Paramount task of YouLighter:
- Study evolution of YouTube infrastructure
- Highlight change in YouTube infrastructure

Motivation:
- It generates 20+% of world wide traffic
- YouTube has a massive distributed infrastructure that is almost unknown
- It uses several thousands of caches (single server) grouped into Hundreds of edge-nodes
- This infrastructure suddenly evolve

Monitoring the single cache is not effective
- Load distribution changes very frequently
- The rank of most used caches changes deeply everyday!

Methodology

Dataset

<table>
<thead>
<tr>
<th>Probe</th>
<th>Period</th>
<th>Volume</th>
<th># Unique Videos</th>
<th>Caches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe 1</td>
<td>01/04/2013 - 28/02/2014</td>
<td>138.7 TB</td>
<td>2,892,452</td>
<td>8,664</td>
</tr>
<tr>
<td>Probe 1</td>
<td>01/04/2013 - 28/02/2014</td>
<td>152.9 TB</td>
<td>2,848,625</td>
<td>8,899</td>
</tr>
<tr>
<td>Probe 2</td>
<td>01/04/2013 - 28/02/2014</td>
<td>134.8 TB</td>
<td>2,711,179</td>
<td>9,028</td>
</tr>
<tr>
<td>Probe 3</td>
<td>01/03/2014 - 17/07/2014</td>
<td>48.3 TB</td>
<td>305,802</td>
<td>3,755</td>
</tr>
</tbody>
</table>

Results

Constellation Distance: 1. Summarize each cluster in a single point called star \(\hat{C}(n) \)
2. Astra Distance
 - For each star in \(\hat{C}(n) \) compute all distances to stars in \(\hat{C}(n+1) \) and the min
 - Repeat in the opposite direction
3. Constellation Distance
 - Sum all Astral Distances

Conclusion: YouLighter shows to be effective at detecting changes in YouTube’s CDN infrastructure relying on DBSCAN clustering algorithm and the novel notion of Constellation distance

Danilo Giordano, Stefano Traverso1, Luigi Grimaudo1, Marco Mellia1, Elena Baralis1, Alok Tongaonkar2 and Sabyasachi Saha2
1 Politecnico di Torino - first.last@polito.it, 2 Symantec - first_last@symantec.com