ̂αz(0, b/2).

a/h = 5 a/h = 10

ŵ σ̂αα 10× σ̂ββ 10× σ̂αβ σ̂αz ŵ σ̂αα 10× σ̂ββ 10× σ̂αβ σ̂αz DOFs
z = 0 −h/2 h/2 −h/2 0 0 −h/2 h/2 −h/2 0

b/
a

=
1

3DElasticity [156] 5.2824 -2.0731 1.5395 1.6409 0.2001 2.5850 -1.9675 1.2612 1.4885 0.2021
ZIGTa [25] 5.2616 -2.1337 1.4423 1.6588 0.2170 2.5762 -1.9776 1.2377 1.4893 0.2245
ZIGTFE [157] 5.1264 -1.9903 1.4540 1.5745 0.2171 2.5024 -1.9228 1.2255 1.4369 0.2240

LW4 5.2824 -2.0848 1.5476 1.6595 0.2012 2.5850 -1.9786 1.2682 1.5055 0.2033 84375
LW1 5.2775 -2.0858 1.5488 1.6588 0.2012 2.5847 -1.9790 1.2690 1.5053 0.2033 22500
EL3Z 4.1624 -2.0624 1.5618 1.4801 1.2367 2.3091 -2.0089 1.3025 1.4260 1.2688 9375
EL4 4.0764 -2.0717 1.4538 1.4712 0.9815 2.2918 -2.0163 1.2346 1.4239 1.0007 9375
EL1 3.7660 -2.0435 1.4769 1.4030 0.6698 2.2028 -2.0122 1.3150 1.3891 0.6781 3750

EL4Case 1 4.1405 -2.0819 1.4495 1.4870 0.9513 2.3072 -2.0153 1.2267 1.4295 0.9705 24375
EL4Case 2 4.2709 -2.1075 1.4603 1.5093 0.9156 2.3379 -2.0199 1.2302 1.4384 0.9316 39375
EL4Case 3 4.7676 -2.0863 1.5096 1.5837 0.7458 2.4609 -1.9976 1.2517 1.4728 0.7653 54375
EL4Case 4 4.7675 -2.0865 1.5127 1.5837 0.7458 2.4609 -1.9977 1.2534 1.4728 0.7653 24375
EL4Case 5 5.2822 -2.0850 1.5510 1.6595 0.1875 2.5849 -1.9786 1.2700 1.5054 0.1892 39375
EL4Case 6 5.1562 -2.0918 1.5091 1.6422 0.1881 2.5525 -1.9821 1.2429 1.4962 0.1897 24375
EL4Case 7 5.1564 -2.0918 1.5091 1.6423 0.2019 2.5525 -1.9821 1.2429 1.4962 0.2038 39375

b/
a

=
2

3DElasticity [156] 9.0416 -3.7989 1.3594 1.6680 0.3348 4.3974 -3.5216 0.9654 1.2841 0.3294
ZIGTa [25] 9.0141 -3.9003 1.2524 1.6723 0.3650 4.3762 -3.5377 0.9380 1.2818 0.3667
ZIGTFE [157] 8.6267 -3.5873 1.2445 1.5549 0.3585 4.1713 -3.3774 0.9154 1.2156 0.3590

LW4 9.0785 -3.8203 1.3665 1.6870 0.3367 4.3975 -3.5415 0.9707 1.2987 0.3313 84375
LW1 9.0726 -3.8213 1.3658 1.6867 0.3368 4.3971 -3.5421 0.9706 1.2987 0.3313 22500
EL3Z 7.1160 -3.7190 1.3297 1.4529 2.0518 3.8967 -3.5301 0.9950 1.2013 2.0438 9375
EL4 6.9062 -3.6954 1.2053 1.4248 1.6129 3.8490 -3.5263 0.9191 1.1924 1.6043 9375
EL1 6.3528 -3.6156 1.2343 1.3430 1.0941 3.6956 -3.5017 1.0058 1.1577 1.0835 3750

EL4Case 1 7.0208 -3.7166 1.2043 1.4423 1.5647 3.8776 -3.5284 0.9102 1.1988 1.5572 24375
EL4Case 2 7.2117 -3.7496 1.2193 1.4645 1.5003 3.9252 -3.5355 0.9157 1.2079 1.4938 39375
EL4Case 3 8.1588 -3.7862 1.3000 1.5821 1.2388 4.1655 -3.5411 0.9450 1.2553 1.2380 54375
EL4Case 4 8.1586 -3.7855 1.2983 1.5821 1.2388 4.1654 -3.5401 0.9408 1.2553 1.2380 24375
EL4Case 5 9.0781 -3.8197 1.3652 1.6870 0.3139 4.3973 -3.5406 0.9667 1.2987 0.3085 39375
EL4Case 6 8.8374 -3.8187 1.3192 1.6594 0.3140 4.3345 -3.5398 0.9465 1.2864 0.3086 24375
EL4Case 7 8.8377 -3.8188 1.3193 1.6595 0.3369 4.3346 -3.5398 0.9465 1.2865 0.3314 39375
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Figure 9.39: Sandwich eleven-layered
cylinder. Transverse displacement w
along the thickness, with axis length to
circumferential length ratio b/a = 1 and
circumferential length to thickness ratios
a/h = 10.
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Figure 9.40: Sandwich eleven-layered
cylinder. In-plane stress σαα along the
thickness, with axis length to circumfer-
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9.3 Thermo-Mechanical Analysis Results

In this section, the static thermo-mechanical analysis of plate and shell structures are per-
formed to assess the variable-kinematics mixed ESL/LW plate/shell element. To study the
effectiveness of the proposed approach, the following composite multilayered plates, cylindri-
cal shells, and spherical sandwich shell structures have been analyzed:

• A three-layer square plate with lamination [0◦/90◦/0◦]

• A ten-layer cylindrical shell panel with lamination [0◦/90◦]5

• A sandwich composite spherical panel with lamination [0◦/90◦/Core/90◦/0◦]

Both of them are evaluated applying a thermal load with a bi-sinusoidal in-plane behavior:

θ (α, β, z) = θ̂ (z) sin
(mπα

a

)
sin

(
nπβ

b

)
(9.9)

where m = n = 1. Solutions with the assumed linear thermal profile θ̂ (z), and/or with the
calculated thermal profile obtained via the Fourier heat conduction law are given. Wherever
possible, solutions from variable-kinematic models are compared with those from higher-order
ESL models, LW models, 3D elasticity solutions and analytical results.

9.3.1 Three-layer plate

A three-layer cross-ply square plate, see Figure 9.44, with cross-ply composite layers with
lamination [0◦/90◦/0◦] and simply-supported boundary condition is considered.

Figure 9.44: Reference system of the composite plate with section of thermal load
applied.

The Carbon-Epoxy material constants of the plate are taken from [70,96], the values are
expressed in terms of ratios of the longitudinal and transversal fiber directional properties:
EL/ET = 25 ; GLT /ET = 0, 5 ; GTT /ET = 0, 2 ; νLT = νTT = 0, 25 ; αT

αL
= 1125, 0 ;

KL
KT = 36,42

0,96 . The geometrical dimensions are: a = b = 1, 0. The temperature boundary
conditions are: θ̂top = +1, 0, θ̂bottom = −1, 0. The results are presented for different thickness
ratios a/h = 2; 100, and the deflections and stresses are presented in the following dimen-
sionless forms:

ŵ =
w

hαLθ0

(
a
h

)2 σ̂i,j =
σi,j

ETαLθ0

where the temperature gradient is θ0 = 1. A mesh grid of 32×32 elements is taken to ensure
the convergence of the solution, see Table 9.21. The rate of convergence is invariant respect
to the temperature profile.
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Table 9.21: Convergence study. Composite three layered plate with thickness ratio a/h = 100.
All the cases are computed with a LW4 model.

Mesh 4× 4 8× 8 12× 12 16× 16 20× 20 24× 24 28× 28 32× 32 3DExact [96]

Ta

ŵ 10.274 10.261 10.260 10.260 10.260 10.260 10.260 10.260 10.26
σ̂xx 1030.5 981.69 972.63 969.45 967.98 967.18 966.70 966.39 965.4
σ̂xz 7.4509 7.1665 7.1150 7.0968 7.0883 7.0837 7.0809 7.0791 7.073
σ̂zz 2.3686 0.1772 0.0379 0.0126 0.0056 0.0030 0.0019 0.0014 −0.1738× 10−5

Tc

ŵ 10.268 10.254 10.253 10.253 10.253 10.253 10.253 10.253
σ̂xx 1029.7 980.87 971.81 968.64 967.17 966.37 965.89 965.57
σ̂xz 7.4463 7.1621 7.1106 7.0924 7.0839 7.0793 7.0765 7.0747
σ̂zz 2.3652 0.1777 0.0378 0.0126 0.0055 0.0030 0.0019 0.0014

Therefore a locking study has been performed evaluating different types of integration
methods [115] for the same plate structure to prove that the element is locking free, see Table
9.22. The plate element with the MITC9 method ensures accuracy on both the transverse
displacement and the stresses variables.

Table 9.22: Locking study. Composite three layered plate with thickness ratio a/h = 100.
The TemperatureAssumedLinear and the TemperatureCalculated cases are computed
with a mesh of 32× 32 elements and with a LW4 model.

Reduced Selective MITC9 3DExact [96]

Ta

ŵ 10.257 10.259 10.260 10.26
σ̂xx 815.55 966.12 966.39 965.4
σ̂xz 10.929 7.8184 7.0791 7.073
σ̂zz 14.431 -0.0071 0.0014 −0.1738× 10−5

Tc

ŵ 10.251 10.253 10.253
σ̂xx 814.74 965.30 965.57
σ̂xz 10.924 7.8135 7.0747
σ̂zz 14.456 -0.0071 0.0014

The description of the temperature profile along the thickness of the multilayered plate is
given in Figure 9.45 for different aspect ratios a/h. It has to be noticed that for thin plates
the temperature profile is almost linear or very close to it; differently for thick plates it is
very important to use the calculated profile solving the Fourier heat conduction equation,
the linear profile leads to relevant errors in the approximation of the temperature load, the
temperature load is overestimated.
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Figure 9.45: Three-layered plate. Temperature Profiles Comparison.

An assessment of the Legendre polynomials with a full ESL approach has been performed
for the pure mechanical case in [158] for plates and in [159] for shells. All the results presented
in [158,159], for thick and thin plates and shells, show that the Legendre polynomials lead to
the same results of the Taylor polynomials. The use of either polynomials is invariant respect
to the solution accuracy.
Hereafter Legendre polynomials have been employed for the structure analyzes. Different
Variable Kinematic models have been used to perform the analysis of the plate structures,
see Figure 9.46. The acronyms have been modified adding a subscript to them, for the sake
of clarity the list of subscripts is given below:

• Case1 = {layer1} {layer2, layer3}

• Case2 = {layer1, layer2} {layer3}

Figure 9.46: Variable Kinematic Cases. Compact example of assembling scheme.

The results are listed in Table 9.23. For the plate structures analysed the following consider-
ations can be drawn:
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• Regarding the transverse displacement w, for thin plates a/h = 100, the theories
EL4,Case1 and EL4,Case2 lead a relevant improvement of the solution respect to the
EL4 showing the same accuracy, see Figure 9.47a. The same comments can be drawn
for both the temperature assumed linear cases Ta and for the temperature calculated
via the Fourier heat conduction law Tc. For thick plates a/h = 2, the variable kinematic
theories have the same accuracy of the full layer-wise and full equivalent-single-layer
solutions, see Figure 9.47b. The maximum transverse displacement Tc case value is
49.53 % smaller than the Ta case, this relevant difference is due to temperature calcu-
lated profile Tc that permits to better describe the temperature load.

• For both the transverse shear stress σxz, see Figure 9.48a, and the transverse normal
stress, see Figure 9.48b, the theories EL4,Case1 and EL4,Case2 improve the results
respect to the EL4 theory only in the layer with a layer-wise description. It has to be
noticed that no differences can be appreciated between the temperature assumed linear
cases Ta and the temperature calculated via the Fourier heat conduction law Tc cases.

• For the in-plane stress σxx, see Figures 9.49a, 9.49b, noticeable differences of the stress
amplitude are present between the temperature assumed linear cases Ta and the tem-
perature calculated profile Tc cases. The variable kinematic theories EL4,Case1 and
EL4,Case2 improve the results respect to the EL4 theory only in the layer with a layer-
wise description. It has to be noticed that the interlaminar continuity of the stress is
reached in the temperature assumed cases Ta, but not in the calculated profile cases Tc.
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Table 9.23: Three-layer composite plate with lamination [0◦/90◦/0◦]. Mechanical variables
described by Mono-models and Variable kinematic models for various aspect ratios a/h. Eval-
uation position for transverse displacement ŵ(x, y, z) = ŵ(a/2, b/2,+h/2), in-plane stress
σ̂xx(x, y, z) = σ̂xx(a/2, b/2,+h/2), transverse shear stress σ̂xz(x, y, z) = σ̂xz(0, b/2,+h/6),
transverse normal stress σ̂zz(x, y, z) = σ̂zz(a/2, b/2,+h/6).

Ta ( Assumed Linear )

a/h = 100 a/h = 2 DOFs

ŵ σ̂xx σ̂xz σ̂zz ŵ σ̂xx σ̂xz σ̂zz

3DExact [96] 10.26 965.4 7.073 −0.1738× 10−5 96.79 1390 63.92 -7.391
LW4a [70] 10.26 - 7.073 - 96.78 - 63.82 -
LW4 10.260 966.39 7.0791 0.0014 96.783 1391.0 70.532 -5.9366 164775
LW1 10.915 893.99 1.8031 492.56 89.252 640.39 -3.9613 417.76 50700
EL3Z 10.260 966.39 7.0489 -0.0346 94.871 1279.6 110.16 -31.218 63375
EL4 10.253 966.28 10.365 -0.0074 98.215 1336.5 93.196 -12.266 63375
EL3 10.253 966.29 10.365 -0.0122 98.150 1335.3 93.208 -19.536 50700
EL2 10.231 964.60 4.5411 -0.0108 83.471 188.71 28.967 -17.038 38025
EL1 16.093 1240.6 7.9964 -487.39 42.714 164.03 114.24 -459.25 25350

EL4Case 1 10.258 966.36 7.0794 0.0014 96.679 1389.3 71.700 -5.9661 114075
EL4Case 2 10.258 966.38 10.466 -0.0063 97.009 1389.5 89.699 -11.812 114075
EL3Case 1 10.258 966.34 7.0789 0.0013 96.338 1376.4 43.807 -11.728 88725
EL3Case 2 10.258 966.37 9.9672 -0.0077 97.122 1331.9 99.761 -10.802 88725
EL2Case 1 10.258 966.33 8.0746 0.0031 94.629 1224.0 121.26 -11.109 63375
EL2Case 2 10.258 966.29 9.0002 -0.0176 95.508 1029.8 55.725 -20.599 63375
EL1Case 1 12.203 1042.9 2.4285 491.28 72.269 211.32 -12.328 435.51 38025
EL1Case 2 12.203 918.14 7.6641 0.0229 68.305 44.865 97.018 -40.574 38025

Tc ( Calculated via Fourier Heat conduction Law )

a/h = 100 a/h = 2 DOFs

ŵ σ̂xx σ̂xz σ̂zz ŵ σ̂xx σ̂xz σ̂zz

LW4a [70] 10.25 - 7.069 - 49.09 - 30.11 -
LW4 10.253 965.58 7.0747 0.0014 48.851 486.92 35.171 -13.392 164775
LW1 10.908 892.94 1.8018 492.57 44.174 33.733 -0.5026 344.19 50700
EL3Z 10.253 965.27 7.0443 0.3590 50.086 403.89 55.696 172.60 63375
EL4 10.246 965.47 10.360 -0.0074 49.301 410.42 59.850 -47.521 63375
EL3 10.246 965.17 10.360 0.3815 51.328 446.81 59.474 179.54 50700
EL2 10.224 963.49 4.5384 0.3829 40.880 -317.44 15.166 181.62 38025
EL1 16.083 1239.3 7.9915 -486.69 21.047 -329.45 56.660 -33.581 25350

EL4Case 1 10.252 965.55 7.0750 0.0014 48.741 484.86 35.799 -13.346 114075
EL4Case 2 10.252 965.56 10.460 -0.0064 48.830 446.19 59.176 -30.492 114075
EL3Case 1 10.251 965.51 7.0744 0.0371 48.805 454.55 17.787 85.001 88725
EL3Case 2 10.251 965.46 9.9617 -0.0077 49.179 395.76 62.223 -29.540 88725
EL2Case 1 10.251 965.39 8.0701 -0.3191 48.785 328.05 72.670 -224.56 63375
EL2Case 2 10.251 965.16 8.9953 0.3402 48.871 258.99 37.141 156.37 63375
EL1Case 1 12.195 1041.7 2.4268 491.28 34.834 -208.92 -3.5914 353.85 38025
EL1Case 2 12.195 917.08 7.6599 0.3808 32.350 -426.20 53.745 144.06 38025
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Figure 9.47: Three-layered plate, transverse mechanical displacement ŵ, a/h = 100 (a),
a/h = 2 (b).
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Figure 9.48: Three-layered thin plates a/h = 100, transverse shear and normal stresses, σ̂xz
(a), σ̂zz (b).
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Figure 9.49: Three-layered thick plates a/h = 2, in-plane stress σ̂xx, Ta assumed linear (a),
Tc calculated via Fourier heat law (b).

9.3.2 Ten-layer cylindrical panel

A ten-layer cross-ply cylindrical shell panel with cross-ply composite layers with lamination
[0◦/90◦]5 and simply-supported boundary condition is considered. The Carbon-Epoxy mate-
rial constants of the shell panel are taken from [20, 22], the values are expressed in terms of
ratios of the longitudinal and transversal fiber directional properties : E1

E2
= 25, 0 ; E2 = E3 ;

G12
E2

= 0, 5 ; G23
E2

= 0, 2 ; G12 = G13 ; ν12 = ν13 = ν23 = 0, 25 ; α2
α1

= 3, 0 ; α1 = α3 ; K1
K2

= 36,42
0,96

; K2 = K3. The geometrical dimensions are: a = b = 1, 0 and htotal = 0, 1. The temperature
boundary conditions are: θ̂top = +0, 5, θ̂bottom = −0, 5. The results are presented for different
radius to length side ratios R/a = 5; 10; 50. The deflections and stresses are presented in the
following dimensionless forms:

ŵ =
w

α1θ1b2
σ̂i,j =

σi,j
E2α1θ1

where θ1 = 1. The adopted mesh is the same of the previous numerical example. Due to the
symmetry of both the geometry and load, a quarter of the cylindrical shell panel is analyzed,
see Figure 9.50, with a corresponding mesh grid of 16 × 16 elements. The corresponding
thermal load, using the symmetry conditions, is defined as follows:

θ(α, β, z) = θ̂(z) cos
(mπα

a

)
cos

(
nπβ

b

)
(9.10)

where m = n = 0, 5. The symmetry condtions and the boundary conditions are defined as
follows:

uτ (α, β) = uτ (a/2, β) = 0

vτ (α, β) = vτ (α, b/2) = 0

uτ (α, β) = uτ (α, b) = 0

vτ (α, β) = vτ (a, β) = 0

wτ (α, β) = wτ (α, b) = 0

wτ (α, β) = wτ (a, β) = 0

(9.11)
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Figure 9.50: Reference system of the quarter of the composite cylindrical shell panel
with symmetry condition applied.

The effect of the shell curvature on the temperature profile along the thickness of the
multilayered cylindrical panel is given in Figure 9.51 for different radius to length ratios R/a.
It has to be noticed that the curvature radius has no relevant influence on the approximation
of the temperature load; as mentioned about the plate temperature profile discussion, the
aspect ratio a/h shows the principal effect. It is preferable to use a calculated temperature
profile to avoid to overestimate the temperature load.
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Figure 9.51: Ten-layered cylindrical shell panel. Temperature Profiles Comparison.

Different Variable Kinematic models, via the Legendre polynomials, have been used to
perform the analysis of the shell structures. The acronyms have been modified adding a
subscript to them, for the sake of clarity the list of subscripts is given below:

• Case1 = {layer1} {layer2, layer3, layer4, layer5, layer6, layer7, layer8, layer9} {layer10}

• Case2 = {layer1} {layer2} {layer3, layer4, layer5, layer6, layer7, layer8} {layer9} {layer10}

• Case3 = {layer1} {layer2} {layer3, layer4} {layer5, layer6} {layer7, layer8} {layer9} {layer10}
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• Case4 = {layer1} {layer2, layer3} {layer4} {layer5, layer6} {layer7} {layer8, layer9} {layer10}

The results are listed in Table 9.24 for various radius to length side ratios R/a, and the degrees
of freedom DOFs are indicated for a quarter of the considered structure. The present FEs
results are compared with an equivalent single layer model with cubic expansion in the z
direction named HOST12 [20], and with an higher order shear deformation theory named
HSDT [22]. The transverse displacement ŵ and the in-plane stress σ̂αα show small accuracy
differences for the considered cases R/a, see Table 9.24, this is due to the fixed aspect ratio
a/h = 10. The difference of the variables magnitude is due to the different description of
the temperature profile, assumed linear profile for the upper part of the table results Ta and
calculated solving the Fourier heat conduction equations for the lower part of the table results
Tc.
The behavior of the transverse shear stress σ̂αz along the thickness is not simple to well
describe; for example for the assumed linear temperature profile Ta, the full equivalent-
single-layer model EL4 is not able to perform the discontinuous nature of the shear stress
along the thickness, see Figure 9.52a. The Variable-Kinematic model EL4Case2 and EL4Case3
show different level of accuracy respect to the full layer-wise solution LW4, meanwhile the
model EL4Case4 seems to describe well the shear stress along the thickness with small loss
of accuracy in the layers with an ESL description and with a regardable −29, 27% DOFs
reduction respect to the full layer-wise solution LW4, see Figure 9.52b.
As already mentioned for the shear stress, the description of the transverse normal stress
σ̂zz is not simple to perform too. For example, for the calculated temperature profile Tc, see
Figure 9.53a, the full equivalent-single-layer EL4 model is not sufficient to correctly describe
the stress profile along the thickness. Relevant improvements of the solution accuracy are
shown by the Variable-Kinematic model EL4Case2 and EL4Case3. These Variable-Kinematic
models permit to have noticeable reduction of the computational cost in terms of degrees of
freedom; for example a −29, 27% DOFs reduction respect to the full layer-wise solution LW4
is obtained by the model EL4Case4, see Figure 9.53b, with very small loss in the solution
accuracy in the layers with an ESL description.
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Table 9.24: Ten-layer composite cylindrical shell panel with lamination [0◦/90◦]5. Me-
chanical variables described by Mono-models and Variable kinematic models for vari-
ous radius to length side ratios R/a. Evaluation position for transverse displacement
ŵ(x, y, z) = ŵ(a/2, b/2, 0), in-plane stress σ̂αα(x, y, z) = σ̂αα(a/2, b/2,+h/2), transverse

shear stress σ̂αz(x, y, z) = 10 × σ̂αz(a, b/2,+
2

5
h), transverse normal stress σ̂zz(x, y, z) =

102 × σ̂zz(a/2, b/2, 0).

Ta ( Assumed Linear )

R/a = 50 R/a = 5 DOFs

ŵ σ̂αα σ̂αz σ̂zz ŵ σ̂αα σ̂αz σ̂zz

HOST12 [20] 1.0325 - - - 1.0224 - - -
HSDT [22] 1.0332 - - - 1.0216 - - -

LW4 1.0306 -0.9823 0.1368 0.0263 1.0207 -0.9789 0.1651 0.2817 133947
LW1 1.0306 -1.0023 0.0188 8.0403 1.0207 -0.9990 0.0448 8.3176 35937
EL3Z 1.0302 -0.9825 0.1123 0.0190 1.0205 -0.9792 0.1226 0.2852 16335
EL4 1.0301 -0.9827 0.1064 0.0038 1.0210 -0.9794 0.1383 0.2660 16335
EL3 1.0301 -0.9825 0.1079 0.0037 1.0210 -0.9792 0.1386 0.2660 13068
EL2 1.0271 -0.9851 -0.0207 -0.0037 1.0186 -0.9810 0.0275 0.1826 9801
EL1 1.0656 -1.1649 0.0016 0.0162 1.0575 -1.1611 0.0481 0.4828 6534

EL4Case 1 1.0303 -0.9825 0.0974 0.0033 1.0211 -0.9790 0.1116 0.2677 42471
EL4Case 2 1.0304 -0.9824 0.1369 0.0042 1.0211 -0.9789 0.1651 0.2669 68607
EL4Case 3 1.0306 -0.9823 0.1368 0.0042 1.0208 -0.9789 0.1651 0.2650 94743
EL4Case 4 1.0306 -0.9823 0.1500 0.0043 1.0208 -0.9789 0.1883 0.2651 94743
EL1Case 1 1.0499 -0.9934 0.0050 0.0108 1.0413 -0.9899 0.0577 0.4065 13068
EL1Case 2 1.0402 -0.9990 0.0075 0.0101 1.0311 -0.9956 0.0337 0.3525 19602
EL1Case 3 1.0314 -1.0023 0.0190 0.0048 1.0222 -0.9989 0.0451 0.2773 26136
EL1Case 4 1.0315 -1.0019 0.0111 0.0049 1.0222 -0.9985 0.0555 0.2766 26136

Tc ( Calculated via Fourier Heat conduction Law )

R/a = 50 R/a = 5 DOFs

ŵ σ̂αα σ̂αz σ̂zz ŵ σ̂αα σ̂αz σ̂zz

LW4 0.9706 -1.0226 0.1443 0.0198 0.9613 -1.0194 0.1708 0.2155 133947
LW1 0.9707 -1.0498 0.0343 6.6928 0.9613 -1.0465 0.0588 6.9191 35937
EL3Z 0.9698 -1.0377 0.1231 0.6375 0.9606 -1.0344 0.1329 0.8491 16335
EL4 0.9699 -1.0231 0.1288 0.0141 0.9613 -1.0198 0.1587 0.2372 16335
EL3 0.9697 -1.0388 0.1198 0.0137 0.9611 -1.0355 0.1489 0.2223 13068
EL2 0.9654 -1.0428 -0.0702 0.0105 0.9573 -1.0388 -0.0246 0.1826 9801
EL1 1.0018 -1.2114 0.0015 0.0311 0.9941 -1.2078 0.0451 0.4673 6534

EL4Case 1 0.9698 -1.0228 0.1254 0.0130 0.9611 -1.0195 0.1386 0.2269 42471
EL4Case 2 0.9698 -1.0228 0.1444 0.0130 0.9610 -1.0195 0.1709 0.2197 68607
EL4Case 3 0.9705 -1.0226 0.1443 0.0112 0.9613 -1.0194 0.1709 0.2128 94743
EL4Case 4 0.9706 -1.0226 0.1582 0.0113 0.9613 -1.0194 0.1942 0.2130 94743
EL1Case 1 0.9869 -1.0420 -0.0098 0.0247 0.9787 -1.0386 0.0398 0.3828 13068
EL1Case 2 0.9780 -1.0471 0.0249 0.0212 0.9694 -1.0438 0.0494 0.3176 19602
EL1Case 3 0.9705 -1.0500 0.0349 0.0133 0.9618 -1.0467 0.0594 0.2287 26136
EL1Case 4 0.9712 -1.0494 0.0185 0.0145 0.9624 -1.0461 0.0603 0.2287 26136
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Figure 9.52: Ten-layered cylindrical shell panel R/a = 50, transverse shear stress σ̂αz, Ta
assumed linear.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ
-

zz

z

LW4 Tc

EL4 Tc

EL4Case2 Tc

EL4Case3 Tc

(a)

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ
-

zz

z

LW4 Tc

EL4 Tc

EL4Case4 Tc

(b)

Figure 9.53: Ten-layered cylindrical shell panel R/a = 5, transverse normal stress σ̂zz, Tc
calculate via Fourier heat conduction law.

9.3.3 Sandwich composite spherical panel

A sandwich spherical shell panel with cross-ply composite skins with lamination
[0◦/90◦/Core/90◦/0◦] and simply-supported boundary condition is considered. The physical
properties of the sandwich spherical panel are taken from [20, 100]. The material constants
of the Carbon-Epoxy skins are: E1 = 172, 37GPa ; E2 = E3 = 6, 89GPa ; G12 = G13 =
3, 45GPa ; G23 = 1, 38GPa ; ν12 = ν13 = ν23 = 0, 25 ; α1 = α3 = 0, 1 × 10−5 1

◦C ;
α2 = 2, 0 × 10−5 1

◦C ; K1 = 36, 42W/(m ◦C) ; K2 = K3 = 0, 96W/(m ◦C). The mate-
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rial properties of the Honeycomb soft core are: E1 = E2 = 0, 28GPa ; E3 = 3, 45GPa ;
G12 = 0, 11GPa ; G13 = G23 = 0, 41GPa ; ν12 = ν13 = ν23 = 0, 02 ; α1 = α3 = 0, 1×10−6 1

◦C
; α2 = 2, 0 × 10−6 1

◦C ; K1 = 3, 642W/(m ◦C) ; K2 = K3 = 0, 096W/(m ◦C). The geomet-
rical dimensions are: a = b = 1, 0; the core thickness is hcore = 0, 8 × htotal and each skin is
hskin = 0, 05×htotal. The temperature boundary conditions are: θ̂top = +0, 5, θ̂bottom = −0, 5.
The results are presented for different radius to length side ratios R/a = 5; 20 and different
aspect ratios a/h = 4; 100. The deflections and stresses are presented in the following dimen-
sionless forms:

ŵ =
w

α1θ1b2
σ̂i,j =

σi,j
E2α1θ1

where θ1 = 1, E2 and α1 are the properties of the composite skins. The adopted mesh is the
same of the previous numerical example. Due to the symmetry of both the geometry and
load, a quarter of the spherical shell panel is analyzed, see Figure 9.54, with a corresponding
mesh grid of 16× 16 elements. The corresponding thermal load and boundary conditions are
the same of previous numerical example.

Figure 9.54: Reference system of the quarter of the sandwich spherical shell panel
with symmetry condition applied.

The description of the temperature profile along the thickness of the sandwich spherical
panel is discussed for different radius to length ratios R/a and aspect ratios a/h. It has
to be noticed that for thin shells, see Figure 9.55a, the calculated temperature profile is far
from the linear one, and differently from the previous numerical example the linear profile
is underestimating the temperature load. For thick shells, see Figure 9.55b, the calculated
profile has a non-linear behavior along the thickness direction, the linear profile is both
underestimating and overestimating the temperature load in different part of the multilayered
structure. Looking at the results of the thick sandwich spherical shells, the global effect is
that the linear profile is underestimating the temperature load. For both the thin and thick
shells the radius to length ratios R/a is not showing any relevant effect on the calculated
temperature profiles.
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Figure 9.55: Five-layered sandwich spherical shell panel. Temperature Profiles Comparison.
a/h = 100 (a), a/h = 4 (b)

Different Variable Kinematic models, via the Legendre polynomials, have been used to
perform the analysis of the shell structures. The acronyms have been modified adding a
subscript to them, for the sake of clarity the list of subscripts is given below:

• Case1 = {layer1} {layer2, layer3, layer4} {layer5}

• Case2 = {layer1, layer2} {layer3, layer4, layer5}

• Case3 = {layer1, layer2} {layer3} {layer4, layer5}

The results are listed in Table 9.25 with a temperature profile assumed linear Ta for various
radius to length side ratios R/a and various aspect ratios a/h, and the degrees of freedom
DOFs are indicated for a quarter of the considered structure. The present FEs results
are compared with an equivalent single layer model with cubic expansion in the z direction
named HOST12 [20], and with two analytical models, a layer-wise theory of the fourth order
named LW4a [100] and an equivalent-single-layer theory of the fourth order with Taylor
polynomials named ET4a [100]. Therefore the temperature profile calculated solving the
Fourier heat conduction equations Tc is evaluated and the results are presented in Table 9.26
for various radius to length side ratios R/a and various aspect ratios a/h. The following
considerations can be drawn:

• Regarding the transverse displacement w, for thin plates a/h = 100, the theories
EL4,Case1 and EL4,Case2 lead an improvement of the solution respect to the EL4,
and the model EL4,Case3 show the same accuracy of the full layer-wise solution LW4
with a reduction of −38, 1 % DOFs respect the LW4 theory, see Figure 9.56a. The
same comments can be drawn for both the temperature assumed linear cases Ta and
for the temperature calculated via the Fourier heat conduction law Tc. For thick plates
a/h = 2, the description of the transverse displacement is well drawn only by EL4,Case3
that show an accuracy very close to the full layer-wise solution LW4, see Figure 9.56b.

• For the in-plane stress σαα no relevant differences can be appreciated between all the
presented models.
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• Regarding the transverse shear stress σαz, the variable kinematic model EL4,Case1
improves the results respect to the EL4 theory only in the layer with a layer-wise
description, see Figure 9.57a. The theories EL4,Case3 can improve the results along the
whole thickness with some errors in the description of the composite skins, see Figure
9.57b.

• For the transverse normal stress σzz, the variable kinematic model EL4,Case1 improves
the results respect to the EL4 theory only in the layer with a layer-wise description,
see Figure 9.58a. The theories EL4,Case3 has the same accuracy of the full layer-wise
solution along the whole thickness of the spherical sandwich panel, see Figure 9.58b.
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Table 9.25: Five-layer sandwich spherical shell panel with lamination [0◦/90◦/Core/90◦/0◦].
Mechanical variables described by Mono-models and Variable kinematic models for various ra-
dius to length side ratiosR/a and various aspect ratios a/h. Evaluation position for transverse
displacement ŵ(x, y, z) = ŵ(a/2, b/2, 0), in-plane stress σ̂αα(x, y, z) = σ̂αα(a/2, b/2,+h/2),

transverse shear stress σ̂αz(x, y, z) = 10 × σ̂αz(a, b/2,+
9

20
h), transverse normal stress

σ̂zz(x, y, z) = 102 × σ̂zz(a/2, b/2, 0). The temperature profile is assumed linear Ta.

a/h = 100

R/a = 20 R/a = 5 DOFs

ŵ σ̂αα σ̂αz σ̂zz ŵ σ̂αα σ̂αz σ̂zz

HOST12 [20] 1.6614 - - - 0.7332 - - -
LW4 1.6296 6.9442 -0.1049 0.0165 0.7178 -3.1483 0.0603 0.2818 68607
LW1 1.6298 6.9005 -0.0431 0.0172 0.7179 -3.1968 0.0419 0.2837 19602
EL3Z 1.6619 7.0796 -0.0209 0.3365 0.7333 -3.2259 0.2987 0.8667 16335
EL4 1.6387 7.2355 -0.0405 0.3199 0.7223 -2.8967 0.3029 0.8617 16335
EL3 1.6620 7.0788 -0.0424 0.3135 0.7334 -3.2272 0.3057 0.8269 13068
EL2 1.6623 7.0792 -0.0015 -0.5764 0.7349 -3.2468 0.7680 -0.8356 9801
EL1 1.7362 7.4627 0.0282 -0.5819 0.7711 -3.3300 0.8482 -0.7890 6534

EL4Case 1 1.6378 7.0512 -0.1065 0.2951 0.7219 -3.0907 0.0596 0.8051 42471
EL4Case 2 1.6345 6.9486 -0.1335 6.8462 0.7195 -3.1891 0.1277 7.7908 29403
EL4Case 3 1.6296 6.9443 -0.1335 0.0165 0.7178 -3.1483 0.1265 0.2819 42471
EL1Case 1 1.6775 7.5348 -0.0480 -0.3343 0.7418 -2.8316 0.0394 -0.3409 13068
EL1Case 2 1.6696 6.9080 -0.0639 -26.156 0.7337 -3.5591 0.1289 -28.658 9801
EL1Case 3 1.6301 6.8592 -0.0639 0.0172 0.7181 -3.2449 0.1224 0.2837 13068

a/h = 4

R/a = 20 R/a = 5 DOFs

ŵ σ̂αα σ̂αz σ̂zz ŵ σ̂αα σ̂αz σ̂zz

HOST12 [20] 1.7959 - - - 1.7738 - - -
LW4a [100] 1.8259 - - - 1.8059 - - -
ET4a [100] 1.8370 - - - 1.8125 - - -

LW4 1.8254 6.5416 -2.7197 0.1938 1.8052 6.6884 -2.6941 0.7940 68607
LW1 1.8241 6.4558 -1.1339 0.2070 1.8038 6.6040 -1.1245 0.8482 19602
EL3Z 1.7897 6.6392 -1.0356 -0.0284 1.7700 6.7748 -1.0097 -0.0901 16335
EL4 1.8371 6.7068 -1.5927 0.2405 1.8184 6.8654 -1.5633 0.9855 16335
EL3 1.7954 6.6231 -1.6543 -0.0264 1.7759 6.7600 -1.6257 -0.0820 13068
EL2 1.6641 6.2299 -1.1041 0.1285 1.6548 6.3836 -1.0617 0.5291 9801
EL1 1.9033 6.5229 -0.7331 0.5996 1.8922 6.6269 -0.7111 2.4134 6534

EL4Case 1 1.8503 6.6151 -2.7443 0.2290 1.8314 6.7656 -2.7192 0.9378 42471
EL4Case 2 1.8408 6.5387 -3.5575 6.8849 1.8224 6.6884 -3.5236 7.6024 29403
EL4Case 3 1.8236 6.5457 -3.5647 0.1936 1.8034 6.6922 -3.5297 0.7932 42471
EL1Case 1 1.8601 6.7508 -1.2004 0.4221 1.8458 6.9087 -1.1911 1.7059 13068
EL1Case 2 1.7971 6.0653 -1.7360 -24.504 1.7960 6.2311 -1.7219 -23.352 9801
EL1Case 3 1.8109 6.3652 -1.8325 0.2061 1.7910 6.5116 -1.8116 0.8445 13068
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Table 9.26: Five-layer sandwich spherical shell panel with lamination [0◦/90◦/Core/90◦/0◦].
Mechanical variables described by Mono-models and Variable kinematic models for various ra-
dius to length side ratiosR/a and various aspect ratios a/h. Evaluation position for transverse
displacement ŵ(x, y, z) = ŵ(a/2, b/2, 0), in-plane stress σ̂αα(x, y, z) = σ̂αα(a/2, b/2,+h/2),

transverse shear stress σ̂αz(x, y, z) = 10 × σ̂αz(a, b/2,+
9

20
h), transverse normal stress

σ̂zz(x, y, z) = 102 × σ̂zz(a/2, b/2, 0). The temperature profile is calculated via Fourier heat
conduction equation Tc.

a/h = 100

R/a = 20 R/a = 5 DOFs

ŵ σ̂αα σ̂αz σ̂zz ŵ σ̂αα σ̂αz σ̂zz

LW4 1.7822 9.0011 -0.1253 0.0185 0.7850 -2.0364 0.0553 0.3101 68607
LW1 1.7823 9.0037 -0.0550 0.0193 0.7850 -2.0383 0.0379 0.3123 19602
EL3Z 1.8174 9.2487 -0.0317 0.3689 0.8019 -2.0210 0.3178 0.9518 16335
EL4 1.7932 9.4104 -0.0564 0.3509 0.7905 -1.6778 0.3194 0.9461 16335
EL3 1.8174 9.2478 -0.0584 0.3442 0.8020 -2.0224 0.3223 0.9098 13068
EL2 1.8178 9.2492 -0.0167 -0.6303 0.8036 -2.0431 0.8248 -0.9137 9801
EL1 1.8987 9.6691 0.0158 -0.6364 0.8433 -2.1342 0.9125 -0.8628 6534

EL4Case 1 1.7919 9.1278 -0.1272 0.3235 0.7898 -1.9682 0.0544 0.8835 42471
EL4Case 2 1.7879 9.0075 -0.1632 7.3768 0.7870 -2.0835 0.1225 8.4112 29403
EL4Case 3 1.7822 9.0011 -0.1633 0.0185 0.7850 -2.0364 0.1211 0.3101 42471
EL1Case 1 1.8379 9.7435 -0.0607 -0.3653 0.8128 -1.6140 0.0350 -0.3695 13068
EL1Case 2 1.8256 9.0597 -0.0814 -28.720 0.8023 -2.3859 0.1295 -31.455 9801
EL1Case 3 1.7822 9.0053 -0.0813 0.0193 0.7851 -2.0416 0.1224 0.3123 13068

a/h = 4

R/a = 20 R/a = 5 DOFs

ŵ σ̂αα σ̂αz σ̂zz ŵ σ̂αα σ̂αz σ̂zz

LW4 1.8301 6.6442 -2.7929 0.1954 1.8102 6.8325 -2.7774 0.7999 68607
LW1 1.8278 6.5515 -1.1718 0.2127 1.8078 6.7420 -1.1679 0.8704 19602
EL3Z 1.7951 6.7499 -1.0524 -0.0426 1.7756 6.9282 -1.0335 -0.1473 16335
EL4 1.8426 6.8165 -1.6421 0.2351 1.8242 7.0193 -1.6195 0.9630 16335
EL3 1.8010 6.7329 -1.7036 -0.0317 1.7817 6.9141 -1.6818 -0.1037 13068
EL2 1.6760 6.3515 -1.1377 0.1692 1.6667 6.5495 -1.1031 0.6915 9801
EL1 1.9164 6.6461 -0.7640 0.6424 1.9053 6.7943 -0.7475 2.5840 6534

EL4Case 1 1.8572 6.7241 -2.8195 0.2096 1.8385 6.9166 -2.8046 0.8598 42471
EL4Case 2 1.8457 6.6422 -3.6752 6.8694 1.8276 6.8335 -3.6549 7.5752 29403
EL4Case 3 1.8282 6.6485 -3.6822 0.1952 1.8083 6.8365 -3.6608 0.7991 42471
EL1Case 1 1.8723 6.8700 -1.2427 0.4647 1.8580 7.0716 -1.2390 1.8761 13068
EL1Case 2 1.8064 6.1758 -1.8030 -24.714 1.8053 6.3862 -1.7970 -23.479 9801
EL1Case 3 1.8135 6.4685 -1.8977 0.2119 1.7940 6.6587 -1.8846 0.8669 13068
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Figure 9.56: Five-layered sandwich spherical panel transverse displacement ŵ with an as-
sumed linear temperature profile Ta, R/a = 5 and a/h = 100 (a), R/a = 20 and a/h = 4
(b)
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Figure 9.57: Five-layered sandwich spherical panel transverse shear stress σ̂αz with an as-
sumed linear temperature profile Ta, R/a = 5 and a/h = 100.
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Figure 9.58: Five-layered sandwich spherical panel transverse normal stress σ̂zz with an
assumed linear temperature profile Ta, R/a = 5 and a/h = 100.
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9.4 Electro-Mechanical Analysis Results

In this section, the static electro-mechanical analysis of plate and shell structures are per-
formed to assess the variable-kinematics mixed ESL/LW plate/shell element. To study the
effectiveness of the proposed approach some reference problems were considered. The follow-
ing composite multilayered plates and shell with piezoelectric skins have been analyzed:

• A four-layer square plate with a cross-ply composite core [0◦/90◦] and piezoelectric
external skins

• A three-layer cylindrical shell with a composite core and piezoelectric external skins

• A four-layer cylindrical shell with a cross-ply composite core [90◦/0◦] and piezoelectric
external skins

Wherever possible, solutions from variable-kinematic models are compared with those from
higher-order ESL models, LW models, and analytical results.

9.4.1 Four-layer plate

A four-layer cross-ply square plate, see Figure 9.59, with a cross-ply Gr/Ep composite core
[0◦/90◦] and PZT-4 piezoelectric external skins, simply-supported boundary condition is con-
sidered. The static analysis of the plate structure is evaluated in sensor and actuator config-
uration.

Figure 9.59: Reference system of the composite plate with piezoelectric
skins.

For the sensor case, a bi-sinusoidal transverse normal pressure is applied to the top surface
of the plate:

p (x, y, ztop) = poz sin(mπx/a)sin(nπy/b) (9.12)

with amplitude poz = 1 and wave numbers m = 1, n = 1. The potential at top and bottom
position is imposed Φt = Φb = 0.
For the actuator case, a bi-sinusoidal electric potential is imposed at top surface:

Φ (x, y, ztop) = φoz sin(mπx/a)sin(nπy/b) (9.13)

with amplitude φoz = 1 and wave numbers m = 1, n = 1. The potential at bottom position
is imposed Φb = 0. No mechanical load is applied.
In respect to the total thickness, a single piezoelectric skin is thick hp = 0.1htot, while the
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single core layer is thick hc = 0.4htot. The material properties of the plate are given in Table
9.27.

Table 9.27: Material data for multilayered plate and shell.

Properties PZT-4 Gr/EP

E11 [GPa] 81.3 132.38
E22 [GPa] 81.3 10.756
E33 [GPa] 64.5 10.756
ν12 [−] 0.329 0.24
ν13 [−] 0.432 0.24
ν23 [−] 0.432 0.49
G12 [GPa] 30.6 5.6537
G13 [GPa] 25.6 5.6537
G23 [GPa] 25.6 3.606
e15 [C/m2] 12.72 0
e24 [C/m2] 12.72 0
e31 [C/m2] -5.20 0
e32 [C/m2] -5.20 0
e33 [C/m2] 15.08 0
ε̃11/ε0 [−] 1475 3.5
ε̃22/ε0 [−] 1475 3.0
ε̃33/ε0 [−] 1300 3.0
ε0 [C/V m] 8.85 ∗ 10−12 8.85 ∗ 10−12

The results are calculated for different thickness ratios a/h = 2, 100, and they are evalu-
ated in the following positions with the following form for the sensor cases:
ŵ(x, y, z) = w(a/2, b/2, 0) ∗ 1011 , σ̂xx(x, y, z) = σxx(a/2, b/2,+h/2)
σ̂xz(x, y, z) = σxz(a, b/2, 0) , σ̂zz(x, y, z) = σzz(a/2, b/2,+h/2)
Φ̂(x, y, z) = Φ(a/2, b/2, 0) ∗ 103 , D̂z(x, y, z) = Dz(a/2, b/2,+h/2) ∗ 109

For the actuator cases the variables are evaluated in the same way as the sensor cases, except
for the electric potential:
Φ̂(x, y, z) = Φ(a/2, b/2, 0)
First, a convergence study on the plate element was performed. A composite plate with
thickness ratios a/h = 100 is evaluated. For the sensor case a mesh grid of 40× 40 elements
ensures the convergence of both the mechanical and electrical variables except for the trans-
verse electric displacement Dz that has a very slow convergence rate. For the actuator case
a mesh grid of 24× 24 elements ensures the convergence for all the variables, see Table 9.28.
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Table 9.28: Convergence study. Composite four layered plate with thickness ratio a/h = 100.

Sensor Case

Mesh 4× 4 8× 8 12× 12 16× 16 20× 20 24× 24 28× 28 32× 32 36× 36 40× 40 Analytical [46]

LW4

ŵ 4678433 4675324 4675148 4675117 4675109 4675106 4675104 4675104 4675104 4675103 4675300
σ̂xx 3302.4 3182.6 3160.1 3152.3 3148.7 3146.7 3145.5 3144.7 3144.2 3143.8 3142.1
σ̂xz -20.154 -19.167 -18.975 -18.909 -18.879 -18.863 -18.854 -18.849 -18.845 -18.842 -18.832
σ̂zz 18.210 2.306 1.284 1.101 1.047 1.025 1.015 1.009 1.006 1.003 -
Φ̂ 4780.7 4636.5 4605.7 4594.6 4589.5 4586.7 4585.1 4584.1 4583.5 4583.0 4580.2
D̂z -1.2691 -0.1006 -0.0307 -0.0193 -0.0165 -0.0154 -0.0149 -0.0144 -0.0140 -0.0136 0.0136

Actuator Case

Mesh 4× 4 8× 8 12× 12 16× 16 20× 20 24× 24 Analytical [46]

LW4

ŵ -1.3486 -1.3492 -1.3493 -1.3493 -1.3493 -1.3493 -1.3493
σ̂xx -0.0238 -0.0244 -0.0245 -0.0245 -0.0246 -0.0246 -0.0246
σ̂xz 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σ̂zz 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 -
Φ̂ 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
D̂z -0.0370 -0.0370 -0.0370 -0.0370 -0.0370 -0.0370 -0.0370

Therefore a locking study has been performed evaluating different types of integration
methods [115] for the same plate structure to prove that the element is locking free, see Table
9.29. The plate element with the MITC9 method ensures accuracy on both the transverse
displacement and the shear stress.

Table 9.29: Locking study. Composite four layered plate with thickness ratio a/h = 100. The
Sensor cases are computed with a mesh of 40×40 elements, the Actuator cases are computed
with a mesh of 24× 24 elements.

Sensor Case Actuator Case

Reduced Selective MITC9 Analytical [46] Reduced Selective MITC9 Analytical [46]

LW4

ŵ 4675103 4675003 4675103 4675300 -1.3493 -1.3496 -1.3493 -1.3493
σ̂xz -23.096 -22.018 -18.842 -18.832 0.0000 0.0000 0.0000 0.0000
Φ̂ 4581.9 4582.7 4583.0 4580.2 0.4999 0.4999 0.4999 0.4999
D̂z -0.1511 0.0340 -0.0136 0.0136 -0.0366 -0.0370 -0.0370 -0.0370

An assessment of the Legendre polynomials with a full ESL approach has been performed
for the pure mechanical case in [158] for plates and in [159] for shells. All the results presented
in [158,159], for thick and thin plates and shells, show that the Legendre polynomials lead to
the same results of the Taylor polynomials. The use of either polynomial is invariant respect
to the solution accuracy.
Hereafter Legendre polynomials have been employed for the structure analyzes. Different
Variable Kinematic models have been used to perform the analysis of the plate structures,
see Figure 9.60. The acronyms have been modified adding a subscript to them, for the sake
of clarity the list of subscripts is given below:

• Case1 = {layer1} {layer2, layer3, layer4}

• Case2 = {layer1, layer2, layer3} {layer4}

• Case3 = {layer1} {layer2, layer3} {layer4}
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Figure 9.60: Variable Kinematic Cases. Compact example of assembling
scheme.

The results are listed in Table 9.30 for the sensor case, and in Table 9.31 for the actuator
case. For the plate structures analysed the following considerations can be drawn for the
sensor cases:

• Regarding the transverse displacement w, for thin plates a/h = 100, the theories
EL4,Case1, EL4,Case2 and EL4,Case3 lead an improvement of the solution respect to
the EL4 without appreciable differences whithin them, see Figure 9.61a. For thick
plates a/h = 2, the variable kinematic theories show different levels of accuracy. The
EL4,Case3 theory is able to approximate very well the full layer-wise reference solution
LW4. It has to be noticed that the EL4,Case1 theory has a better behaviour than the
EL4,Case2 theory due to the layer-wise approximation of the upper loaded layer, see
Figure 9.61b.

• For both the transverse shear stress σxz, see Figure 9.62a, and the transverse normal
stress, see Figure 9.62b, the theories EL4,Case1 and EL4,Case2 improve the results
respect to the EL4 theory only in the layer with a layer-wise description. The EL4,Case3
theory is able to approximate very well along the entire thickness of the plate the full
layer-wise reference solution LW4.

• Regarding the electric potential Φ, for thin plates a/h = 100, the theories EL4,Case1,
EL4,Case2 and EL4 theories overestimate the reference solution, see Figure 9.63a. For
thick plates a/h = 2, the variable kinematic theories can underestimate and overesti-
mate the solution, see Figure 9.63b. For both thin and thick plates only the EL4,Case3
theory is able to approximate very well the full layer-wise reference solution LW4.

• For the electric transverse displacement Dz, for both thin plates a/h = 100, see Figure
9.64a, and thick plates a/h = 2, see Figure 9.64b, the theories EL4,Case1 and EL4,Case2
improve the results respect to the EL4 theory only in the layer with a layer-wise de-
scription. The EL4,Case3 theory is the best approximating theory respect to the full
layer-wise reference solution LW4.

For the plate structures analysed in actuator configuration, the following considerations can
be drawn:
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• Regarding the transverse displacement w, for thin plates a/h = 100, the variable kine-
matic theories show different levels of accuracy, see Figure 9.65a, the EL4,Case3 solution
is closer than EL4,Case1 and EL4,Case2 theories to the full layer-wise reference solution
LW4. For thick plates a/h = 2 the EL4,Case1 and EL4,Case3 theories are able to
approximate very well the full layer-wise reference solution LW4, see Figure 9.65b.

• For both the transverse shear stress σxz, see Figure 9.66a, and the transverse normal
stress, see Figure 9.66b, the same considerations as the sensor cases can be depicted.
The theories EL4,Case1 and EL4,Case2 improve the results respect to the EL4 theory
only in the layer with a layer-wise description. The EL4,Case3 theory is able to ap-
proximate very well along the entire thickness of the plate the full layer-wise reference
solution LW4.

• Regarding the electric potential Φ, for thin plates a/h = 100, see Figure 9.67a, the the-
ories EL4,Case1, EL4,Case2 and EL4 theories can underestimate and overestimate the
solution in the central composite layers. The EL4,Case3 theory is able to approximate
very well the full layer-wise reference solution LW4.

• For the electric transverse displacement Dz, for thick plates a/h = 2, see Figure 9.67b,
the theories EL4,Case1 and EL4,Case2 improve the results respect to the EL4 the-
ory only in the layer with a layer-wise description. The EL4,Case3 theory is the best
approximating theory respect to the full layer-wise reference solution LW4.

Therefore, the euclidean norm of the error of primary variables ( mechanical displace-
ments, and eletric potential ), and secondary variables ( mechanical stresses, and electric dis-
placements ), is evaluated along the plate thickness by mono-models and variable-kinematic
models, respect to the adopted reference solution ref = LW4. The euclidean norm of the
error ‖fE‖2 is calculated for a generic mechanical or electric variables f along the plate
thickness z as follows:

‖fE‖2 =

√∫ z2

z1

(fref (z)− f(z))2 dz (9.14)

for a multilayered structure, the integral is splitted, along the thickness direction z, in the
integral sum of each layer k. Equation 9.14 changes into:

‖fE‖2 =

√√√√Nlayers∑
k=1

∫ zk2

zk1

(
fkref (z)− fk(z)

)2
dzk (9.15)

The euclidean norms are listed in Table 9.32 for various aspect ratios, and both sensor and
actuator case are taken into account. Here, the norm is a global indicator of the solution
accuracy along the multilayer thickness, it is not distinguishing the local layer approximation.
For the Sensor case ( mechanical load applied ), the mechanical variables have almost the
same solution accuracy independently of the used kinematic model. The variable-kinematic
model Case 3, where the piezoelectric skins have to be modeled by a layer-wise description,
permits to have an huge reduction of the error

(
103 : 104 times

)
respect to the others mono-

models and variable-kinematic models, for the description of the electric potential Φ, and
for the electric transverse displacement Dz. For the Actuator case ( electrical load applied
), the variable-kinematic model Case 3, where the piezoelectric skins have to be modeled by
a layer-wise description, permits to have better results for both mechanical and electrical
variables. The mechanical variables show an error reduction of

(
103 : 105 times

)
respect to

the other kinematic models. The accuracy of the electric variables is improved more than
mechanical ones, the error is

(
103 : 108 times

)
lower than the other kinematic models.

For the multilayered plate structures, in conclusion, it is clear that to have more accurate
results, the piezoelectric skins have to be modeled by a layer-wise description. The Variable-
Kinematic model permits to improve globally the results, and at the same time permits

229



CHAPTER 9. VARIABLE KINEMATIC MIXED ESL/LW

to reduce the computational cost of the analysis, assembling the composite core with an
equivalent-single-layer model.

Table 9.30: Four-layer square plate with a cross-ply composite core [0◦/90◦] and piezoelectric
external skins. Mechanical and electrical variables described by Mono-models and Variable
kinematic models for various aspect ratios a/h. Sensor case.

a/h = 100 DOFs

ŵ σ̂xx σ̂xz σ̂zz Φ̂ D̂z
LW4a [46] 4675300 3142.1 -18.832 - 4580.2 0.0136
LW4 4675103 3143.8 -18.842 1.004 4583.0 -0.0136 446148
LW1 4647068 3268.7 -18.909 342.0 4555.3 -23.863 131220
EL3Z 4674435 3142.2 -26.188 43.85 6967.9 -21.051 131220
EL4 4674758 3133.9 -27.238 -37.15 12122 7.9569 131220
EL3 4674453 3153.0 -26.719 23.08 12658 -1.5890 104976
EL2 4669551 3152.5 -10.677 23.56 12660 -1.0612 78732
EL1 3719168 3657.9 -10.203 2727 0.0000 -190.38 52488

EL4Case 1 4674882 3143.9 -25.668 1.004 9320.7 0.2112 236196
EL4Case 2 4674874 3141.3 -25.386 -19.59 9308.7 6.5076 236196
EL4Case 3 4674870 3143.8 -24.713 1.004 4582.9 -0.0135 341172
EL3Case 1 4674914 3144.0 -26.972 1.004 10412 0.3304 183708
EL3Case 2 4674905 3151.0 -25.839 -38.11 10396 23.176 183708
EL3Case 3 4674740 3143.8 -24.463 1.004 4582.8 -0.0135 262440
EL2Case 1 4673789 3143.2 -17.418 1.029 12620 0.3017 131220
EL2Case 2 4673770 3159.6 -21.524 38.19 12613 -2.8657 131220
EL2Case 3 4674702 3143.8 -23.057 1.029 4582.7 -0.0139 183708
EL1Case 1 4405952 3105.1 -14.014 324.3 2521.9 14.873 78732
EL1Case 2 4405007 3483.4 -14.290 1742 2522.2 -360.17 78732
EL1Case 3 4560604 3214.1 -22.118 335.6 4472.9 -23.419 104976

a/h = 2 DOFs

ŵ σ̂xx σ̂xz σ̂zz Φ̂ D̂z
LW4a [46] 4.9113 3.2207 -0.26995 - 0.9103 0.0256
LW4 4.9112 3.2220 -0.27556 1.0002 0.9106 0.0257 446148
LW1 4.8087 3.5198 -0.31619 2.1220 0.8600 -0.0663 131220
EL3Z 4.3973 3.3894 -0.45298 1.5681 23.803 -0.0579 131220
EL4 4.5038 2.3684 -0.46102 -0.3149 -6.0143 -0.0938 131220
EL3 4.6282 3.1386 -0.45210 1.6818 2.9967 -0.1295 104976
EL2 2.9334 2.3985 -0.19243 2.1722 4.1979 0.3281 78732
EL1 2.8907 2.1141 -0.19247 2.4231 0.0000 0.1730 52488

EL4Case 1 4.6885 3.1302 -0.42763 1.0002 2.4015 0.0252 236196
EL4Case 2 4.7123 2.4890 -0.40574 -0.4832 -9.0305 0.0531 236196
EL4Case 3 4.8731 3.2003 -0.40012 1.0002 0.9037 0.0256 341172
EL3Case 1 4.6374 3.1506 -0.45238 1.0048 4.1069 0.0255 183708
EL3Case 2 4.6556 3.0310 -0.44481 0.8657 -10.643 -0.0182 183708
EL3Case 3 4.8779 3.1923 -0.40117 1.0050 0.9049 0.0258 262440
EL2Case 1 4.1357 2.5720 -0.30963 1.0249 6.9886 0.0227 131220
EL2Case 2 4.1730 3.0466 -0.32652 2.2611 1.8004 0.0260 131220
EL2Case 3 4.8895 3.1797 -0.39916 1.0325 0.8674 0.0272 183708
EL1Case 1 4.2378 3.1781 -0.29120 1.8672 0.8329 0.0204 78732
EL1Case 2 3.2987 1.8259 -0.24482 2.0088 1.0888 0.1602 78732
EL1Case 3 5.0470 3.2388 -0.40237 2.0573 1.4450 -0.0620 104976
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Table 9.31: Four-layer square plate with a cross-ply composite core [0◦/90◦] and piezoelectric
external skins. Mechanical and electrical variables described by Mono-models and Variable
kinematic models for various aspect ratios a/h. Actuator case.

a/h = 100 DOFs

ŵ σ̂xx σ̂xz σ̂zz Φ̂ D̂z
LW4a [46] -1.3493 -0.0246 0.0000 - 0.4999 -0.0370
LW4 -1.3493 -0.0246 0.0000 0.0000 0.4999 -0.0370 163268
LW1 -1.3970 -0.0210 0.0000 0.0035 0.4999 -0.0353 48020
EL3Z -3.6123 1.8546 -0.0154 -4.8765 0.4969 3.7228 48020
EL4 -3.2153 1.8587 -0.0087 -4.8932 0.5000 3.7332 48020
EL3 -3.1556 1.8607 -0.0117 -4.8929 0.5000 3.7340 38416
EL2 -13.288 -8.2308 0.0186 5.4440 0.5000 -13.546 28812
EL1 -14.415 -8.2361 0.0198 5.4391 0.5000 -13.544 19208

EL4Case 1 -23.806 -0.0362 -0.0002 0.0000 0.3220 -0.0452 86436
EL4Case 2 19.359 0.0934 -0.0046 -0.0148 0.6780 0.0516 86436
EL4Case 3 -1.3493 -0.0246 0.0000 0.0000 0.4999 -0.0370 124852
EL3Case 1 35.698 -0.0417 -0.0002 0.0000 0.2554 -0.0525 67228
EL3Case 2 30.710 0.5397 -0.0140 -1.4381 0.7445 1.0801 67228
EL3Case 3 -1.3492 -0.0246 0.0000 0.0000 0.4999 -0.0370 96040
EL2Case 1 -32.853 -0.0398 -0.0001 0.0000 0.2810 -0.0529 48020
EL2Case 2 23.714 0.6197 0.0102 -1.9831 0.7190 1.3987 48020
EL2Case 3 -1.3492 -0.0246 0.0000 0.0000 0.4999 -0.0370 67228
EL1Case 1 -3744.8 -2.0834 -0.0001 -0.2717 0.5487 -1.6144 28812
EL1Case 2 3725.0 -6.0577 0.0262 10.138 0.4513 -14.470 28812
EL1Case 3 -1.3711 -0.0210 0.0000 0.0035 0.5000 -0.0353 38416

a/h = 2 DOFs

ŵ σ̂xx σ̂xz σ̂zz Φ̂ D̂z
LW4a [46] -1.7475 3.8162 0.0864 - 0.3330 -9.4085
LW4 -1.7475 3.8329 0.0928 0.0006 0.3330 -9.4093 163268
LW1 -2.1030 12.452 0.0215 8.1858 0.3241 -5.2964 48020
EL3Z -1.4360 5.9403 -0.4065 10.264 -1.5893 -8.2244 48020
EL4 -4.4070 10.954 -0.1212 -0.2279 0.5118 -4.0866 48020
EL3 -4.0468 13.687 -0.1547 -0.5378 0.4615 -2.0398 38416
EL2 -12.428 -3.0088 1.0887 7.3130 0.4674 -16.882 28812
EL1 -14.415 -11.286 1.1108 0.6048 0.5000 -14.549 19208

EL4Case 1 -1.6859 3.8635 0.1467 0.0006 0.2387 -9.4124 86436
EL4Case 2 -4.2234 8.0541 0.0733 4.8358 0.6467 -8.9133 86436
EL4Case 3 -1.7323 3.8406 0.1339 0.0006 0.3330 -9.4092 124852
EL3Case 1 -1.7082 3.8931 0.1402 0.0269 0.2076 -9.4088 67228
EL3Case 2 -5.3533 10.947 -0.4043 4.5420 0.7964 -6.1619 67228
EL3Case 3 -1.7510 3.8810 0.1413 0.0268 0.3310 -9.4034 96040
EL2Case 1 -1.2439 4.4452 0.0248 0.0604 0.2687 -9.3855 48020
EL2Case 2 -10.423 7.5934 1.0047 -0.9364 0.6714 -3.6157 48020
EL2Case 3 -1.7733 4.0563 0.0847 0.0549 0.3311 -9.3809 67228
EL1Case 1 -5.3835 8.8014 0.2170 6.9842 0.5340 -6.7681 28812
EL1Case 2 -13.537 -7.9884 1.3111 5.4393 0.4493 -15.734 28812
EL1Case 3 -2.0311 12.943 0.1103 8.1694 0.4858 -5.2979 38416
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Figure 9.61: Four-layered plate, Sensor case, transverse mechanical displacement ŵ, a/h =
100 (a), a/h = 2 (b).
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Figure 9.62: Four-layered plate, Sensor case, transverse mechanical stresses, σ̂xz for a/h = 100
ratio (a), σ̂zz for a/h = 2 ratio (b).
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Figure 9.63: Four-layered plate, Sensor case, Electric Potential Φ̂, a/h = 100 (a), a/h = 2
(b).
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Figure 9.64: Four-layered plate, Sensor case, transverse electric displacement D̂z, a/h = 100
(a), a/h = 2 (b).
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Figure 9.65: Four-layered plate, Actuator case, transverse mechanical displacement ŵ, a/h =
100 (a), a/h = 2 (b).
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Figure 9.66: Four-layered plate, Actuator case, transverse mechanical stresses, σ̂xz for a/h =
100 ratio (a), σ̂zz for a/h = 2 ratio (b).

234



CHAPTER 9. VARIABLE KINEMATIC MIXED ESL/LW

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

Φ
-

z

LW4

EL4

EL4 Case 1

EL4 Case 2

EL4 Case 3

(a)

-10

-8

-6

-4

-2

 0

 2

 4

 6

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

D-z

z

LW4

EL4

EL4 Case 1

EL4 Case 2

EL4 Case 3

(b)

Figure 9.67: Four-layered plate, Actuator case, electric potential and electric transverse dis-
placement, Φ̂ for a/h = 100 ratio (a), D̂z for a/h = 2 ratio (b).

Table 9.32: Four-layer square plate with a cross-ply composite core [0◦/90◦] and piezoelectric
external skins. Euclidean norm of the error respect to the reference solution LW4 for me-
chanical and electrical variables described by Mono-models and Variable kinematic models
for various aspect ratios a/h. Sensor and Actuator cases.

Sensor Case

a/h ŵ Φ̂ σ̂xx σ̂xz σ̂zz D̂z

100

EL4 0.3410 E+03 0.4954 E+04 0.5481 E+01 0.6929 E+01 0.1552 E+02 0.2390 E+01
EL4Case 1 0.2155 E+03 0.3164 E+04 0.3934 E+01 0.6697 E+01 0.1039 E+02 0.2182 E+01
EL4Case 2 0.2238 E+03 0.3157 E+04 0.3399 E+01 0.3995 E+01 0.1078 E+02 0.2177 E+01
EL4Case 3 0.2278 E+03 0.1310 E+00 0.1955 E+01 0.1513 E+01 0.4410 E+01 0.2100 E-04

2

EL4 0.4228 E+00 0.3996 E+01 0.2865 E+00 0.1367 E+00 0.3652 E+00 0.4461 E-01
EL4Case 1 0.1870 E+00 0.1211 E+01 0.7011 E-01 0.1131 E+00 0.6709 E-01 0.6323 E-02
EL4Case 2 0.2424 E+00 0.5773 E+01 0.2423 E+00 0.1136 E+00 0.3874 E+00 0.1095 E-01
EL4Case 3 0.3376 E-01 0.7868 E-02 0.4050 E-01 0.2977 E-01 0.6621 E-02 0.2712 E-04

Actuator Case

a/h ŵ Φ̂ σ̂xx σ̂xz σ̂zz D̂z

100

EL4 0.1886 E+01 0.4020 E-01 0.5294 E+00 0.2824 E-01 0.1361 E+01 0.1099 E+01
EL4Case 1 0.2244 E+02 0.1142 E+00 0.5039 E-01 0.1077 E-03 0.9711 E-01 0.8997 E-01
EL4Case 2 0.2069 E+02 0.1143 E+00 0.4999 E-01 0.2882 E-01 0.9694 E-01 0.9004 E-01
EL4Case 3 0.4251 E-04 0.1880 E-08 0.5106 E-06 0.3669 E-05 0.1276 E-05 0.6322 E-08

2

EL4 0.2345 E+01 0.1261 E+00 0.1669 E+01 0.1458 E+01 0.6965 E+00 0.1454 E+01
EL4Case 1 0.6071 E-01 0.6160 E-01 0.5113 E-01 0.3643 E-01 0.5155 E-01 0.6265 E-01
EL4Case 2 0.2097 E+01 0.2057 E+00 0.1147 E+01 0.1469 E+01 0.7718 E+00 0.2346 E+00
EL4Case 3 0.8899 E-02 0.1470 E-03 0.2288 E-01 0.1462 E-01 0.4666 E-02 0.6206 E-04
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9.4.2 Three-layer cylindrical shell

A three-layer composite cylindrical shell, see Figure 9.68, with a Gr/Ep composite core and
PZT-4 piezoelectric external skins, simply-supported boundary condition is considered. The
static analysis of the shell structure is evaluated in sensor and actuator configuration.

Figure 9.68: Reference system of the composite cylinder with piezoelectric
skins.

For the sensor case a mechanical load pressure is applied, for the whole cylinder, at the
inner surface of the shell, defined as follows:

p (α, β, zbottom) = po sin
(mπα

a

)
cos

(
nπβ

b

)
(9.16)

with amplitude po = 1 and wave numbers m = 1 and n = 8. The potential at top and
bottom position is imposed Φt = Φb = 0.
For the actuator case a bi-sinusoidal electric potential, for the whole cylinder, is imposed at
outer surface:

Φ (α, β, ztop) = φo sin
(mπα

a

)
cos

(
nπβ

b

)
(9.17)

with amplitude φo = 1 and wave numbers m = 1, n = 8. The potential at bottom position
is imposed Φb = 0. No mechanical load is applied.
The material properties of the cylinder are given in Table 9.27. For all the cases the geo-
metrical data are a = 40, b = 2πRβ , Rβ = 10. In respect to the total thickness, a single
piezoelectric skin is thick hp = 0.1htot, while the single core layer is thick hc = 0.8htot. The
results are presented for different radius to thickness ratios Rβ/h = 2, 4, 10, 100. Due to
the geometrical symmetry of the cylinder, the symmetry of the load pressure and boundary
condition, and the symmetry of the lamination stacking sequence, an octave of the cylinder
is analyzed, half cylinder along the α axis direction and a quarter along the β circumferential
axis direction. The applied mechanical load for an octave of the cylinder is defined as follows:

p (α, β, zbottom) = po cos
(mπα

a

)
cos

(
nπβ

b

)
(9.18)

and the electric load for an octave of the cylinder is defined as follows:

Φ (α, β, ztop) = φo cos
(mπα

a

)
cos

(
nπβ

b

)
(9.19)

where m = 0, 5 and n = 2. The results are calculated in the following positions with the
following form for the sensor cases:
ŵ(α, β, z) = w(a/2, 0, 0) ∗ 1011 , σ̂αα(α, β, z) = σαα(a/2, 0,+h/2)
σ̂αz(α, β, z) = σαz(a, 0, 0) , σ̂zz(α, β, z) = σzz(a/2, 0, 0)
Φ̂(α, β, z) = Φ(a/2, 0, 0) , D̂z(α, β, z) = Dz(a/2, 0,+h/2) ∗ 1011
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For the actuator cases the variables are evaluated in the following form:
ŵ(α, β, z) = w(a/2, 0, 0) ∗ 1011 , σ̂αα(α, β, z) = σαα(a/2, 0,+h/2)
σ̂αz(α, β, z) = σαz(a, 0, 0) ∗ 104 , σ̂zz(α, β, z) = σzz(a/2, 0, 0) ∗ 104

Φ̂(α, β, z) = Φ(a/2, 0, 0) , D̂z(α, β, z) = Dz(a/2, 0,+h/2) ∗ 1011

First a convergence study on the shell element was performed. A composite shell with radius
to thickness ratio Rβ/h = 100 is evaluated. For the sensor case a mesh grid of 20 × 80
elements ensures the convergence of both the mechanical and electrical variables except for the
transverse electric displacement Dz that has a very slow convergence rate. For the actuator
case a mesh grid of 14× 56 elements ensures the convergence for all the variables, see Table
9.33.

Table 9.33: Convergence study. Composite three layered cylindrical shell with radius to
thickness ratio Rβ/h = 100.

Sensor Case

Mesh 2× 8 4× 16 6× 24 8× 32 10× 40 12× 48 14× 56 16× 64 18× 72 20× 80 Analytical [72]

LW4

ŵ 403698 403225 403194 403188 403187 403186 403186 403186 403186 403186 403190
σ̂αα 2706.1 2612.6 2594.4 2587.9 2585.0 2583.4 2582.4 2581.7 2581.3 2581.0 -
σ̂αz -3.5070 -3.2390 -3.1880 -3.1722 -3.1656 -3.1622 -3.1604 -3.1592 -3.1585 -3.1579 -3.1560
σ̂zz -3.9198 -4.0225 -4.0154 -4.0109 -4.0082 -4.0063 -4.0048 -4.0035 -4.0024 -4.0016 -3.997
Φ̂ 0.3263 0.3164 0.3143 0.3136 0.3132 0.3131 0.3129 0.3129 0.3128 0.3128 0.3127
D̂z -121.54 -16.278 -9.6342 -8.5184 -8.2038 -8.0807 -8.0178 -7.9754 -7.9386 -7.9020 -5.495

Actuator Case

Mesh 2× 8 4× 16 6× 24 8× 32 10× 40 12× 48 14× 56 Analytical [72]

LW4

ŵ 5.5422 5.5420 5.5419 5.5418 5.5418 5.5418 5.5418 5.5418
σ̂αα -0.2048 -0.2119 -0.2132 -0.2137 -0.2140 -0.2141 -0.2141 -
σ̂αz -0.6069 -0.5559 -0.5466 -0.5439 -0.5427 -0.5422 -0.5419 -0.5423
σ̂zz 0.0390 -0.3508 -0.3370 -0.3438 -0.3742 -0.4104 -0.4417 -0.5571
Φ̂ 0.5009 0.5009 0.5009 0.5009 0.5009 0.5009 0.5009 0.5009
D̂z -36.201 -36.203 -36.207 -36.208 -36.209 -36.209 -36.209 -36.209

Different Variable Kinematic models have been used to perform the analysis of the shell
structures. The acronyms have been modified adding a subscript to them, for the sake of
clarity the list of subscripts is given below:

• Case1 = {layer1} {layer2, layer3}

• Case2 = {layer1, layer2} {layer3}

The results are listed in Table 9.34 for the sensor case, and in Table 9.35 for the actuator case.
For the plate structures analyzed the following considerations can be drawn for the sensor
cases and actuator cases. For both mechanical and electrical variables the variable kinematic
configurations EL4Case 1, EL4Case 2 show an improvement of the solutions respect to the full
equivalent single layer theory EL4. As demonstrated in the previous numerical example, it
is preferable to model the piezoelectric skins of a multilayered structure with a layer-wise ap-
proach to obtain more accurate results. For this numerical example, the two possible variable
kinematic theories Case 1 and Case 2 cannot be as accurate as the configuration with the
piezoelectric skins modeled with a layer-wise approach, that for this three-layered structure
is coincident with the full-layer wise model. The more accurate variable kinematic configu-
ration is that which takes into account the layer-wise description of the layer subject to the
mechanical or electrical load. For the sensor cases the Case 2 configuration is more accurate,
for the actuator cases the Case 1 configuration is more close to the reference solution.
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Table 9.34: Three-layer cylinder with a composite core and piezoelectric external skins. Me-
chanical and electrical variables described by Mono-models and Variable kinematic models
for various radius to thickness ratios R/h. Sensor case.

R/h = 100 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a [72] 403190 - -3.1560 -3.997 0.3127 -5.495
LW4 403185 2581.0 -3.1579 -4.0016 0.3128 -7.9020 343252
LW1 397196 2638.2 -2.9309 -3.8980 0.3081 -1600.8 105616
EL3Z 403237 2582.2 -3.1637 -3.9975 0.8662 -112.76 132020
EL4 403251 2580.8 -3.5091 -2.5532 0.8378 3648.5 132020
EL3 403251 2581.7 -3.5069 -2.5495 0.8664 3003.5 105616
EL2 405108 2546.2 -1.5952 -27.979 0.8724 -12631 79212
EL1 355114 3094.8 -1.6844 -25.846 0.0000 -25607 52808

EL4Case 1 403170 2580.9 -3.4019 -3.1394 0.4913 0.6731 237636
EL4Case 2 403214 2561.5 -3.1384 -2.7264 0.7887 513.47 237636
EL3Case 1 403164 2580.9 -3.7731 -2.1040 0.5107 3.0502 184828
EL3Case 2 403235 2580.9 -3.0706 -1.9132 0.9247 2531.1 184828
EL2Case 1 403131 2580.7 -2.2146 -6.0200 0.6671 0.3341 132020
EL2Case 2 403186 2592.1 -2.8999 -7.3777 1.0618 972.84 132020
EL1Case 1 388319 2575.6 -2.1355 102.05 0.2198 -213.08 79212
EL1Case 2 393626 2843.8 -2.0230 -147.95 0.1272 -38700 79212

R/h = 2 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a [72] 30.225 - -0.1193 -0.415 0.00497 0.752
LW4 30.225 1.2065 -0.1194 -0.4150 0.00497 0.7348 343252
LW1 31.598 1.4335 -0.1143 -0.4047 0.00714 -2.5374 105616
EL3Z 30.162 1.4929 -0.1163 -0.3957 0.01110 -9.9503 132020
EL4 27.653 1.0410 -0.1275 -0.5243 -0.02601 16.025 132020
EL3 27.839 1.9639 -0.1246 -0.4625 0.01396 13.033 105616
EL2 16.090 0.3806 -0.0500 -0.1429 0.02323 -12.100 79212
EL1 16.373 0.5292 -0.0506 -0.1539 0.00000 -31.931 52808

EL4Case 1 28.508 1.1485 -0.1211 -0.4757 -0.0577 0.6670 237636
EL4Case 2 29.402 1.3944 -0.1208 -0.4218 0.0165 2.2707 237636
EL3Case 1 27.943 1.0920 -0.1256 -0.5498 -0.0586 0.6076 184828
EL3Case 2 29.292 1.4955 -0.1248 -0.4048 0.0246 3.9826 184828
EL2Case 1 24.031 0.8845 -0.0835 -0.1615 0.0035 0.5862 132020
EL2Case 2 27.241 1.4981 -0.0956 -0.4982 0.0320 8.6203 132020
EL1Case 1 18.060 1.0674 -0.0632 -0.1374 0.0050 -1.5134 79212
EL1Case 2 25.976 0.0759 -0.0801 -0.3057 0.0046 -55.425 79212
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Table 9.35: Three-layer cylinder with a composite core and piezoelectric external skins. Me-
chanical and electrical variables described by Mono-models and Variable kinematic models
for various radius to thickness ratios R/h. Actuator case.

R/h = 100 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a [72] 5.5418 - -0.5423 -0.5571 0.5009 -36.209
LW4 5.5418 -0.2141 -0.5419 -0.4417 0.5009 -36.209 170404
LW1 5.4331 -0.1833 -0.5080 -0.4459 0.5000 -34.865 52432
EL3Z 1.8837 -0.9776 -0.4124 830.44 0.5000 -141.81 65540
EL4 92.747 19.424 -202.29 -15334 0.5010 3724.6 65540
EL3 92.691 19.534 -203.24 -15337 0.5002 3745.2 52432
EL2 2520.2 -64.432 486.90 -141817 0.5066 -14300 39324
EL1 2250.4 -61.527 483.72 -141707 0.5000 -14451 26216

EL4Case 1 -3.1798 -0.2202 -2.6406 -1.6166 0.3224 -44.401 117972
EL4Case 2 26.953 0.9671 -124.78 15.979 0.6785 50.273 117972
EL3Case 1 -5.6162 -0.1922 -4.0188 -2987.5 0.2561 -51.697 91756
EL3Case 2 41.196 5.4375 -293.32 -2943.7 0.7453 1073.7 91756
EL2Case 1 -2.4141 -0.1676 -3.1852 -1083.3 0.2810 -52.076 65540
EL2Case 2 37.439 6.2793 337.58 -1117.0 0.7191 1400.4 65540
EL1Case 1 -1364.0 0.6154 -72.913 -113980 0.5516 -1636.7 39324
EL1Case 2 4140.8 -59.763 736.08 -125596 0.4490 -15022 39324

R/h = 2 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a [72] -1.306 - 19.176 -116.36 0.4058 -106.61
LW4 -1.306 -0.1759 19.208 -116.49 0.4058 -106.64 170404
LW1 -1.366 0.8046 11.078 -79.83 0.4916 -61.79 52432
EL3Z -0.425 -0.5514 12.571 1044.0 0.4675 -211.86 65540
EL4 -3.137 0.5679 -156.43 -255.73 0.5486 -36.31 65540
EL3 -1.861 1.0151 -217.99 -622.17 0.4778 3.62 52432
EL2 -12.84 -0.9158 571.77 -3914.7 0.5395 -254.03 39324
EL1 -12.62 -1.9369 606.79 -3745.8 0.5000 -301.24 26216

EL4Case 1 -1.249 -0.1742 19.120 -116.75 0.2831 -106.72 117972
EL4Case 2 -3.281 0.1703 -73.019 -136.42 0.6549 -103.57 117972
EL3Case 1 -1.199 -0.1714 18.647 -155.50 0.2518 -106.74 91756
EL3Case 2 -3.728 0.5372 -279.71 174.84 0.7918 -69.74 91756
EL2Case 1 -0.949 -0.1750 -6.798 -106.46 0.2743 -107.49 65540
EL2Case 2 -7.025 0.6781 346.93 -1318.3 0.6902 -33.85 65540
EL1Case 1 -5.393 0.5046 104.25 -2031.9 0.5432 -80.87 39324
EL1Case 2 -11.69 -1.6581 643.28 -3892.4 0.4521 -319.48 39324

9.4.3 Four-layer cylindrical shell

A four-layer composite cylindrical shell with a Gr/Ep composite core [90◦/0◦] and PZT-4
piezoelectric external skins, see Figure 9.68, simply-supported boundary condition is consid-
ered. The static analysis of the shell structure is evaluated in sensor and actuator configura-
tion. The material properties of the cylinder are given in Table 9.27. For all the cases the
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geometrical data are the same of the previous numerical subsection. In respect to the total
thickness, a single piezoelectric skin is thick hp = 0.1htot, while the single composite core
layer is thick hc = 0.4htot. The results are presented for different radius to thickness ratios
Rβ/h = 2, 4, 10, 100. The applied load is the same of the previous numerical example, due to
the geometrical symmetry of the cylinder, the symmetry of the load pressure and boundary
condition, an octave of the cylinder is analyzed, half cylinder along the α axis direction and a
quarter along the β circumferential axis direction. For the sensor case a mesh grid of 20×80,
and for the actuator case a mesh grid of 14 × 56 elements are employed as the previous ex-
ample of the three-layered cylinder.
The results are calculated in the following positions with the following form for the sensor
cases:
ŵ(α, β, z) = w(a/2, 0, 0) ∗ 109 , σ̂αα(α, β, z) = σαα(a/2, 0,+h/2)
σ̂αz(α, β, z) = σαz(a, 0, 0

−) , σ̂zz(α, β, z) = σzz(a/2, 0,−h/2)
Φ̂(α, β, z) = Φ(a/2, 0, 0) , D̂z(α, β, z) = Dz(a/2, 0,+h/2) ∗ 1011

For the actuator cases the variables are evaluated in the following form:
ŵ(α, β, z) = w(a/2, 0, 0) ∗ 1011 , σ̂αα(α, β, z) = σαα(a/2, 0,+h/2)
σ̂αz(α, β, z) = σαz(a, 0, 0

−) , σ̂zz(α, β, z) = σzz(a/2, 0,+h/2)
Φ̂(α, β, z) = Φ(a/2, 0, 0) , D̂z(α, β, z) = Dz(a/2, 0,+h/2) ∗ 109

Different Variable Kinematic models have been used to perform the analysis of the shell
structures. The acronyms have been modified adding a subscript to them, for the sake of
clarity the list of subscripts is given below:

• Case1 = {layer1} {layer2, layer3, layer4}

• Case2 = {layer1, layer2, layer3} {layer4}

• Case3 = {layer1} {layer2, layer3} {layer4}

The results are listed in Table 9.36 for the sensor case, and in Table 9.37 for the actuator
case. For the cylindrical shell structures analysed the following considerations can be drawn
for the sensor cases:

• For big radius to thickness ratios R/h = 100 regarding the transverse displacement w,
the theories EL4,Case1, EL4,Case2 and EL4,Case3 lead an improvement of the solution
respect to the EL4 with different levels of accuracy, see Figure 9.69a. For small radius
to thickness ratios R/h = 2, the in-plane stress σαα is well described along the thick-
ness, except from the EL4,Case1 and the full equivalent-single-layer theory EL4, those
theories have a loss in accuracy for the description of the loaded lower layer, see Figure
9.69b.

• For both the transverse shear stress σαz, see Figure 9.70a, and the transverse normal
stress σzz, see Figure 9.70b, the theories EL4,Case1 and EL4,Case2 improve the results
respect to the EL4 theory only in the layer with a layer-wise description. The EL4,Case3
theory is able to approximate very well along the entire thickness of the plate the full
layer-wise reference solution LW4.

• Regarding the electric potential Φ, for big radius to thickness ratios R/h = 100, the
theories EL4,Case1, EL4,Case2 and EL4 theories overestimate the reference solution, see
Figure 9.71a. For the electric transverse displacement Dz, for small radius to thickness
ratios R/h = 2, see Figures 9.71b, the theories EL4,Case1 and EL4,Case2 improve
the results respect to the EL4 theory only in the layer with a layer-wise description.
The EL4,Case3 theory is the best approximating theory respect to the full layer-wise
reference solution LW4.

For the cylindrical shell structures analysed in actuator configuration, the following consid-
erations can be drawn:
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• Regarding the transverse displacement w, for big radius to thickness ratios R/h = 100,
the variable kinematic theories show different levels of accuracy, see Figure 9.72a, the
EL4,Case3 solution is closer than EL4,Case1 and EL4,Case2 theories to the full layer-
wise reference solution LW4. For small radius to thickness ratios R/h = 2 the in-plane
stress σαα is well described along the thickness only from the EL4,Case3 theory, the other
theories have a loss in accuracy expecially in loaded upper layer, see Figure 9.72b.

• For both the transverse shear stress σαz, see Figure 9.73a, and the transverse normal
stress σzz, see Figure 9.73b, the same considerations as the sensor cases can be depicted.
The theories EL4,Case1 and EL4,Case2 improve the results respect to the EL4 theory
only in the layer with a layer-wise description. The EL4,Case3 theory is able to ap-
proximate very well along the entire thickness of the plate the full layer-wise reference
solution LW4.

• Regarding the electric potential Φ, for big radius to thickness ratios R/h = 100, see
Figure 9.74a, the theories EL4,Case1, EL4,Case2 and EL4 theories can underestimate
and overestimate the solution in the central composite layers. The EL4,Case3 theory is
able to approximate very well the full layer-wise reference solution LW4.

• For the electric transverse displacement Dz, for small radius to thickness ratios R/h = 2,
see Figures 9.74b, the theories EL4,Case1 and EL4,Case2 improve the results respect to
the EL4 theory only in the layer with a layer-wise description. The EL4,Case3 theory
is the best approximating theory respect to the full layer-wise reference solution LW4.

The euclidean norm, as defined in equation 9.15, is a global indicator of the solution
accuracy, it can be related to the reduction of degrees of freedom (dofs) of the structure
model, in other words the euclidean norm can be related to the computational cost of the used
models. In Figure 9.75 various mono-models and variable-kinematic models with different
expansion order are related to the reduction dofs % respect to the adopted reference solution
LW4 with the following definition:

reduction dofs % =
100 (DOFSLW4 −DOFS)

DOFSLW4
(9.20)

It is taken into account the error norm of the transverse mechanical displacement ŵ for
the actuator case of the shell with R/h = 2 ratio. It is evident, from Figure 9.75, that
as expected the solution accuracy grows with the increasing of the polynomial order with
a convergence to the fourth-order. The ESL mono-models have the biggest dofs reduction
coupled with large solution errors. Differently LW models have the biggest solution accuracy
coupled with low dofs reductions. It is noticeable that variable-kinematic Case 1 models are
able to have reduced solution errors because they are describing with layer-wise approach the
loaded top layer. Differently variable-kinematic Case 2 models represent the worst solution
for both accuracy and dofs reduction. Therefore, variable-kinematic Case 3 models describe
very accurate results comparable with the LW models, with noticeable dofs reduction.
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Table 9.36: Four-layer cylinder with a composite core and piezoelectric external skins. Me-
chanical and electrical variables described by Mono-models and Variable kinematic models
for various radius to thickness ratios R/h. Sensor case.

R/h = 100 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a [140] 4403.2 - - -32549 0.3414 227910
LW4Ma [140] 4403.2 - - -1.0000 0.3414 227910
LW4FMa [140] 4403.2 - - -0.9999 0.3414 -2.4676

LW4 4403.1 2716.7 -0.6654 -0.9985 0.3416 -4.0092 448868
LW1 4387.1 2812.3 -2.5224 -260.44 0.3403 -1764.8 132020
EL3Z 4401.8 2710.2 -2.3028 -46.243 0.5404 -154.76 132020
EL4 4402.1 2741.2 -2.1376 -57.284 0.9333 2141.3 132020
EL3 4401.9 2715.0 -2.2215 -20.875 0.9488 1407.3 105616
EL2 4403.5 2684.2 -1.1480 55.766 0.9506 -5722.9 79212
EL1 3813.1 3256.8 -1.3543 -2176.7 0.0000 -20590 52808

EL4Case 1 4402.2 2716.3 -1.6024 -89.931 0.6519 10.560 237636
EL4Case 2 4402.4 2725.2 -1.5633 -0.9991 0.7804 522.82 237636
EL4Case 3 4402.6 2716.4 -1.3976 -0.9987 0.3415 -4.0166 343252
EL3Case 1 4401.4 2715.9 -2.2183 24.322 0.6849 15.898 184828
EL3Case 2 4402.6 2734.7 -1.7344 -0.9988 0.8974 2304.4 184828
EL3Case 3 4402.2 2716.3 -1.3883 -0.9986 0.3415 -4.0260 264040
EL2Case 1 4400.6 2715.2 -1.7809 7.2858 0.8519 13.417 132020
EL2Case 2 4402.3 2712.3 -1.9502 -1.2046 1.0438 315.94 132020
EL2Case 3 4401.8 2715.9 -2.0836 -1.2042 0.3415 -3.5428 184828
EL1Case 1 4226.9 2724.1 -1.6474 -1249.3 0.2146 478.46 79212
EL1Case 2 4246.2 2975.9 -1.5025 -252.10 0.1699 -33077 79212
EL1Case 3 4323.2 2773.2 -2.2237 -256.67 0.3354 -1739.1 105616

R/h = 2 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a [140] 0.2633 - - -2.2444 0.0039 9.8912
LW4Ma [140] 0.2633 - - -1.0013 0.0039 9.8858
LW4FMa [140] 0.2633 - - -1.0013 0.0039 0.6092

LW4 0.2633 1.0152 -0.0765 -1.0010 0.0038 0.5929 448868
LW1 0.2582 1.1101 -0.0706 -2.6056 0.0035 -2.4079 132020
EL3Z 0.2369 1.8632 -0.1103 -2.1548 0.1037 22.094 132020
EL4 0.2415 0.8268 -0.1152 -0.3013 -0.0269 14.010 132020
EL3 0.2371 1.6585 -0.1075 -2.1536 0.0107 8.5755 105616
EL2 0.1416 0.1893 -0.0385 -2.2960 0.0147 -5.8960 79212
EL1 0.1468 0.0882 -0.0391 -2.3340 0.0000 -22.409 52808

EL4Case 1 0.2471 0.9560 -0.1028 0.2054 -0.0547 0.5236 237636
EL4Case 2 0.2569 1.1699 -0.1071 -1.0010 0.0129 1.6966 237636
EL4Case 3 0.2617 1.0081 -0.1010 -1.0010 0.0038 0.5880 343252
EL3Case 1 0.2377 0.9327 -0.1044 -1.4773 -0.0512 0.5090 184828
EL3Case 2 0.2577 1.2839 -0.1177 -1.0131 0.0196 2.9519 184828
EL3Case 3 0.2622 1.0222 -0.1010 -1.0133 0.0039 0.6057 264040
EL2Case 1 0.1860 0.5272 -0.0664 -2.4012 0.0079 0.2537 132020
EL2Case 2 0.2448 1.2798 -0.0804 -1.0996 0.0234 7.6853 132020
EL2Case 3 0.2631 0.9789 -0.0974 -1.1102 0.0035 0.6479 184828
EL1Case 1 0.1631 0.8048 -0.0544 -2.1771 0.0031 -1.4746 79212
EL1Case 2 0.2167 -0.4708 -0.0564 -2.1445 0.0050 -36.727 79212
EL1Case 3 0.2702 1.0339 -0.0951 -2.5063 0.0054 -2.2854 105616
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Table 9.37: Four-layer cylinder with a composite core and piezoelectric external skins. Me-
chanical and electrical variables described by Mono-models and Variable kinematic models
for various radius to thickness ratios R/h. Actuator case.

R/h = 100 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a [140] 2.4869 - - -0.1835 0.5009 -0.3494
LW4Ma [140] 2.4869 - - 0.0000 0.5009 -0.3494
LW4FMa [140] 2.4869 - - 0.0000 0.5009 -0.3622

LW4 2.4872 -0.2902 0.0000 0.0000 0.5009 -0.3621 222836
LW1 2.4452 -0.2596 -0.0001 0.0318 0.5009 -0.3485 65540
EL3Z 43.5403 18.077 -0.0018 -48.670 0.4959 37.190 65540
EL4 44.3032 18.006 -0.0163 -48.710 0.5009 37.136 65540
EL3 44.8222 18.157 -0.0098 -48.878 0.5001 37.343 52432
EL2 1124.5 -91.270 0.0690 53.830 0.5034 -133.35 39324
EL1 1029.2 -90.429 0.0657 59.038 0.5000 -134.39 26216

EL4Case 1 -12.287 -0.4031 -0.0003 0.0000 0.3224 -0.4440 117972
EL4Case 2 22.269 0.7975 -0.0120 -0.1312 0.6784 0.5026 117972
EL4Case 3 2.4880 -0.2902 0.0000 0.0000 0.5009 -0.3621 170404
EL3Case 1 -17.722 -0.4577 -0.0004 0.0000 0.2562 -0.5169 91756
EL3Case 2 34.832 5.1907 -0.0214 -14.279 0.7452 10.731 91756
EL3Case 3 2.4889 -0.2902 0.0000 0.0000 0.5009 -0.3621 131080
EL2Case 1 -14.717 -0.4399 -0.0003 0.0000 0.2811 -0.5207 65540
EL2Case 2 29.364 6.0191 0.0441 -19.827 0.7190 13.997 65540
EL2Case 3 2.4880 -0.2903 0.0000 0.0000 0.5009 -0.3621 91756
EL1Case 1 -2200.3 -18.715 -0.0044 -1.2398 0.5494 -15.798 39324
EL1Case 2 3493.6 -75.394 0.1000 97.022 0.4510 -143.38 39324
EL1Case 3 2.4558 -0.2596 0.0000 0.0318 0.5000 -0.3485 52432

R/h = 2 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a [140] -1.1542 - - 0.1416 0.4064 -1.0754
LW4Ma [140] -1.1542 - - 0.0000 0.4064 -1.0754
LW4FMa [140] -1.1542 - - 0.0000 0.4064 -1.0654

LW4 -1.1534 -0.0894 -0.0022 0.0000 0.3962 -1.0659 222836
LW1 -1.2820 0.8799 0.0008 0.9183 0.3900 -0.6169 65540
EL3Z -1.0226 0.3370 0.0031 1.1361 -1.1287 -0.9830 65540
EL4 -3.0789 0.7162 -0.0242 -0.2791 0.5529 -0.3374 65540
EL3 -0.8279 1.2289 -0.0318 -0.5882 0.4804 0.1053 52432
EL2 -12.269 -1.2000 0.0698 1.1274 0.5332 -2.4689 39324
EL1 -12.680 -2.6283 0.0818 0.0327 0.5000 -2.7931 26216

EL4Case 1 -1.0742 -0.0860 -0.0029 0.0000 0.2769 -1.0667 117972
EL4Case 2 -2.9077 0.3489 -0.0195 0.5244 0.6574 -1.0222 117972
EL4Case 3 -1.1401 -0.0887 -0.0027 0.0000 0.3962 -1.0659 170404
EL3Case 1 -1.1021 -0.0847 -0.0028 0.0022 0.2478 -1.0668 91756
EL3Case 2 -3.6975 0.7041 -0.0351 0.3716 0.8013 -0.6621 91756
EL3Case 3 -1.1377 -0.0849 -0.0028 0.0022 0.3967 -1.0654 131080
EL2Case 1 -0.6215 -0.0647 -0.0062 -0.0171 0.2741 -1.0740 65540
EL2Case 2 -7.1876 0.5386 0.0363 -0.4764 0.6981 -0.2952 65540
EL2Case 3 -1.1572 -0.0937 -0.0041 -0.0173 0.3943 -1.0729 91756
EL1Case 1 -4.6472 0.4951 0.0103 0.8077 0.5429 -0.8084 39324
EL1Case 2 -12.137 -2.2188 0.0890 0.9437 0.4528 -2.9806 39324
EL1Case 3 -1.0557 0.9225 -0.0045 0.9191 0.4924 -0.6172 52432
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Figure 9.69: Four-layered cylinder, Sensor case, transverse mechanical displacement and in-
plane stress, ŵ for R/h = 100 (a), σ̂αα for R/h = 2 (b).
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Figure 9.70: Four-layered cylinder, Sensor case, transverse mechanical stresses, σ̂αz for R/h =
100 ratio (a), σ̂zz for R/h = 2 ratio (b).
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Figure 9.71: Four-layered cylinder, Sensor case, electric potential and transverse electric
displacement, Φ̂ for R/h = 100 (a), and D̂z for R/h = 2 (b).
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Figure 9.72: Four-layered cylinder, Actuator case, transverse mechanical displacement and
in-plane stress, ŵ for R/h = 100 (a), σ̂αα for R/h = 2 (b).
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Figure 9.73: Four-layered cylinder, Actuator case, transverse mechanical stresses, σ̂αz for
R/h = 100 ratio (a), σ̂zz for R/h = 2 ratio (b).
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Figure 9.74: Four-layered cylinder, Actuator case, electric potential and transverse electric
displacement, Φ̂ for R/h = 100 (a), and D̂z for R/h = 2 (b).
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Figure 9.75: Four-layered cylinder, Actuator case, Euclidean Norm Error of the transverse
mechanical displacement, ŵ for R/h = 2.
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Chapter 10

Node-Dependent Variable Kinematic

In a global/local scenario, as told in the previous chapter, the limited computational resources
can be distributed in an optimal manner to study in detail only those parts of the structure
that require an accurate analysis. In general, two main approaches are available to deal with
a global/local analysis: refining the mesh or the FE shape functions in correspondence with
the critical domain; formulating multi-model methods, in which different subregions of the
structure are analysed with different mathematical models. To couple coarse and refined mesh
discretizations of different subregions of a structure, adaptive techniques are often used. The
h-adaption method [160] is used when the structure’s subregions differ in mesh size, whereas
the p-adaption method [161] can be applied when the subregions vary in the polynomial
order of the shape functions. Moreover, the hp-adaption [113] can allow the implementation
of subregions differing in both mesh size and shape functions. The methods mentioned so far
can be addressed as single-theory or single-model methods.

In the case of multi-theory methods, in which different subregions of the structure are
analysed with different structural theories with kinematically incompatible elements, the
compatibility of displacements and equilibrium of stresses at the interface between dissim-
ilar elements have to be achieved. A wide variety of multiple model methods have been
reported in the literature. In general, multi-theory methods can be divided into sequential
or multistep methods, and simultaneous methods. In a sequential multi-model, the global
region is analysed with an adequate model with a cheap computational cost to determine the
displacement or force boundary conditions for a subsequent analysis at the local level. The
local region can be modeled with a more refined theory, or it can be modeled with 3-D fi-
nite elements, see [162–165]. The simultaneous multi-model methods are characterized by the
analysis of the entire structural domain, where different subregions are modeled with different
mathematical models and/or distinctly different levels of domain discretization, in a unique
step. A well-known method to couple incompatible kinematics in multi-model methods, is
the use of Lagrange multipliers, which serve as additional equations to enforce compatibility
between adjacent subregions. In the three-field formulation by Brezzi and Marini [166], an
additional grid at the interface is introduced. The unknowns are represented independently
in each sub-domain and at the interface, where the matching is provided by suitable Lagrange
multipliers. This method was recently adopted by Carrera et al. [167–169] to couple beam
elements of different orders and, thus, to develop variable kinematic beam theories. Ben
Dhia et al. [170–172] proposed the Arlequin method to couple different numerical models
by means of a minimization procedure. This method was adopted by Hu et al. [173, 174]
for the linear and non-linear analysis of sandwich beams modelled via one-dimensional and
two-dimensional finite elements, and by Biscani et al. [175] for the analysis of beams and
by Biscani et al. [176] for the analysis of plates. Reddy and Robbins [177] and Reddy [178]
presented a multiple-model method on the basis of a variable kinematic theory and on mesh
superposition in the sense of Fish [179] and Fish and Markolefas [180]. Coupling was obtained
by linking the FSDT variables, which are present in all the considered models, without us-
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ing Lagrangian multipliers. The coupling of different kinematics model in the framework of
composite beam structure, using the extended variational formulation (XVF), is presented
in [181], sinus model and classical kinematics are coupled into non-overlapping domains.
In this chapter, the concept of the present node-dependent variable kinematic model is used
to develop a new simultaneous multiple-model method, by 2D elements with node-dependent
kinematics, for the simultaneous global/local analysis. This node-variable capability enables
one to vary the kinematic assumptions within the same finite plate/shell element. The ex-
pansion order of the plate/shell element is, in fact, a property of the FE node in the present
approach. Therefore, between finite elements, the continuity is ensured by adopting the
same expansion order in the nodes at the element interface. In this manner, global/local
models can be formulated without the use of any mathematical artifice. As a consequence,
computational costs can be reduced assuming refined models only in those zones with a
quasi-three-dimensional stress field, whereas computationally cheap, low-order kinematic as-
sumptions are used in the remaining parts of the plate/shell structure.

10.1 Models Coupling

In literature finite elements with different kinematics, see Figure 10.1, can be coupled using
additional equations or mathematical artifices, as summerized in the previous introductory
section 10. The most common method to couple finite elments with different kinematics are:
the Lagrange Multipliers method, and the Arlequin method.

Figure 10.1: Coupling example scheme of finite elements with different kinematics.

In this work a class of new finite elements which allows employing different kinematic
assumptions in different subregions of the problem domain is proposed. To highlight the
capabilities of the novel formulation, a four-node plate elements with node-dependent kine-
matics is shown in Figure 10.2. A concentrated load is depicted as P and located at node 7.
Global LW4 and ESL4 zones describe the kinematics around the concentrated load, there-
fore a local description is given at node 6 and 7 with LW4 kinematics and at node 2 and 8
with a refined ESL4 higher-order plate theory. Far from the load, global lower-order zones
are described as ESL2 and ESL1. A local approximation is given here at node 3 and 5 with
a ESL2 parabolical kinematics, and at node 1 and 4 with a linear model ESL1. As it will
be clear later in this chapter, different kinematics are defined in the global nodes. Shared
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nodes between adjacent finite elements have the same kinematics. The coupling of different
kinematics is naturally obtained inside the finite element without any mathematical artifice
or additional equations.

Figure 10.2: Example of finite element with node-dependent kinematics.

The capabilities of the novel formulation can be successfully applied to multifield prob-
lems. For example a multilayered structure with piezoelectric patches, sensors and actuators,
can be opportunely described in higher-order and lower-order zones, as shown in Figure 10.3.

Figure 10.3: Example of finite element with node-dependent kinematics applied to multifield
analysis of a multilayered structure with piezoelectric patches.

10.2 Finite elements with node-dependent kinematics

As described in Section 5.1, by utilizing an FEM approximation, the generalized displace-
ments can be expressed as a linear combination of the shape functions, see Equation 5.1, to
have:

u = N juj δu = N iδui with i, j = 1, ..., (nodes per element)

In this work, the thickness functions Fs and Fτ , which determine the plate/shell theory order,
are independent variables and may change for each node within the plate/shell element.
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Namely, the three-dimensional displacement field and the related virtual variation can be
expressed to address FE node-dependent plate/shell kinematics as follows:

u(x, y, z) = F js (z)Nj(x, y)usj s = 0, 1, ..., N j j = 1, ..., (nodes per element)

δu(x, y, z) = F iτ (z)Ni(x, y)δuτi τ = 0, 1, ..., N i i = 1, ..., (nodes per element)
(10.1)

where the subscripts τ , s, i, and j denote summation. Superscripts i and j denote node
dependency, such that for example F iτ is the thickness expanding function and N i is the
number of expansion terms at node i, respectively.
For the sake of clarity, the displacement field of the variable kinematic finite elements as dis-
cussed in Figure 10.2 is described in detail hereafter. The darker finite element is represented
in Figure 10.4, which also shows the though-the-thickness kinematics at the nodal level. The
global displacement field of the element is approximated as follows:

• Node 1 Theory = HOT with N 1 = 3 Eq. (3.6)

• Node 2 Theory = LW with N 2 = 2 Eq. (3.9)

• Node 3 Theory = HOT with N 3 = 1 Eq. (3.6)

• Node 4 Theory = HOT with N 4 = 3 Eq. (3.6)

In according to Equation (10.1), it is easy to verify that the displacements at a generic point
belonging to the plate element can be expressed as given in Equation (10.2). In this equation,
only the displacement component along x-axis is given for simplicity reasons:

u(x, y, z) =
(
u01 + z u11 + z2 u21 + z3 u31

)
N1(x, y)

+

[(
1 + ζ

2

)
u02 +

(
1− ζ

2

)
u12 +

(
3ζ2 − 1

2
− 1

)
u22

]
N2(x, y)

+ (u03 + z u13) N3(x, y) +
(
u04 + z u14 + z2 u24 + z3 u34

)
N4(x, y)

(10.2)

It is intended that, due to node-variable expansion theory order, the assembling procedure
of each finite element increases in complexity with respect to classical mono-theory finite
elements. In the present FE approach, in fact, it is clear that both rectangular and square
arrays are handled and opportunely assembled for obtaining the final elemental matrices.
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Figure 10.4: Displacement field at the nodal level of the finite element with node-dependent
kinematics.
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10.2.1 Fundamental nucleus of the stiffness matrix

The governing equations for the static response analysis of the multi-layer plate structure can
be obtained by using the principle of virtual displacements, see Section 4.2, which states:∫

Ω

∫
A

δεTσ dΩ dz = δLe (10.3)

where the term on the left-hand side represents the virtual variation of the strain energy; Ω
and A are the integration domains in the plane and the thickness direction, respectively; ε
and σ are the vector of the strain and stress components; and δLe is the virtual variation
of the external loadings. By substituting the constitutive equations for composite elastic
materials, the linear geometrical relations as well as Equation (10.1) into Equation (10.3),
the linear algebraic system in the form of governing equations is obtained in the following
matrix expression:

δuτi : Kτsijusj = P τi (10.4)

where Kτsij and P τi are the element stiffness and load FE arrays written in the form of
fundamental nuclei. In particular, Kτsij is a 3 × 3 matrix whose components are given for
the plate case in the following:

Kτisj
xx =

∫
Ω

NiNj dΩ

∫
A

C55 F
i
τ,zF

j
s,z dz +

∫
Ω

Ni,yNj,y dΩ

∫
A

C66 F
i
τF

j
s dz +

∫
Ω

Ni,xNj,y dΩ

∫
A

C16 F
i
τF

j
s dz+

+

∫
Ω

Ni,yNj,x dΩ

∫
A

C16 F
i
τF

j
s dz +

∫
Ω

Ni,xNj,x dΩ

∫
A

C11 F
i
τF

j
s dz

Kτisj
xy =

∫
Ω

NiNj dΩ

∫
A

C45 F
i
τ,zF
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where comma denote partial derivatives and C11, C12, ..., C66 are the material coefficients
for a monoclinic lamina as defined in [66].

The fundamental nucleus as given above is the basic building block for the construction of
the element stiffness matrix of classical, refined and variable-kinematic theories. In fact, given
these nine components, element stiffness matrices of arbitrary plate models can be obtained
in an automatic manner by expanding the fundamental nucleus versus the indexes k, τ , s,
i, and j. In the development of both ESL and LW theories, the fundamental nucleus of the
stiffness matrix is evaluated at the layer level and then assembled as shown in Figure 10.5.
This figure, in particular, illustrates the expansion of the fundamental nucleus in the case
of a 9-node Lagrange finite element with node-dependent variable kinematics with different
Taylor polynomial expansions, as example.
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Figure 10.5: Assembling scheme of a 9-node finite element with node-dependent kinematics.
Highlights of the influence of the cubic term of a 3rd order Taylor expansion model in the FE
stiffness.
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10.3 Mechanical Analysis Results

Some problems have been considered to assess the capabilities of the proposed variable-
kinematics plate elements and related global/local analysis. These analysis cases comprise:

• Isotropic plate simply-supported, with centered localized uniform pressure

• Eight-layered composite cantilivered plate, with free-tip concentrated load

• Three-layered composite plate simply supported, with centered localized uniform pres-
sure

• Unsymmetrically laminated sandwich rectangular plate simply supported, with centered
localized uniform pressure

Whenever possible, the proposed multi-theory models are compared to single-theory from
higher-order ESL models, LW models, 3D elasticity solutions and analytical results. More-
over different multi-theory models present in literature are given in some cases. For the sake
of clarity, present multi-model theories are opportunely described for each numerical case
considered.

10.3.1 Simply-supported isotropic plate under localized pressure load

A simply-supported isotropic plate is analysed. The geometrical dimensions are: a = 2m, b =
h = 0.2m. The employed material is isotropic, with the following properties: E = 75GPa,
G = 28, 846GPa, ν = 0, 3. The plate is simply-supported along two opposite sides and free
along the remaining two edges. It undergoes a localised uniform pressure, P = 1Pa, acting
on the 10% of the length and centered at the mid-span, see Figure 10.6a. The transverse
section of the proposed structure is shown in Figure 10.6b, where the verification points at
which displacement and stress components are measured are also depicted. The results of the
present methodology, in fact, are compared with some solutions from the literature and with
an MSC/NASTRAN solid model made of 8-node CHEXA elements. With reference to Figure
10.6b, the in-plane displacements u and shear stress component σxz are evaluated at x = 0,
whereas the other two displacement components v and w and the normal stresses σxx and
σzz are evaluated at plate mid-span. The results are given in the following non-dimensional
form:

(û, v̂, ŵ) =
Eh

a2P
(u, v, w) (σ̂xx, σ̂xz, σ̂zz) =

1

P
(σxx, σxz, σzz) (10.5)
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(a)

(b)

Figure 10.6: Reference system of the isotropic plate (a), and placement of the evaluation
points on the transverse section (b).

First, a convergence study is conducted. To serve this scope and as shown in Figure 10.7,
the plate structure has been subdivided into 5 zones along the axis x, and they are numbered
from 1 to 3 for symmetry reasons. The choice of dividing the structure in this manner
was made for allowing fair comparisons with other models from the literature [167, 175].
According to Table 10.1, which shows the converge study of the single-theory ET4 model
for various mesh discretizations and related comparison with different solid models from
MSC/NASTRAN, a non-uniform mesh grid of 20 × 4 elements is enough for ensuring good
results. The same mesh is depicted in Figure 10.7 and it is used in the remaining analyses
for the definition of the single- and multi-theory models.
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Figure 10.7: Subdivision zones for the isotropic plate, final mesh grid chosen after convergence
study, and graphical description of the multi-theory models.
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Table 10.1: Convergence study according to the ET4 model of the isotropic plate structure.

(−10) û (−102) v̂ − ŵ (10−1) σ̂xx (−10) σ̂xz (−10) σ̂zz DOFs∗

Present Plate Element
Mesh 10× 4

zone1 zone2 zone3 3.743 2.129 2.544 1.440 8.640 5.287 2835
2× 4 2× 4 2× 4

Mesh 16× 4
zone1 zone2 zone3 3.744 2.126 2.544 1.431 8.641 5.247 4455
3× 4 3× 4 4× 4

Mesh 20× 4
zone1 zone2 zone3 3.743 2.126 2.544 1.431 8.641 5.248 5535
4× 4 4× 4 4× 4

Mesh 20× 8
zone1 zone2 zone3 3.743 2.126 2.544 1.431 8.637 5.254 10455
4× 8 4× 8 4× 8

Mesh 30× 4
zone1 zone2 zone3 3.743 2.125 2.544 1.429 8.641 5.263 8235
6× 4 6× 4 6× 4

Mesh 20× 4
zone1 zone2 zone3 3.743 2.125 2.544 1.429 8.641 5.267 5535
3× 4 3× 4 8× 4

8 node SOLID CHEXA MSC/NASTRAN

Mesh 100× 20× 20 3.788 2.124 2.544 1.352 8.402 5.202 131859
Mesh 100× 40× 40 3.667 2.124 2.544 1.389 8.502 5.216 502619
Mesh 80× 40× 40 3.440 2.124 2.544 1.388 8.502 5.197 401759
Mesh 100× 60× 60 3.776 2.124 2.544 1.402 8.533 5.221 1112579

∗: Degrees of freedom of the whole plate structure

Table 10.2 shows the results for the present metallic plate from various single- and multi-
theory models. Solutions from the literature [167,175] are also given for comparison. Multi-
theory models are referred to as CaseA to CaseF , and they are defined according to Figure
10.7. In particular, in CaseA, lower-order kinematics is employed at the plate boundaries,
whereas 4-th order plate theory is used close to the loading. Vice-versa, in CaseB, refined
approximation orders are utilized close to the boundary. The present CaseA and CaseB
multi-theory models are analogous to models ArlequinA and ArlequinB from [175], where
the Arlequin method was used to mix finite beam elements with different kinematics at the
interface, and LMA and LMB from [167], where Lagrange multipliers were used along with
1D beam element to implement variable kinematic beam theories. Results from other original
global/local plate models referred to as CaseC to CaseF are also given in Table 10.2 and they
are graphically explained in Figure 10.7. Therefore the models named TE1-TE4 are beam
mono-models with the description of the beam section via Taylor polynomials from order 1 to
4 from [167]. All the multi-theory models, presented here, have been implemented discretizing
structural domains with lower- and higher-order theories and coupling them by enforcing the
same kinematics at the interface nodes. In this manner, there is no information loss and no
need to adopt any mathematical artifice, such as Lagrange multipliers or overlapping regions.
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Table 10.2: Simply-supported metallic plate. Displacement and stress components from
single-theory, multi-theory and reference models.

(−10) û (−102) v̂ − ŵ (10−1) σ̂xx (−10) σ̂xz (−10) σ̂zz DOFs∗

Reference solutions [175]

SOLID 3.776 2.124 2.544 1.402 8.533 5.221 558150
ArlequinA 3.729 2.116 2.537 1.424 5.000 5.217 1197
ArlequinB 3.716 -0.056 2.547 1.444 8.352 4.807 1197
LMA 3.699 2.116 2.524 1.420 5.000 6.001 1134
LMB 3.732 -0.080 2.550 1.419 8.429 4.395 1134
TE4 3.735 2.116 2.542 1.423 8.511 6.003 2745
TE3 3.735 2.092 2.542 1.425 8.462 6.063 1830
TE2 3.729 2.108 2.532 1.409 5.865 4.265 1098
TE1 3.736 -0.080 2.548 1.419 5.000 4.395 549

Present single- and multi-theory models

ET4 3.743 2.125 2.544 1.429 8.641 5.267 2835
ET3 3.742 2.139 2.544 1.434 8.641 5.286 2268
ET2 3.731 2.097 2.534 1.402 6.262 5.087 1701
ET1 3.402 2.688 2.323 1.414 6.265 4.594 1134

CaseA 3.562 2.125 2.460 1.429 6.265 5.267 2349
CaseB 3.587 2.688 2.413 1.414 8.708 4.594 1620
CaseC 3.561 2.125 2.460 1.429 6.256 5.275 2187
CaseD 3.731 2.125 2.537 1.429 6.263 5.276 2349
CaseE 3.704 2.125 2.532 1.429 6.358 5.276 2133
CaseF 3.591 2.125 2.465 1.429 6.154 5.275 2133

∗ : for a fair comparison with reference solutions, DOFs are given for half plate structure

Additional results in terms of transverse displacement w, in-plane stress σxx, transverse
shear stress σxz and transverse normal stress σzz along the thickness are represented in Figures
10.8, 10.9, 10.10, and 10.11, respectively. The following comments can be drawn from the
analysis:

• Single-theory models with lower expansion order, i.e. ET1 and ET2, yield good results
in terms of displacements and in-plane stress, σxx. However, in order to accurately
describe the shear and normal transverse stresses σxz and σzz, higher-order theories,
such as ET3 and ET4, are required.

• Depending on the structural domain of interest, multi-theory models allow us to enrich
the solution in a smart and efficient manner. Nevertheless, accurate analysis may require
attentive distribution of the kinematics approximation through the problem domain.
For example, although CaseE and CaseF models have the same number of DOFs and
according to Figure 10.8, the distribution of the transverse displacement w through the
thickness can vary significantly. Contrarily, the in-plane stress σxx is not sensitive to
variable-kinematic modeling, see Figure 10.9.

• As further guidelines, it is clear from Figure 10.10 that, as far as the accuracy on the
transverse shear stress σxz is concerned, higher-order approximation theories must be
placed close to the boundaries. This is the case of the CaseB model and mono-theory
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models ET3 and ET4. Contrarily, if good approximation of the transverse normal
stress σzz is needed, the model kinematic order must be enriched in the loading zone.
Except for CaseB configuration and mono-model ET1, all the other cases have a good
behaviour in terms of σzz, see Figure 10.11. It has to be noticed that CaseA and
CaseC to CaseF , have the same accuracy as the reference mono-theory model ET4.
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Figure 10.8: Transverse displacement
w(x; y) = w(a/2; b/2). Isotropic plate.
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Figure 10.9: In-plane stress σxx(x; y) =
σxx(a/2; b). Isotropic plate.
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Figure 10.10: Transverse shear stress
σxz(x; y) = σxz(0; b). Isotropic plate.
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Figure 10.11: Transverse normal stress σzz(x; y) =
σzz(a/2; b). Isotropic plate.

For the sake of completeness, the distribution of transverse shear stress σxz, see Figure
10.12, and transverse normal stress σzz, see Figure 10.13, along the in-plane x axis are given.
The results demonstrate that the CaseA model can represent the transverse shear stress σxz
accurately only in the loading zone. On the other hand, the same model gives an error of
approximately 28% in the remaining part of the domain with respect to CaseB and ET4
models. Regarding the transverse normal stress σzz distribution along x, it is evident that
higher-order models are required to describe the solution correctly. Even in this case, CaseA
model can represent a correct behaviour in the loading zone only. Therefore, a convergence
analysis on the size of the transition elements is done for the cases represented in Figures 10.12
and 10.13. The convergence analysis was performed keeping the same mesh of the original
cases, reducing the size of the transition elements in the x direction (transition element
original size in the x direction Elx = 0, 25), and fixing the transition lines at x = 0, 75
and x = 1, 25, see Figure 10.7. For the transverse shear stress σxz, see Figure 10.14a, the
reduction of the transition element in the x direction lead to an increasing of oscillations of
the solution in the transition element zones. Differently for the transverse normal stress σzz,
see Figure 10.14b, the reduction of the transition element in the x direction permits to obtain
huge reduction of the solution oscillations in the transition element zones.
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Figure 10.12: Transverse shear stress
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Figure 10.13: Transverse normal stress
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Figure 10.14: Convergence analysis of the transition elements for the transverse shear and
normal stresses along the beam axis.

Finally, in order to show the 3D capabilities of the proposed methodology, the three-
dimensional distribution of the shear stress σxz and the normal stress σzz are shown in Figures
10.15 and 10.16, respectively, where the results from a solid model by Abaqus C3D20RE finite
element are compared with ET4 single-theory plate model and CaseA and CaseB multi-
theory models. From a comparison of the proposed variable-kinematic models with respect
to the ET4 plate model and the solid solution, it is possible to observe a possible reduction
of DOFs equal to 18% and 99%, respectively. Moreover, if accurate solutions are needed only
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in localized zones of the structure, even more efficient models can be implemented with the
present approach.
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Figure 10.15: Three-dimensional representation of the transverse shear stress σxz. Isotropic
plate.
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Figure 10.16: Three-dimensional representation of the transverse normal stress σzz. Isotropic
plate.

10.3.2 Eight-layer cantilever plate

The first structure case taken into account is a simple example, that easily permits to describe,
through the results, the main capabilities of the present node-dependent plate element. A
cantilever eight-layer plate is analysed as shown in Figure 10.17. The structure is loaded at
the free end with a concentrated load equal to Pz = −0.2N . The geometrical dimensions are:
a = 90mm, b = 1mm, h = 10mm. The mechanical properties of the material labeled with
the number 1 are: EL = 30GPa, ET = 1GPa, GLT = GTT = 0.5GPa, νLT = νTT = 0.25.
On the other hand, the mechanical properties of the material labeled with the number 2 are:
EL = 5GPa, ET = 1GPa, GLT = GTT = 0.5GPa, νLT = νTT = 0.25. As clear from Figure
10.17, the material stacking sequence is [1/2/1/2]s.
First, a convergence study on single-theory plate models was performed. For both LW4
and ET4 models, as shown in Table 10.3, a mesh grid of 12 × 2 elements is enough to
ensure convergent results, for transverse mechanical displcement w, in-plane stress σxx and
transverse normal stress σxz. Various node-variable kinematic plate models have been used
to perform the global/local analysis of the proposed plate structure, and they are depicted
in Figure 10.18. These models are compared in Table 10.4 with lower- to higher-order single-
theory models as well as with various solutions from the literature, including an analytical
solution based on the 2D elasticity as presented in Lekhnitskii [148].

266



CHAPTER 10. NODE-DEPENDENT VARIABLE KINEMATIC

It can be observed for the transverse displacements w that mono-theory LW models show
a good accuracy solution indipendently of the polynomial order, differently for single-model
ESL with Taylor polynomial yield good results only with higher-order expansion ET3 and
ET4. Moreover multi-theory ESL models CaseA, CaseB and CaseC show an intermediate
solution accuracy for all the three considered cases without relevant differences. For the
multi-theory ESL-LW models CaseD, CaseE and CaseF the solution is very accurate, due
to the partial LW approximation, and it is obtained exactly the same solution for the three
considered cases.
Regarding the in-plane stress σxx the accuracy solution is not sensitive for all the considered
single and multi model theories, except for the CaseA configuration where the transition
elements are acting at the evaluation position.
For the transverse shear stress σxz similar comments respect to the transverse displacement
can be drawn. Single theory LW models show a good accuracy solution indipendently of the
polynomial order, otherwise higher-order mono-model ESL theories with Taylor polynomial,
ET3 and ET4, are required to obtained a sufficient solution accuracy. Nevertheless, accurate
solutions in localized regions/points can be obtained by using the multi-theory ESL model
CaseB, and with multi-theory ESL-LW models CaseD and CaseE.

Figure 10.17: Eight-layered plate with concentrated loading. Reference system and material
lamination scheme.
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Figure 10.18: Eight-layered plate. Mesh scheme of the adopted multi-theory models with
node-dependent kinematics.

Table 10.3: Convergence study of single-theory models of the eight-layer cantilever plate.
Transverse displacement w = −102 × w(a, b/2, 0), in-plane principal stress σxx = 103 ×
σxx(a/2, b/2,+h/2), transverse shear stress σxz = −102 × σxz(a/2, b/2, 0).

Mesh 2× 2 4× 2 6× 2 8× 2 10× 2 12× 2

LW4 w 3.031 3.032 3.031 3.030 3.030 3.030
σxx 651 690 716 725 728 730
σxz 2.991 2.797 2.792 2.791 2.790 2.789

ET4 w 3.029 3.029 3.029 3.028 3.028 3.028
σxx 684 723 729 730 731 731
σxz 3.054 2.829 2.820 2.821 2.822 2.822
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Table 10.4: Eight-layer cantilever plate. Transverse displacement w = −102 × w(a, b/2, 0),
in-plane normal stress σxx = 103×σxx(a/2, b/2,+h/2), transverse shear stress σxz = −102×
σxz(a/2, b/2, 0) by various single- and multi-theory models.

w σxx σxz DOFs

Reference solutions

Nguyen and Surana [149] 3.031 720
Davalos et al. [150] 3.029 700
Xiaoshan [151] 3.060 750

Vo and Thai [152] 3.024
Lekhnitskii [148] 730 2.789

Present single- and multi-theory models

LW4 3.030 730 2.789 12375
LW3 3.030 731 2.788 9375
LW2 3.030 731 2.795 6375
LW1 3.022 731 2.775 3375
ET4 3.028 731 2.822 1875
ET3 3.027 731 2.822 1500
ET2 2.980 731 2.005 1125
ET1 2.981 729 2.000 750

CaseA 3.004 808 2.375 1320
CaseB 3.010 737 2.781 1365
CaseC 3.002 731 2.030 1305
CaseD 3.028 732 2.799 4035
CaseE 3.028 729 2.799 4425
CaseF 3.028 731 2.818 3645

Some results in terms of transverse displacement w and transverse shear stress σxz along
the thickness are represented in Figures 10.19a and 10.19b, 10.20a and 10.20b, respectively.
Some more comments can be made:

• As shown in Figure 10.19a, the through-the-thickness distribution of the transverse
displacement w, evaluated at the free tip of the plate, is correctly predicted by a third-
order ESL model ET3. The same accuracy cannot be reached by the proposed ESL
models with node-variable kinematics. Differently, as depicted in Figure 10.19b, both
LW single theory and ESL-LW theory accuracy is not sensitive of the choosen model,
except for the single linear model LW1.

• Figure 10.20a shows that the transverse shear stress σxz, evaluated at the mid-span of
the plate, is very sensitive to the position of the transition variable-kinematic elements.
CaseB model has the same accuracy as mono-model ET3 and ET4. On the contrary,
the CaseC configuration has poor accuracy like mono-models ET1 and ET2. Finally,
CaseA model presents a intermediate compromise between the other two multi-theory
cases. All the ESL models are not able to reproduce the accurate behaviour of the
reference 2D elasticity solution Lekhnitskii, presented in [148]. On the contrary, as
depicted in Figure 10.20b, the LW single models are able to reach an accurate solution
as the reference solution Lekhnitskii, except for the linear model LW1. Multi-theory
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ESL-LW (ET3-LW2) models have a good approximation of the solution where the
verification point is described by LW theories, CaseD and CaseE models, therefore
CaseF show the same accuracy solution of the model ET3.

By the evaluation of the various node-variable kinematic models, it is clear that an accurate
representation of the stresses in localized zones is possible with DOFs reduction if an accu-
rate distribution of the higher-order kinematic capabilities is performed in those localized
zones. Differently, the displacements values are dependent on the global approximation over
the whole structure. The DOFs reduction can be moderate or stronger, depending on the
structure and the load case configuration.
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Figure 10.19: Eight-layer composite plate. Transverse displacement w(x; y) = −102 ×
w(a; b/2).
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Figure 10.20: Eight-layer composite plate. Transverse shear stress σxz(x; y) = −102 ×
σxz(a/2; b/2).

10.3.3 Composite plates simply-supported

A simply-supported composite plate is analysed. The geometrical dimensions are: a = b =
0.1m, the side-thickness ratio is a/h = 10. A symmetric [0◦/90◦/0◦] stacking sequences
is considered. The material employed is orthotropic with he following properties: EL =
132.5GPa, ET = 10.8GPa, GLT = 5.7GPa, GTT = 3.4GPa, νLT = 0.24, νTT = 0.49.
The plate is simply-supported and a localised uniform transverse pressure, Pz = −1MPa,
is applied at top face on a square region of side length equal to a/5 × b/5 and centered at
the point (a/2, b/2), see Figure 10.22. Due to the simmetry of both the geometry and the
load, a quarter of the plate is analyzed and the following symmetry and boundary conditions
(simply-supported) are applied:

Boundary Simmetry
us(x, 0) = 0 ws(x, 0) = 0 us(a/2, y) = 0
vs(0, y) = 0 ws(0, y) = 0 vs(x, b/2) = 0

(10.6)

A convergence study versus the FE element size, i.e. the number of elements, is performed,
for the sake of brevity the single-model ET4 is considered. In order to compare the results
with other solutions present in literature [176], the mid-plane domain of the plane structure
was subdivided into three zones along the axes x and y and they are shown in Figure 10.21.
The results from the convergence analysis are shown in Table 10.5 and they are given in terms
of transverse displacement w = (−105)×w and in-plane normal stresses σxx, σyy evaluated at
(a/2, b/2,−h/2), and transverse shear stress σxz = (−10)× σxz evaluated at (5a/12, b/2, 0).
As it is clear from this preliminary analysis, a non-uniform mesh grid of 10 × 10 elements
ensures the convergence of the solution.
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Figure 10.21: Cross-ply laminate subjected to localized pressure load and related FE mesh
discretization into 3 zones.
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Table 10.5: Convergence study with a ET4 plate element. Composite plate with (0◦/90◦/0◦)
lamination, a quarter of the plate is taken into account.

w σxx σyy σxz DOFs

Mesh 5× 5
zone1 zone2 zone3 1.661 12.493 2.187 5.977 1815
2× 2 2× 2 1× 1

Mesh 8× 8
zone1 zone2 zone3 1.660 12.057 2.025 5.754 4335
3× 3 3× 3 2× 2

Mesh 10× 10
zone1 zone2 zone3 1.660 12.058 2.026 5.756 6615
4× 4 4× 4 2× 2

Mesh 6× 6
zone1 zone2 zone3 1.660 12.054 2.024 5.744 2535
2× 2 2× 2 2× 2

Mesh 8× 8
zone1 zone2 zone3 1.660 11.972 2.012 5.853 4335
2× 2 2× 2 4× 4

Mesh 10× 10
zone1 zone2 zone3 1.660 11.956 2.008 5.847 6615
2× 2 2× 2 6× 6

The non-uniform adopted mesh and the various node-variable kinematic models, with
global/local capabilities used to perform the analysis of the proposed plate structure, are
depicted in Figure 10.22, where the mesh grid of a quarter of the plate is analysed. The
results are given in terms of transverse displacement w and in-plane normal stresses σxx, σyy
evaluated at (a/2, b/2,−h/2), transverse shear stress σxz evaluated at (5a/12, b/2, 0), and
transverse normal stress σzz evaluated at (a/2, b/2,+h/2).
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Figure 10.22: Non-uniform adopted mesh on quarter of the plate, and graphical representation
of the multi-theory models of the cross-ply plate structure.

For the three-layered plate structure with [0◦/90◦/0◦], mono-theory models are compared
with those from the present global/local approach in Table 10.6. The table shows that mono-
theory ESL models with lower expansion order, ET1 and ET2, are not able to describe
appropriately the transverse displacements w and the in-plane stresses σxx and σyy, otherwise
LW mono-models represent these variables with a good accuracy solution for every expansion
order. To accurately describe the shear transverse stresses σxz, ESL higher-order theories are
required, or LW mono-models theories. The transverse normal stress σzz needs higher-order
theories to be well described, both linear ESL and LW single-models are not sufficient. Table
10.6 also show solutions for variable kinematic multi-model theories, the cases taken into
account are named from CaseA to CaseH, and they are explained in Figure 10.22. The cases
named as CaseA, CaseB and CaseE are equivalent to the models (ET1−ET4)A, (ET3−
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ET4)B and (ET1− LW4)E taken from [176] and in which, via the Arlequin method and 4-
node Lagrangian plate elements, a fourth-order plate theory is used in correspondence of the
loading and a first- and third-order kinematics is used outside the loading zone, respectively.

Table 10.6: Composite plate with [0◦/90◦/0◦] lamination. Transverse displacement w =
(−105) × w(a/2, b/2,−h/2), in-plane normal stresses σxx = σxx(a/2, b/2,−h/2) and σyy =
σyy(a/2, b/2,−h/2), transverse shear stress σxz = (−10)× σxz(5a/12, b/2, 0), and transverse
normal stress σzz = −σxz(a/2, b/2,+h/2) by various single- and multi-theory models.

w σxx σyy σxz σzz DOFs

Reference solutions [176]

3D 1.674 11.94 2.019 6.524
LW4a 1.675 11.94 2.020 6.523 39
LW4 1.672 11.83 1.983 6.464 9984
ET4a 1.660 11.95 2.005 5.865 15
ET4 1.657 11.85 1.985 5.830 3840

(ET1− ET4)A 1.609 11.92 1.962 5.848 2448
(ET3− ET4)B 1.657 11.84 1.985 5.831 3936
(ET1− LW4)E 1.617 11.91 1.953 6.481 3984

Present single- and multi-theory models

LW4 1.6745 11.9547 2.0232 6.5557 1.0000 17199
LW3 1.6745 11.9624 2.0302 6.5613 1.0108 13230
LW2 1.6719 11.9141 2.0458 6.3903 1.0731 9261
LW1 1.6369 11.3621 2.1465 6.5881 1.4679 5292
ET4 1.6596 11.9556 2.0078 5.8473 0.9905 6615
ET3 1.6590 11.9867 2.1164 6.0147 1.2443 5292
ET2 1.5625 10.1942 1.7935 3.8521 1.0377 3969
ET1 1.4954 10.2867 2.1002 3.7554 1.8261 2646

CaseA 1.6040 12.0084 1.9821 5.8510 0.9910 5247
CaseB 1.6596 11.9556 2.0077 5.8473 0.9905 6159
CaseC 1.5257 11.7328 1.9453 4.9414 0.9938 4167
CaseD 1.5770 11.8056 1.9510 4.9970 0.9909 4983
CaseE 1.6103 12.0107 1.9923 6.5254 1.0000 12183
CaseF 1.6670 11.9699 2.0263 6.5524 1.0108 10494
CaseG 1.5274 11.7105 1.9474 5.3212 1.0009 8223
CaseH 1.6613 11.9305 2.0198 6.3616 1.0118 8334

Some results in terms of transverse displacement w, and transverse shear stress σxz along
the thickness are represented in Figures 10.23a, 10.23b, 10.24a and 10.24b. The following
remarks can be made:

• The transverse displacement w behaviour can change sensitively depending on the dis-
tribution of the kinematic enrichment within the structure plane. Figure 10.23a show
that CaseB has the same accuracy as the full higher-order ET4 mono-model with a
8% DOFs reduction, and an accuracy close to multi-model CaseH with a 26% DOFs
reduction. It is noticeable that, the choice of the ESL or LW model for the loaded zone
is not decisive for the correct description of the transverse mechanical displacement, as
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shown for CaseC and CaseG. On the contrary a global more refined approximation
get better accuracies, as the case of the multi-models CaseA and CaseE.

• For the evaluation of the transverse shear stress σxz, higher-order models are necessary
in the regions close to the considered evaluation point. In Figure 10.23b mono-model
LW4 is used as reference solution. It is evident that ESL single-models, for every
expansion orders, are not able to correctly describe the transverse shear stress. The
ESL multi-model CaseA has the same poor accuracy of the theory ET4. The linear
model LW1 is clearly not sufficient to describe the transverse shear stress, differently
from the single value reported in Table 10.6 taken in z = 0. In Figure 10.24a the
multi-model CaseE and CaseG, where in the boundary regions a ET1 model is used
and in the loaded zones a LW4 model is adopted, the accuracy on the transverse shear
stress is not completely guaranteed by the LW model. In particular for the CaseG
the evaluation point is close to the transition element, this position is perturbating the
accuracy solution. On the contrary for the CaseE the evaluation point is not more
close to the transition element and the solution accuracy is like the full LW model.
Finally in Figure 10.24b the multi-model CaseF and CaseH are not suffering any
perturbation poblem, due to the third-order ESL model of the boundary regions.

(a) Single and multi models
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Figure 10.23: Composite plate. Transverse displacement w(x; y) = −105 × w(a/2; b/2), and
transverse shear stress σxz(x; y) = −10× σxz(5a/12; b/2).
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Figure 10.24: Composite plate. Transverse shear stress σxz(x; y) = −10 × σxz(5a/12; b/2).
Multi-theories with ESL model by Taylor Polynomials combined with LW model by Legendre
Polynomials.

Results in terms of in-plane stress σxx, transverse shear stress σxz and transverse normal
stress σzz along the in-plane x axis are represented in Figures 10.25a, 10.25b and 10.26a
respectively.
For the in-plane stress σxx, see Figure 10.25a, the mono-models LW4 and ET4 show the
same accuracy solution. Multi-models with ESL approach with Taylor polynomials, CaseA
and CaseC, produce small oscillations in the transition zone. On the contrary, multi-theories
with ESL model by Taylor Polynomials combined with LW model by Legendre Polynomials,
CaseE and CaseG, show big fluctuations in the transition elements. Moreover it has to be
noticed that if the refined polynomials are limited to the loading zone, CaseC and CaseG,
the solution accuracy in the loading zone is lower respect to the reference LW4 solution.
For the transverse shear stress σxz, see Figure 10.25b, the ET4 mono-model have an accuracy
close to the mono-model LW4 in the laoded zone, differently the ET4 model reach a maximum
value of the shear stress 9% lower than the reference LW4 solution. For multi-model theories
the same comments made for the in-plane stress can be applied for the behaviour description
of the transverse shear stress.
For transverse normal stress σzz, see Figure 10.26a, the mono-models LW4 and ET4 show
the same accuracy solution. For multi-model theories the same comments made for the in-
plane stress can be applied for the behaviour description of the transverse normal stress. It
has to be noticed that the oscillations of the transition elements are smaller than those of the
in-plane stress and the transverse shear stress.
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Figure 10.25: Composite plate. In-plane stress σxx(y; z) = σxx(b/2;−h/2), and transverse
shear stress σxz(y; z) = −10 × σxz(b/2; 0) along the in-plane direction X, the axis X is
expressed in [mm]. Single and Multi-theory models.
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Figure 10.26: Composite plate. Transverse normal stress σzz(y; z) = −σzz(b/2; +h/2) along
the in-plane direction X, the axis X is expressed in [mm]. Single and Multi-theory models.

Finally, a three-dimensional distributions on a quarter of the plate of the transverse shear
stress σxz is given to underline the global/local capabilities of the presente finite element
on the whole domain of the analyzed plate structure. The reference single-model solution
LW4 is depicted in Figure 10.27a. For a fair results comparison, the extremities of the
colorbar values of the LW4 model are used to limit the colorbar of the other solutions. The
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single-model ET4 is not able to correctly describe the transverse shear stress behaviour, it is
clear from Figure 10.27b that the interlaminar continuity of the transverse shear stress is not
satisfied. In Figure 10.28a the multi-model named Case E, (ET1-LW4) is represented. It is
evident that the transverse shear stress is well represented in the LW4 zone only. The multi-
model Case H, (ET3-LW3) is represented in Figure 10.28b, the small LW3 zone is able to
correctly describe the transverse shear stress, on the contrary the ET3 zone has a comparable
behaviour as the single-model ET4.

(a) LW4 (b) ET4

Figure 10.27: Composite plate, three-dimensional view of a quarter of the plate. Transverse
shear stress σxz for single models.

(a) Case E (b) Case H

Figure 10.28: Composite plate, three-dimensional view of a quarter of the plate. Transverse
shear stress σxz for multi-models.

10.3.4 Sandwich rectangular plates simply-supported

A simply-supported unsymmetrically laminated rectangular sandwich plate is analysed. The
geometrical dimensions are: a = 100mm, b = 200mm, the total thickness is h = 12mm,
the top skin thickness is htop = 0.1mm, the bottom skin is thick hbottom = 0.5mm , and the
core thickness is hcore = 11.4mm. The two skins have the same material properties: E1 =
70GPa, E2 = 71GPa, E3 = 69GPa, G12 = G13 = G23 = 26GPa, ν12 = ν13 = ν23 = 0.3,
moreover the metallic foam core has the following material properties: E1 = E2 = 3MPa,
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E3 = 2.8MPa, G12 = G13 = G23 = 1MPa, ν12 = ν13 = ν23 = 0.25. The plate is simply-
supported and a localised uniform transverse pressure, Pz = −1MPa, is applied at top face
on a square region of side length equal to (a = 5mm) × (b = 20mm) and centered at the
point (a/2, b/2), see Figure 10.29.

Figure 10.29: Reference system of the sandwich plate. Three-dimensional deflection repre-
sentation of a quarter of the plate.

Due to the simmetry of both the geometry and the load, a quarter of the plate is analyzed
and the following symmetry and boundary conditions (simply-supported) are applied:

Boundary Simmetry
us(x, 0) = 0 ws(x, 0) = 0 us(a/2, y) = 0
vs(0, y) = 0 ws(0, y) = 0 vs(x, b/2) = 0

(10.7)

The present single- and multi-model solutions are compared with other soutions present in
literature, three-dimensional analytical and three-dimensional FEM NASTRAN [182], ESL
and LW analytical higher-order by the use of Fourier series expansions [183], ESL and LW
FEM higher-order [184]. A non-uniform mesh grid of 38×54 elements ensures the convergence
of the solution with a LW4 single-model, see Figure 10.30. For the sake of brevity the study
of the convergence is here omitted. The adopted refined mesh is necessary to study the
behaviour of the mechanical variables along the whole plate domain, and not in one single
point. The difficult task is to obtain a good behaviour of the mechanical stresses, and in
particular of the transverse normal stress σzz along the in-plane directions avoiding strange
oscillations due to the changing of the element size.
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Figure 10.30: Non-uniform adopted mesh and graphical representation of the multi-model
cases, for a quarter of the sandwich plate.

For the unsymmetrically laminated rectangular sandwich plate, mono-theory models are
compared with those from the present global/local approach in Table 10.7. ESL models are
not able to correct describe all the variables, therefore LW theories are necessary to match
the reference analytical and 3D results. Table 10.7 also show solutions for variable kinematic
multi-model theories. As emerged in the previous numerical sections, the primary variables
(displacements) depend on the global domain approximation, in particular the transverse
displacement w is better describe in the CaseB configuration with a DOFs reduction of 34 %
respect to the CaseA multi-model. On the contrary the postprocessed variables (stresses)
are dependent on the local approximation.
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Table 10.7: Unsymmetrically laminated rectangular sandwich plate. Transverse displace-
ment w, in-plane normal stresses σxx and σyy, and transverse normal stress σzz evaluated at
(a/2, b/2) by various single- and multi-theory models.

z w σxx σyy σzz DOFs

Top Skin

3D Analytical [182] Top -3.78 -624 -241 -
Bottom 580 211 -

3D NASTRAN [182] Top -3.84 -628 -237 -
Bottom 582 102 -

LWM2 Analytical [183] Top -3.8243 -619.49 - -
Bottom 577.36 - -

LWM2 FEM [184] Top -3.7628 -595.56 -223.93 -
Bottom 556.00 196.37 -

Top Skin

LW4 Top -3.7774 -622.48 -233.39 -0.9649 327327
Bottom 578.60 203.25 -0.8738

LW3 Top -3.7723 -618.14 -232.33 -1.0143 251790
Bottom 574.87 202.36 -0.8270

LW2 Top -3.7552 -601.46 -228.13 -0.9813 176253
Bottom 559.72 198.73 -0.8710

LW1 Top -3.3896 -562.86 -286.15 -242.69 100716
Bottom 530.98 262.78 240.82

ET4 Top -2.5498 -248.99 -38.930 256.87 125895
Bottom 184.89 -1.7709 -275.80

ET3 Top -0.5995 -121.19 -56.428 -21.706 100716
Bottom 59.439 8.9946 -19.349

ET2 Top -0.0238 -29.573 -28.178 -30.655 75537
Bottom -27.989 -27.470 -29.934

ET1 Top -0.0191 -29.740 -25.448 -25.404 50358
Bottom -29.444 -25.211 -25.248

CaseA Top -2.1386 -622.21 -220.95 -0.9649 245619
Bottom 567.44 198.35 -0.8738

CaseB Top -2.4177 -609.14 -217.40 -0.9654 161007
Bottom 563.79 196.16 -0.8663

Some results in terms of transverse displacement w, and transverse normal stress σzz
along the thickness of the sandwich plate are represented in Figures 10.31a, and 10.31b. The
transverse displacement w behaviour can change sensitively depending on the distribution of
the kinematic enrichment within the structure plane. Figure 10.31a show that ESL mono-
models can vary sensitively their accuracy depending on the expansion order, differently the
LW mono-models have almost the same accuracy independently from the adopted expansion.
Moreover for the multi-models, it is noticeable that the choice of the LW higher-order models
for the loaded zone is not decisive for the correct description of the transverse mechanical
displacement, as shown for CaseA and CaseB.
On the other hand for the transverse normal stress σzz, see Figure 10.31b, LW higher-order
models are able to correctly predict a good behaviour along the plate thickness. Multi-models
theories CaseA and CaseB show the same accuracy of the reference solution LW4 in the
considered evaluaton point.
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Figure 10.31: Unsymmetrically laminated rectangular sandwich plate. Transverse displace-
ment w(x; y), and transverse normal stress σzz(x; y) evaluated at (a/2, b/2) by various single-
and multi-theory models.

Results in terms of the three-dimensional representation of the in-plane stress σxx and its
behaviour along the in-plane x axis are represented in Figures 10.32a and 10.32b respectively.
In Figure 10.32a it is noticeable that the maximum values of the in-plane stress are located
in the loading zone and its surroundings. Furthermore the behaviour of the in-plane stress
σxx along the the in-plane x axis and evaluated at (y, z) = (b/2,+h/2) is depicted in Figure
10.32b. Mono-models LW4 and ET4 and multi-models CaseA and CaseB show almost the
same accuracy solution. Multi-models CaseA and CaseB, produce small oscillations in the
transition zone. It is noticeable that the oscillations are small, this is due to a finer mesh
respect to the case of the previous numerical section.
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Figure 10.32: Unsymmetrically laminated rectangular sandwich plate. In-plane stress σxx,
three-dimensional view of a quarter of the plate, and in-plane stress along the in-plane axis
direction X evaluated at (y, z) = (b/2,+h/2), for single and multi-models.

Finally, a three-dimensional distributions on a quarter of the sandwich plate of the trans-
verse normal stress σzz is given to underline the global/local capabilities of the presente
finite element on the whole domain of the analyzed sandwich plate structure. The reference
single-model solution LW4 is depicted in Figure 10.33a. For a fair results comparison, the
extremities of the colorbar values of the LW4 model are used to limit the colorbar of the
other solutions. The single-model ET4 is not able to correctly describe the transverse shear
stress behaviour, as shown in Figure 10.33b. Multi-model CaseA and CaseB are shown in
Figures 10.34a and 10.34b respectively. It is evident that the transverse normal stress is well
represented in the LW4 zone only, closed to the loaded zone.

(a) LW4 (b) ET4

Figure 10.33: Unsymmetrically laminated rectangular sandwich plate, three-dimensional view
of a quarter of the plate. Transverse normal stress σzz for single models.
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(a) Case A (b) Case B

Figure 10.34: Unsymmetrically laminated rectangular sandwich plate, three-dimensional view
of a quarter of the plate. Transverse normal stress σzz for multi-models.
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10.4 Electro-Mechanical Analysis Results

Some problems have been considered to assess the capabilities of the proposed variable-
kinematics plate elements and related global/local analysis. These analysis cases comprise:

• Composite plate with piezoelectric skins simply-supported, with bi-sinusoidal mechan-
ical and electrical loadings

• Sandwich cantilevered plate with piezoelectric patch shear actuated in mode-15

• Sandwich cantilevered plate with piezoelectric patch under concentrated mechanical
load

Whenever possible, the proposed multi-theory models are compared to single-theory from
higher-order ESL models, LW models, 3D elasticity solutions and analytical results. More-
over different multi-theory models present in literature are given in some cases. For the sake
of clarity, present multi-model theories are opportunely described for each numerical case
considered.

10.4.1 Simply-supported cross-ply composite plates with piezoelectric skins

A four-layer cross-ply square plate with a cross-ply Gr/Ep composite core [0◦/90◦] and PZT-4
piezoelectric external skins, see Figure 10.35, is analyzed. The square plate has the following
geometrical data: a = b = 4.0, and htot = 1.0. In respect to the total thickness, a single
piezoelectric skin is thick hp = 0.1htot, while the single core layer is thick hc = 0.4htot. The
static analysis of the plate structure is evaluated in sensor and actuator configuration.

Figure 10.35: Reference system of the composite plate with piezoelectric skins.

For the sensor case, a bi-sinusoidal transverse normal pressure is applied to the top surface
of the plate:

p (x, y, ztop) = poz sin(mπx/a)sin(nπy/b) (10.8)

with amplitude poz = 1 and wave numbers m = 1, n = 1. The potential at top and bottom
position is imposed Φt = Φb = 0. For the actuator case, a bi-sinusoidal electric potential is
imposed at top surface:

Φ (x, y, ztop) = φoz sin(mπx/a)sin(nπy/b) (10.9)

with amplitude φoz = 1 and wave numbers m = 1, n = 1. The potential at bottom position
is imposed Φb = 0. No mechanical load is applied. The material properties of the plate are
given in Table 10.8.
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Table 10.8: Material data for multilayered plate.

Mechanical Properties

E11 [GPa] E22 [GPa] E33 [GPa] ν12 [−] ν13 [−] ν23 [−] G12 [GPa] G13 [GPa] G23 [GPa]

Gr/EP 132.38 10.756 10.756 0.24 0.24 0.49 5.6537 5.6537 3.606
PZT − 4 81.3 81.3 64.5 0.329 0.432 0.432 30.6 25.6 25.6

Electrical Properties

e15 [C/m2] e24 [C/m2] e31 [C/m2] e32 [C/m2] e33 [C/m2] ε̃11/ε0 [−] ε̃22/ε0 [−] ε̃33/ε0 [−] ε0 [C/V m]

Gr/EP 0 0 0 0 0 3.5 3.0 3.0 8.85 ∗ 10−12

PZT − 4 12.72 12.72 -5.20 -5.20 15.08 1475 1475 1300 8.85 ∗ 10−12

The plate has simply-supported boundary conditions. Due to the simmetry of both the
geometry and the load, a quarter of the plate is analyzed and the following symmetry and
boundary conditions (simply-supported) are applied:

Boundary Simmetry
us(x, 0) = 0 ws(x, 0) = 0 us(a/2, y) = 0
vs(0, y) = 0 ws(0, y) = 0 vs(x, b/2) = 0
Φs(x, 0) = 0 Φs(0, y) = 0

(10.10)

The boundary condition of the electric potential is taken into account to compare the results
with the analytical solution, see [46], where the electric potential has the following Navier-
type assumptions Φ = Φ̂ sin(mπx/a)sin(nπy/b).
In order to compare the results with other solutions present in literature [185](Arlequin
method), the mid-plane domain of the plane structure was subdivided into two zones along
the axes x and y, as shown in Figure 10.36, and multi-theory models CaseA , CaseB and
CaseC are depicted on the FE discretization of a quarter of the plate. The FE mesh on
a quarter plate is 10 × 10 elements, the accounted mesh is the same used in the reference
solutions [185]; the difference is that, in the reference solutions, it is used a four-node element
and a Reissner Mixed Variational Theorem applied to the transverse electric displacement Dz
(RMV T −Dz), the transverse electric displacement is a priori modelled with the mechanical
displacements.
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Figure 10.36: Mesh zones of the composite plate with piezoelectric skins and graphical rep-
resentation of the multi-theory models, based on layer-wise models.

Some results of the transverse mechanical displacement w, in-plane stress σxx, transverse
shear stress σxz, transverse normal stress σzz, electric potential Φ, and tranvserse electric
displacement Dz evaluated along the plate thickness are given in tabular form, see Tables
10.9, 10.10, for the sensor case and the actuator case respectively. Mono-theory models
are compared with those from the present multi-model approach, furthermore the exact 3D
solutions provided by Heyliger [78], the analytical solution with layer-wise mono-models [46],
and the multi-model solutions via the Arlequin method [185] are given. For the transverse
shear and normal stresses the evaluation point is located between the composite layers, their
results are given for the upper layer with upscript + and for the lower layer with upscript −.
It is clear for both sensor and actuator cases that at least a second order expansion order is
needed to get good results for all the considered variables.

289



CHAPTER 10. NODE-DEPENDENT VARIABLE KINEMATIC

Table 10.9: Composite four-layered plate with piezoelectric skins. Transverse displace-
ment w̄ = (1011) × w(a/2, b/2, 0), in-plane stress σ̄xx = σxx(a/2, b/2,+h/2), transverse
shear stress σ̄xz = σxz(0, b/2, 0), transverse normal stress σ̄zz = (10) × σzz(a/2, b/2, 0),
electric potential Φ̄ = (102) × Φ(a/2, b/2, 0), and transverse electric displacement D̄z =
(1010)×Dz(a/2, b/2,+h/2) by various single- and multi-theory models. Sensor Case.

w̄ σ̄xx σ̄xz σ̄zz Φ̄ D̄z DOFs

Reference solutions

3D Exact [78] 30.027 6.5643 - 4.9831 0.611 0.1606
LW4a [46] 30.029 6.5642 0.6872 - 0.6108 0.161
LW1a [46] 29.852 6.9995 - - 0.6030 -0.880

(LW1− LWM3)A [185] 29.91 - - 4.888+ 0.555 -0.0252
5.159−

(LW2− LWM3)C [185] 29.72 - - 4.871+ - 0.1533
5.147−

Present single- and multi-theory models

LW4 30.029 6.5739 0.6906+ 4.9844+ 0.6111 0.1321 29988
0.6886− 4.9812−

LW3 30.029 6.5749 0.6866+ 4.8882+ 0.6110 0.1348 22932
0.6886− 5.0648−

LW2 29.981 6.5690 0.8162+ 5.2397+ 0.6090 0.1489 15876
0.7058− 4.8336−

LW1 29.851 7.0132 0.7099+ 5.7912+ 0.6032 -0.8948 8820
0.6791− 3.9877−

CaseA 29.932 6.5694 0.7100+ 4.8889+ 0.6100 0.1365 12692
0.6798− 5.0506−

CaseB 29.926 7.0033 0.6816+ 5.7928+ 0.6025 -0.8936 19060
0.6863− 3.9850−

CaseC 29.999 6.5852 0.8168+ 4.8965+ 0.6108 0.1353 17812
0.7057− 5.0601−
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Table 10.10: Composite four-layered plate with piezoelectric skins. Transverse displace-
ment w̄ = (1011)×w(a/2, b/2, 0), in-plane stress σ̄xx = σxx(a/2, b/2,+h/2), transverse shear
stress σ̄xz = (10) × σxz(0, b/2, 0), transverse normal stress σ̄zz = (103) × σzz(a/2, b/2, 0),
electric potential Φ̄ = Φ(a/2, b/2, 0), and transverse electric displacement D̄z = (109) ×
Dz(a/2, b/2,+h/2) by various single- and multi-theory models. Actuator Case.

w̄ σ̄xx σ̄xz σ̄zz Φ̄ D̄z DOFs

Reference solutions

3D Exact [78] -1.471 1.1181 -0.2387 -14.612 0.4476 -
LW4a [46] -1.4707 1.1180 -0.239 - 0.4477 -2.4184
LW1a [46] -1.5962 3.3433 - - 0.4468 -1.3814

(LW1− LWM3)A [185] -1.420 1.119 - - - -
(LW2− LWM3)C [185] -1.410 - - - - -

Present single- and multi-theory models

LW4 -1.4707 1.1248 −0.2411+ −14.732+ 0.4477 -2.4186 29988
−0.2391− −14.660−

LW3 -1.4707 1.1261 −0.2270+ −13.541+ 0.4477 -2.4183 22932
−0.2394− −15.343−

LW2 -1.4662 1.1311 −0.3592+ −20.604+ 0.4477 -2.4167 15876
−0.2505− −15.978−

LW1 -1.5962 3.3531 −0.0293+ 14.188+ 0.4468 -1.3816 8820
−0.2980− −21.879−

CaseA -1.4729 1.1315 −0.0302+ −12.729+ 0.4479 -2.4183 12692
−0.2979− −14.223−

CaseB -1.5916 3.3590 −0.2210+ −14.026+ 0.4467 -1.3818 19060
−0.2385− −21.913−

CaseC -1.4679 1.1250 −0.3599+ −13.641+ 0.4477 -2.4183 17812
−0.2504− −15.318−

Some results in terms of transverse displacement w, transverse shear stress σxz and electric
transverse displacement Dz along the plate thickness. For the transverse displacement w, in
sensor case configuration, the differences between single and multi-models are negligible, see
Figure 10.37a. On the contrary for the actuator case, see Figure 10.37b, remarkable differences
are present between LW4 and LW1 single-model solutions; extending the comparison to the
multi-models, it is clear that a more refined expasion is needed in the center plate where the
load is higher, see CaseA and CaseC, differently CaseB shows an accuracy very close to
LW1 single-model.
The transverse shear stress σxz is represented in Figure 10.38a for the actuator configuration.
The stress is evaluated in its maximum shear stress value point (x, y) = (0, b/2). The mono-
model LW4 is able to predict the correct behaviour as the 3D Exact reference solution [78].
The higher-order multi-models CaseA and CaseC are not sufficient to depict the good
representation of the shear stress. Differently CaseB shows a good accuracy solution due to
the higher-order representation in the evalution zone of the shear stress.
Regarding the electric transverse displacement Dz, represented in Figure 10.38b for the sensor
configuration, it is evaluated in the center plate. The mono-model LW4 is able to predict
the correct behaviour as the 3D Exact reference solution [78]. In this case, the multi-models
CaseA and CaseC, differently from CaseB, are able to get a good accuracy solution due
to the higher-order representation in the center plate zone.
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Figure 10.37: Composite plate with piezoelectric skins. Transverse displacement w̄(x; y) =
1011 × w(a/2; b/2). Sensor and Actuator Cases. Single and Multi-theory models.

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ
-

xz

z

3D Exact

LW4

LW1

Case A

Case B

Case C

(a) σ̄xz, Actuator Case

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

D
-

z

z

3D Exact

LW4

LW1

Case A

Case B

Case C

(b) D̄z, Sensor Case

Figure 10.38: Composite plate with piezoelectric skins. Transverse shear stress σ̄xz(x; y) =
(10) × σxz(0, b/2) for the Actuator Case, and transverse electric displacement D̄z(x; y) =
(1010)×Dz(a/2, b/2) for the Sensor Case. Single and Multi-theory models.

Results in terms of in-plane stress σ̄xx(y; z) = σxx, and transverse electric displacement
D̄z = (1010) × Dz along the in-plane x axis are represented in Figures 10.39a, 10.39b re-
spectively. For both the depicted variables, the multi-model CaseC is able to reproduce the
correct behaviour along the X asix as the reference solution LW4. The linear single model
LW1 and multi-models CaseA and CaseB show an incorrect solution in the zone where a
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linear approximation is used. In the transition elements small oscillations are present, these
oscillations are due to the coarse mesh, if the mesh is more refined the oscillations tend to
fade.
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Figure 10.39: Composite plate with piezoelectric skins. In-plane stress σ̄xx(y; z) =
σxx(b/2; +h/2) for the Actuator Case, and transverse electric displacement D̄z(y; z) =
(1010) × Dz(b/2; +h/2) for the Sensor Case, along the in-plane direction X, the axis X
is expressed in [mm]. Single and Multi-theory models.

Figures 10.40a and 10.40b show the three-dimensional distributions of the transverse
normal stress σzz, in Sensor Case configuration, of the single-model LW4 and the variable
kinematic multi-model CaseA respectively. The results show the enhanced global/local ca-
pabilities of the CaseA model, which is able to predict correctly the stress state in the
center zone where the loading is bigger. Moreover the three-dimensional distributions of the
transverse shear stress σxz, in Actuator Case configuration, is depicted in Figures 10.41a and
10.41b for the single-model LW4 and the variable kinematic multi-model CaseB respectively.
The results show the enhanced global/local capabilities of the CaseB model, it represents
accurately the maximum shear stress in boundary zone of the plate structure.
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(a) LW4 (b) Case A

Figure 10.40: Composite plate with piezoelectric skins, three-dimensional view of a quarter
of the plate. Transverse normal stress σzz for single and multi-model. Sensor Case.

(a) LW4 (b) Case B

Figure 10.41: Composite plate with piezoelectric skins, three-dimensional view of a quarter
of the plate. Transverse shear stress σxz for single and multi-model. Actuator Case.

10.4.2 Sandwich cantilever plate shear-actuated in mode-15

A cantilever sandiwch plate is analysed as second example and it is shown in Figure 10.42.
The geometrical dimensions are: a = 100mm, b = 20mm, htotal = 18mm. The upper and
lower layers are made of Aluminum with the following mechanical properties: E = 70.3GPa,
ν = 0.345, ε = 30.975 × 10−12 F/m; each aluminum layer is thick hAl = 8mm. The central
layer is thick hc = 2mm, it is made of Foam, with the following properties: E = 35.3MPa,
ν = 0.38, ε = 30.975 × 10−12 F/m; a small PZT-5H piezoelectric patches is introduced
in the foam layer with dimension: ap = 10mm, bp = 20mm, hp = 2mm, the PZT-5H
material has the following properties: C11 = C22 = C33 = 126GPa, C23 = 79.5GPa, C12 =
C13 = 84.1GPa, C44 = C55 = C66 = 23GPa, e11 = 23.3C/m2, e12 = e13 = −6.5C/m2,
e26 = e35 = 17C/m2, ε11 = 1.3 × 10−8 F/m, ε22 = ε33 = 1.503 × 10−8 F/m. The material
PZT-5H is polarized in the x-direction, or in mode−15. The structure is loaded at the upper
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and lower surfaces of the piezoelectric patch with a constant uniform electric potential equal
to Φt/b = ∓10.0V .

Figure 10.42: Reference system of the sandwich plate with piezoelectric patch, and three-
dimensional representation of the deformation under the electric load.

First, a convergence study on a single-theory plate model was performed. As far as an
LW4 model is concerned and as shown in Table 10.11, a non-uniform mesh grid of 56 × 8
elements, see Figure 10.43 is enough to ensure convergent results. This structural problem
has become popular and it is a good benchmark problem for its selectivity. The present plate
element model is compared with various solutions from the literature, including those of
Zhang and Sun [186,187], Benjeddou et al. [188]. Some results are given varying the actuator
position along the x-axis, the deflection at the free edge is investigated for each position of the
piezoelectric patch, see Figure 10.44, and compared with the literature solutions [186, 188],
here named Sun & Zhang, and Benjeddou et al., respectively.
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Figure 10.43: Mesh zone subdivisions of the sandwich plate with piezoelectric patch, for the
convergence study.

Table 10.11: Convergence study versus the number of elements of the LW4 single-theory
model of the sandwich cantilever plate. Transverse displacement w = 108 ×w(a, b/2,+h/2),
electric potential Φ = Φ(d, b/2,−h/2) , in-plane principal stress σxx = σxx(d, b/2,−h/2),
transverse shear stress σxz = σxz(d, b/2, 0), with the center of the piezoelectric patch placed
at d = 85mm.

w Φ σxx σxz DOFs

Mesh 8× 2
zone1 zone2 zone3 zone4 6.7194 0.5852 983.17 -1220.7 4420
2× 2 2× 2 2× 2 2× 2

Mesh 16× 4
zone1 zone2 zone3 zone4 6.7531 0.1404 1023.7 -959.22 15444
4× 4 4× 4 4× 4 4× 4

Mesh 32× 8
zone1 zone2 zone3 zone4 6.7673 0.0257 944.61 -967.35 57460
8× 8 8× 8 8× 8 8× 8

Mesh 64× 16
zone1 zone2 zone3 zone4 6.7738 0.0097 956.82 -981.90 221364

16× 16 16× 16 16× 16 16× 16

Mesh 56× 8
zone1 zone2 zone3 zone4 6.7661 0.0172 957.65 -983.45 99892
8× 8 16× 8 16× 8 16× 8
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Figure 10.44: Sandwich plate with piezoelectric patch, tip transverse displacement
w(x, y, z) = 108 × w(a, b/2,+h/2) for several position of the piezoelectric patch along the
x-axis direction.

Various node-variable kinematic models have been used to perform the global/local anal-
ysis of the proposed plate structure, with the center of the piezoelectric patch fixed at
d = 85mm. The mid-plane domain of the plate structure was subdivided into higher-order
and lower-order zones along the axes x and y and they are depicted in Figure 10.45. Some re-
sults of the transverse mechanical displacement w, in-plane stress σxx, transverse shear stress
σxz, transverse normal stress σzz, electric potential Φ, and tranvserse electric displacement
Dz evaluated along the plate thickness are given in tabular form, see Table 10.12. Mono-
theory models are compared with those from the present multi-model approach, furthermore
the FEM 3D solution provided by 3D Abaqus C3D20RE element is given.
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Figure 10.45: Graphical representation of the multi-theory models, based on layer-wise mod-
els, of the sandwich plate with piezoelectric patch, for the node-variable kinematic study.
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Table 10.12: Single-theory and multi-theory models of the sandwich cantilever plate. Trans-
verse displacement w = 108 × w(a, b/2,+h/2), electric potential Φ = Φ(d, b/2,−h/2), in-
plane principal stress σxx = σxx(d, b/2,−h/2), transverse shear stress σxz = σxz(d, b/2, 0),
transverse normal stress σzz = σzz(d, b/2,−h/2), transverse electric displacement Dz =
104 ×Dz(d, b/2, 0), with the center of the piezoelectric patch placed at d = 85mm.

w σxx σxz σzz Φ Dz DOFs

3D Abaqus C3D20RE 6.7775 939.50 -1001.1 -3.7539 6.3489 - 627028

LW4 6.7661 957.65 -983.45 36.319 0.0172 2.7523 99892
LW3 6.7716 819.22 -941.32 -262.36 0.0187 2.7526 76840
LW2 6.7957 1163.2 -878.64 354.78 0.0208 2.7530 53788
LW1 6.6923 684.02 -969.41 465.55 0.0443 2.7524 30736

CaseA 6.7660 958.91 -984.12 36.388 -0.0116 2.7523 86836
CaseB 6.7914 901.61 -858.59 -18.913 -0.0112 2.7532 77044
CaseC 6.7738 915.53 -949.66 36.314 -0.0094 2.7526 67252

Some results in terms of transverse displacement w, and electric potential Φ along the
thickness are represented in Figures 10.46a and 10.46b, furthermore three-dimensional view
of the electric potential Φ is given in Figures 10.47a and 10.47b. Some more comments can
be made:

• The through-the-thickness distribution of the transverse displacement w at the free tip,
as shown in Figure 10.46a, is correctly predicted by higher-order single-models LW3
and LW4. The same accuracy is reached by the CaseA multi-model and little losses
in accuracy are present in the CaseB and CaseC multi-models.

• The behaviour of the electric potential Φ along the thickness, depicted in Figure 10.46b,
is well described for every single and multi-models. Furthermore the three-dimensional
view of the electric potential Φ, on deformed structure, is given by the finite element
3D Abaqus C3D20RE, see Figure 10.47a, and the present mono-model LW4, see Fig-
ure 10.47b. It has noticeable that the electric potential calculated by the commercial
3D Abaqus C3D20RE finite element does not tend to zero at the top and bottom po-
sitions of the inserted patch zone, differently the present LW4 model well describe the
electric potential behaviour withouth imposing any boundary conditions at the top and
bottom positions.

Furthermore some results in terms of mechanical stresses are given for the in-plane stress σxx
in Figure 10.48a, transverse normal stress σzz in Figure 10.48b, and transverse shear stress
σxz in Figures 10.49a, 10.49b, 10.50a, 10.50b. Some more comments can be made:

• The through-the-thickness distribution of the in-plane stress σxx, as shown in Figure
10.48a, is correctly predicted by higher-order single-models LW3 and LW4. The same
accuracy is reached by all the considered multi-models, where the evaluation point is
described by the LW4 theory. It has to be noticed that the CaseB show a little loss in
accuracy due to the short distance of the evaluation point from the transition elements.

• The transverse normal stress σzz, as shown in Figure 10.48b, is well described by the
LW4 single-model. The same accuracy is reached by all the considered multi-models,
where the evaluation point is described by the LW4 theory. As mentioned for the in-
plane stress σxx, the CaseB show a little loss in accuracy due to the short distance of
the evaluation point from the transition elements.

• The three-dimensional view of the transverse shear stress σxz, on undeformed structure,
is given by the finite element 3D Abaqus C3D20RE in Figure 10.49a, by the present
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mono-model LW4 in Figure 10.49b, and by multi-model CaseC in Figure 10.50a, in
which it is possible to notice the differences, at the clamped boundaries and at the
transition elements close to the patch zone, respect to the LW4 solution. Therefore,
the through-the-thickness distribution of the transverse shear stress σxz is given in
Figure 10.50b. All the single-model considered are not able to fullfill the interlaminar
continuity condition of the shear stress. Regarding the multi-models, they show an
accuracy very close to the LW4 solution, and as mentioned for the in-plane stress σxx,
the CaseB show a little loss in accuracy due to the short distance of the evaluation
point from the transition elements.

By the evaluation of the various node-variable kinematic models, it is clear that an accurate
representation of the stresses in localized zones is possible with DOFs reduction if an accurate
distribution of the higher-order kinematic capabilities is performed. Differently, the primary
variables, mechanical displacements and electric potential, are dependent on the global ap-
proximation over the whole structure. The DOFs reduction can be moderate or stronger,
depending on the structure and the load case configuration.
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Figure 10.46: Sandwich cantilever plate, transverse displacement w(x, y) = 108 × w(a, b/2),
and electric potential Φ(x, y) = Φ(d, b/2). Single and Multi-theory models.
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Figure 10.47: Sandwich cantilever plate, three-dimensional view of the electric potential Φ,
on deformed structure. 3D Abaqus C3D20RE and mono-model LW4.
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Figure 10.48: Sandwich cantilever plate, in-plane stress σxx(x, y) = σxx(d, b/2), and trans-
verse normal stress σzz(x, y) = σzz(d, b/2). Single and Multi-theory models.
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Figure 10.49: Sandwich cantilever plate, three-dimensional view of the transverse shear stress
σxz, on undeformed structure. 3D Abaqus C3D20RE and mono-model LW4.
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Figure 10.50: Sandwich cantilever plate, transverse shear stress σxz. Three-dimensional
view on undeformed structure by multi-model CaseC, and behaviour along the thickness
σxz(x, y) = σxz(d, b/2) for single and multi-theory models.

10.4.3 Sandwich cantilever plate under mechanical loading

A cantilever sandiwch plate is analysed as shown in Figure 10.51. The geometrical dimensions
are: a = b = 20mm, htotal = 6mm. The upper and lower layers are made of Aluminum. The
central layer is made of Foam, and a PZT-5H piezoelectric patches is introduced in the foam
layer with dimension: ap = 10mm, bp = 20mm, hp = 2mm, it is centered at x = 10mm.
The material properties are the same of the previous numerical example. The three layers have
the same thickness h = 2mm. The structure is loaded at the free tip (x, y, z) = (a, b/2,+h/2)
with a concentrated transverse mechanical load equal to Pz = −100N . The piezolectric patch
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is set in open-circuit configuration. The plate is cantilevered and the following boundary
condition are applied:

Boundary
us(0, y) = 0 vs(0, y) = 0 ws(0, y) = 0

(10.11)

Figure 10.51: Reference system of the sandwich plate with piezoelectric patch under the
concentrated mechanical load.

The structure analyzed in this numerical section is taken from the work of Sun and
Zhang [186]. The present single- and multi-model solutions are compared with a calculated
three-dimensional FEM ABAQUS solution. A non-uniform mesh grid of 60 × 16 elements
ensures the convergence of the solution with a LW4 single-model, see Figure 10.52. For the
sake of brevity the study of the convergence is here omitted. The adopted refined mesh is
necessary to study the behaviour of the mechanical and electrical variables along the whole
plate domain, and not in one single point. The difficult task is to obtain a good behaviour
of the mechanical stresses, electric potential and electric displacements, along the in-plane
directions close to the interfaces of the piezoelectric patch, avoiding strange oscillations due
to the changing of the element size.
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Figure 10.52: Non-uniform adopted mesh and graphical representation of the multi-model
cases, for the sandwich plate.

Various node-variable kinematic models have been used to perform the global/local anal-
ysis of the proposed plate structure. The mid-plane domain of the plate structure was sub-
divided into different higher- and lower-order zones along the axes x and y and they are
depicted in Figure 10.52. Some results of the transverse mechanical displacement w, in-plane
stress σxx, transverse shear stress σxz, transverse normal stress σzz, electric potential Φ, and
tranvserse electric displacement Dz evaluated along the plate thickness are given in tabu-
lar form, see Table 10.13. Mono-theory models are compared with those from the present
multi-model approach, furthermore the FEM 3D solution provided by 3D Abaqus C3D20RE
element is given.
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Table 10.13: Single-theory and multi-theory models of the sandwich cantilever plate under
concentrated mechanical load. Transverse displacement w = 105 × w(a, b/2,+h/2), electric
potential Φ = Φ(3a/4, b/2,+h/6), in-plane principal stress σxx = 10−7×σxx(a/2, b/2,+h/2),
transverse shear stress σxz = 10−5 × σxz(a/2, b/2,+h/6), transverse normal stress σzz =
10−5 × σzz(a/2, b/2, 0), transverse electric displacement Dz = 106 ×Dz(a/2, b/2,+h/6).

w σxx σxz σzz Φ Dz DOFs

3D Abaqus C3D20RE -4.8842 1.0599 -5.7298 8.2433 -532.51 -0.0148 338660

LW4 -5.7762 1.0569 −5.7337+ 8.2616 -463.46 1.1278+ 207636
−5.6823− 1.0417−

LW3 -5.0390 1.0529 −5.7392+ 8.2657 -477.39 1.1890+ 159720
−5.4894− 0.7684−

LW2 -4.1148 1.0422 −5.4192+ 6.8405 -490.26 1.3531+ 111804
−6.0215− −11.580−

LW1 -3.1085 1.2066 −2.1940+ 6.7876 -455.66 1.0372+ 63888
−12.596− 63.269−

CaseA -5.7408 1.0558 −5.7982+ 8.2646 -462.57 1.1079+ 188628
−5.7475− 1.0072−

CaseB -3.2147 1.0653 −5.6762+ 8.5057 -518.01 1.1309+ 141108
−5.6241− 1.0498−

CaseC -3.2648 1.0576 −5.6240+ 8.2302 -464.57 1.0684+ 160116
−5.8244− 0.9687−

Some results are given in terms of transverse displacement w, transverse shear stress σxz,
electric potential Φ and electric transverse displacement Dz along the plate thickness. For
the transverse displacement w the differences between single and multi-models are negligible
in the lower part of the multilayer, see Figure 10.53a. On the contrary, in the upper part
of the multilayer close to the applied concentrated load, remarkable differences are present
between LW4 and CaseA respect to the other single and multi-model solutions.
The transverse shear stress σxz is represented in Figure 10.53b. The stress is evaluated in
the center patch (x, y) = (a/2, b/2). The mono-model LW4 is able to predict the correct be-
haviour satisfying the interlaminar continuity condition, and its accuracy is almost the same
of the Abaqus C3D20RE finite element solution. The lower singl-models LW2 and LW1 are
not able to represent correctly the stress behaviour. The higher-order multi-models show a
good accuracy solution due to the higher-order representation in the evalution zone of the
shear stress.
Regarding the electric potential Φ, represented in Figure 10.54a, it is evaluated along the side-
edge of the patch closer to the applied concentrated load Φ̄(x; y) = Φ(3a/4; b/2). Higher-order
single-models are needed to well describe to non-linear behaviour of the electric potential and
to capture its maximum value located at the interfaces corner (3a/4; b/2; +h/6). The top
and bottom position values tend naturally to zero without imposing any boundary condi-
tions. The multi-model solutions have almost the same accuracy of the LW4 solution, except
for the CaseB multi-model which shows an increase of the maximum value at the interfaces
corner, this is due to the influence of the transition zone with the LW1 zone elements, as
shown in Figure 10.52. It has to be noticeable that the present solutions are compared with
the Abaqus C3D20RE finite element solution which shows a comparable electric potential
description in the center part of the thickness multilayer, on the contrary the the top and
bottom values does not naturally tend to zero.
Regarding the electric transverse displacement Dz, represented in Figure 10.54b, it is evalu-
ated in the center patch. The same considerarations of the shear stress can be made here. The
mono-model LW4 is able to predict the correct behaviour, its accuracy is almost the same
of the Abaqus C3D20RE finite element solution. The lower singl-models LW2 and LW1 are
not able to represent correctly the electric displacement behaviour. The higher-order multi-
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models show a good accuracy solution due to the higher-order representation in the evalution
zone.
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Figure 10.53: Sandwich cantilever plate under concentrated mechanical load. Transverse
displacement w̄(x; y) = 105 × w(a; b/2), and transverse shear stress σ̄xz(x; y) = 10−5 ×
σxz(a/2; b/2) along the plate thickness. Single and Multi-theory models.
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Figure 10.54: Sandwich cantilever plate under concentrated mechanical load. Electric poten-
tial Φ̄(x; y) = Φ(3a/4; b/2), and transverse electric displacement D̄z(x; y) = 106×Dz(a/2; b/2)
along the plate thickness. Single and Multi-theory models.

Results in terms of transverse shear and normal stresses σ̄xz(y; z) = (10−5)×σxz, σ̄zz(y; z) =
(10−5) × σzz, electric potential Φ̄(y; z) = Φ, and transverse electric displacement D̄z =
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(105) × Dz, along the in-plane x axis at the interface between the upper skin and the sand-
wich core, are represented in Figures 10.55a, 10.55b, 10.56a, 10.56b respectively. For both
the transverse stress variables, see Figures 10.55a and 10.55b, the LW4 single-model and
higher-order multi-models show the same behaviour and accuracy. Higher peak values are
noticeable at the side-edges of the piezoelectric patch x = 5; 15mm. The multi-model CaseB
show an increase of the maximum peak value at x = 15mm, this is due to the transition zone
between LW4 and LW1 models, as shown in Figure 10.52. The linear single-model LW1
completely underestimate the stresses description.
The electric potential is well depicted by all the single and multi-models, as shown in Figure
10.56a. As mentioned before, the multi-model CaseB show an increase of the maximum
peak value at x = 15mm, this is due to the transition zone between LW4 and LW1 models.
Regarding the transverse electric displacement Dz, the single LW4 and all the multi-models,
as shown in Figure 10.56b, show a well description along the in-plane direction with some
small oscillations in the zones close to the side-edge of the patch at x = 5; 15mm. It has to
be noticed that the linear single-model LW1 is completely not able to correct describe the
transverse electric displacement, at x = 5mm the peak values show an inverse, positive, sign
respect to the other single and multi-models, and at x = 15mm the maximum peak value is
almost double respect to the other models.
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Figure 10.55: Sandwich cantilever plate under concentrated mechanical load. Transverse
shear stress σ̄xz(y; z) = 10−5 × σxz(b/2; +h/6), and transverse normal stress σ̄zz(y; z) =
10−5 × σzz(b/2; +h/6) along the in-plane x-axis. Single and Multi-theory models.
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Figure 10.56: Sandwich cantilever plate under concentrated mechanical load. Electric poten-
tial Φ̄(y; z) = Φ(b/2; +h/6), and transverse electric displacement D̄z = 105 ×Dz(b/2; +h/6)
along the in-plane x-axis. Single and Multi-theory models.

Finally in Figures 10.57a and 10.57b the three-dimensional distributions of the electric
potential Φ, obtained with the Abaqus 3D finite element C3D20RE and the present LW4
single-model, respectively are depicted on the entire plate structure, represented with an
initial section at y = 0 and the middle section at y = b/2. It has to be noticed that the
present LW4 single model well describes the phenomena without imposing any boundary
condition, the electric potential tend naturally to zero.
The electric in-plane and transverse displacements Dx and Dz are depicted in Figures 10.58a,
10.58b, , 10.59a and , 10.59b, respectively. The present LW4 single model and the Abaqus
3D finite element C3D20RE are in good agreement on the whole plate structure.
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Figure 10.57: Sandwich cantilever plate under concentrated mechanical load. Three-
dimensional view of the electric potential Φ, on undeformed structure. 3D Abaqus C3D20RE
and mono-model LW4.
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Figure 10.58: Sandwich cantilever plate under concentrated mechanical load. Three-
dimensional view of the in-plane electric displacement Dx, on undeformed structure.
3D Abaqus C3D20RE and mono-model LW4.
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(Avg: 75%)

EFLX, EFLX3

−3.760e−03
−3.277e−03
−2.794e−03
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−1.828e−03
−1.345e−03
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+1.033e−04
+5.862e−04
+1.069e−03
+1.552e−03
+2.035e−03
+2.518e−03
+3.001e−03
+3.484e−03
+3.967e−03
+4.450e−03
+4.932e−03
+5.415e−03
+5.898e−03
+6.381e−03
+6.864e−03
+7.347e−03
+7.830e−03

Step: Step−1
Increment      1: Step Time =    1.000
Primary Var: EFLX, EFLX3

ODB: Job−1.odb    Abaqus/Standard 6.14−1    Sat May 06 15:14:26 CEST 2017

X

Y

Z

(a) 3D Abaqus C3D20RE

(b) LW4

Figure 10.59: Sandwich cantilever plate under concentrated mechanical load. Three-
dimensional view of the transverse electric displacement Dz, on undeformed structure.
3D Abaqus C3D20RE and mono-model LW4.
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Conclusions

The benchmarks and assessments proposed in the thesis make it possible to validate the
refined and advanced two-dimensional models based on Unified Formulation for multilayered
structures and multifield problems. Classical theories, originally developed for conventional
structures, result inappropriate for such cases. The conducted analysis makes it possible to
investigate the main problems connected to these cases and to recognize the importance of
refined/advanced 2D models. The accuracy and the robustness of the present finite element
are tested in the first part of the thesis. In the second part, the efficiency of the finite element
combined with two different strategies is investigated. The following major, but general
conclusions can be drawn from the investigation carried out in this thesis:

• The MITC shell element presents good properties of convergence and robustness; the
shell element is completely locking free, even when the shell is very thin.

• The results converge to the exact solution by increasing the number of the elements
and the order of expansion of the primary variables (mechanical displacements, electric
potential, temperature) in the thickness direction, regardless of the employed function
type.

• The combination of the linear contribution with the trigonometric and exponential
series is very important for the description of the displacement and stresses field. The
linear contribution leads to the reduction of the trigonometric and exponential terms
required to reach the reference solution.

• For thermal stress problems applied to composite structure, it is important to accurately
model the thermal load. If for very thin structure an assumed linear temperature
profile can be sufficiently accurate, differently for moderately-thick and thick structure
a calculated thermal profile (solving the Fourier heat conduction equation) is mandatory
to avoid erroneous description of the applied thermal load.

• Regarding the coupled electro-mechanical analysis, the use of higher-order Layer-Wise
models is necessary to well describe the electric potential and the complicated transverse
stress behaviour due to the electric effect.

• Unified Formulation is the ideal tool for the implementation of variable kinematic the-
ories (Mixed ESL/LW, Node-Dependent Variable Kinematic). In fact, the theory ap-
proximation order and the modelling technique (ESL, LW) are free parameters of the
FEM arrays, which are written in a compact and very general form.

• The present variable kinematic theories (Mixed ESL/LW, Node-Dependent Variable
Kinematic) allows to locally improve the solution. Two main aspects can be highlighted:
a reduction of computational costs with respect to Layer-Wise single-model solutions,
and a simultaneous multi-models global-local analysis can be performed in one-single
analysis step.
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Conclusions

• The Mixed ESL/LW method has shown all its potentiality in the analysis of sandwich
structures, and in the multifield problems. In particular strong reduction of computa-
tional costs can be obtained in the electro-mechanical analysis of composite structures
embedding piezoelectric layers.

• The Node-Dependent Variable Kinematic method permits to enrich locally the the-
ory approximation accuracy by enforcing the same kinematics at the interface nodes
between kinematically incompatible plate/shell elements. The resulting global/local
approach is very efficient because it does not employ any mathematical artifice to en-
force the displacement and stress continuity, such as those methods based on Lagrange
multipliers or overlapping regions.

• An accurate representation of secondary variables (mechanical stresses and electric
displacements) in localized zones is possible with DOFs reduction if an accurate dis-
tribution of the higher-order kinematic capabilities is performed. On the contrary, the
accuracy of the solution in terms of primary variables (mechanical displacements and
electric potential) values depends on the global approximation over the whole structure.
The efficacy of the node-dependent variable kinematic and global/local models, thus,
depends on the characteristics of the problem under consideration as well as on the
required analysis type.

312



Appendix A

Fundamental Nuclei with the MITC method

A.1 PVD for mechanical problems

The explicit expression of the stiffness matrix nuclei are given below with the reinterpolation
of the strain components via the MITC method Eq. 5.5. The stiffness matrixKkτsij

uu nucleus
is defined as follows:

Kkτsij
uu =

Kuuαα Kuuαβ Kuuαz

Kuuβα Kuuββ Kuuβz

Kuuzα Kuuzβ Kuuzz

kτsij

In the following equations the new set of Lagrangian shape function of the MITC method
are indicated, for example, as Nm1, where m1 indicates the set of new interpolation points,
for more details refers to Section 5.2. Therefore, the old node element shape function are
evaluated in the new set of interpolation points, for example Nm1

i are the old Lagrangian
shape element function evaluated in new set m1.

Kkτsij
uuαα = C̃k55N

m1
i Nn1

j

∫
Ωk

Nm1Nn1 dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k − C̃k55

Rkα
Nm1
i Nn1

j

∫
Ωk

Nm1Nn1 dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k −

− C̃k55

Rkα
Nm1
i Nn1

j

∫
Ωk

Nm1Nn1 dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k + C̃k66N
m3
i,β N

n3
j,β

∫
Ωk

Nm3Nn3 dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ C̃k16N
m1
i,αN

n3
j,β

∫
Ωk

Nm1Nn3 dα
k dβk

∫
Ak

FτFs dz
k + C̃k16N

m3
i,β N

n1
j,α

∫
Ωk

Nm3Nn1 dα
k dβk

∫
Ak

FτFs dz
k +

+ C̃k11N
m1
i,αN

n1
j,α

∫
Ωk

Nm1Nn1 dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk +
C̃k55

(Rkα)2N
m1
i Nn1

j

∫
Ωk

Nm1Nn1 dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
uuαβ = C̃k45N

m1
i Nn2

j

∫
Ωk

Nm1Nn2 dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k − C̃k45

Rkβ
Nm1
i Nn2

j

∫
Ωk

Nm1Nn2 dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k −

− C̃k45

Rkα
Nm1
i Nn2

j

∫
Ωk

Nm1Nn2 dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k + C̃k26N
m3
i,β N

n2
j,β

∫
Ωk

Nm3Nn2 dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ C̃k12N
m1
i,αN

n2
j,β

∫
Ωk

Nm1Nn2 dα
k dβk

∫
Ak

FτFs dz
k + C̃k66N

m3
i,β N

n3
j,α

∫
Ωk

Nm3Nn3 dα
k dβk

∫
Ak

FτFs dz
k +

+ C̃k16N
m1
i,αN

n3
j,α

∫
Ωk

Nm1Nn3 dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk +
C̃k45

RkαR
k
β

Nm1
i Nn2

j

∫
Ωk

Nm1Nn2 dα
k dβk

∫
Ak

FτFs dz
k
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Kkτsij
uuαz = C̃k45N

m1
i Nn2

j,β

∫
Ωk

Nm1Nn2 dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + C̃k55N
m1
i Nn1

j,α

∫
Ωk

Nm1Nn1 dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ C̃k36N
m3
i,β

∫
Ωk

Nm3Nj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + C̃k13N
m1
i,α

∫
Ωk

Nm1Nj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k −

− C̃k45

Rkα
Nm1
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j,β

∫
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Nm1Nn2 dα
k dβk

∫
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FτFs dz
k − C̃k55
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Nm1
i Nn1

j,α

∫
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Nm1Nn1 dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk +

+
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Rkβ
Nm3
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n2
j

∫
Ωk

Nm3Nn2 dα
k dβk

∫
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FτFs
Hk
α

Hk
β
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Nm3
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j

∫
Ωk

Nm3Nn1 dα
k dβk

∫
Ak

FτFs dz
k +

+
C̃k12

Rkβ
Nm1
i,αN

n2
j

∫
Ωk

Nm1Nn2 dα
k dβk

∫
Ak

FτFs dz
k +

C̃k11

Rkα
Nm1
i,αN

n1
j

∫
Ωk

Nm1Nn1 dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
uuβα = C̃k45N

m2
i Nn1

j

∫
Ωk

Nm2Nn1 dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k − C̃k45

Rkα
Nm2
i Nn1

j

∫
Ωk

Nm2Nn1 dα
k dβk

∫
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Fτ,zFsH
k
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∫
Ωk

Nm2Nn1 dα
k dβk

∫
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∫
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∫
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∫
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∫
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∫
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∫
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j,α

∫
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∫
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β
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∫
Ωk

Nm2Nn1 dα
k dβk

∫
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k

Kkτsij
uuββ = C̃k44N

m2
i Nn2
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∫
Ωk

Nm2Nn2 dα
k dβk

∫
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k
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Rkβ
Nm2
i Nn2
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∫
Ωk

Nm2Nn2 dα
k dβk

∫
Ak

Fτ,zFsH
k
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Rkβ
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j

∫
Ωk

Nm2Nn2 dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + C̃k22N
m2
i,β N

n2
j,β

∫
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Nm2Nn2 dα
k dβk

∫
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FτFs
Hk
α

Hk
β

dzk +

+ C̃k26N
m3
i,αN

n2
j,β

∫
Ωk

Nm3Nn2 dα
k dβk

∫
Ak

FτFs dz
k + C̃k26N

m2
i,β N

n3
j,α

∫
Ωk
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k dβk

∫
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m3
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∫
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∫
Ak
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β
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)2N
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i Nn2

j

∫
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Nm2Nn2 dα
k dβk

∫
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Hk
α
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β

dzk
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uuβz = C̃k44N

m2
i Nn2
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∫
Ωk

Nm2Nn2 dα
k dβk

∫
Ak
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k + C̃k45N
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j,α

∫
Ωk
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k dβk

∫
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Fτ,zFsH
k
β dz

k +

+ C̃k23N
m2
i,β

∫
Ωk

Nm2Nj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + C̃k36N
m3
i,α

∫
Ωk

Nm3Nj dα
k dβk

∫
Ak

FτFs,zH
k
β dz
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− C̃k44

Rkβ
Nm2
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∫
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Nm2Nn2 dα
k dβk
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α
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β
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∫
Ωk

Nm2Nn1 dα
k dβk

∫
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∫
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∫
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∫
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∫
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∫
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∫
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C̃k16
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∫
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Kkτsij
uuzα = C̃k36N

n3
j,β

∫
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NiNn3 dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + C̃k13N
n1
j,α

∫
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k dβk

∫
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∫
Ωk

Nm2Nn1 dα
k dβk

∫
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∫
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∫
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∫
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∫
Ωk

Nm1Nn3 dα
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∫
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∫
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∫
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∫
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∫
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∫
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∫
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∫
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∫
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∫
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∫
Ak

Fτ,zFsH
k
α dz

k + C̃k36N
n3
j,α

∫
Ωk

NiNn3 dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ C̃k44N
m2
i,β N

n2
j

∫
Ωk

Nm2Nn2 dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + C̃k45N
m1
i,αN

n2
j

∫
Ωk

Nm1Nn2 dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k +

+
C̃k22

Rkβ
Nm2
i Nn2

j,β

∫
Ωk

Nm2Nn2 dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +
C̃k12

Rkα
Nm1
i Nn2

j,β

∫
Ωk

Nm1Nn2 dα
k dβk

∫
Ak

FτFs dz
k +

+
C̃k26

Rkβ
Nm2
i Nn3

j,α

∫
Ωk

Nm2Nn3 dα
k dβk

∫
Ak

FτFs dz
k +

C̃k16

Rkα
Nm1
i Nn3

j,α

∫
Ωk

Nm1Nn3 dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk −

− C̃k44

Rkβ
Nm2
i,β N

n2
j

∫
Ωk

Nm2Nn2 dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk − C̃k45

Rkβ
Nm1
i,αN

n2
j

∫
Ωk

Nm1Nn2 dα
k dβk

∫
Ak

FτFs dz
k

Kkτsij
uuzz = C̃k33

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k +
C̃k23

Rkβ
Nn2
j

∫
Ωk

NiNn2 dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k +

+
C̃k13

Rkα
Nn1
j

∫
Ωk

NiNn1 dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +
C̃k23

Rkβ
Nm2
i

∫
Ωk

Nm2Nj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k +

+
C̃k13

Rkα
Nm1
i

∫
Ωk

Nm1Nj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k + C̃k44N
m2
i,β N

n2
j,β

∫
Ωk

Nm2Nn2 dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ C̃k45N
m1
i,αN

n2
j,β

∫
Ωk

Nm1Nn2 dα
k dβk

∫
Ak

FτFs dz
k + C̃k45N

m2
i,β N

n1
j,α

∫
Ωk

Nm2Nn1 dα
k dβk

∫
Ak

FτFs dz
k +

+ C̃k55N
m1
i,αN

n1
j,α

∫
Ωk

Nm1Nn1 dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk +
C̃k12

RkαR
k
β

Nm1
i Nn2

j

∫
Ωk

Nm1Nn2 dα
k dβk

∫
Ak

FτFs dz
k +

+
C̃k12

RkαR
k
β

Nm2
i Nn1

j

∫
Ωk

Nm2Nn1 dα
k dβk

∫
Ak

FτFs dz
k +

C̃k22(
Rkβ

)2N
m2
i Nn2

j

∫
Ωk

Nm2Nn2 dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+
C̃k11

(Rkα)2N
m1
i Nn1

j

∫
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A.2 PVD for electro-mechanical problems

The explicit expression of the stiffness matrix nuclei are given below with the reinterpolation
of the strain components via the MITC method Eq. 5.5. The stiffness matrixKkτsij nucleus
is defined as follows:

Kkτsij =


Kuuαα Kuuαβ Kuuαz KuΦα

Kuuβα Kuuββ Kuuβz KuΦβ

Kuuzα Kuuzβ Kuuzz KuΦz

KΦuα KΦuβ KΦuz KΦΦ


kτsij

where the mechanical stiffness matrix nucleui Kkτsij
uu are the same defined for the pure

mechanical problems in the previous appendix section A.1. In the following equations the
new set of Lagrangian shape function of the MITC method are indicated, for example, asNm1,
where m1 indicates the set of new interpolation points, for more details refers to Section 5.2.
Therefore, the old node element shape function are evaluated in the new set of interpolation
points, for example Nm1

i are the old Lagrangian shape element function evaluated in new set
m1.
The pure electric contribution is defined as follows:

Kkτsij
ΦΦ = − ε̃k33
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Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k − ε̃k22

∫
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∫
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∫
Ωk

Ni,αNj,β dα
k dβk

∫
Ak

FτFs dz
k − ε̃k12

∫
Ωk

Ni,βNj,α dα
k dβk

∫
Ak

FτFs dz
k −

− ε̃k11

∫
Ωk

Ni,αNj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

The stiffness electro-mechanical coupling matricesKkτsij
uΦ andKkτsij

Φu are defined as follows:

Actuation in 3-1 mode

Kkτsij
uΦα

= ẽk25N
m1
i

∫
Ωk

Nm1Nj,β dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + ẽk15N
m1
i

∫
Ωk

Nm1Nj,α dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ ẽk36N
m3
i,β

∫
Ωk

Nm3Nj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + ẽk31N
m1
i,α

∫
Ωk

Nm1Nj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k −

− ẽk25

Rkα
Nm1
i

∫
Ωk

Nm1Nj,β dα
k dβk

∫
Ak

FτFs dz
k − ẽk15

Rkα
Nm1
i

∫
Ωk

Nm1Nj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
uΦβ

= ẽk24N
m2
i

∫
Ωk

Nm2Nj,β dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + ẽk14N
m2
i

∫
Ωk

Nm2Nj,α dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ ẽk32N
m2
i,β

∫
Ωk

Nm2Nj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + ẽk36N
m3
i,α

∫
Ωk

Nm3Nj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k −

− ẽk24

Rkβ
Nm2
i

∫
Ωk

Nm2Nj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk − ẽk14

Rkβ
Nm2
i

∫
Ωk

Nm2Nj,α dα
k dβk

∫
Ak

FτFs dz
k
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Kkτsij
uΦz

= ẽk33

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k +
ẽk32

Rkβ
Nm2
i

∫
Ωk

Nm2Nj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k +

+
ẽk31

Rkα
Nm1
i

∫
Ωk

Nm1Nj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k + ẽk24N
m2
i,β

∫
Ωk

Nm2Nj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ ẽk25N
m1
i,α

∫
Ωk

Nm1Nj,β dα
k dβk

∫
Ak

FτFs dz
k + ẽk14N

m2
i,β

∫
Ωk

Nm2Nj,α dα
k dβk

∫
Ak

FτFs dz
k +

+ ẽk15N
m1
i,α

∫
Ωk

Nm1Nj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
Φuα

= ẽk36N
n3
j,β

∫
Ωk

NiNn3 dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + ẽk31N
n1
j,α

∫
Ωk

NiNn1 dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ ẽk25N
n1
j

∫
Ωk

Ni,βNn1 dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + ẽk15N
n1
j

∫
Ωk

Ni,αNn1 dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k −

− ẽk25

Rkα
Nn1
j

∫
Ωk

Ni,βNn1 dα
k dβk

∫
Ak

FτFs dz
k − ẽk15

Rkα
Nn1
j

∫
Ωk

Ni,αNn1 dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
Φuβ

= ẽk32N
n2
j,β

∫
Ωk

NiNn2 dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + ẽk36N
n3
j,α

∫
Ωk

NiNn3 dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ ẽk24N
n2
j

∫
Ωk

Ni,βNn2 dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + ẽk14N
n2
j

∫
Ωk

Ni,αNn2 dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k −

− ẽk24

Rkβ
Nn2
j

∫
Ωk

Ni,βNn2 dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk − ẽk14

Rkβ
Nn2
j

∫
Ωk

Ni,αNn2 dα
k dβk

∫
Ak

FτFs dz
k

Kkτsij
Φuz

= ẽk33

∫
Ωk

NiNj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k +
ẽk32

Rkβ
Nn2
j

∫
Ωk

NiNn2 dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k +

+
ẽk31

Rkα
Nn1
j

∫
Ωk

NiNn1 dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k + ẽk24N
n2
j,β

∫
Ωk

Ni,βNn2 dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ ẽk14N
n2
j,β

∫
Ωk

Ni,αNn2 dα
k dβk

∫
Ak

FτFs dz
k + ẽk25N

n1
j,α

∫
Ωk

Ni,βNn1 dα
k dβk

∫
Ak

FτFs dz
k +

+ ẽk15N
n1
j,α

∫
Ωk

Ni,αNn1 dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Actuation in 1-5 mode

Kkτsij
uΦα

= ẽk35N
m1
i

∫
Ωk

Nm1Nj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k − ẽk35

Rkα
Nm1
i

∫
Ωk

Nm1Nj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k +

+ ẽk26N
m3
i,β

∫
Ωk

Nm3Nj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk + ẽk21N
m1
i,α

∫
Ωk

Nm1Nj,β dα
k dβk

∫
Ak

FτFs dz
k +

+ ẽk16N
m3
i,β

∫
Ωk

Nm3Nj,α dα
k dβk

∫
Ak

FτFs dz
k + ẽk11N

m1
i,α

∫
Ωk

Nm1Nj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk
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Kkτsij
uΦβ

= ẽk34N
m2
i

∫
Ωk

Nm2Nj dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k − ẽk34

Rkβ
Nm2
i

∫
Ωk

Nm2Nj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k +

+ ẽk26N
m3
i,α

∫
Ωk

Nm3Nj,β dα
k dβk

∫
Ak

FτFs dz
k + ẽk22N

m2
i,β

∫
Ωk

Nm2Nj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ ẽk16N
m3
i,α

∫
Ωk

Nm3Nj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk + ẽk12N
m2
i,β

∫
Ωk

Nm2Nj,α dα
k dβk

∫
Ak

FτFs dz
k

Kkτsij
uΦz

= ẽk23

∫
Ωk

NiNj,β dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + ẽk13

∫
Ωk

NiNj,α dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ ẽk34N
m2
i,β

∫
Ωk

Nm2Nj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + ẽk35N
m1
i,α

∫
Ωk

Nm1Nj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k +

+
ẽk22

Rkβ
Nm2
i

∫
Ωk

Nm2Nj,β dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +
ẽk21

Rkα
Nm1
i

∫
Ωk

Nm1Nj,β dα
k dβk

∫
Ak

FτFs dz
k +

+
ẽk12

Rkβ
Nm2
i

∫
Ωk

Nm2Nj,α dα
k dβk

∫
Ak

FτFs dz
k +

ẽk11

Rkα
Nm1
i

∫
Ωk

Nm1Nj,α dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
Φuα

= ẽk35N
n1
j

∫
Ωk

NiNn1 dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k − ẽk35

Rkα
Nn1
j

∫
Ωk

NiNn1 dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ ẽk26N
n3
j,β

∫
Ωk

Ni,βNn3 dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk + ẽk21N
n1
j,α

∫
Ωk

Ni,βNn1 dα
k dβk

∫
Ak

FτFs dz
k +

+ ẽk16N
n3
j,β

∫
Ωk

Ni,αNn3 dα
k dβk

∫
Ak

FτFs dz
k + ẽk11N

n1
j,α

∫
Ωk

Ni,αNn1 dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk

Kkτsij
Φuβ

= ẽk34N
n2
j

∫
Ωk

NiNn2 dα
k dβk

∫
Ak

Fτ,zFs,zH
k
αH

k
β dz

k − ẽk34

Rkβ
Nn2
j

∫
Ωk

NiNn2 dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k +

+ ẽk26N
n3
j,α

∫
Ωk

Ni,βNn3 dα
k dβk

∫
Ak

FτFs dz
k + ẽk22N

n2
j,β

∫
Ωk

Ni,βNn2 dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +

+ ẽk16N
n3
j,α

∫
Ωk

Ni,αNn3 dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk + ẽk12N
n2
j,β

∫
Ωk

Ni,αNn2 dα
k dβk

∫
Ak

FτFs dz
k

Kkτsij
Φuz

= ẽk34N
n2
j,β

∫
Ωk

NiNn2 dα
k dβk

∫
Ak

Fτ,zFsH
k
α dz

k + ẽk35N
n1
j,α

∫
Ωk

NiNn1 dα
k dβk

∫
Ak

Fτ,zFsH
k
β dz

k +

+ ẽk23

∫
Ωk

Ni,βNj dα
k dβk

∫
Ak

FτFs,zH
k
α dz

k + ẽk13

∫
Ωk

Ni,αNj dα
k dβk

∫
Ak

FτFs,zH
k
β dz

k +

+
ẽk22

Rkβ
Nn2
j

∫
Ωk

Ni,βNn2 dα
k dβk

∫
Ak

FτFs
Hk
α

Hk
β

dzk +
ẽk21

Rkα
Nn1
j

∫
Ωk

Ni,βNn1 dα
k dβk

∫
Ak

FτFs dz
k +

+
ẽk12

Rkβ
Nn2
j

∫
Ωk

Ni,αNn2 dα
k dβk

∫
Ak

FτFs dz
k +

ẽk11

Rkα
Nn1
j

∫
Ωk

Ni,αNn1 dα
k dβk

∫
Ak

FτFs
Hk
β

Hk
α

dzk
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