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ABSTRACT 
 

This thesis is divided into three main parts. 

In the first part, the concept of an MJ-PEM reactor will be introduced, and its 

design and calculations will be explained. An MJ-PEM reactor is the result of the coupling 

of a Multi-Junction Solar Cell (MJSC) and a Polymer Electrolyte Membrane (PEM) 

electrolyzer, able to work at high temperatures and pressures (up to 150°C and 30 bar). 

Two scenarios for the application of this system were investigated: in the first one, the 

anodic chamber is used for the oxidation of recalcitrant organics contained in wastewater, 

while the cathodic compartment is used for the evolution of H2, for storage or direct use on 

site; in the second one, the H2 produced at the cathode is sent to an anaerobic digestion 

process, to boost the biomethanation step, whereas at the anode O2 is evolved and it is 

exploited for the digestate stabilization and disinfection. Both the scenarios proved to be 

feasible and effective, due to a high degree of integration between stoichiometric and 

thermal requirements of different systems, allowing to carry out both waste or wastewater 

treatment on one side, and hydrogen or natural gas production on the other side. 

The second part of this work concerns the synthesis and the characterization of 

electrodes based on manganese oxides, for the electro-oxidation of recalcitrant organics. 

Phenol was chosen as target molecule, due to its high refractoriness and stability, and its 

wide presence in industrial plants. Manganese oxides are extensively used in 

electrochemistry, and they were chosen because of their low cost, high abundance, and low 

toxicity. Different types of manganese oxides (MnOx) were synthesized by 

electrodeposition on two substrates, namely metallic titanium and titania nanotubes (TiO2-

NTs). X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS) were used 

to analyze the oxidation states of manganese, whereas Field Emission Scanning Electronic 

Microscopy (FESEM) was employed to investigate the morphology of the samples and the 

penetration of manganese oxides inside the NTs. The electrochemical properties of the 

electrodes have been investigated by cyclic voltammetry (CV) and linear sweep 

voltammetry (LSV), showing that both calcination and electrodeposition over TiO2-NTs 

gave more stable electrodes, exhibiting a marked increase in the current density. The 

activity of the proposed nanostructured samples towards phenol degradation has been 

investigated. Tetravalent manganese (α-MnO2) resulted to be the most active phase, with a 

phenol conversion of 42.7%. Trivalent manganese (α-Mn2O3), instead, reported the highest 

stability, with an average working potential of 2.9 V vs. RHE, and the highest tendency for 

oxygen evolution reaction, reaching 0.4 mA/cm
2
 at 2.5 V vs. RHE. TiO2-NTs interlayer 

contributed in all cases to the decrease in the final potential reached after the reaction time 

of about 1 – 1.5 V, due to the improved contact with the catalyst film and the prevention of 

passivation of the titanium substrate. 

In the third part, the most performing electrodes were selected from the ones 

synthesized in the second part. They were tested in High Temperature, High Pressure 
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(HTHP) reactor, designed in Politecnico di Torino for kinetic studies on electro-

degradation of refractory organics in wastewaters, under Catalytic Wet Air Oxidation 

(CWAO) conditions, i.e. 150°C and 30 bar. The most stable (α-Mn2O3) and the most active 

(α-MnO2) manganese oxides were compared, both at ambient and CWAO operative 

conditions, with some of the most effective electrodes used in this field: Sb-doped SnO2 

and RuO2. Results showed that manganese oxides, especially α-Mn2O3, is more than 

tripled at 150°C and 30 bar, reaching values of phenol oxidation close to the ones of Sb-

SnO2 and RuO2. This phenomenon can be attributed to the higher tendency of manganese 

in its Mn
3+

 form to oxidize water to O2, that is wasted at ambient conditions, while is better 

employed at high temperatures (high kinetics, low overpotentials) and high pressures 

(improved O2 solubility). 
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INTRODUCTION 
 

 

Water is one of the most important resources for humanity, not only because it is 

essential for life, but also for agriculture, breeding and hygiene [1]. In the last decades, 

issues about the ethical and aware use of water have been raised from all over the world. 

World population is rapidly increasing, and modernity requires a crescent need for water 

for the domestic, agriculture and industrial fields. Water resources are progressively 

exploited up to their limits, thus leading to tensions, conflicts among users and nations, and 

excessive stress on the environment. One of the major problems concerns the extensive use 

of water per capita in developed countries, where water withdrawal per year tends to be 

dozens of times higher than the water consumption in developing countries and almost a 

hundred times higher than in developing countries [2]. 

 

 

Fig. 1 – Annual water withdrawal per capita for each country 

 

Water demand has been increasing more than twice the population in the last 

decades, and, even though there is no such global water lack, a high number of areas are 

chronically short of water resources. By 2025, 1 800 million people will be living in 

countries or regions with absolute water scarcity, and two-thirds of the world population 

could be under stress conditions [3]. 
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According to the Millennium Development Goals Report 2012, around 800 million 

people, (i.e. 11% of world population), face economic water shortage or cannot access to 

available drinking water sources. These sources include household connections, public 

standpipes, boreholes, protected dug wells, protected springs and rainwater collections.  

Water scarcity is an issue of poverty, and there is growing recognition that there are 

strong linkages between these two elements. 

For poor people, lack of water is not only a matter of drought. First of all, it 

concerns the fair and safe access to water resources that are necessary for their 

sustainment. For indigent people, scarcity is due to lack of transparency and equity in 

decisions taken by organizations. It is due to choices about infrastructure management and 

development. In many places throughout the world, organizations struggle to distribute 

resources equitably. 

Agricultural use of water for irrigation, livestock, fisheries and aquaculture is 

estimated as the cause of 71% of total water withdrawal, with a higher tendency for low 

and middle-income countries, while it is estimated that 15% of worldwide water use is for 

industrial purposes, especially for high-income countries [4]. 

 

 

Fig. 2 – Competing for water uses according to their main sources of income 

 

There has been a considerable reflection on environmental ethics throughout the 

world,  and modern debates are focusing on moral imperatives, but, rather than analyzing 

once more the ethical issues of water management, best ethical practices should be 

promoted, and in particular [4]: 

 

Human dignity: there is no life without water, people to whom it is denied are denied 

lives; 

Participation: all people, especially the poor ones, must be involved in water management 

with gender and poverty issues recognized in promoting this trend; 
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Solidarity: upstream and downstream interdependence within a watershed continually 

poses challenges for water management resulting in the need for an integrated water 

development approach; 

Human equality: all the people should be provided with the basic necessities of life on an 

equitable basis; 

Common Good: water is a common good, and without proper water management human 

potential and dignity diminishes; 

Stewardship: protection and careful use of water resources is needed for intergenerational 

and intra-generational equity and promotes the sustainable use of life-enabling ecosystems; 

Transparency and universal access to information: if data is not accessible in a form 

that can be understood, an opportunity will arise for a party to disadvantage others; 

Inclusiveness: water management policies must be addressed to the interests of all people 

living in a water catchment area. Minority interests must be protected, together with poor 

and other disadvantaged sectors. 

Empowerment: the demand for participation in planning implies much more than an 

opportunity for consultation. Best ethical practice must be implemented to improve 

management. 

 

One of the most demanding challenges for scientists and technicians is to find 

technologies that are more and more effective, implementable and affordable to both 

provide drinking water from depuration of freshwater resources and to recycle water 

coming from civil, agricultural and industrial use. 
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CHAPTER 1 
 

 

 

WASTEWATER TREATMENT 

TECHNOLOGY 
 

 

 

 

 

1.1 Introduction 
 

The biological wastewater treatment is one of the most common processes in the 

world for the degradation of a large variety of compounds. 

 

Aerobic process 

An aerobic biological, or activated sludge system generally consists of the 

following phases (see Fig. 3):  

 

 Primary sedimentation / Equalization: a primary clarifier is required to remove 

large solids and other undesirable substances. It is also fundamental for the 

equalization of the influent sent to digestion, in order to avoid large and sudden 

fluctuation of flow and pollutant concentration. Microorganisms, in fact, are very 

susceptible both to hydraulic and organic load peaks. 

 Aeration: in this step, aerobic bacteria, also called biomass or activated sludge 

digest the incoming waste. They use air or oxygen fed through either air diffusers 

placed at the bottom of the aeration tank or incorporated by turbine mixers.  

 Settling: after the digestion, a secondary clarifier is needed for the settling of the 

undigested solids and biomass. This process forms a waste sludge which must be 

periodically removed from the system.  

 

Depending on the Hydraulic Retention Time (HRT) and the sludge age, three 

types of process can be identified:  

 high-rate systems: with an HRT of 2-4 h and a sludge age of 1-2 days, where 

organic pollutants are simply fixed on the biomass and they are not fully 

oxidized. Volumes are small and biomass concentration is low. 
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 conventional systems: with an HRT of 5-8 h and a sludge age of 4-10 days, in 

which organic compounds are largely degraded in the aeration tank, but excess 

sludge requires additional stabilization (e.g. by anaerobic treatment). 

Conventional aeration systems are the most largely used for industrial and 

municipal wastewater treatment. 

 

 

Fig. 3 – Typical flowsheet of a conventional activated sludge process 

 

 extended aeration systems: with an HRT of 16-24 h and a sludge age of 14-28 

days, where organic matter is completely mineralized, and the biomass is 

stabilized directly inside the aeration tank. Aerobic stabilization of sludge, also 

called endogenous respiration, requires additional oxygen, which can be 

significantly higher than for organic degradation (exogenous respiration). 

Volumes are high and biomass concentration is low. 

 

A particular type of aerobic digester is the Sequencing Batch Reactor (SBR), 

which houses all the main stages of a traditional activated sludge process in a single tank, 

thus resulting in a very compact design. 

The sequence is composed of five phases: 

 

1) Filling: influent raw or settled wastewater 

2) Reacting: aeration of the liquid inside the tank 

3) Settling: separation of the suspended solids after treatment 

4) Decanting: withdrawal of the treated wastewater 

5) Idle: removal of excess sludge and preparation for new cycle 
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Fig. 4 - Steps of a Sequencing Batch Reactor (SBR) aerobic system 

 

 

Anaerobic process 

Anaerobic microbiological decomposition is a process in which microorganisms 

derive energy and grow by metabolizing organic material in an oxygen-free environment 

resulting in the production of methane (CH4). The anaerobic digestion process can be 

subdivided into the following four phases (see Fig. 5), each requiring its own characteristic 

group of micro-organisms [5]: 

 

•  Hydrolysis: conversion of non-soluble biopolymers to soluble organic compounds 

•  Acidogenesis: conversion of soluble organic compounds to volatile fatty acids 

(VFA) and CO2 

•  Acetogenesis: conversion of volatile fatty acids to acetate and H2 

•  Methanogenesis: conversion of acetate and CO2 plus H2 to methane gas 
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Fig. 5 – Simplified schematic representation of the anaerobic degradation process  

 

As anaerobic digestion is a biological process, it is strongly influenced by 

environmental factors. Temperature, pH and alkalinity and toxicity are primary control 

factors. 

Controlled digestion is divided in psychrophilic (10-20 ºC), mesophilic (20-40 ºC), 

or thermophilic (50-60 ºC) digestion [6]. As bacterial growth and conversion processes are 

slower under low-temperature conditions, psychrophilic digestion requires a long retention 

time, resulting in large reactor volumes. Mesophilic digestion requires less reactor volume. 

Thermophilic digestion is especially suited when the waste(water) is discharged at a high 

temperature or when pathogen removal is an important issue. During thermophilic 

treatment, high loading rates can be applied. Anaerobic digestion can occur at temperatures 

as low as 0°C, but the rate of methane production increases with increasing temperature 

until a relative maximum is reached at 35 to 37° C. At this temperature range mesophilic 

organisms are involved. The relation between energy requirement and biogas yield will 

further determine the choice of temperature. At higher temperatures, thermophilic bacteria 

replace mesophilic bacteria and a maximum methanogenic activity occurs at about 55°C or 

higher. The first steps of anaerobic digestion can occur at a wide range of pH values, while 

methanogenesis only proceeds when the pH is neutral. For pH values outside the range 6.5 

- 7.5, the rate of methane production is lower. A sufficient amount of hydrogen carbonate 

(frequently denoted as bicarbonate alkalinity) in the solution is important to maintain the 

optimal pH range required for methanogenesis. 
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Advantages of anaerobic treatment are numerous and can be summarized as follows 

 [5, 7]: 

•  provision of energy source through methane recovery; 

•  anaerobic treatment processes generally consume little energy. At ambient 

temperature the energy requirements are in the range 0.05-0.1 kWh/m
3
 (0.18-0.36 

MJ/m
3
), depending on the need for pumping and recycling effluent; 

•  reduction of solids to be handled; excess sludge production on the basis of 

biodegradable COD in anaerobic treatment is significantly lower compared to 

aerobic processes; 

•  modern anaerobic treatment processes can handle very high loads, exceeding values 

of 30 g COD/l/day at ca. 30 °C and up to 50 g COD/l/day at ca. 40 °C for medium 

strength mainly soluble wastewater; 

•  the construction costs are relatively low; 

• the space requirements of anaerobic treatment are lower than conventional systems. 

 

Advanced Oxidation Processes (AOPs)  

Whenever the type of wastewater does not meet the requirements for a biological 

treatment process, especially when it contains refractory organics, a different kind of 

approach must be employed to effectively degrade the pollutants. A lot of researchers have 

been addressed to this aim in the last decade pointing out the prominent role of a special 

class of oxidation techniques defined as advanced oxidation processes (AOPs) which 

usually operate at or near ambient temperature and pressure [8]. Advanced oxidation 

processes although making use of different reacting systems, are all characterized by the 

same chemical feature: production of OH· radicals. OH· radicals are extraordinarily 

reactive species, they attack the most part of organic molecules with rate constants usually 

in the order of 10
6
–10

9
 M

−1
 s

−1
 [9]. They are also characterized by a little selectivity of 

attack which is a useful attribute for an oxidant used in wastewater treatments. The 

versatility of AOP is also enhanced by the fact that they offer different possible ways for 

OH· radicals production thus allowing a better compliance with the specific treatment 

requirements [10]. 

Among the most important AOPs for the production of OH· radicals, it is worth 

citing: 

 

Fenton process [11]: 

𝐹𝑒2+ + 𝐻2𝑂2 → 𝐹𝑒3+ + 𝑂𝐻− + 𝑶𝑯 ∙  Eq. 1 

 

Photo-Fenton process [12]: 

𝐹𝑒3+ + 𝑂𝐻−  
ℎ𝑣
   𝐹𝑒(𝑂𝐻)2+ Eq. 2 

𝐹𝑒(𝑂𝐻)2+ + 𝐻2𝑂2  
ℎ𝑣
  𝐹𝑒2+ + 3𝑶𝑯 ∙ Eq. 3 
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Photocatalytic process [13]: 

𝑖𝑂2  
ℎ𝑣
   𝑒− + ℎ+ Eq. 4 

𝑇𝑖𝑂2  ℎ+ + 𝐻2𝑂𝑎𝑑 →  𝑇𝑖𝑂2 + 𝐻+ + 𝑶𝑯𝒂𝒅 ⋅ Eq. 5 

 

Ozonation [14]: 

𝑂𝐻− + 𝑂3  →  𝑂2 + 𝐻𝑂2
− Eq. 6 

𝐻𝑂2
− + 𝑂3  →  𝐻𝑂2 ⋅ +𝑂3

− ⋅ Eq. 7 

𝑂2
− ⋅ +𝑂3  →  𝑂2 + 𝑂3

− ⋅ Eq. 8 

𝑂3
− ⋅ +𝐻+  →  𝐻𝑂3 ⋅ Eq. 9 

𝐻𝑂3 ⋅ →𝑂2 + 𝑶𝑯 ∙ Eq. 10 

 

Another aspect concerning the opportunity of AOP application is that referring to 

the polluting load of wastes normally expressed as COD. Only wastes with relatively small 

COD contents (5.0 g/l) can be suitably treated by means of these techniques since higher 

COD contents would require the consumption of too large amounts of expensive reactants. 

Wastes with more massive pollutants contents can be more conveniently treated by means 

of wet oxidation or incineration. Wet oxidation makes use of oxygen or air to achieve 

pollutant oxidation at high temperatures (130–300°C) and pressure (0.5–20 Mpa) [9]. 

 

 

 

Fig. 6 - Suitability of water treatment technologies according to COD contents 
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1.2 Catalytic Wet Air Oxidation (CWAO) 
 

There are many variants for the wet oxidation processes, among which the most 

important and widely spread are the Wet Air Oxidation (WAO) and the Catalytic Wet Air 

Oxidation (CWAO). As suggested by their names, they are advanced oxidation process 

which involves the use of either air or pure oxygen to degrade pollutants, especially 

recalcitrant organics, contained in aqueous solutions.  

 

Wet Air Oxidation (WAO)  

WAO is proper to a high organic loading at high flow rate and can partially cover 

the application range of incineration and biological methods. Especially, WAO has a great 

potential for the treatment of effluent containing a high content of organic matter (about 

10–100 g/L of COD) and/or toxic contaminants for which direct biological treatment is not 

feasible. By using WAO, the organic pollutants are either partially oxidized into 

biodegradable intermediates or mineralized to carbon dioxide, water, and innocuous end 

products under elevated temperatures (125–320°C) and pressures (0.5–20 MPa) using a 

gaseous source of oxygen (either pure oxygen or air) as the oxidant [15]. 

 

 

Fig. 7 - Typical Wet Air Oxidation flowsheet 

 

The definite mechanisms and reaction pathways for WAO have not been 

established even for a pure compound because the oxidation of organic compounds goes 

through very complicated routes and leads to the formation of various intermediates. 

Generally, the final intermediates are short-chain organic acids such as acetic acid, etc. The 

identification of intermediates and by-products formed during oxidation is essential to 

evaluate the toxicity and to point out possible refractory compounds. Most of the studies 

have reported that the chemical reaction of WAO chiefly proceeds via free radical 

reactions. Several free radical reactions consisting of initiation, propagation, and 

termination of free radical have been proposed to take place during the WAO of various 

organic compounds. 
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Most of the studies on reaction pathway for WAO have employed phenol as a 

model compound because it is considered to be an intermediate in the oxidation of higher 

molecular weight aromatic compounds. Phenol oxidation follows an extremely complex 

pathway composed of parallel and consecutive reactions. Some authors proposed the 

mechanism for non-catalytic oxidation of phenol in which phenol is firstly oxidized to 

dihydroxybenzenes, i.e. hydroquinone and catechol, which are converted into 

benzoquinones. Rings of benzoquinones are then opened with the formation of appropriate 

acids which are further oxidized to short-chain carboxylic acids. 

 

Catalytic Wet Air Oxidation (CWAO) 

The main difference between simple WAO and CWAO is obviously the 

employment of a catalyst to reduce the operating temperatures and pressures, thus limiting 

the severity of reaction conditions but also more easily decomposing even refractory 

pollutants, thereby reducing capital and operational costs [16]. Though it varies with the 

type of wastewater, the operating cost of CWAO is about half that of non-catalytic WAO 

due to milder operating conditions and shorter residence time. Although the homogeneous 

catalysts, e.g. dissolved copper salts, are effective, an additional separation step is required 

to remove or recover the metal ions from the treated effluent due to their toxicity, and 

accordingly, increases operational costs. Thus, the development of active heterogeneous 

catalysts has received a great attention because a separation step is not necessary. Various 

solid catalysts including noble metals, metal oxides, and mixed oxides have been widely 

studied for the CWAO of aqueous pollutants.  

The performances of various solid catalysts including noble metals such as Ru, Rh, 

Pd, Ir, and Pt as well as oxides of Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and Ce for the CWAO 

of aqueous pollutants have been demonstrated in the last decade. Noble metals have been 

extensively utilized in the CWAO of model compounds as well as real wastewaters due to 

their excellent catalytic activities. Although noble metals show a high resistance to 

dissolution, they are still vulnerable to poisons including polymeric product formed during 

CWAO.  

Among the base metal oxide catalysts, copper oxide catalysts exhibit a high activity 

for the CWAO of organic compounds, especially phenol. However, they are vulnerable to 

metal leaching under hot acidic conditions caused by acidic intermediates, i.e. short-chain 

carboxylic acids. Mixed metal oxides such as CeO2-ZrO2, CeO2-TiO2, CuCeOx, and 

MnCeOx are more promising for the CWAO of organic pollutants in terms of catalytic 

activity and resistance to metal leaching. 

Some metal oxides such as γ-Al2O3, TiO2, CeO2, etc. have been mainly used as 

supporting materials. Among them, ceria-based materials are one of the most promising 

supports due to their redox and morphological properties promoting the production of 

active radicals or direct redox reaction.  
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During the CWAO of organic compounds, heterogeneous catalysts are deactivated 

mainly by carbonaceous deposits and metal leaching. Coke deposition on the catalyst 

surface quickly deactivates the catalysts by blocking the active sites.  

Generally, the complete oxidation of organic pollutants to carbon dioxide and water 

is hard to achieve due to the formation of more refractory intermediates like short-chain 

carboxylic acids. CWAO integrated with the biological process can be more attractive for 

the treatment of industrial wastewater containing toxic pollutants because short-chain 

carboxylic acids, especially acetic acid, are readily biodegradable due to their low 

ecotoxicity.  

Further studies are necessary to develop more active and stable catalysts which can 

be effectively utilized on an industrial scale.  It is desired to make a thorough investigation 

on reaction mechanisms and kinetics which provides important information for industrial 

applications. 

 

 

1.3  Electrochemical technologies in water treatment 
 

With the ever increasing quantity of drinking water demand and the strict 

environmental limits regarding the wastewater treatment, electrochemical processes have 

regained a primary role over the last decades. There are companies supplying facilities for 

metal recoveries, for treating drinking water or process water, treating various wastewaters 

resulting from the tannery, electroplating, dairy, textile. 

Electrochemical purification systems are important as part of a more general 

process for the management of pollution, the cleaner processing, and the process 

efficiencies. Electrochemical approach to wastewater treatment concerns: 

 

 The avoidance of polluting reagents in materials synthesis, such as zinc powder for 

organic reductions, by the use of direct electron transfer; 

 The monitoring of pollutant concentrations through the process, in liquid effluents 

and gaseous emissions; 

 The treatment of aqueous effluents by electrochemically generated species, such as 

chloride ions or hydroxyl radicals, both of which are powerful oxidizing 

compounds; 

 The removal of environmental pollutants, such as organics and metal ions from 

industrial or agricultural activities; 

 The transformation of chemicals to electrochemical energy, for instance by fuel 

cells. 
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Continued developments in understanding and documentation of the electrodes and 

membranes and electrochemical reactor design with enhanced industrial experience are 

resulting in a widespread availability of electrochemical processes and their characteristics. 

 

Main advantages of electrochemical technologies: 

 Electrons are clean reagents 

 Transfer rate of the electron can be effectively controlled 

 Reaction conditions can be easily measured  

 The process can be activated/deactivated by switching the current on / off 

 In some circumstances, temperature and pressure can be tuned to improve the 

process 

 

Limitations and drawbacks: 

 Large-scale plants are less common than traditional wastewater treatment 

technologies 

 The cost of some components, such as electrodes, can limit the scale-up to 

industrial applications 

 There are few electrochemical engineers for the development of this technology 

 Main problems are connected to chemical reactions, corrosion, and adsorption, 

which can decrease performance and durability. 

 

 Particular focus was given to electrodeposition, electro-coagulation (El-C), 

electro-flotation (El-F) and electro-oxidation (El-Ox). Electro-coagulation is effective in 

recovering metals from wastewater. It is currently more applied for either iron, aluminum 

or the hybrid Al/Fe electrodes. The process of separation of the flocculated sludge from the 

treated water can be carried out by using electro-flotation. This technology is highly 

performing not only for the removal of colloidal particles, grease, and oil but also for the 

organic compounds. Usually, it is more effective than dissolved air flotation, 

sedimentation, impeller flotation. The newly developed active and stable electrodes for 

oxygen evolution at the anodes would boost the implementation of this technology. 

Electro-oxidation (El-Ox) is more and more applied in the field of wastewater treatment, 

especially in combination with other technologies. It is particularly promising in the 

degradation of recalcitrant pollutants on the surface of a few electrodes. Many types of the 

anode are used for this purpose: Titanium-based electrodes are the most commonly used, 

such as antimony-doped tin oxide, ruthenium oxide, boron-doped diamond film electrodes, 

which all show high activity and prove good stability.  

 



15 

 

1.3.1 Electrochemical recovery of metals 

 

The electrochemical metal recovery has been employed in the field of 

electrometallurgy for a long time. One of the first examples of electrometallurgy in Europe 

was dated in the 17th century. It concerned the recovery of copper from cupriferous mine 

by means of electrochemical procedures. During the last decades, electrochemical 

applications have grown into many areas, such as chemical synthesis, metal production, 

surface treatment, and energy storage. 

The electrochemical reaction for the recovery of metals in aqueous solution is very 

simple. It can be compared to a cathodic deposition of a metal ion in its zero-valence form: 

 

 𝑀𝑛+ + 𝑛𝑒− →  𝑀 Eq. 11 

 

There are many types of reactor for metal recovery, from very simple reactors such 

as tank cells, plate and frame, rotating cells, to more sophisticated 3-D reactors like 

fluidized bed, packed bed, or porous carbon packing cells.  

Tank cells are one of the simplest and hence the most popular designs. The main 

application of this system is the metal recovery from highly concentrated streams, for 

processes such as electroplating baths, and ion-exchange systems. 

The plate and frame cell, also called filter press, is one of the most applied devices. 

It efficiently houses anode, cathode, and membrane in only one module. 

The rotating cathode cell was designed and employed to meet the requirements for 

improved mass transfer from the bulk of the solution to the surface of the electrode. It also 

has the advantage to remove the deposited material for higher efficiencies.  

 

 

1.3.2 Electro-coagulation (El-C) 

 

This process concerns the evolution of coagulants in situ by the electrical 

dissolution of aluminum or iron ions from their respective electrodes of metallic aluminum 

or iron. The generation of metal ions, which is an oxidation process, takes place in the 

anodic chamber, whereas hydrogen is formed at the cathode. Also, hydrogen can 

contribute the flocculated particles to float out of the wastewater. The Al
3+

 or Fe
2+ 

ions are 

very performing coagulants for particulates flocculating. In general, iron is used for 

wastewater treatment, while aluminum is often employed for water treatment. The main 

advantages of electro-coagulation are high particulate removal efficiency, compact 

treatment plant, relatively low cost and feasibility of complete automation. 
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Fig. 8 - Principle of operation of the electro-coagulation system 

 

There are many factors affecting El-C. 

Current density determines the rate of Al
3+

 or Fe
2+

 released from the respective 

electrodes. The higher the current, the smaller the reactor.  

The addition of chloride ions can significantly reduce the precipitation of Ca
2+

 or 

Mg
2+

 ions which are present in form of carbonates and sulfates. Indeed, they can form a 

passivating layer on the surface of the electrodes, thus increasing the cell voltage and 

reducing the current efficiency. It is therefore suggested to add a solution containing 20% 

Cl
−
, which could also lower the power consumption, due to the increase in conductivity. 

Furthermore, the electro-generated chlorine is highly effective for water disinfection. 

pH can affect El-C in a large number of ways: if chlorine ions are added to the 

wastewater, then Cl2 evolution is influenced; aluminum and iron hydroxides tend to 

precipitate at basic pH; pollutants removal is usually better performed under neutral 

conditions, but conductivity is decreased at pH=7. Thus, a well-balanced analysis must be 

taken into account before application of this method. 
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1.3.3 Electro-flotation (El-F) 

 

 Electro-flotation process consists in the rising of pollutants to the surface of 

a liquid by the electro-generated bubbles of hydrogen and oxygen from water splitting. 

 

 

Fig. 9 - Example of an electro-flotation system 

 

The size of the bubbles is mainly depending on the pH of the solution, as well as on 

the electrode material. The optimal pH for hydrogen bubbles is the neutral pH, for which 

they are smaller. Oxygen bubbles, instead, increase their size with pH. 

The size of the bubbles depends also on the current density. The higher the current, 

the lower the bubbles size, at least until the value of 200 mA/cm
2
. For higher values of 

current density, gas bubbles are little influenced by this parameter, and they are stable from 

20 to 40 µm [17]. 

 

 

1.3.4 Electro-oxidation (El-Ox) 

 

Hazardous effluents are continuously produced by industrial processes in huge 

amounts. Conventional wastewater treatments, such as biological systems, are the most 

widely used for this purpose. In some cases, also adsorption, ozonation, ultrafiltration, and 

UV disinfection are used, especially as the final step for water purification. However, these 

processes are not able to remove some types of compounds, in particular, recalcitrant 

organics.  
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That is why electrochemical methods for wastewater purification have gained 

increased attention in recent years. Electro-oxidation (El-Ox) has been employed 

effectively to abate different organic compounds and treat both municipal and industrial 

wastewaters. 

El-Ox can occur according to two different processes: indirect and direct. 

 

Indirect process 

The indirect process occurs by the mediation of compounds added to the 

wastewater, such as chlorides. For this type of process, chlorine and hypochlorite electro-

generated at the cathode to destroy pollutants. This system is very effective over a number 

of organic and inorganic compounds at high chloride concentration. The main drawback is 

the formation of chlorinated substances either in the intermediates or final products, thus 

limiting its application. Furthermore, salts must be added to increase the process efficiency 

if the chloride amount in the raw wastewater is insufficient. Pollutants can also be oxidized 

by the electro-generated hydrogen peroxide. Ferrous salts can be added to the wastewater 

or even generated in-situ from a dissolving iron electrode to carry out an electro-Fenton 

reaction. 

 

Direct process 

Electro-oxidation of pollutants can also be carried out directly on the surface of the 

anodes by either physically adsorbed or chemisorbed “active oxygen”. This process is 

usually called direct oxidation. The physically adsorbed “active oxygen” reacts with the 

organic compounds (R) to carry out their complete combustion, while the chemisorbed 

“active oxygen” participates in the formation of selective oxidation products. In general, 

hydroxyl radicals are more effective than oxygen for pollutant oxidation. Since O2 

evolution can also occur at the anode, high oxygen evolution overpotentials are required to 

obtain good current efficiencies. Otherwise, part of the current applied to the cell will be 

used for water splitting, thus lowering the overall efficiency.  
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Fig. 10 - Anodic oxidation of organics with O2 evolution on  

non-active anodes (a, b, and e) and on active anodes (a, c, d, and f) 

 

Based on Fig. 10, the differences between the two limiting cases (i.e. active and 

non-active anodes) are reported. For both electrodes, the first reaction (Eq. 12) is water 

oxidation, to form adsorbed hydroxyl radicals (OH·): 

 

 𝑀 +  𝐻2𝑂 →  𝑀 𝐻𝑂 ∙ +  𝐻+ +  𝑒− Eq. 12 

 

The electrochemical reactivity of adsorbed hydroxyl radicals depends on the nature of the 

electrode material employed in the process. 

 

Active electrodes 

With active electrodes, the interaction between the electrode (M) and the hydroxyl 

radical (OH·) is relatively strong. Adsorbed OH· may interact with the electrode, forming a 

so-called higher oxide MO (Eq. 13). This pathway may happen when higher oxidation 

states are available, for the anodic material, above the oxygen evolution potential (1.23 V 

vs. RHE). 

 

 𝑀 𝐻𝑂 · → 𝑀𝑂 +  𝐻+  +  𝑒− Eq. 13 

 

With active electrodes, the redox couple MO/M acts as a mediator in the oxidation 

of organics (Eq. 14). The latter reaction competes with the side reaction of molecular 

oxygen formation, which is caused by the chemical decomposition of the higher oxide (Eq. 

15): 
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 𝑀𝑂 +  𝑅 →  𝑀 +  𝑅𝑂 Eq. 14 

 

 𝑀𝑂 →  𝑀 +
1

2
𝑂2 Eq. 15 

 

The oxidative reaction of organics via the surface redox couple MO/M (Eq. 14) 

may be much more selective than the reaction involving hydroxyl radicals (Eq. 16). An 

example of an active anode is the case of IrO2, which has a low oxygen evolution 

overpotential. 

 

Non-active electrodes 

With a non-active electrode, weak interactions exist between OH· and the anode 

surface. In this case, the oxidation of organics is mediated by hydroxyl radicals (Eq. 16) 

and may result in completely mineralized products (CO2 and H2O). 

 

 𝑀 𝐻𝑂 ⋅ +  𝑅 →  𝑀 +  𝑚𝐶𝑂2  +  𝑛𝐻2𝑂 +  𝐻+  +  𝑒−  Eq. 16 

 

In the above schematic equation, R is a fraction of an organic compound containing 

no heteroatoms, which needs one oxygen atom to be fully transformed into CO2. This 

reaction competes with the side reaction of hydroxyl radicals (direct or indirect 

consumption, through the formation of hydrogen peroxide as intermediate) to oxygen (7) 

without any participation of the anode surface: 

 

 𝑀 𝐻𝑂 ⋅ → 𝑀 + 1

2
 𝑂2 + 𝐻+ + 𝑒−  Eq. 17 

 

A non-active electrode does not participate in the anodic reaction and does not 

provide any catalytic active site for the adsorption of reactants and/or products from the 

aqueous medium. In this case, the anode serves only as an inert substrate, which can act as 

a sink for the removal of electrons. In principle, only outer-sphere reactions and water 

oxidation are possible with this kind of anode. Intermediates produced by the water 

oxidation are subsequently involved in the oxidation of organics in an aqueous medium. 

The electrochemical activity (which may be related to the overpotential for oxygen 

evolution) and chemical reactivity (rate of the organics oxidation with electrogenerated 

hydroxyl radicals) of adsorbed OH· are strongly linked to the strength of the M–OH· 

interaction. As a general rule, the weaker the interaction, the higher the anode reactivity for 

organics oxidation (fast chemical reaction); boron-doped diamond electrodes (BDD) are 

typical non-active electrodes, characterized by high stability and acceptable conductivity. 
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Photo-electrochemical process [18] 

 

Photo-electrochemical wastewater treatment deals with the removal of water 

pollutants which are resistant to biodegradation. The photocatalytic method offers a large 

number of advantages for the removal of organics from wastewater, such as the total 

mineralization, the use of low-cost catalysts and the relatively easy arrangement. The first 

report on photo-electrochemical wastewater treatment using anodes made of TiO2 for 

disinfection was reported in 1985. The working principle of photocatalysis is based on “in-

situ” generation of OH· radicals, which can convert a large spectrum of recalcitrant 

organics into less toxic compounds, and eventually to CO2 and H2O. Several authors have 

summarized the steps of photocatalysis reaction. The semiconductor oxide (e.g. TiO2) 

under irradiation with light having energy higher than that of the band-gap (hν), a pair of 

conduction band electron (e− ) and valence band hole (h+ ) is generated ( Eq. 18). After 

this primary event, the charge carriers either recombine with the bulk of the material or 

migrate to the particle surface. Some authors suggested that, two different mechanisms 

may take place simultaneously either they get transferred to the adsorbed pollutant causing 

immediate oxidation (Mechanism 1,  Eq. 19), or they are first transferred to adsorbed water 

molecules generating hydroxyl radicals, OH• , upon which reaction with the pollutant 

produce the respective oxidation products (Mechanism 2,  Eq. 20). 

 

 𝑃ℎ𝑜𝑡𝑜𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
     𝑢𝑣      
      𝑒− + ℎ+  Eq. 18 

 ℎ+ + 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 → ∙𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡+  Eq. 19  

 ℎ+ + 𝑂𝐻 → 𝑂𝐻 ∙  Eq. 20 

 

Mechanism 1 represents direct oxidation or direct photocatalysis, while mechanism 

2 shows indirect oxidation or indirect photocatalysis. In the opinion of authors, mechanism 

1 is associated with the systems which adsorb pollutants strongly at the photocatalyst 

surface with firm electronic contact, while mechanism 2 is dominant in systems with weak 

pollutant adsorption. According to principle, mechanism 2 can be as fast as mechanism 1, 

or it will be slower, but it is highly improbable to be faster. The electron-hole pair also 

initiates oxidation and reduction processes of adsorbed substrates. In aqueous solutions, the 

holes are scavenged by surface hydroxyl groups to generate strong oxidizing hydroxyl 

radicals (OH·), which can promote the oxidation and eventual mineralization of organic 

compounds. All studies related to photocatalysis show that the presence of molecular 

oxygen and water is essential during the photo-mineralization process. The trapping of 

charge carriers by O2 and H2O serves to suppress the electron-hole combination, thereby 

increasing the competitiveness of the light-induced redox processes.  
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Fig. 11 shows an example of photoelectrochemical degradation process of organic 

compounds on a TiO2 electrode, and the mechanism behind the reaction. 

 

Fig. 11 – Photoelectrochemical oxidation of organics on a TiO2 electrode 

 

Basic principles of photocatalysis, as well as the details of rate of degradation and 

effect of other factors controlling the photo-oxidation, have been described in several 

research papers and review articles. This versatile approach for removal of a broad range 

of chemical pollutants in waste streams has recently become an area of wide research, 

particularly over the past decade. 
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CHAPTER 2 
 

 

 

SOLAR POWER CONVERSION 
 

 

 

 

 

2.1 Introduction 
 

Due to the will to find attractive alternatives to fossil fuels, research is moving 

towards different types of renewable sources, as wind and solar. The latter, in particular, 

seems to be one of the most promising, due to the immense potential energy that the Sun 

provides daily to the Earth, which is normally wasted. One of the main issues that 

technology has to face is the improvement of the use of this source of energy. 

Sunlight can be converted into electricity by exciting electrons in a solar cell. It can 

yield chemical fuel via natural photosynthesis in green plants or artificial photosynthesis in 

human-engineered systems. Concentrated or unconcentrated sunlight can produce heat for 

direct use or further conversion to electricity [19]. 

 

 

Fig. 12 – Solar conversion into three forms: electric, fuel and heat 

 

Efficiency conversion of solar power are still low, and the costs of solar technology 

are very high, limiting the application of these systems. The need for better conversion 

technologies is a driving force behind many recent developments in biology, materials, and 

especially nanoscience. The gap between the energy potentially provided by the Sun and 

human applications is due to cost and conversion capacity. Fossil fuels meet our energy 

requirements in a much cheaper way than the solar source, as fossil-fuel resources are 
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concentrated, whereas the Sun spreads its photons uniformly over the Earth at a more 

modest energy density, which is more difficult to collect. 

Solar energy is considered as a clean source, renewable, unlimited and equally 

distributed all over the planet, with some limitations towards extreme latitudes. Fossil-

fuels, instead, are limited and unevenly distributed. The most important issue concerning 

fossil fuels, however, is related to the emissions of combustion products during the 

combustion process. Ideally, the combustion of any fuel should lead only to carbon dioxide 

(CO2) and water. Unfortunately, this is not true, because many by-products are formed, due 

to the presence of molecules such as sulfur or nitrogen, which can lead to the formation of 

sulfur oxides (SOx) and nitrogen oxides (NOx). Moreover, incomplete combustion due to 

lack of oxygen during the combustion can form carbon monoxide (CO). Other pollutants 

that are worth mentioning are the uncombusted, i.e. fuel molecules which did not react. All 

these products are dangerous to human health and/or to the environment. N2O, CO2, and 

methane (CH4) are powerful greenhouse gases, while carbon monoxide, benzene, and 

particulate matter are harmful environmental pollutants, and sulfur oxides are involved in 

the phenomenon of the acidic rains. In contrast, solar photons can overcome all these side 

effects of fossil fuels; solar power magnitude, wide availability, versatility, and beneficial 

effect on the environment and climate make it an appealing energy source for the future. 

 

 

2.2 Solar to electricity 
 

Presently, the world energy consumption is 10 terawatts (TW) per year, and by 

2050, it is projected to be about 30 TW. The world will need about 20 TW of non-CO2 

energy to stabilize CO2 in the atmosphere by mid-century. The simplest scenario to 

stabilize CO2 by mid-century is one in which photovoltaics (PV) and other renewables are 

used for electricity, fuels for transportation, and heat for residential and industrial 

consumption. Thus, PV will play a significant role in meeting the world future energy 

demand [20]. 

A photovoltaic system can be arranged in two main ways: stand-alone and grid-

connected. 

 

Stand-alone systems 

A stand-alone power system (SAPS), is an off-the-grid electricity system for 

locations that are not fitted with an electricity distribution system. Electricity is generated 

by solar panels and energy is usually stored in a battery system, but other solutions exist 

including fuel cells. Power drawn directly from the battery will be direct current extra low 

voltage (DC), and this is used especially for lighting as well as for DC appliances. An 

inverter is used to generate AC low voltage, which more typical appliances can be used 

with [21]. 
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Stand-alone photovoltaic power systems are independent of the utility grid and may 

 be:  

 direct-coupled to the load without any electrical energy storage device, where the 

system is directly linked to a DC load, thus it is capable of powering such loads 

only during daytime. Another drawback of this system is the strict matching 

between power created by the solar device and the power required by the loads; 

 provided with a battery pack, so that when electrical energy produced by the panels 

cannot immediately be used, it can be stored in an accumulator. In this way, the 

system is less subjected to energy fluctuation and load requirements. Energy 

acquired by the batteries can be then used when solar power is not available (e.g. 

during nighttime) 

 

 

Fig. 13 – Design of a classical stand-alone photovoltaic system 

 

Grid-connected systems 

A grid-connected photovoltaic power system or grid-connected PV power system is 

an electricity generating solar PV power system that is connected to the utility grid. A grid-

connected PV system consists of solar panels, one or several inverters, a power 

conditioning unit and grid connection equipment. They range from small residential and 

commercial rooftop systems to large utility-scale solar power stations. Unlike stand-alone 

power systems, a grid-connected system includes an integrated battery solution, as they are 

still very expensive. When conditions are right, the grid-connected PV system supplies the 

excess power, beyond consumption by the connected load, to the utility grid 

Solar energy gathered by photovoltaic solar panels, intended for delivery to a power 

grid, must be conditioned, or processed for use, by a grid-connected inverter [22]. 

Fundamentally, an inverter changes the DC input voltage from the PV to AC voltage for 

the grid.  
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Fig. 14 – Design of a typical grid-connected photovoltaic system 

 

Main advantages of grid-connected arrangements are: easiness of installation, due 

to lack of batteries often required by stand-alone systems; more efficient use of generated 

energy, as there are no storage losses involved; residential installation can benefit from 

incentives for producing electricity that is conveyed to the grid. 

Main drawbacks of such systems are: impairment of power quality due to its 

intermittency which can cause rapid changes in voltage; protection-related requirements, as 

phenomena like islanding and high levels of grid-connected PV can give problems such as 

relay desensitization, nuisance tripping, interference with automatic reclosers, and ferro-

resonance. 

 

 

2.2.1 SiO2 solar cells 

 

The conversion of solar radiation occurs by the photovoltaic effect which was first 

observed by Becquerel. It is quite generally defined as the emergence of an electric voltage 

between two electrodes attached to a solid or liquid system upon shining light onto this 

system. Practically, all photovoltaic devices incorporate a p-n junction in a semiconductor 

across which the photovoltage is developed [23]. 

 

p-n junction 

Solar cells capture photons by exciting electrons across the band-gap of a 

semiconductor, which creates electron–hole pairs that are then charge separated, typically 

by p–n junctions introduced by doping. The space charge at the p–n junction interface 

drives electrons in one direction and holes in the other, which creates at the external 
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electrodes a potential difference equal to the band-gap. The concept and configuration are 

similar to those of a semiconductor diode, except that electrons and holes are introduced 

into the junction by photon excitation and are removed at the electrodes [19]. 

A p–n junction is a boundary or interface between two types of semiconductor 

material, p-type and n-type, inside a single crystal of semiconductor. The "p" (positive) 

side contains an excess of electron holes, while the "n" (negative) side contains an excess 

of electrons. The p-n junction is created by doping, for example by ion implantation, 

diffusion of dopants, or by epitaxy (growing a layer of crystal doped with one type of 

dopant on top of a layer of crystal doped with another type of dopant). If two separate 

pieces of material were used, this would introduce a grain boundary between the 

semiconductors that would severely inhibit its utility by scattering the electrons and holes 

[24]. 

 

 

Fig. 15 – A p-n junction 

 

Zero bias (equilibrium) 

In a p–n junction, without an externally applied voltage, an equilibrium condition is 

reached in which a potential difference is formed across the junction. This potential 

difference is called “built-in potential”. 

After joining p-type and n-type semiconductors, electrons from the n-region near 

the p–n interface tend to diffuse into the p region leaving behind positively charged ions in 

the n region and being recombined with holes, forming negatively charged ions in the p 

region. The regions near the p–n interface lose their neutrality and most of their mobile 

carriers, forming the space charge region or depletion layer. 
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Forward bias 

In forward bias, the p-type is connected to the positive terminal and the n-type is 

connected to the negative terminal. 

With increasing forward-bias voltage, the depletion zone eventually becomes thin 

enough that the zone's electric field cannot counteract charge carrier motion across the p–n 

junction, which as a consequence reduces electrical resistance. Only majority carriers 

(electrons in n-type material or holes in p-type) can flow through a semiconductor for a 

macroscopic length. The forward bias causes a force on the electrons pushing them from 

the N side toward the P side. With forward bias, the depletion region is narrow enough that 

electrons can cross the junction and inject into the p-type material. However, they do not 

continue to flow through the p-type material indefinitely, because it is energetically 

favorable for them to recombine with holes.  

 

Reverse bias 

Connecting the p-type region to the negative terminal of the battery and the n-type 

region to the positive terminal corresponds to reverse bias. If a diode is reverse-biased, the 

voltage at the cathode is comparatively higher than at the anode. Therefore, very little 

current will flow until the diode breaks down.  

Because the p-type material is now connected to the negative terminal of the power 

supply, the 'holes' in the p-type material are pulled away from the junction, leaving behind 

charged ions and causing the width of the depletion region to increase. A similar effect 

occurs in the n-type region. This increases the voltage barrier causing a high resistance to 

the flow of charge carriers. The increase in resistance of the p–n junction results in the 

junction behaving as an insulator. 

 

Semiconductors and bang-gap energy 

In solid-state physics, a band-gap, is an energy range in a solid where no electron 

states can exist. It is the energy required to promote an electron from a valence state to a 

conduction state, which is free to move within the crystal lattice and serve as a charge 

carrier to conduct electric current. If the valence band is completely full and the conduction 

band is completely empty, then electrons cannot move into the solid; however, if some 

electrons transfer from the valence to the conduction band, then current can flow. 

Therefore, the band-gap is a major factor determining the electrical conductivity of a solid. 

Substances with large band-gaps are generally insulators, those with smaller band-gaps are 

semiconductors, while conductors either have very small band-gaps or none. 
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Fig. 16 – Energy band-gap of most common semiconductors 

 

Band-gap energy in the semiconductor is fundamental for the application of the 

photovoltaic effect. Photons from the Sun are collected by the semiconductor and they can 

be exploited for the production of voltage/current. If photons have enough energy, that is, 

higher than the band-gap energy of the semiconductor material, then they are absorbed and 

their energy is converted to potential energy of holes/electrons, which can “jump” from the 

valence band to the conduction band. The energy that is exceeding the energy band-gap is 

waste as heat. On the contrary, if photons‟ energy is too low (i.e. lower than the energy 

band-gap), they pass through the system without any effect. 

Thus, materials have to be chosen to obtain an energy band-gap that is high enough 

to reach good efficiencies and not to waste too much solar power as heat, and that is 

contemporary not too high in order to collect more photons as possible. 

 

Fig. 17 – Photovoltaic effect on a semiconductor 

 

 

 Amorphous silicon (a-SiO2) 

A thin film material which very early appeared on the market is amorphous silicon 

(a-SiO2). 

The high expectancy in this material was curbed by the relatively low efficiency 

obtained so far and by the initial light-induced degradation for this kind of solar cells (so-
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called Staebler–Wronski effect). Today, a-Si has its fixed place in consumer applications, 

mainly for indoor use and for low-cost solar cells. After understanding and partly solving 

the problems of light-induced degradation, amorphous silicon begins to enter the power 

market. Stabilized cell efficiencies reach 13%. Module efficiencies are in the 6–8% range 

[23]. 

 

 

Fig. 18 – An amorphous silicon (a-SiO2) solar cell 

 

The films are deposited by decomposition of silane (SiH4) in a plasma. Deposition 

occurs at relatively low temperature but deposition rates are also low. It has been found 

that thinner cells exhibit higher stability, so stacked cells have been designed that utilize 

this effect [25]. 

  

Monocrystalline silicon (m-SiO2) 

Monocrystalline silicon solar cells are currently the fastest developing a solar cell, 

its composition, and production technology have been finalized, the products have been 

widely used for space and ground facilities. The single crystal silicon solar cells can 

achieve 99.999% purity. In order to reduce production costs, and now solar-terrestrial 

applications such as the use of solar-grade silicon rods, material performance has been 

relaxed. 

 

 

Fig. 19 – A monocrystalline silicon (m-SiO2) solar cell 
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According to the system, the user can design different size solar module solar cell 

composed of a variety of squares, also known as the solar array. Current SiO2 photoelectric 

conversion efficiency is about 15%, whereas laboratory results have more than 20% [24].  

 

Polycrystalline silicon (p-SiO2) 

Monocrystalline silicon solar cell production requires large amounts of high-purity 

silicon material, thus the process complexity and the overall cost of the production of these 

materials is very high. Therefore, polycrystalline silicon solar cells were developed to 

overcome these drawbacks.  

 

Fig. 20 – A polycrystalline silicon (p-SiO2) solar cell 

 

Polycrystalline material, in the form of fragments obtained from highly purified 

polysilicon, is placed in a quartz crucible which itself is located in a graphite crucible and 

melted under inert gases by induction heating. A seed crystal is immersed and slowly 

withdrawn under rotation. 

Polycrystalline silicon solar cells reach a photoelectric conversion efficiency of 

about 12%, slightly lower than the silicon solar cells, but the material is simpler, and the 

total production costs are lower. As the technology was improved, the current conversion 

efficiency of polycrystalline silicon can also achieve around 14% [23]. 
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2.2.1 Multi-Junction Solar Cells (MJSCs) 

 

Multi-junction solar cells (MJSCs) are solar cells with multiple p–n junctions made 

of different semiconductor materials. Each p-n junction will produce electric current in 

response to different wavelengths of light. The use of multiple semiconducting materials 

allows the absorbance of a broader range of wavelengths, improving the cell's sunlight to 

electrical energy conversion efficiency. 

Traditional single-junction cells have a maximum theoretical efficiency of 34%, 

whereas an infinite number of junctions would have a limiting efficiency of 86.8% under 

highly concentrated solar power. 

Currently, lab examples of multi-junction cells have demonstrated performance 

over 46% under concentrated sunlight [26, 27]. Commercial examples of tandem cells are 

widely available at 30% under one-sun illumination and improve to around 40% under 

solar concentration [28]. However, this efficiency is gained at the cost of increased 

complexity and manufacturing price. To date, their higher price and higher price-to-

performance ratio have limited their use to special roles, notably in aerospace where their 

high power-to-weight ratio is desirable. In terrestrial applications, these solar cells are 

emerging in concentrator photovoltaics (CPV), with a growing number of installations 

around the world. 

The potential behind the MJSCs lies in their ability to absorb photons from sunlight 

in a wide range of wavelengths, unlike the traditional silicon solar cells. As previously 

mentioned, in fact, a solar cell can absorb only photons which exceed the band-gap energy 

of the material (1.12 eV in the case of crystalline Si), whereas the other photons will pass 

through the material (transparency loss). Thus, a low band-gap energy material should be 

suitable for a single junction solar cell. The drawback of this configuration, however, 

would be the high energy dispersion of photons, due to the fact that the excess energy 

between the photons and the band-gap is wasted as heat (excess excitation loss). These are 

the main limitations to the maximum efficiency of traditional solar cells with a single 

junction. 

On the contrary, MJSCs are made from multiple materials, with multiple band-

gaps. So, they will respond to multiple light wavelengths and some of the energy that 

would otherwise be lost to relaxation as described above can be captured and converted. 

Following an analysis similar to those performed for single-band-gap devices, it can 

be demonstrated that the perfect band-gaps for a two-gap device are at 1.1 eV and 1.8 eV, 

while for a higher number of tandem solar cells, semiconductor materials with band-gap 

energy from 0.6 to 2.5 eV are needed [29]. 
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Fig. 21 – Typical structure of an MJSC (a) and spectral irradiance vs. wavelength 

over the AM1.5 solar spectrum (b) 

 

To improve the overall efficiency of photons‟ absorption, the materials that 

constitute the MJSC are layered on top of each other, with the highest band-gap energy on 

the "top" layer and the lowest on the “bottom” layer. In this way, higher energy photons 

would be absorbed by the first layer, with less heat dispersion (due to a low difference 

between photons‟ energy and the solar cell band-gap), while the photons with less energy 

would pass through and be absorbed by the second layer, and so on. As the photons have to 

pass through all the cells to reach the proper layer to be absorbed, transparent conductors 

need to be used to collect the electrons being generated at each layer. 

Producing a tandem cell is not an easy task, largely due to the thinness of the 

materials and the difficulties extracting the current between the layers. The easy solution is 

to use two mechanically separate thin film solar cells and then wire them together 

separately outside the cell. 

The more difficult solution is the "monolithically integrated" cell, where the cell 

consists of a number of layers that are mechanically and electrically connected. These cells 

are much more difficult to produce because the electrical characteristics of each layer have 

to be carefully matched. In particular, the photocurrent generated in each layer needs to be 

matched, otherwise, electrons will be absorbed between layers. This limits their 

construction to certain materials, best met by the III-V semiconductors. 

 

Materials 

For optimal growth and resulting crystal quality, the crystal lattice constant of each 

material must be closely matched, resulting in lattice-matched devices. This constraint has 

been relaxed somewhat in recently developed metamorphic solar cells which contain a 

small degree of lattice mismatch. However, a greater degree of mismatch or other growth 

imperfections can lead to crystal defects causing a degradation in electronic properties. 
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Since each sub-cell is connected electrically in series, the same current flows 

through each junction. The materials are ordered with decreasing band-gaps, allowing sub-

low energy light to pass to the lower sub-cells. Therefore, suitable band-gaps must be 

chosen such that the design spectrum will balance the current generation in each of the 

sub-cells, achieving current matching. Finally, the layers must be electrically optimal for 

high performance. This necessitates usage of materials with strong absorption coefficients, 

high minority carrier lifetimes, and high mobilities. 

The most used materials in triple-junction tandem solar cells are: InGaP for the top 

sub-cell (Eg = 1.8 - 1.9 eV), InGaAs for the middle sub-cell (Eg = 1.4 eV), and 

Germanium (Ge) for the bottom sub-cell (Eg = 0.67 eV). The use of Ge is mainly due to its 

lattice constant, robustness, low cost, abundance, and ease of production. 

The Anti-Reflective (AR) coating is generally composed of several layers in the 

case of MJ solar cells. The top AR layer has usually a NaOH surface texturization with 

several pyramids in order to increase the transmission coefficient T, the trapping of the 

light in the material (because photons cannot easily get out the MJ structure due to 

pyramids) and therefore, the path length of photons in the material. On the one hand, the 

thickness of each AR layer is chosen to get destructive interferences. On the other hand, 

the thickness of each AR layer is also chosen to minimize the reflectance at wavelengths 

for which the photocurrent is the lowest.  

The tunnel junctions provide a low electrical resistance and optically low-loss 

connection between two subcells. Without it, the p-doped region of the top cell would be 

directly connected with the n-doped region of the middle cell. Hence, a p-n junction with 

opposite direction to the others would appear between the top cell and the middle cell. 

Consequently, the photovoltage would be lower than if there would be no parasitic diode. 

In order to decrease this effect, a tunnel junction is used. It is simply a wide band-gap, a 

highly doped diode. The high doping reduces the length of the depletion region, allowing 

the electrons to travel through it. 

 

Production technologies 

There are many ways to obtain a multi-junction solar cell. 

The most common type of MJSC, especially used in the past years, is the lattice-

matched [30]. The main objective is to couple the sub-cells in order to minimize the 

difference between the lattice constant of each compound, by tuning the relative amount of 

indium and gallium in the top (arsenides) and middle (phosphides) layer: 

 

InxGa1-xAs  x∙6.058+(1-x)∙5.653 

InxGa1-xP  x∙5,869+(1-x)∙5.451 

Ge  5.646 
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This type of lattice-matched solar cell owns good optical properties. However, the 

strict constraint does not allow the use of some materials, thus reducing the achievement of 

high efficiencies. 

To overcome these issues, lattice-mismatched or metamorphic solar cells have been 

developed [31]. The introduction of a low lattice mismatch allows more freedom in the 

material choice, without decreasing the performance. Top and middle sub-cells are grown 

on a metamorphic buffer such that these two sub-cells are lattice-matched to each other, 

but are both lattice-mismatched to the Ge substrate. A step-graded buffer, which is 

obtained by altering the alloy ratio during film growth is introduced to reduce the strain. 

 

 

Fig. 22 – Schematic cross-sectional diagrams of lattice-matched (a) and metamorphic 

(b) GaInP/GaInAs/Ge 3-junction cell 

 

One step further towards the improvement of MJSCs are the so-called inverted 

metamorphic solar cells [32]. The key concept is the same of the metamorphic solar cells, 

that is, allowing the use of materials with different lattice constants. In this case, however, 

the main objective is to replace the Ge substrate, which has a band-gap of 0,67eV with a 

substrate having a higher band-gap energy (~ 0,9–1 eV). A too low band-gap, in fact, 

increases the heat losses due to excess energy of photons reaching the substrates, thus 

reducing the maximum efficiency. One of the most promising materials for the bottom 

layer/substrate is InGaAs. The cell is grown on a substrate (usually GaAs), then bonded 

onto a handle, and the substrate is removed. Higher bang-gap energy in the bottom cell 
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would result in: lower current in Ge cell (otherwise useless); higher Ge sub-cell voltage 

(higher total cell voltage); lower photon energy wasted as heat. 

 

 

Fig. 23 – Schematic of an inverted metamorphic multi-junction solar cell 

 

Another synthesis used for the production of MJSCs is the direct semiconductor 

bonding [33]. Two epitaxial layers are well-polished to obtain flat surfaces, which 

spontaneously adhere or “bond” to each other, at an atomic distance apart. Annealing at 

high T (500-600°C), makes the bonding permanent. However, high T may cause dopant 

diffusion and thermal stresses which may result in local de-bonding. 

In the last few years, many processes have been tested to obtain direct bonding at 

room temperature, such as ultrahigh vacuum, argon beam etching, atomic hydrogen surface 

cleaning. 

 

 

Fig. 24 – Direct semiconductor bonding technology for MJ solar cells production 
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Recently, studies have been carried out on MJSCs based on nitride-based systems 

[34, 35]. The band-gap energy of these materials can be tuned from 0.7 to 6.2 eV, 

according to the degree of doping. The re-evaluation of band-gap of InN extends the 

fundamental bandgap energy of III-Nitrides from near infrared (InN at 0.65 eV) to deep-

ultraviolet (AlN at 6.2 eV), which provides an almost perfect match to the solar spectrum, 

opening up an interesting opportunity for the high-efficiency photovoltaic applications.  

 

 

Fig. 25 – Example of an InGaN multi-junction solar cell 

 

InGaN alloys have the advantages of high drift velocity, high radiation resistance, 

large absorption coefficient, and high carrier mobility. These characteristics enable the 

InGaN solar cells to operate also in severe environments such as the desert or space. 

 

Influence of temperature and irradiance on MJSCs 

In concentrating photovoltaics (CPV) as well as in space applications, multi-

junction solar cells made from III–V compound semiconductors are widely applied as 

photovoltaic converters. The characterization of solar cells is usually performed at ambient 

temperature and under 1-sun illumination. However, in many applications, the actual 

operating conditions can achieve 70°C for passively cooled CPV (under 300-1000 suns), or 

even more than 100°C for mixed concentrated photovoltaic and thermal (CPVT) systems 

[36, 37]. 
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Fig. 26 – Effect of solar concentration (a) and temperature (b) on the performances of 

an MJSC 

 

Fig. 26 shows the influence of the concentration factor and the temperature on the 

characteristic current-voltage (I-V) curves of a multi-junction solar cell, as well as at their 

maximum power point (indicated by the black dot). Obviously, an increase in the solar 

concentration rises the short circuit current (Isc) of the MJ linearly with the concentration 

factor (Fig. 26a), also increasing the open circuit voltage (Voc), but with a lower 

dependence. An increase in the system temperature, instead, tends to decrease the open 

circuit voltage of the solar cell (Fig. 26b), while slightly increasing the short circuit 

current. Thus, the maximum power point is moving towards high values when the sun 

concentration is rising, whereas is moving towards lower values when the temperature 

increases. 

Voltage fall is one of the most critical points for the MJSCs when operating at high 

temperatures, especially for the germanium (Ge) substrates, which can reach very low 

values, thus compromising the efficiency of the cell. In fact, since the sub-cells are 

connected in series, the total current is the minimum flowing in the system, while the total 

voltage is the sum of the sub-cells voltages, as shown in Fig. 27. 
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Fig. 27 – I-V characteristic of a triple-junction solar cell 

 

Therefore, if Ge Voc tends to zero, the bottom sub-cell contribute to the total 

voltage is negligible. Open circuit potential is closely related to the band-gap energy of the 

material, which in turn is dependent on the operative temperature. Many authors proposed 

experimental correlations between band-gap (or Voc) and temperature [36, 38]. However, 

the most used formulas to predict the band-gap energy and the open circuit voltage with 

temperature are: 

 

 𝐸𝑔 𝑇 = 𝐸𝑔 0 −
𝛼𝑇2

𝑇+𝛽
  Eq. 21 

 

where Eg(0), α and β are material constants. 

 

 𝑉𝑜𝑐 (𝑇) =
𝐸𝑔(𝑇)

𝑞
−

𝑘𝑇

𝑞
· 𝑙𝑛  

𝑁𝐶𝑁𝑉𝐷𝑛

𝑁𝐴𝐿𝑛
· 𝐼𝑠𝑐   Eq. 22 

 

where q is the electron charge, k is the Boltzmann constant, Nc and Nv are the 

conduction and valence band densities, Dn is the minority carrier diffusion constant, NA is 

the dopant concentration and Ln is the minority diffusion length. 

In conclusion, materials with high standard band-gap energies, Eg(0), are the most 

suitable for high-temperature applications. In addition, elevated solar concentrating factors 

can partially compensate the temperature influence on the open circuit voltage. 
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2.3 Solar to fuels 
 

Solar energy can be stored into chemicals, usually through electrochemical 

conversion in electrolyzers. The main valuable products obtained by this technology are: 

hydrogen from water splitting and methanol from carbon dioxide reduction [39]. 

 

Solar to hydrogen 

Hydrogen can play a significant role in the energy supply of a sustainable economy 

in the future. Electricity can be generated, e.g. directly from hydrogen using fuel cells [40], 

or hydrogen can be burned in conventional combustion engines [41]. Hydrogen has many 

advantages as it can be stored, shipped and combusted without harmful reactants.  

Most systems can be classified under one of four categories [42]:  

1) Photochemical systems: sunlight is absorbed by isolated molecules in 

solution. A sensitizer, that is, a molecule or semiconductor that can absorb 

sunlight and stimulate photochemical reactions which ultimately lead to the 

generation of hydrogen in reaction 

2) Semiconductor systems: sunlight is absorbed by a semiconductor. 

Photovoltaic (PV) cells plus electrolyzer is certainly the most developed 

option at present because silicon photovoltaic cells routinely achieve 

efficiencies of > 15% and the efficiency of electrolyzers is often >75%. 

3) Photo-biological systems: sunlight is absorbed by photosynthetic 

organisms, which carry out an energy-storing fuel production reaction. 

Normally, photosynthetic systems do not evolve hydrogen, but rather reduce 

CO2 to carbohydrates. However, it is possible to modify conditions such 

that the reducing end of the photosynthetic process is coupled to a 

hydrogen-evolving enzyme, such as hydrogenase or nitrogenase. 

4) Hybrid systems: involving combinations of the first three 

 

 

Solar to methanol 

Recently, the selective catalytic reduction of carbon dioxide (CO2) to value added 

chemicals using solar energy has received a great deal of attention from the scientific 

community as it can indeed solve two major problems, i.e., global warming and energy 

crisis. The conversion of CO2 into more useful organic fuels (like methanol) using energy 

that is not produced from fossil fuels is believed to have tremendous potential [39]. 

Methanol is the most promising photo-reduced product of carbon dioxide because it can be 

transformed into other useful chemicals such as gasoline (petrol) using conventional 

chemical technologies, or easily transported and used as fuel in the automobile vehicles 

without major adjustments. 
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There are several other motivations as listed below for producing methanol or any 

other useful chemical from carbon dioxide. 1) Carbon dioxide is an inexpensive, nontoxic 

feedstock that can frequently replace toxic chemicals such as phosgene of isocyanates. 2) 

Carbon dioxide is a renewable feedstock compared to oil or coal. 3) The production of 

chemicals from carbon dioxide can lead to new industrial productivity. 4) New routes to 

existing chemical intermediates and products could be more efficient and economical than 

current methods. 5) The production of chemicals from carbon dioxide could have a small 

but significant impact on the global carbon balance. 

Among various routes proposed for conversion of CO2 to methanol or to any other 

value added a chemical, the photoelectrochemical (PEC) cells have an edge over another 

process. In order to realize efficient PEC cells for this reaction, 1) an n-type semiconductor 

with desired band-gap and band edges for photoanode (e.g., pure TiO2, ZnO, CdS, etc.); 2) 

a p-type semi-conductor with desired band gap and band edges for photocathode (e.g., 

doped TiO2, ZnO, GaP, etc.); 3) a catalyst for performing water oxidation reaction over or 

near to the surface of photoanode (e.g., polyoxometallates), and 4) a catalyst to perform 

CO2 reduction reaction over or near to the surface of photocathode (e.g., pyridinium ions 

over the surface of p-GaP) are essential. 

 

 

2.4 Solar to heat 
 

Solar thermal electricity may be defined as the result of a process by which directly 

collected solar energy is converted to electricity through the use of some sort of heat to 

electricity conversion device. Mostly this is a heat engine, but there are other options such 

as a thermoelectric pile converter or a fan converter as in solar chimneys. 

Various advanced solar thermal electricity technologies are reviewed with an 

emphasis on new technology and new market approaches [37, 43, 44]. 

 

Single-axis tracking systems 

In single-axis tracking technology, the conventional parabolic trough collector is 

the mainstream established technology and is under continued development. This category 

is comprised of technologies in which relatively long and narrow reflectors are tracked 

about a single axis to keep the sun‟s image in focus on a linear absorber or receiver. The 

receiver is normally a tube or series of tubes which contain a heat transfer fluid: 

 

• Parabolic trough technology: This technology uses reflectors curved around one 

axis using a linear parabolic shape, which has the property of collecting parallel 

rays along a single line focus and nearly parallel rays from the solar beam in a line 

image. A long pipe receiver can be placed at the focus for heating of heat transfer 

fluid. 
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• Linear Fresnel reflector technologies: This is a single-axis tracking technology 

but differs from a parabolic trough in that the absorber is fixed in space above the 

mirror field and the reflector is composed of many long row segments which focus 

collectively on an elevated long tower receiver running parallel to the reflector 

rotational axis. 

 

Two-axis tracking systems 

Dual axis trackers have two degrees of freedom that act as axes of rotation. These 

axes are typically normal to one another. The axis that is fixed with respect to the ground 

can be considered a primary axis. The axis that is referenced to the primary axis can be 

considered a secondary axis. There are several common implementations of dual axis 

trackers. They are classified by the orientation of their primary axes with respect to the 

ground. Dual axis trackers allow for optimum solar energy levels due to their ability to 

follow the Sun vertically and horizontally. No matter where the Sun is in the sky, dual axis 

trackers are able to angle themselves to be in direct contact with the Sun. 

 

• Paraboloidal dishes: It is a reflective surface used to collect or project energy 

such as light, sound, or radio waves. Its shape is part of a circular paraboloid, that 

is, the surface generated by a parabola revolving around its axis. The parabolic 

reflector transforms an incoming plane wave traveling along the axis into a 

spherical wave converging toward the focus. Conversely, a spherical wave 

generated by a point source placed in the focus is reflected into a plane wave 

propagating as a collimated beam along the axis. 

• Single tower––central generation: is a type of solar furnace using a tower to 

receive the focused sunlight. It uses an array of flat, movable mirrors (called 

heliostats) to focus the sun's rays upon a collector tower (the target). Concentrated 

solar thermal is seen as one viable solution for renewable, pollution-free energy. 

Early designs used these focused rays to heat water and used the resulting steam to 

power a turbine. Newer designs using liquid sodium have been demonstrated, and 

systems using molten salts (40% potassium nitrate, 60% sodium nitrate) as the 

working fluids are now in operation. These working fluids have high heat capacity, 

which can be used to store the energy before using it to boil water to drive 

turbines. These designs also allow power to be generated when the sun is not 

shining. 

• Distributed tower systems: The basic MTSA components are a reflector field 

using extremely closely spaced silvered glass reflectors of a special shape to allow 

extremely close spacing; multiple receivers of radiation using advanced thermal 

and photovoltaic absorber technology; means allowing the receivers to be placed 

above the reflector field between 8 and 12 m high. These may be multiple small 

towers or posts, or else arch-like structures. For the receiver of radiation, MTSA 
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can simultaneously use high-temperature and photovoltaic absorbers in parallel by 

splitting the incoming solar beam spectrally so that electricity production is 

optimized. 

 

 

2.5 PEM electrolyzer 
 

Hydrogen may play an important role as an energy carrier of the future. Hydrogen 

may be used as fuel in almost every application where fossil fuels are being used today, but 

without harmful emissions. In addition, hydrogen may be converted into useful forms of 

energy more efficiently than fossil fuels. However, hydrogen does not occur in nature in its 

elemental or molecular form. Therefore, hydrogen must be produced. Although several 

methods have been and are being developed for the production of hydrogen from 

renewable energy sources, the only one currently practical is water electrolysis. Water 

electrolysis is a mature technology, and it is being used for hydrogen production capacities 

ranging from few cm
3
/min to thousands m

3
/h. It is relatively efficient (>70%), but because 

it needs high-quality energy (electricity) hydrogen produced by water electrolysis is 

expensive (>$20/GJ) [45]. 

PEM electrolysis is a process just reverse of a PEM fuel cell process (Fig. 1). Water 

is split into oxygen, protons and electrons on one electrode (anode) by applying a DC 

voltage higher than a thermo-neutral voltage (1.482 V). Protons pass through the polymer 

electrolyte membrane and on the cathode combine with electrons to form hydrogen. 

Passage of protons through the membrane is accompanied by water transport (electro-

osmotic drag). 

 

 

Fig. 28 - Schematic representation of PEM electrolysis and fuel cell processes 
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A PEM electrolyzer cell is similar to a PEM fuel cell. It has a polymer membrane 

and porous electrodes, flow fields, current collectors and separator plates, end plates, bus 

plates, manifolds. The principle of operation is just reverse of fuel cell operation. However, 

the materials are typically different from PEM fuel cell materials. Carbon materials, such 

as catalyst support, porous electrode structures (carbon fiber paper or carbon cloth) and bi-

polar plates, commonly used in fuel cells cannot be used on the oxygen side of a PEM 

electrolyzer due to corrosion. PEM electrolyzers therefore primarily use metallic 

components (porous structures, flow fields, and separator plates). The catalyst is typically 

platinum or platinum alloys. Similarly to fuel cells, individual electrolyzer cells may be 

stacked into a stack, in order to get the desired output at a reasonable stack voltage. 

Besides the cell stack, an electrolyzer must have a power supply/voltage regulator, 

water supply system, water circulation pump, water–gas separators for hydrogen and 

(optionally) oxygen, heat exchanger, controls and instrumentation, including the safety 

feature. 

The efficiency of an electrolyzer is inversely proportional to the cell potential, 

which in turn is determined by the current density, which in turn directly corresponds to 

the rate of hydrogen production per unit of electrode active area. A higher voltage would 

result in more hydrogen production but at a lower efficiency. Typically, the cell voltage is 

selected at about 2 V, but a lower nominal voltage (as low as 1.6 V) may be selected, if the 

efficiency is more important than the size (and capital cost) of the electrolyzer. Another 

„„source‟‟ of inefficiency is hydrogen permeation (loss) through the polymer membrane. 

This is typically insignificant at low operating pressures, but it may significantly affect the 

overall efficiency at very high pressures (>100 bar). In addition, there are power losses in 

voltage regulation and some power is needed for the auxiliary equipment (pumps, fans, 

solenoid valves, instrumentation, and controls). Typical industrial electrolyzers have 

electricity consumption between 4.5 and 6.0 kWh/Nm
3
, corresponding to the efficiency of 

65–80% [45, 46].  The electrolyzer efficiency is, therefore: 

 

𝜂𝐸𝐿 =
1.482

𝑉𝑐𝑒𝑙𝑙
·
𝑖 − 𝑖𝑙𝑜𝑠𝑠

𝑖
·
𝜂𝐷𝐶

1 + 𝜉
 

 

where Vcell is the individual (average) cell potential (V), i is the operating current 

density (A/cm
2
), iloss is the internal current and hydrogen loss (A/cm

2
), ηDC is the efficiency 

of DC/DC voltage regulator, ξ is the ratio between parasitic power and net power 

consumed by the electrolyzer. 



45 

 

CHAPTER 3 
 

 

 

MJ-PEM REACTOR DESIGN 
 

 

 

 

 

3.1 Introduction 
 

As stated in the previous chapter, solar power is one of the most interesting and 

promising energy sources, due to its wide availability all over the Earth‟s surface, 

indefinite renewability and low impact on pollution and greenhouse gases emissions. 

Among all the possible utilizations of solar power, such as the conversion to 

electricity by photovoltaic systems [19, 20, 44], conversion to hydrogen by direct 

photoelectrochemical water splitting [47-49] and conversion to heat by concentration 

devices [19, 43], a new concept is progressively gathering more and more attention. 

Thorough investigations [50-52] concern the coupling of III-V Multi-Junction Solar Cells 

(MJSCs) with Polymer Electrolyte Membrane (PEM) electrolyzers, as the HyCon® device 

designed by Fraunhofer [53]. 

The latter systems have several advantages over other types of device for the 

conversion of solar energy into hydrogen [54]: 

 

 It has a high solar-to-hydrogen conversion efficiency (about 20%). 

 The converted energy can be directly stored in the form of hydrogen. 

 The only input is sunlight and de-ionized water. 

 The system does not need equipment for coupling the photovoltaic array to the 

electrolyzer. 

 The system is scalable in size and shows a favorable cost reduction potential. 

 It seems to have a good long-term stability. 

 

Thus, looking at the cathodic side of the HyCon® device, where hydrogen is 

formed in order to store the energy collected from the Sun, both the efficiencies and the 

system arrangement prove to be an optimal solution to improve the application of the 

photovoltaic as a valid and attractive alternative to traditional fossil fuel technologies. 

Moreover, thanks to the implementation of Fresnel lenses for exploitation of solar 
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concentration, up to 500 suns, the costs of MJSCs, which are the most relevant, are 

dramatically reduced, due to the reduction of the needed areas.  

However, on the anodic side, water oxidation is considered only a side reaction, and 

the generated oxygen is a simple by-product, which is not of any interest but could be 

exploited for storage or wastewater treatment. In addition, solar concentration, due to high 

specific powers reached (as high as 1 MW/m
2
 for concentrating factors of 1000 suns 

achievable with specific lenses [55]), is able to produce an enormous amount of thermal 

energy, often used in solar thermal applications [43, 44]. Also, this aspect is not 

considered, despite the potential benefits which can be obtained by the utilization of free 

heat that is naturally provided by the solar concentration system. 

 

 

Fig. 29 - Schematics of MJ-PEM reactor under concentrated sunlight 

 

Both these aspects, i.e. oxygen and heat exploitation, will be investigated in this 

chapter, to possibly increase the overall process efficiency. In particular, two main 

scenarios will be presented and the MJ-PEM reactor will be dimensioned to fulfill the 

requirements of the systems: 

 

• Scenario I: the MJ-PEM reactor is dimensioned to treat a wastewater containing 

refractory organics on the anodic side, whereas hydrogen is produced at the 

cathode for storage purposes or for direct use on-site.  

 

• Scenario II: the MJ-PEM reactor is matched with the biomethanation step of an 

anaerobic digestion plant, either mesophilic or thermophilic. The hydrogen 
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produced at the cathode is used for the biogas upgrading to biomethane, whereas 

the oxygen evolved at the anode is employed for the digestate stabilization. 

 

 

3.2 Scenario I – CWAO and H2 production 
 

In the first scenario, the MJ-PEM reactor will be designed to work at high 

temperature (150 °C) and high pressure (30 bar). These demanding conditions are the 

minimum required for Catalytic Wet Air Oxidation (CWAO) to be carried out at the anodic 

side, while hydrogen can be produced in the cathodic chamber.  

The wastewater considered in this study contain recalcitrant organics (with a 

negligible content of heavy metals), which are very susceptible to be degraded in 

heterogeneous catalysis by CWAO [56-58], and which can originate from many types of 

industries (plastics, pesticides, surfactants, pharmaceutical, etc.) or agricultural activities 

(wine processing and brewery, dairy, etc.). 

Fig. 29 shows the design of the MJ-PEM reactor under concentrated illumination, 

with a concentration factor of 500 suns, obtained with a Fresnel lens. The possible role of a 

collar, indicated in the figure, has been studied, to individuate the proper dimensions of the 

PEM system in order to reach equilibrium between the heat provided and the heat 

dispersed. 

Fig. 30, instead, shows the proposed operation scheme for a wastewater treatment 

with an MJ-PEM reactor assembly operating at 150°C and 30 bar. 

As can be seen, wastewater (WW) enters the system after being brought to 30 bar 

by a “feed pump”. Then, the liquid is sent to the PEM electrolyzer, on the anodic side, 

where oxygen is evolved on the surface of the anode, thanks to the multi-junction which 

converted the solar power into the bias provided to the cell. The electro-generated oxygen, 

which would be totally inactive towards the degradation of organic molecules in standard 

PEM conditions (85°C and 1 bar), and would leave the system as a simple by-product, in 

these circumstances would react with the refractory compounds to form, at complete 

mineralization, CO2 and H2O. 
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Fig. 30 - Scheme of MJ-PEM arrangement for CWAO of wastewater  

and hydrogen production 

 

A concentrating factor of sunlight was chosen to be 500 suns because it is very 

commonly used in solar concentrators [31, 43] and some specific systems can operate even 

at solar concentrating factors of 1000 suns, reaching a specific solar power onto the surface 

of the solar cell device of about 1 MW/m
2
. 
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MJ-PEM reactor design 

 

First of all, the solar irradiance and exposure time to the solar light have been 

calculated to estimate the overall amount of energy given to the system during the daytime. 

Supposing to install this device at average latitudes, e.g. in the South of Italy, at 

about 37°, at sea level, an “air mass coefficient” for solar radiation equal to AM 1.5 [59], 

can be considered. This parameter, in turn, roughly correspond to a solar irradiance of 

1000 W/m
2
, under clear sky conditions and for a system that is constantly perpendicular to 

the Sun, thus overestimating the system capacity by using ideal conditions. Thus, a value 

that could be representative of the real solar irradiance has been calculated for the chosen 

location [60], and results are shown in Table 1. At 37° latitude, the average solar irradiance 

weighted over a period of time of one year is about 670 W/m
2
. This value has been 

obtained with an MJ/PEM reactor connected to a two-axis tracking solar system, in order 

to maximize the efficiency of the equipment. Without any solar tracking system, at a fixed 

inclination of the solar cell (~31° for the considered location), the average irradiance would 

have been ~ 583 W/m
2
. 

 

 

Table 1 – Average real-sky irradiance calculated at 37° latitude 

 

Next step was the estimation of the average duration of daytime which should be 

applied to the average solar radiation on the system. All over the world, the average 

duration of daytime is about 12 h, weighted over one year. An example of the daytime 

duration is given for the location at 37° latitude [61] and is presented in Table 2. As can be 

noticed, though daytime is continuously changing, the mean duration which can be taken 

into account for the dimensioning of the MJ/PEM system is constant for every point on the 

Earth‟s surface, and it is equal to 12 h. 

 

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

530 657 724 833 917 942 883 689 584 474 417 378

669 W/m
2

REAL SKY IRRADIANCE AT 37° LATITUDE (W/m
2
)

AVERAGE IRRADIANCE
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Table 2 – Average day duration calculated at 37° latitude 

 

 

This means that, averagely, every day the device receives an amount of energy of 

about 8000 Wh/m
2
, which is equivalent to a specific solar power of 1000 W/m

2
 which 

feeds the system for 8 h (see Fig. 31). In this way, the air mass coefficient AM 1.5 can be 

used, but applied to a daily period of time of 8 h, instead of 12 h. The decrease in day 

duration is, as stated before, due to real sky conditions. 

 

DAY JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
1 08:50 09:46 11:11 12:48 14:17 15:23 15:33 14:40 13:14 11:42 10:09 09:02

2 08:51 09:49 11:14 12:51 14:20 15:25 15:32 14:38 13:11 11:38 10:06 09:00

3 08:52 09:52 11:17 12:54 14:22 15:26 15:31 14:36 13:08 11:35 10:03 08:59

4 08:53 09:54 11:20 12:57 14:25 15:27 15:30 14:33 13:05 11:32 10:01 08:57

5 08:54 09:57 11:23 13:00 14:28 15:28 15:29 14:30 13:02 11:29 09:58 08:56

6 08:55 10:00 11:26 13:04 14:30 15:29 15:28 14:28 12:59 11:26 09:55 08:55

7 08:57 10:02 11:29 13:07 14:33 15:30 15:27 14:25 12:56 11:23 09:53 08:54

8 08:58 10:05 11:32 13:10 14:35 15:31 15:26 14:23 12:53 11:20 09:50 08:53

9 08:59 10:08 11:36 13:13 14:38 15:32 15:25 14:20 12:50 11:17 09:47 08:52

10 09:01 10:11 11:39 13:16 14:40 15:33 15:23 14:17 12:47 11:14 09:45 08:51

11 09:02 10:14 11:42 13:19 14:43 15:34 15:22 14:15 12:44 11:11 09:42 08:50

12 09:04 10:16 11:45 13:22 14:45 15:34 15:20 14:12 12:41 11:08 09:40 08:49

13 09:05 10:19 11:48 13:25 14:47 15:35 15:19 14:09 12:37 11:05 09:38 08:49

14 09:07 10:22 11:51 13:28 14:50 15:36 15:17 14:07 12:34 11:02 09:35 08:48

15 09:09 10:25 11:54 13:31 14:52 15:36 15:16 14:04 12:31 10:58 09:33 08:47

16 09:11 10:28 11:58 13:34 14:54 15:36 15:14 14:01 12:28 10:55 09:30 08:47

17 09:13 10:31 12:01 13:37 14:56 15:37 15:12 13:58 12:25 10:52 09:28 08:47

18 09:14 10:34 12:04 13:40 14:59 15:37 15:10 13:55 12:22 10:49 09:26 08:46

19 09:16 10:37 12:07 13:43 15:01 15:37 15:09 13:53 12:19 10:46 09:24 08:46

20 09:18 10:40 12:10 13:46 15:03 15:37 15:07 13:50 12:16 10:43 09:22 08:46

21 09:21 10:43 12:13 13:49 15:05 15:37 15:05 13:47 12:13 10:41 09:20 08:46

22 09:23 10:46 12:17 13:52 15:07 15:37 15:03 13:44 12:10 10:38 09:17 08:46

23 09:25 10:49 12:20 13:55 15:09 15:37 15:01 13:41 12:06 10:35 09:15 08:46

24 09:27 10:52 12:23 13:57 15:11 15:37 14:59 13:38 12:03 10:32 09:14 08:46

25 09:29 10:55 12:26 14:00 15:12 15:36 14:56 13:35 12:00 10:29 09:12 08:47

26 09:32 10:58 12:29 14:03 15:14 15:36 14:54 13:32 11:57 10:26 09:10 08:47

27 09:34 11:01 12:32 14:06 15:16 15:35 14:52 13:29 11:54 10:23 09:08 08:48

28 09:36 11:04 12:35 14:09 15:17 15:35 14:50 13:26 11:51 10:20 09:06 08:48

29 09:39 11:07 12:39 14:11 15:19 15:34 14:48 13:23 11:48 10:17 09:05 08:49

30 09:41 12:42 14:14 15:21 15:34 14:45 13:20 11:45 10:14 09:03 08:49

31 09:44 12:45 15:22 14:43 13:17 10:12 08:50

AVERAGE DURATION

12.2 h

DAYTIME DURATION AT 37° LATITUDE (hh:mm)
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Fig. 31 – Conversion of real solar irradiance to equivalent solar irradiance 

 

Assuming that the area of the Fresnel lens is 0.16 m
2
, with a solar irradiance of 

1000 W/m
2
 and a concentrating factor of 500 suns, the area needed for the multi-junction 

solar cell to collect all the concentrated sunlight at the focal point is: 

 

𝑴𝑱 𝒂𝒓𝒆𝒂 =  
𝑭𝒓𝒆𝒔𝒏𝒆𝒍 𝒂𝒓𝒆𝒂

𝒄𝒐𝒏𝒄 𝒇𝒂𝒄𝒕𝒐𝒓
=  

𝟎.𝟏𝟔 𝒎𝟐

𝟓𝟎𝟎
= 𝟑.𝟐 𝒄𝒎𝟐 = 𝟏.𝟖𝐱𝟏.𝟖 𝒄𝒎𝟐  Eq. 23 

 

While the overall solar irradiance after concentration is: 

 

𝑰𝒓𝒓𝒂𝒅 𝟓𝟎𝟎𝒔𝒖𝒏𝒔  =  𝑰𝒓𝒓𝒂𝒅 𝟏𝒔𝒖𝒏 ⋅ 𝒄𝒐𝒏𝒄 𝒇𝒂𝒄𝒕𝒐𝒓 =  1000
𝑊

𝑚2
⋅ 500 = 

= 𝟓𝟎𝟎 
𝒌𝑾

𝒎𝟐  Eq. 24 

 

The PEM electrolyzer connected to the MJ solar cell can have dimensions up to the 

size of the Fresnel lens [53]. To reduce overvoltage losses and to work at lower current 

densities, high PEM electrolyzer areas would be preferred, but there are also other factors 

to be taken into account. Fig. 32 shows how both the concentration factor, indicated as 

“suns”, and the ratio between the PEM electrolyzer area (EA) and the multi-junction solar 

cell area (MJA), shown as “EA/MJA”, can strongly influence the matching of the two sub-

systems, which should work at the maximum power point of the solar cell, to take 

advantage of all the potential of solar radiation. Therefore, even if the use of a high 

EA/MJA ratio (near the value of the concentration factor) could be suitable for the 

electrochemical process, the need for a perfect matching with the solar cell device forces to 

use smaller PEM electrolyzer areas.  

For this study an EA/MJA ratio of 33 has been chosen, as a good compromise to 

meet the requirements above mentioned. 
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Fig. 32 – Effect of PEM area over MJ area ratio on the matching with solar cell 

 

The electrolyzer area is then calculated: 

 

𝑨𝑷𝑬𝑴 =  𝑨𝑴𝑱 ⋅  
𝑬𝑨

𝑴𝑱𝑨
 =  3.2 𝑐𝑚2 ⋅ 33 = 𝟏𝟎𝟔 𝒄𝒎𝟐 = 𝟏𝟎𝐱𝟏𝟎 𝒄𝒎𝟐   Eq. 25 

 

Since the PEM electrolyzer should stand high temperature and pressure, the 

thickness of the electrolyzer walls are supposed to be about s = 1 cm each, and composed 

by a Ti0.95Ta0.05 alloy [62] (suitable both for appropriate electrical contact and thermal 

resistance), the volume and weight of the MJ-PEM assembly are estimated: 

 

𝑽𝑴𝑱−𝑷𝑬𝑴 =  𝑨𝑷𝑬𝑴 
⋅ 𝒔 = 1056 𝑐𝑚2 ⋅ 2 𝑐𝑚 = 𝟐𝟏𝟏 𝐜𝐦𝟑  Eq. 26 

 

𝒎𝑴𝑱−𝑷𝑬𝑴 =  𝑽𝑴𝑱−𝑷𝑬𝑴 
⋅ 𝛒𝑻𝒊𝟎.𝟗𝟓𝑻𝒂𝟎.𝟎𝟓

=  211 𝑐𝑚3 ⋅ 5.1 
𝑔

𝑐𝑚3
= 

= 𝟏.𝟏 𝐤𝐠 Eq. 27 

 

 

3.2.1 Hydrogen production 

 

The total power provided to the device is: 

 

𝑻𝒐𝒕 𝒑𝒐𝒘𝒆𝒓  =  𝑰𝒓𝒓𝒂𝒅 𝟏𝒔𝒖𝒏 ⋅ 𝑭𝒓𝒆𝒔𝒏𝒆𝒍 𝒂𝒓𝒆𝒂 =  1000 
𝑊

𝑚2 ⋅ 0.16 𝑚2= 

= 𝟏𝟔𝟎 𝐖 Eq. 28 
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Considering an efficiency for the MJ solar cell equal to 30% and an efficiency of 

67% for the PEM electrolyzer, thus assuming an overall efficiency of about 20% [53, 54, 

63], the power which can be used for hydrogen production is: 

 

𝑯𝟐 𝒑𝒐𝒘𝒆𝒓  =  𝑻𝒐𝒕 𝒑𝒐𝒘𝒆𝒓  
⋅ 𝒆𝒇𝒇𝒊𝒄 =  160 𝑊 ⋅ 0.20 = 𝟑𝟐 𝐖 Eq. 29 

 

By the Lower Heating Value (LHV) of hydrogen, which is also the standard 

enthalpy of formation of water (equal to the enthalpy associated with water splitting), the 

mass rate of hydrogen production can be obtained: 

 

𝒎 𝑯𝟐
=

𝑯𝟐 𝒑𝒐𝒘𝒆𝒓 

𝑳𝑯𝑽𝑯𝟐

=
32 𝑊

1.2⋅105  
𝐽

𝑔

⋅ 3600 = 𝟎.𝟗𝟔𝟎 
𝐠

𝐡
 Eq. 30 

 

and, consequently, the volumetric rate from the ideal gas law: 

 

𝑽 𝑯𝟐  
=

𝒎 𝑯𝟐  

𝑷𝑴 𝑯𝟐

⋅
𝑹𝑻 

𝑷
=

0.96  
𝑔

ℎ
 

2 
𝑔

𝑚𝑜𝑙
  
⋅

8.314 
𝐽

𝑚𝑜𝑙  𝐾
 ⋅ 298 𝐾 

101325  𝑃𝑎
= 𝟏𝟏.𝟕 

𝐍𝐥

𝐡
 Eq. 31 

 

The same result would have been obtained using the water splitting potential, as the 

overpotential losses have been already considered in the PEM efficiency: 

 

𝐈 =
𝑯𝟐 𝒑𝒐𝒘𝒆𝒓 

𝑬𝑯𝟐𝐎
=

𝟑𝟐 𝑾

𝟏.𝟐𝟑 𝑽
= 𝟐𝟔 𝐀 Eq. 32 

 

𝐢 =
𝐈 

𝑷𝑬𝑴 𝒂𝒓𝒆𝒂 
=

26 𝐴

106 cm 2 = 𝟐𝟒𝟓 
𝐦𝐀

𝐜𝐦𝟐 Eq. 33 

 

By Faraday‟s law: 

 

𝒎 𝑯𝟐  
=

𝐈 

𝐳𝐅
⋅ 𝑷𝑴 𝑯𝟐

=
26 𝐴

2⋅96500 
C

mol

 d ⋅ 2
𝑔

𝑚𝑜𝑙
⋅ 3600 = 𝟎.𝟗𝟔𝟖 

𝐠

𝐡
  Eq. 34 

 

Oxygen produced at the anodic side can be easily calculated from the stoichiometry 

of the water splitting reaction as: 

 

𝑽 𝑶𝟐
  =

𝑽 𝑯𝟐  

𝟐
=

11.7 
𝑁𝑙

ℎ

2
=  𝟓.𝟗 

𝐍𝐥

𝐡
 Eq. 35 

 

𝒎 𝑶𝟐  
=

𝑷 ⋅   𝑽 𝑶𝟐  

𝑹𝑻
⋅ 𝑷𝑴 𝑶𝟐

=
101325 𝑃𝑎 ⋅ 5.9 ⋅ 10−3

 
𝑁𝑚3

ℎ
 

8.314 
𝐽

𝑚𝑜𝑙 𝐾
⋅ 298 𝐾  

⋅ 32
𝑔

𝑚𝑜𝑙
 

= 𝟕.𝟕𝟔𝟖 
𝐠

𝐡
 Eq. 36  
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3.2.2 Heat balance 

 

The water consumed by the electrolysis reaction is: 

 

𝒎 𝑯𝟐𝑶 𝒆𝒍  = 𝒎 𝑯𝟐
⋅
𝑷𝑴 𝑯𝟐𝑶 

𝑷𝑴 𝑯𝟐

= 0.960 
𝑔

ℎ
⋅

18 
𝑔

 𝑚𝑜𝑙
 

2 
𝑔

𝑚𝑜𝑙
  

= 𝟖.𝟔𝟒𝟒 
𝐠

𝐡
 Eq. 37 

 

This wastewater flow is the minimum required to produce hydrogen and oxygen 

inside the PEM electrolyzer. Assuming that the wastewater entering the device is at 25°C 

and it leaves the electrolyzer at 150°C, the thermal power removed from the system is 

equal to: 

 

𝑸 𝑯𝟐𝑶 𝒎𝒊𝒏 = 𝒎 𝑯𝟐𝑶 𝒆𝒍 ⋅ 𝒄𝒑 ⋅ ∆𝑻 =
8.644 

𝑔
ℎ

3600
⋅ 4.186 

𝐽

𝑔 𝐾
⋅  150 − 25 𝐾 = 

= 𝟏.𝟑 𝐖 Eq. 38 

 

while the thermal power provided to the system is: 

 

𝑸   =  𝑻𝒐𝒕 𝒑𝒐𝒘𝒆𝒓  
−𝑯𝟐 𝒑𝒐𝒘𝒆𝒓 =  160 𝑊 − 32 𝑊 = 𝟏𝟐𝟖 𝑾 Eq. 39 

 

which is a very high amount, compared to the one taken away by the minimum 

water flow. Some of the heat, however, is also removed as consequence of natural 

convection and radiance of the system. 

Concerning the thermal power removed by free convection, one consideration 

needs to be made: natural convection is influenced by the inclination of the MJ-PEM 

reactor with the respect to the ground. As we are considering that the reactor is integrated 

with a two-axis solar tracking system, the inclination of the device is constantly changing. 

Therefore, an estimation of the free convection phenomenon both when the system is in 

vertical and in the horizontal position should be carried out, to evidence any possible 

difference between the two extreme cases. 
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Fig. 33 – Free convection on a vertical and a horizontal plane 

 

For this calculations, some air data are needed, in particular: 

 

𝜌  25°𝐶 = 1.184 
𝑘𝑔

𝑚3
 

𝜌  150°𝐶 = 0.834 
𝑘𝑔

𝑚3
 

𝜇 (25°𝐶) = 1.83 ⋅ 10−5 𝑃𝑎 · 𝑠 

𝑐𝑝   25°𝐶 = 1004.80 
𝐽

𝑘𝑔 𝐾
  

𝑘  25°𝐶 = 0.026 
𝑊

𝑚 𝐾
 

 

 

Heat loss by free convection (vertical plate) 

 

If a vertical inclination is considered, then the Grashof (Grvert), Prandtl (Pr) and 

Rayleigh (Ravert) numbers can be determined by: 

 

𝑮𝒓𝒗𝒆𝒓𝒕  =
𝒈 ⋅ 𝝆𝟐𝟓⋅ (𝝆𝟐𝟓−𝝆𝟏𝟓𝟎)⋅𝑳𝟑

𝝁𝟐
=

𝟗.𝟖𝟏 
𝒎

𝒔𝟐
 ⋅ 𝟏.𝟏𝟖𝟒 

𝒌𝒈

𝒎𝟑 ⋅  𝟏.𝟏𝟖𝟒−𝟎.𝟖𝟑𝟒  
𝒌𝒈

𝒎𝟑 ⋅  𝟎.𝟏 𝒎 𝟑

 𝟏.𝟖𝟑⋅𝟏𝟎−𝟓 𝑷𝒂⋅𝒔 
𝟐 =  

=  𝟏.𝟑𝟐 ⋅ 𝟏𝟎𝟕 Eq. 40 
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where “L” is the characteristic (vertical) length of the system (i.e. the side of the 

PEM electrolyzer) 

𝑷𝒓 =
𝝁 ⋅ 𝒄𝒑

𝒌
=

1.83⋅10−5  𝑃𝑎⋅𝑠 ⋅ 1004.8 
𝐽

𝑘𝑔  𝐾
 

0.026
𝑊

𝑚  𝐾

=  𝟎.𝟕𝟏  Eq. 41 

 

𝑹𝒂𝒗𝒆𝒓𝒕 = 𝑮𝒓𝒗𝒆𝒓𝒕  ⋅  𝑷𝒓 = 1.32 ⋅ 107  ⋅  0.71 =  𝟗.𝟑𝟐 ⋅ 𝟏𝟎𝟔 Eq. 42 

 

If the Rayleigh number is minor than 10
9
, air flow caused by free convection is in 

the laminar field, and the following correlation for the Nusselt number (Nuvert) can be used: 

 

𝑵𝒖𝒗𝒆𝒓𝒕 = 𝟎.𝟓𝟗 ⋅  (𝑹𝒂𝒗𝒆𝒓𝒕)
𝟎.𝟐𝟓 = 0.59 ⋅  (9.32 ⋅ 106)0.25 =  𝟑𝟐.𝟔𝟎  Eq. 43 

 

The heat transfer coefficient (hvert) for the natural convection in vertical orientation is: 

 

𝒉𝒗𝒆𝒓𝒕 =
𝑵𝒖𝒗𝒆𝒓𝒕 ⋅ 𝒌

𝑳
=

32.6 ⋅ 0.026 
𝑊

𝑚  𝐾

0.1 𝑚
= 𝟖.𝟐𝟓  

𝐖

𝐦𝟐 𝐊
   Eq. 44 

 

Finally, the heat removed by vertical natural convection (taking into account both 

faces of the reactor for the heat exchange) is: 

 

𝑸 𝒗𝒆𝒓𝒕 = 𝟐 ⋅ 𝒉𝒗𝒆𝒓𝒕 ⋅ 𝑳
𝟐 ⋅ ∆𝑻 = 𝟐 ⋅ 𝟖.𝟐𝟓

𝑾

𝒎𝟐 𝑲
⋅  𝟎.𝟏 𝒎 𝟐 ⋅  𝟏𝟓𝟎 − 𝟐𝟓 𝑲 = 

= 𝟐𝟏.𝟖 𝐖   Eq. 45 

 

 

Heat loss by free convection (horizontal plate) 

 

If  the system is horizontal, an “equivalent length” (Leq) must be considered for the 

next calculations: 

𝑳𝒆𝒒 =
𝑳𝟐

𝟒𝑳
=

(0.1 𝑚)2

4 ⋅0.1 𝑚
= 𝟎.𝟎𝟐𝟓 𝒎   Eq. 46 

 

Then, the Grashof (Grhor), Prandtl (Pr) and Rayleigh (Rahor) numbers can be 

determined as before: 

 

𝑮𝒓𝒉𝒐𝒓  =
𝒈 ⋅ 𝝆𝟐𝟓⋅ (𝝆𝟐𝟓−𝝆𝟏𝟓𝟎)⋅𝑳𝒆𝒒

𝟑

𝝁𝟐 =
9.81 

𝑚

𝑠2  ⋅ 1.184 
𝑘𝑔

𝑚3  ⋅  1.184−0.834  
𝑘𝑔

𝑚3  ⋅  0.025 𝑚 3

 1.83⋅10−5  𝑃𝑎⋅𝑠 2 =  

=  𝟐.𝟎𝟏 ⋅ 𝟏𝟎𝟓 Eq. 47 

 

𝑷𝒓 =
𝝁 ⋅ 𝒄𝒑

𝒌
=

1.83⋅10−5  𝑃𝑎⋅𝑠 ⋅ 1004.8 
𝐽

𝑘𝑔  𝐾
 

0.026
𝑊

𝑚  𝐾

=  𝟎.𝟕𝟏  Eq. 48 
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𝑹𝒂𝒉𝒐𝒓 = 𝑮𝒓𝒉𝒐𝒓  ⋅  𝑷𝒓 = 2.01 ⋅ 105  ⋅  0.71 = 𝟏.𝟒𝟔 ⋅ 𝟏𝟎𝟓 Eq. 49 

 

The Nusselt number for horizontal plates must be calculated with two different correlations 

for the upper and the lower face. The Rayleigh number is in the range 10
4 

< Ra < 10
7
, then 

the following formulas can be applied: 

 

𝑵𝒖𝒉𝒐𝒓_𝒖𝒑 = 𝟎.𝟓𝟒 ⋅ 𝑹𝒂𝒉𝒐𝒓
𝟎.𝟐𝟓  = 0.54 ⋅  (1.46 ⋅ 105)0.25 =  𝟏𝟎.𝟓𝟓  Eq. 50 

 

𝑵𝒖𝒉𝒐𝒓_𝒍𝒐𝒘 = 𝟎.𝟐𝟕 ⋅  (𝑹𝒂𝒗𝒆𝒓𝒕)
𝟎.𝟐𝟓 = 0.27 ⋅  (1.46 ⋅ 105)0.25 =  𝟓.𝟐𝟕  Eq. 51 

 

The heat removed then is: 

 

𝒉𝒉𝒐𝒓_𝒖𝒑 =
𝑵𝒖𝒉𝒐𝒓_𝒖𝒑 ⋅ 𝒌

𝑳𝒆𝒒
=

10.55 ⋅ 0.026 
𝑊

𝑚  𝐾

0.025 𝑚
= 𝟏𝟎.𝟔𝟖  

𝐖

𝐦𝟐 𝐊
   Eq. 52 

 

𝒉𝒉𝒐𝒓_𝒍𝒐𝒘 =
𝑵𝒖𝒉𝒐𝒓_𝒍𝒐𝒘 ⋅ 𝒌

𝑳𝒆𝒒
=

5.27 ⋅ 0.026 
𝑊

𝑚  𝐾

0.025 𝑚
= 𝟓.𝟑𝟒  

𝐖

𝐦𝟐 𝐊
   Eq. 53 

 

𝑸 𝒉𝒐𝒓 =  𝒉𝒉𝒐𝒓𝒖𝒑 + 𝒉𝒉𝒐𝒓𝒍𝒐𝒘 ⋅ 𝑳
𝟐 ⋅ ∆𝑻 =  10.68 + 5.34 

𝑊

𝑚2 𝐾
⋅  0.1 𝑚 2 ⋅  150 − 25 𝐾

= 

= 𝟐𝟏.𝟏 𝐖   Eq. 54 

 

The heat removed in both cases (i.e. vertical or horizontal orientation) is 

approximately the same, so an average value of 21.5 W can be supposed for free 

convection. 

 

 

Heat loss by radiance 

 

Hypothesizing that emissivity of Ti-Ta alloy is about ε = 0.50, then the heat 

dispersed by irradiation can be calculated as: 

 

𝑸 𝒓𝒂𝒅 =  𝟐 ⋅ 𝑳𝟐 + 𝟒 ⋅ 𝑳 ⋅ 𝒔 ⋅ 𝛆 ⋅ 𝝈 ⋅  𝑻𝑴𝑱−𝑷𝑬𝑴
𝟒 − 𝑻∞

𝟒  = 

=  2 ⋅ 0.12 + 4 ⋅ 0.1 ⋅ 0.02 𝑚2 ⋅ 0.5 ⋅ 5.67 ⋅ 10−8 ⋅  4234 − 2984 = 

= 𝟐𝟎.𝟏 𝐖   Eq. 55 
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Therefore, the heat power which still needs to be removed is: 

 

𝑸 𝒓𝒆𝒔 
= 𝑸  –𝑸 𝑯𝟐𝑶 𝒎𝒊𝒏  

–𝑸 𝒇𝒓𝒆𝒆 − 𝑸 𝒓𝒂𝒅 = (128 − 1.3 − 21.5 − 20.1) 𝑊 = 

= 𝟖𝟓.𝟏 𝐖 Eq. 56 

 

The thermal equilibrium can be reached through two different procedures:  

 

1) Extension of the MJ-PEM area by installation of a collar, to enhance both free 

convection and irradiance through the increase of the exchange surface 

2) Increase in the wastewater flow inside the electrolyzer, circulating the excess in 

case of too low residence times for the complete mineralization of refractory 

organics 

 

 

1) Installation of a collar 

 

The calculations for the heat losses caused by free convection and radiance used are 

the same used before, without any collar. 

For the sake of brevity, only the results will be showed from here on, as only the 

characteristic length of the system was changed, from L = 10 cm to L = 22 cm.  

 

𝑮𝒓𝒗𝒆𝒓𝒕 = 𝟏.𝟐𝟕 ⋅ 𝟏𝟎𝟖 Eq. 57 

 

𝑷𝒓 = 𝟎.𝟕𝟏  Eq. 58 

 

𝑹𝒂𝒗𝒆𝒓𝒕 = 𝟖.𝟗𝟗 ⋅ 𝟏𝟎𝟕 Eq. 59 

 

The Rayleigh number is again < 10
9
, so the air flow is still under laminar conditions. The 

same correlation for the Nusselt number can be used: 

 

𝑵𝒖𝒗𝒆𝒓𝒕 = 𝟓𝟕.𝟒𝟓  Eq. 60 

 

𝒉𝒗𝒆𝒓𝒕 = 𝟔.𝟖𝟑 
𝐖

𝐦𝟐 𝐊
   Eq. 61 

 

𝑸 𝒗𝒆𝒓𝒕 = 𝟖𝟏.𝟎 𝐖   Eq. 62 

 

The new equivalent length is: 

 

𝑳𝒆𝒒 =
𝑳𝟐

𝟒𝑳
=

(0.22 𝑚)2

4 ⋅0.22 𝑚
= 𝟎.𝟎𝟓𝟓 𝒎   Eq. 63 
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𝑮𝒓𝒉𝒐𝒓 = 𝟏.𝟗𝟗 ⋅ 𝟏𝟎𝟔 Eq. 64 

 

𝑷𝒓 = 𝟎.𝟕𝟏  Eq. 65 

 

𝑹𝒂𝒉𝒐𝒓 = 𝟏.𝟒𝟎 ⋅ 𝟏𝟎𝟔 Eq. 66 

Again, the Rayleigh number is in the range 10
4 

< Ra < 10
7
: 

 

𝑵𝒖𝒉𝒐𝒓_𝒖𝒑 = 𝟏𝟖.𝟓𝟗  Eq. 67 

 

𝑵𝒖𝒉𝒐𝒓_𝒍𝒐𝒘 = 𝟗.𝟑𝟎  Eq. 68 

 

𝒉𝒉𝒐𝒓_𝒖𝒑 = 𝟖.𝟖𝟒  
𝐖

𝐦𝟐 𝐊
   Eq. 69 

 

𝒉𝒉𝒐𝒓_𝒍𝒐𝒘 = 𝟒.𝟒𝟐  
𝐖

𝐦𝟐 𝐊
   Eq. 70 

 

𝑸 𝒉𝒐𝒓 = 𝟕𝟖.𝟕 𝐖   Eq. 71 

 

As can be seen, the heat transfer due to free convection is four times higher when the collar 

is installed, and it is averagely equal to 80.5 W. 

 

𝑸 𝒓𝒂𝒅 = 𝟒𝟕.𝟐 𝐖   Eq. 72 

 

The heat losses by radiation, instead, are more than doubled. 

 

The heat balance after the installation of a collar with dimensions 22x22 cm
2
: 

 

𝑸 𝒓𝒆𝒔 
= 𝑸  –𝑸 𝑯𝟐𝑶 𝒎𝒊𝒏  

–𝑸 𝒇𝒓𝒆𝒆 − 𝑸 𝒓𝒂𝒅 = (128 − 1.3 − 80.5 − 47.2) 𝑊 = 

= 𝟎.𝟑 𝐖 Eq. 73 

 

 

2) Increase of wastewater flow with recirculation 

 

If no collar is installed, then the excess heat must be removed by increasing the 

water flow inside the electrolyzer. The total amount of wastewater needs to be equal to: 

 

𝒎 𝑯𝟐𝑶 
= 𝒎 𝑯𝟐𝑶 𝒆𝒍 

+
𝑸 𝒓𝒆𝒔

𝒄𝒑⋅∆𝑻
= 8.644 

𝑔

ℎ  
+

85.1 𝑊

4.186 
𝐽

𝑔  𝐾
⋅ 150−25  𝐾

= 𝟓𝟗𝟓.𝟖𝟑𝟎 
𝐠

𝐡
 Eq. 74 
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which is a very high value compared to the one necessary for the electrolysis. 

Residence time inside the electrolyzer was checked, assuming that the volume inside the 

PEM electrolyzer is given by: 

 

𝐕𝐏𝐄𝐌 =
𝐀𝐏𝐄𝐌

𝟐
⋅ 𝐝𝐜 =

(100 𝑚𝑚 )2

2
⋅ 2 𝑚𝑚 = 𝟏𝟎𝟒 𝒎𝒎𝟑  Eq. 75 

 

where dc is the dimension of the channel, and the area is divided by two, considering the 

pathway of the wastewater flow as shown in Fig. 34 

 

 

Fig. 34 - Pathway of wastewater inside the PEM electrolyzer 

 

𝐭𝐫𝐞𝐬 =
𝝆 ⋅ 𝐕𝐏𝐄𝐌

𝒎 𝑯𝟐𝑶
=

918 
𝑘𝑔

𝑚3  ⋅ 104  mm3

595.83 
𝑔

ℎ

⋅  
60

106
 = 𝟏.𝟏 𝐦𝐢𝐧  Eq. 76 

 

This value seems very low, if compared to typical CWAO residence times, that are 

higher than 30 minutes [16, 56, 57]. However, due to the high current delivered to the 

system by the MJ solar cell (I = 26 A), the oxygen evolved is potentially more than enough 

to mineralize the wastewater. In fact, using the mass production of oxygen, calculated 

before, the MJ-PEM system could treat a wastewater containing a theoretical value of 

Chemical Oxygen Demand (CODth): 

 

𝑪𝑶𝑫𝒕𝒉 =
𝒎 𝑶𝟐

𝒎 𝑯𝟐𝑶
⋅ 𝝆 =

7.768 
𝑔

ℎ

595.83 
𝑔

ℎ

⋅ 918 
𝑔

𝑙
= 𝟏𝟏.𝟗𝟔 

𝐠

𝐥
  Eq. 77 
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which is very high, especially for diluted wastewaters coming from municipal, industrial or 

agricultural activities [64]. 

In addition, a possible circulation can be implemented, as represented in Fig. 30, to 

ensure the complete degradation of the recalcitrant organics. 

Even though increasing the circulation of water seems to be more demanding than 

simply installing a collar, thus, the former solution could be the most suitable, especially 

when applied to a discontinuous process as the photovoltaic system is. Indeed, the use of a 

fixed-dimension collar, in the case of lower air/wastewater temperatures and the presence 

of strong winds could bring excessive heat losses, leading to a consequent decrease in the 

operative temperature. Moreover, the real problem could occur when the heat dispersion 

has to be increased to avoid extreme temperatures, which could compromise the device. 

Thus, the choice of wastewater as thermal control should be considered as 

preferable in order to have a more flexible system, in addition to the possibility to exploit 

the heat removed in a heat exchanger (see Fig. 30). 

 

One more consideration is made about the time required to reach the steady-state, 

i.e. the temperature of 150°C. Three different transients were analyzed: 

 

a) No heat dispersion 

 

Firstly, the heat capacity of the sole MJ-PEM device (i.e. not considering the 

amount of water inside the electrolyzer) was estimated.  

 

𝑪𝑴𝑱−𝑷𝑬𝑴_𝟏 = 𝒎𝑴𝑱−𝑷𝑬𝑴 ⋅  𝟎.𝟗𝟓 ⋅ 𝒄𝒑 𝑻𝒊 + 𝟎.𝟎𝟓𝒄𝒑 𝑻𝒂 = 

= 1.1 𝑘𝑔 ⋅  0.95 ⋅ 540 + 0.05 ⋅ 140 
𝐽

𝑘𝑔  𝐾
 = 𝟓𝟐𝟎 

𝐉

𝐊
  Eq. 78 

 

Only the heat power provided by the concentrated solar was considered, neglecting 

the heat losses due to free convection and radiation, which could not occur in real 

conditions, but is useful to identify the lowest limit for the heating time: 

 

𝜟𝒕𝒉𝒆𝒂𝒕_𝟏 =
𝐂𝐌𝐉−𝐏𝐄𝐌_𝟏 ⋅𝚫𝐓

𝐐 
 =

520 
𝐽

𝐾
 ⋅ 150−25  𝐾

128 𝑊
= 𝟖.𝟓 𝐦𝐢𝐧  Eq. 79 

  

b) MJ-PEM heat dispersion 

 

In this case, heat losses from the minimum water flow, the free convection, and the 

radiance were considered, taking into account that the temperature of the device is 

constantly rising, thus changing the driving forces ΔT and (T
4
-T∞

4
). 

The temperature profile is indicated in Fig. 35 as a blue line. 
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𝜟𝒕𝒉𝒆𝒂𝒕_𝟐 = 𝟏𝟎.𝟖 𝐦𝐢𝐧  Eq. 80 

 

c) Collar/water increase heat dispersion 

 

For this calculations, both the collar installation and the increase in water flow were 

considered, leading to the same result, shown in Fig. 35 as a green curve. As heat balance 

is obtained while approaching the set point temperature, T = 150°C is an asymptote, so 

theoretically Δtheat_3  ∞. However, the system reaches 145°C after less than 30 minutes. 

 

𝜟𝒕𝒉𝒆𝒂𝒕_𝟑 = 𝟐𝟗.𝟖 𝐦𝐢𝐧  Eq. 81 

 

Fig. 35 - Temperature profile of the MJ-PEM during the start-up phase  

in different conditions 
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3.3 Scenario II – Matching with anaerobic digestion 

(AD) 
 

In this scenario, the same MJ-PEM reactor is used for a different purpose: the 

system is connected in series with the methanogenic step of an anaerobic digester (AD). 

Hydrogen is sent to boost the upgrading of the biogas produced by anaerobic fermentation 

[65, 66]: 

 

𝐶𝑂2 + 4𝐻2  =  𝐶𝐻4 +  2𝐻2𝑂  Eq. 82 

 

To investigate all the possible ways to match the MJ-PEM reactor with the 

anaerobic digestion, two processes will be taken into account: mesophilic and thermophilic 

digestion. 

 

 

Fig. 36 - Scheme of MJ-PEM arrangement for the upgrading of biogas from an 

anaerobic digestion process 
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3.3.1 MJ-PEM and mesophilic anaerobic digestion 

 

Typical ranges of working conditions for a mesophilic anaerobic digester  are listed 

below in Table 3,  together with the chosen operative conditions for this study: 

 

PARAMETER 
TYPICAL 

RANGES 
[5, 7, 67-69]

 

SELECTED 

VALUE 

Temperature 

°C 
30 – 38 35 

Biogas yield 

Nm
3

 / kg VS 
0.2 – 0.5 0.3 

Organic load 

kg VS / (m
3

AD d) 
7.5 – 15 10 

Residence time 

d 
25 – 45 35 

VS conc 

% 
5 – 12 8 

CO2 conc in biogas 

% 
25 – 45 35 

Influent COD 

kg O2 / m
3 

> 20 30 

Table 3 – Common ranges of operative conditions for a mesophilic anaerobic digester 

and values chosen for the design 

 

From the biogas yield and the organic load in Table 3, the specific biogas 

production rate can be obtained: 

 

𝑽 𝒃𝒊𝒐𝒈𝒂𝒔 = 𝒃𝒊𝒐𝒈𝒂𝒔 𝒚𝒊𝒆𝒍𝒅 ⋅ 𝒐𝒓𝒈𝒂𝒏𝒊𝒄 𝒍𝒐𝒂𝒅 = 0.3 
𝑁𝑚3

𝑘𝑔𝑉𝑆
⋅ 10 

𝑘𝑔𝑉𝑆

𝑚𝐴𝐷
3  𝑑

= 𝟑
𝐍𝐦𝟑

𝐦AD
𝟑 ∙d

  Eq. 83 

 

which can be divided into methane and carbon dioxide specific production, 

according to the selected concentration of CO2 in the biogas: 

 

𝑽 𝑪𝑯𝟒
= 𝑽 𝒃𝒊𝒐𝒈𝒂𝒔  ⋅ 𝟎.𝟔𝟓 = 3 

𝑁𝑚3

𝑚𝐴𝐷
3  𝑑

⋅ 0.65 = 𝟏.𝟗𝟓 
𝐍𝐦𝟑

𝐦AD
𝟑 ∙d

  Eq. 84 

𝑽 𝑪𝑶𝟐
= 𝑽 𝒃𝒊𝒐𝒈𝒂𝒔  ⋅ 𝟎.𝟑𝟓 = 3 

𝑁𝑚3

𝑚𝐴𝐷
3  𝑑

⋅ 0.35 = 𝟏.𝟎𝟓 
𝐍𝐦𝟑

𝐦AD
𝟑 ∙d

  Eq. 85 
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Hydrogen requirements 

 

Assuming an efficiency of 90% [65, 66] for the bio-methanation reaction (Eq. 82), 

then the specific hydrogen rate needed for the completion of the process is: 

 

𝑽 𝑯𝟐 𝒓𝒆𝒒 =
𝑽 𝑪𝑶𝟐

𝟎.𝟗𝟎
⋅ 𝟒 =

1.05 
𝑁𝑚3

𝑚𝐴𝐷
3  𝑑

0.90
⋅ 4 = 𝟒.𝟔𝟕 

𝐍𝐦𝟑

𝐦AD
𝟑 ∙d

  Eq. 86 

 

This value must be compared to the one produced by a single MJ-PEM reactor, to 

check how many devices are required to fulfill the needs of the anaerobic digestion 

process. 

The volumetric rate of hydrogen (Eq. 31) evolved at the cathode of the electrolyzer 

is 11.7 Nl/h. However, the daily production is limited to 8 h/d, as stated in paragraph •, due 

to the application of the equivalent solar irradiance: 

 

𝑴𝑱 − 𝑷𝑬𝑴𝑯𝟐
=

𝑽 𝑯𝟐 𝒓𝒆𝒒 

𝑽 𝑯𝟐  

=
4.67 

𝑁𝑚3

𝑚𝐴𝐷
3  𝑑

 

11.7 ⋅10−3  
𝑁𝑚3

 ℎ
  ⋅ 8 

ℎ

𝑑
 
= 49.9 m−3 = 𝟓𝟎 𝐦−𝟑 Eq. 87 

 

Then the number of needed MJ-PEMs for hydrogen production are 50 per volume 

of bio-methanation reactor. 

Though they are a rather high number, the utilization of the MJ-PEM device at high 

temperatures (150°C) can be useful to exploit the heat excess generated by the 

concentrated sunlight to pre-heat and pre-treat the influent (up to 70°C or more to remove 

all pathogens [6, 70]) and to compensate the heat dispersion of the anaerobic reactor. 

 

 

Heat requirements 

 

Usually, in anaerobic digestion plants, the 20-30% [5] of the methane produced is 

used for the thermal requirements of the process above mentioned, depending on the 

external conditions and the latitudes [71]: 

 

𝑽 𝑪𝑯𝟒 𝒉𝒆𝒂𝒕 = 𝑽 𝑪𝑯𝟒
 ⋅ 𝟎.𝟐𝟎 = 1.95 

𝑁𝑚3

𝑚𝐴𝐷
3  𝑑

⋅ 0.20 = 𝟎.𝟑𝟗 
𝐍𝐦𝟑

𝐦AD
𝟑 ∙d

  Eq. 88 

 

𝑸 𝒉𝒆𝒂𝒕 = 𝑽 𝑪𝑯𝟒
⋅ 𝑳𝑯𝑽𝑪𝑯𝟒

 = 0.39 
𝑁𝑚3

𝑚𝐴𝐷
3  𝑑

⋅ 35.7
𝑀𝐽

𝑁𝑚3
= 𝟏𝟑.𝟗𝟐 

𝐌𝐉

𝐦AD
𝟑 ∙d

  Eq. 89 
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Which is also similar to the most common values found in the literature. To double-

check this value, another calculation has been made. Considering to heat the influent from 

10°C to 35°C, and to compensate the heat dispersion through the walls of the digester 

(average external temperature of 20°C, weighted all over the year):  

 

𝑸 𝒉𝒆𝒂𝒕 = 𝒎 𝒊𝒏 ⋅ 𝒄𝒑  ⋅  𝑻𝑨𝑫 − 𝑻𝒊𝒏 + 𝑼 ⋅  
𝑨

𝑽
 
𝑨𝑫

⋅  𝑻𝑨𝑫 − 𝑻𝒆𝒙𝒕 = 

=
10

𝑘𝑔𝑉𝑆

𝑚𝐴𝐷
3  𝑑

0.08
⋅ 4.186 ⋅ 10−3 𝑀𝐽

𝑘𝑔  𝐾
 ⋅  35 − 10 𝐾 + 24 ⋅ 3600 ⋅ 10−6 𝑀𝑊

𝑚2  𝐾
 ⋅ 0.7 

𝑚2

𝑚3  ⋅

  35 − 20 𝐾 =  13.08 + 0.91  
𝑀𝐽

𝑚𝐴𝐷
3  𝑑

= 𝟏𝟑.𝟗𝟗 
𝐌𝐉

𝐦AD
𝟑 ∙d

  Eq. 90 

 

Where cp was estimated similar to the one of water, due to high dilution of the 

influent, and the overall heat transfer coefficient “U” for concrete walls was applied. The 

(A/V) ratio of the digester was estimated according to common digester geometries [71]. 

As can be seen, the two values are almost equal. Therefore the assumptions were proven to 

be corrected. 

 

The heat power taken away from a single MJ-PEM system by the wastewater, 

which could be exploited, is: 

 

𝑸 𝑴𝑱−𝑷𝑬𝑴 = 𝒎 𝑯𝟐𝑶 ⋅ 𝒄𝒑  ⋅  𝑻𝑴𝑱−𝑷𝑬𝑴 − 𝑻𝒎𝒊𝒏 𝒐𝒖𝒕 = 

= 596 
𝑔

ℎ
⋅ 8 

ℎ

𝑑
⋅ 4.186 ⋅ 10−6 𝑀𝐽

𝑔 𝐾
 ⋅  150 − 45 𝐾 = 𝟐.𝟏𝟎 

𝐌𝐉

d
  Eq. 91 

 

where 45°C is the minimum outlet temperature, to avoid the pinch point in the 

second heat exchanger HE-2 in Fig. 36 (ΔT across heat exchangers is usually set between 5 

and 15°C). 

Therefore, the number of MJ-PEM reactors to fulfill the thermal demand of the 

mesophilic process are: 

 

𝑴𝑱 − 𝑷𝑬𝑴𝒉𝒆𝒂𝒕 =
𝑸 𝒉𝒆𝒂𝒕 

𝑸 𝑴𝑱−𝑷𝑬𝑴  

=
13.92 

𝑀𝐽

𝑚𝐴𝐷
3  𝑑

2.10 
𝑀𝐽

𝑚𝐴𝐷
3  𝑑

 
= 6.6 m−3 = 𝟕 𝐦−𝟑 Eq. 92 

 

The thermal requirements, then, could be fully satisfied by just 7 MJ-PEM devices 

per cubic meter of digester, which is seven times less than the systems needed for 

hydrogen production. 

Some of the heat could be then used to disinfect the slurry, heating it up to 70°C in 

the first heat exchanger HE-1 in Fig. 36, which was proven to be an effective method to 

also enhance the biogas yield [70]. Thus, the number of MJ-PEM becomes 15 m
-3

. 
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A third heat exchanger can be implemented to recover the remaining power heat 

(e.g. to heat the workplace during winter), provided by the remaining 35 m
-3

 reactors used 

for the hydrogen production. 

 

 

Oxygen requirements 

 

The last consideration concerns the utilization of the generated oxygen, which 

could be sent to the stabilization of the digestate. The digestate, whose volume is 

approximately 90-95% and whose COD content is 20-30% of the influent volume, is 

largely composed of putrescible compounds which need to be stabilized, potential 

pathogens and viruses which must be eliminated. There are some methods suitable for this 

purpose, one of which is the aerobic stabilization, achievable by aerating the digestate 

under mechanical mixing for an adequate retention time. 

Assuming the above mentioned volume and COD reductions after anaerobic 

digestion, the volumetric flow of digestate can be calculated: 

 

𝑽 𝒅𝒊𝒈 =
𝒎 𝒊𝒏

𝝆𝒊𝒏
 ⋅ 𝟎.𝟗𝟎 =

10

0.08
 
𝑘𝑔𝑉𝑆

𝑚𝐴𝐷
3  𝑑

1000 
𝑘𝑔

𝑚3

⋅ 0.90 = 0.113
m3

mAD
3  ⋅ d

= 𝟒.𝟔𝟖𝟖 
𝐋

𝐦AD
𝟑 ∙ h

  Eq. 93 

 

and the Chemical Oxygen Demand requirements: 

 

𝑪𝑶𝑫𝒅𝒊𝒈 = 𝑪𝑶𝑫𝒊𝒏 ⋅ 𝟎.𝟑𝟎 = 30 
g

L
⋅ 0.30 = 𝟗 

𝐠𝐂𝐎𝐃

𝐋
  Eq. 94 

 

𝒎 𝑪𝑶𝑫 = 𝑪𝑶𝑫𝒅𝒊𝒈 ⋅  𝑽 𝒅𝒊𝒈 = 4.688
𝐿

𝑚𝐴𝐷
3 ∙𝑑

 ⋅ 9 
𝑔𝐶𝑂𝐷

𝐿
= 𝟒𝟐.𝟏𝟖𝟖 

𝐠𝐂𝐎𝐃

𝐦AD
𝟑 ∙ h

  Eq. 95 

 

which results in a specific oxygen flow (normal conditions): 

 

𝑽 𝑶𝟐 𝒓𝒆𝒒 = 𝒎 𝑪𝑶𝑫 ⋅
𝑹 ⋅ 𝑻

𝑷 ⋅ 𝑷𝑴𝑶𝟐

= 42.188 
𝑔𝐶𝑂𝐷

𝑚𝐴𝐷
3 ∙ ℎ

⋅
8.314 

𝐽

𝑚𝑜𝑙  𝐾
 ⋅ 298 𝐾 

101325  𝑃𝑎  ⋅ 32 
𝑔

𝑚𝑜𝑙

= 𝟑𝟐.𝟐 
𝐍𝐥

𝐦AD
𝟑 ∙ h

  Eq. 96 

 

An Oxygen Transfer Efficiency (OTE) must be applied to this value, as not all the 

oxygen is transferred to the digestate. Average specific OTE (SOTE) values for air 

distributors with fine bubbles are 6%/m. If the distributors are placed at about 3 m depth of 

the digestate stabilization reactor, then the OTE is roughly 18%: 

 

𝑽 𝑶𝟐 𝒓𝒆𝒒 =
32.2 

𝑁𝑙

𝑚𝐴𝐷
3 ∙ ℎ

0.18
= 𝟏𝟕𝟖.𝟗 

𝐍𝐥

𝐦AD
𝟑 ∙ h

  Eq. 97 
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Each MJ-PEM reactor can provide 5.9 Nl/h, then: 

 

𝑴𝑱 − 𝑷𝑬𝑴𝑶𝟐
=

𝑽 𝑶𝟐 𝒓𝒆𝒒

𝑽 𝑶𝟐 𝑴𝑱−𝑷𝑬𝑴
 

=
178.9 

𝑁𝑙

𝑚𝐴𝐷
3 ∙ ℎ

 

5.9 
𝑁𝑙

ℎ
 

= 30.2 m−3 = 𝟑𝟏 𝐦−𝟑 Eq. 98 

 

 

3.3.2 MJ-PEM and thermophilic anaerobic digestion 

 

Thermophilic anaerobic digester usually can produce a higher specific rate of 

biogas (the double or more), with lower residence times. However, biogas purity is more 

limited, with a higher content of CO2. Operative parameters of thermophilic digestion are 

listed in Table 4: 

 

PARAMETER 
TYPICAL  

RANGES 
[5, 7, 67-69, 72]

 

SELECTED 

VALUE 

Temperature 

°C 
50 – 65  55 

Biogas yield 

Nm
3

 / kg VS 
0.4 – 0.8 0.5 

Organic load 

kg VS / (m
3

AD d) 
9 – 18 12 

Residence time 

d 
7 – 15  10 

VS conc  

% 
7 – 14  10  

CO2 conc in biogas  

% 
30 – 50  40 

Influent COD 

kg O2 / m
3 

> 25 50 

Table 4 – Common ranges of operative conditions for a thermophilic anaerobic 

digester and values chosen for the design 

 

For the sake of brevity, calculations are shown below, in the same order as for the 

mesophilic digestion: 

 

𝑽 𝒃𝒊𝒐𝒈𝒂𝒔 = 𝒃𝒊𝒐𝒈𝒂𝒔 𝒚𝒊𝒆𝒍𝒅 ⋅ 𝒐𝒓𝒈𝒂𝒏𝒊𝒄 𝒍𝒐𝒂𝒅 = 0.5 
𝑁𝑚3

𝑘𝑔𝑉𝑆
⋅ 12 

𝑘𝑔𝑉𝑆

𝑚𝐴𝐷
3  𝑑

= 𝟑
𝐍𝐦𝟑

𝐦AD
𝟑 ∙d

  Eq. 99 
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𝑽 𝑪𝑯𝟒
= 𝑽 𝒃𝒊𝒐𝒈𝒂𝒔  ⋅ 𝟎.𝟔𝟎 = 6 

𝑁𝑚3

𝑚𝐴𝐷
3  𝑑

⋅ 0.60 = 𝟑.𝟔𝟎 
𝐍𝐦𝟑

𝐦AD
𝟑 ∙d

  Eq. 100 

 

𝑽 𝑪𝑶𝟐
= 𝑽 𝒃𝒊𝒐𝒈𝒂𝒔  ⋅ 𝟎.𝟒𝟎 = 6 

𝑁𝑚3

𝑚𝐴𝐷
3  𝑑

⋅ 0.40 = 𝟐.𝟒𝟎 
𝐍𝐦𝟑

𝐦AD
𝟑 ∙d

  Eq. 101 

 

 

Hydrogen requirements 

 

Assuming again an efficiency of 90% [65, 66] for the bio-methanation reaction (Eq. 82): 

 

𝑽 𝑯𝟐 𝒓𝒆𝒒 =
𝑽 𝑪𝑶𝟐

𝟎.𝟗𝟎
⋅ 𝟒 =

2.40 
𝑁𝑚3

𝑚𝐴𝐷
3  𝑑

0.90
⋅ 4 = 𝟏𝟎.𝟔𝟕 

𝐍𝐦𝟑

𝐦AD
𝟑 ∙d

  Eq. 102 

 

𝑴𝑱 − 𝑷𝑬𝑴𝑯𝟐
=

𝑽 𝑯𝟐 𝒓𝒆𝒒 

𝑽 𝑯𝟐  

=
10.67 

𝑁𝑚3

𝑚𝐴𝐷
3  𝑑

 

11.7 ⋅10−3  
𝑁𝑚3

 ℎ
  ⋅ 8 

ℎ

𝑑
 
= 113.9 m−3 = 𝟏𝟏𝟒 𝐦−𝟑 Eq. 103 

 

The number of needed MJ-PEMs for hydrogen production are 114 per volume of 

thermophilic digester, more than the double compared with the mesophilic process, due to 

higher biogas yields and CO2 concentration. 

 

 

Heat requirements 

 

𝑽 𝑪𝑯𝟒 𝒉𝒆𝒂𝒕 = 𝑽 𝑪𝑯𝟒
 ⋅ 𝟎.𝟐𝟎 = 3.60 

𝑁𝑚3

𝑚𝐴𝐷
3  𝑑

⋅ 0.20 = 𝟎.𝟕𝟐 
𝐍𝐦𝟑

𝐦AD
𝟑 ∙d

  Eq. 104 

 

𝑸 𝒉𝒆𝒂𝒕 = 𝑽 𝑪𝑯𝟒
⋅ 𝑳𝑯𝑽𝑪𝑯𝟒

 = 0.72 
𝑁𝑚3

𝑚𝐴𝐷
3  𝑑

⋅ 35.7
𝑀𝐽

𝑁𝑚3
= 𝟐𝟓.𝟕𝟎 

𝐌𝐉

𝐦AD
𝟑 ∙d

  Eq. 105 

 

With similar considerations, the heat requirement was double checked by:  

 

𝑸 𝒉𝒆𝒂𝒕 = 𝒎 𝒔𝒍𝒖𝒅𝒈𝒆 ⋅ 𝒄𝒑  ⋅  𝑻𝑨𝑫 − 𝑻𝒔𝒍𝒖𝒅𝒈𝒆 + 𝑼 ⋅  
𝑨

𝑽
 
𝑨𝑫

⋅  𝑻𝑨𝑫 − 𝑻𝒆𝒙𝒕 = 

=
12

𝑘𝑔𝑉𝑆

𝑚𝐴𝐷
3  𝑑

0.10
⋅ 4.186 ⋅ 10−3 𝑀𝐽

𝑘𝑔  𝐾
 ⋅  55 − 10 𝐾 + 24 ⋅ 3600 ⋅ 10−6 𝑀𝑊

𝑚2  𝐾
 ⋅ 0.7 

𝑚2

𝑚3  ⋅

  55 − 20 𝐾 =  22.60 + 2.12  
𝑀𝐽

𝑚𝐴𝐷
3  𝑑

= 𝟐𝟒.𝟕𝟐 
𝐌𝐉

𝐦AD
𝟑 ∙d

  Eq. 106 

 

which again confirms the adequate estimation of the parameters. 
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𝑸 𝑴𝑱−𝑷𝑬𝑴 = 𝒎 𝑯𝟐𝑶 ⋅ 𝒄𝒑  ⋅  𝑻𝑴𝑱−𝑷𝑬𝑴 − 𝑻𝒎𝒊𝒏 𝒐𝒖𝒕 = 

= 596 
𝑔

ℎ
⋅ 8 

ℎ

𝑑
⋅ 4.186 ⋅ 10−6 𝑀𝐽

𝑔 𝐾
 ⋅  150 − 65 𝐾 = 𝟏.𝟕𝟎 

𝐌𝐉

d
  Eq. 107 

 

using 65°C as the minimum outlet temperature for the pinch point in the second heat 

exchanger in Fig. 36. 

Therefore, the number of MJ-PEM reactors to fulfill the thermal demand of the 

thermophilic process are: 

 

𝑴𝑱 − 𝑷𝑬𝑴𝒉𝒆𝒂𝒕 =
𝑸 𝒉𝒆𝒂𝒕 

𝑸 𝑴𝑱−𝑷𝑬𝑴  

=
25.70 

𝑀𝐽

𝑚𝐴𝐷
3  𝑑

1.70 
𝑀𝐽

𝑚𝐴𝐷
3  𝑑

 
= 15.1 m−3 = 𝟏𝟔 𝐦−𝟑 Eq. 108 

 

The thermal needs, again, are fully met by less MJ-PEM devices than the ones 

required for hydrogen production. 

 

 

Oxygen requirements 

 

Volume and COD reduction of 10% and 70%, respectively, were hypothesized for 

the digestate coming from thermophilic digestion: 

 

𝑽 𝒅𝒊𝒈 =
𝒎 𝒊𝒏

𝝆𝒊𝒏
 ⋅ 𝟎.𝟗𝟎 =

12

0.10
 
𝑘𝑔𝑉𝑆

𝑚𝐴𝐷
3  𝑑

1000 
𝑘𝑔

𝑚3

⋅ 0.90 = 0.108
m3

mAD
3  ⋅ d

= 𝟒.𝟓 
𝐋

𝐦AD
𝟑 ∙ h

  Eq. 109 

 

𝑪𝑶𝑫𝒅𝒊𝒈 = 𝑪𝑶𝑫𝒊𝒏 ⋅ 𝟎.𝟑 = 50 
g

L
⋅ 0.3 = 𝟏𝟓 

𝐠𝐂𝐎𝐃

𝐋
  Eq. 110 

 

𝒎 𝑪𝑶𝑫 = 𝑪𝑶𝑫𝒅𝒊𝒈 ⋅  𝑽 𝒅𝒊𝒈 = 4.5
𝐿

𝑚𝐴𝐷
3 ∙𝑑

 ⋅ 15 
𝑔𝐶𝑂𝐷

𝐿
= 𝟔𝟕.𝟓 

𝐠𝐂𝐎𝐃

𝐦AD
𝟑 ∙ h

  Eq. 111 

 

𝑽 𝑶𝟐 𝒓𝒆𝒒 = 𝒎 𝑪𝑶𝑫 ⋅
𝑹 ⋅ 𝑻

𝑷 ⋅ 𝑷𝑴𝑶𝟐

= 67.5 
𝑔𝐶𝑂𝐷

𝑚𝐴𝐷
3 ∙ ℎ

⋅
8.314 

𝐽

𝑚𝑜𝑙  𝐾
 ⋅ 298 𝐾 

101325  𝑃𝑎  ⋅ 32 
𝑔

𝑚𝑜𝑙

= 𝟓𝟏.𝟔 
𝐍𝐥

𝐦AD
𝟑 ∙ h

  Eq. 112 

 

Applying the same Oxygen Transfer Efficiency (OTE) of 18% for fine bubble 

aeration distributors placed at 3 m beneath the surface of the reactor for the stabilization of 

the digestate: 

 

𝑽 𝑶𝟐 𝒓𝒆𝒒 =
51.6 

𝑁𝑙

𝑚𝐴𝐷
3 ∙ ℎ

0.18
= 𝟐𝟖𝟔.𝟕 

𝐍𝐥

𝐦AD
𝟑 ∙ h

  Eq. 113 
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Each MJ-PEM reactor can provide 5.9 Nl/h, then: 

 

𝑴𝑱 − 𝑷𝑬𝑴𝑶𝟐
=

𝑽 𝑶𝟐 𝒓𝒆𝒒

𝑽 𝑶𝟐 𝑴𝑱−𝑷𝑬𝑴
 

=
286.7 

𝑁𝑙

𝑚𝐴𝐷
3 ∙ ℎ

 

5.9 
𝑁𝑙

ℎ
 

= 48.6 m−3 = 𝟒𝟗 𝐦−𝟑 Eq. 114 

 

 

3.4 Conclusions 
 

Table 5 and Table 6 sum up the most important results obtained for the scenarios 

analyzed in the previous paragraphs (Par.s 3.2 and 0). 

 

SCENARIO 

 

PARAMETER 

CWAO + 

H2 PRODUCTION 

H2  0.968 g/h 11.7 Nl/h 

O2  7.768 g/h 5.9 Nl/h 

Gross heat (no losses) 128 W 

Net heat (free convection 

 + radiation losses) 
85.1 W 

MJ area 3.2 cm
2
 (1.8 x 1.8) 

PEM area 106 cm
2
 (10 x 10)  

Current density 245 mA/cm
2
 

Treated wastewater 600 ml/h 

Theoretical COD 11 g/m
3
 

Solar-to-hydrogen eff. 20.0 % 

Thermal eff. 53.2 % 

Table 5 – Results for “Scenario I” 

 

In “Scenario I”, one step further in the application of a concentrated multi-junction 

solar cell system coupled with a PEM electrolyzer for hydrogen production has been made. 

The MJ-PEM device operating at high temperature and pressure (i.e. 150°C and 30 bar) 

has a great potential for implementation in the treatment of wastewater containing 

recalcitrant organics, also exploiting the thermal energy provided by concentrated sunlight, 

thus increasing the overall efficiency of the system. Recovery of the concentrated solar 

heat, in fact, can help to achieve 53% of thermal efficiency, which would otherwise be 

null. In addition, the exploitation of the electro-generated oxygen can lead to the effective 

treatment of refractory wastewater up to 11 g/m
3
 of COD content. Current densities of 

about 245 mA/cm
2
 are largely feasible on an industrial scale, allowing to meet high 

productivities. The hypothesized solar-to-hydrogen conversion efficiencies have already 
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been reached by similar systems (i.e. HyCon®), thus proving that the implementation of 

this device is not so far from realization. 

 

SCENARIO 

 

PARAMETER 

ANAEROBIC DIGESTION 

Mesophilic Thermophilic 

Biogas production 3  
Nm 3

mAD
3 ·d

 6  
Nm 3

mAD
3 ·d

 

CO2 to convert 1.05  
Nm 3

mAD
3 ·d

 2.40 
Nm 3

mAD
3 ·d

 

n° MJ-PEM (CO2) – H2 50 m-3AD 114 m-3AD 

n° MJ-PEM (heat) – Q̇ 7 m-3AD 16 m-3AD 

n° MJ-PEM (heat + pretreat) 15 m-3AD 19 m-3AD 

n° MJ-PEM (digestate) – O2 31 m-3AD 49 m-3AD 

Table 6 – Results for “Scenario II” 

 

In “Scenario II” the MJ-PEM device has been connected in series with the bio-

methanation step and the digestate stabilization from anaerobic digestion. For both 

mesophilic and thermophilic anaerobic digestions, the hydrogen production was found to 

be the determining process to dimension the overall plant. In fact, in order to meet the 

needs of an anaerobic plant, the biogas upgrading requires twice the number of MJ-PEM 

than the stabilization of digestate, and about 7 times than heating of influent slurry and 

digester. If some of the heat is provided to pre-treat the influent up to 70°C, this value is 

lowered to three times for the mesophilic process. As expected, the most demanding 

process for the chemical and thermal matching with the MJ-PEM system was found to be 

the thermophilic digestion, for which the specific number of MJ-PEM reactors was more 

than doubled in some cases (e.g. for H2 requirement). Nevertheless, though the conditions 

seem harsh, the complete independence of this integrated process from fossil sources is 

promising for future perspectives. 
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CHAPTER 4 
 

 

 

DEVELOPMENT OF MANGANESE OXIDE 

ELECTRODES ON TITANIUM AND TITANIA 

NANOTUBES FOR ELECTRO-OXIDATION OF 

PHENOL 
 

 

 

 

 

4.1 Introduction 
 

The biological treatment of wastewater is one of the most common processes 

throughout the world for the abatement of a large variety of compounds. However, some 

organic pollutants, such as aromatic compounds, are refractory and toxic to traditional 

biological methods. Benzene, phenol and its derivatives (chloro-phenols and nitro-

phenols), anilines, benzoquinone, and hydroquinone are some of the most common 

pollutants contained in industrial wastewater [73, 74].  

Phenol, in particular, is one of the most studied molecules in the sector of the 

removal of recalcitrant organic compounds from water, due to its high refractoriness and 

stability, and to its extensive presence in several industrial plants, such as petroleum 

refineries, and plastics, pesticides and pharmaceutical factories. Advanced oxidation 

processes (AOPs), such as Fenton and photo-Fenton reactions [75], ozonation [76], wet air 

oxidation (WAO) [58], catalytic wet hydrogen peroxide oxidation (CWHPO) [77] and 

catalytic wet air oxidation (CWAO) [78] are all effective methods that can be used to treat 

this substance. However, electrochemical degradation is another attractive procedure that is 

being considered to remove recalcitrant organics from water, especially in low-volume 

applications, due to its intrinsic high efficiency [79, 80]. 

According to the above-mentioned classification, electro-oxidation is considered to 

belong to the AOP family, since OH• radicals, some one of the most powerful oxidizing 

agents, are produced on the surface of the electrocatalytic materials. Many catalysts have 

been developed for this particular application throughout the years: Pt [81-83], IrO2 [84, 

85], RuO2 [86, 87], PbO2 [82, 88], SnO2 [89, 90] and Boron-Doped Diamond (BDD) [91, 

92]. 
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However, only a limited amount of literature has reported the use of manganese 

oxides (MnOx) as catalysts for the electro-oxidation of refractory organics [93-98]. 

Furthermore, in many of these works, the role of manganese oxides has not been 

investigated in depth because the MnOx coating had either been deposited onto highly 

active intermediate substrates, such as Sb-SnO2 [93] or RuO2 [94, 95], or it had been doped 

with ions (Fe
2+

), which can influence the performance of the electrode [96]. MnOx have 

been employed extensively in electrochemistry as cathodes in alkaline batteries, in lithium-

ion batteries [99, 100] and as pseudo-capacitive electrodes into supercapacitors [101-103], 

or for the water splitting reaction [104-109]. The main advantages of manganese oxides are 

their low cost if compared to Pt, IrO2, RuO2 and BDD, and lower toxicity than Sb-SnO2 

and PbO2. 

This work describes the fabrication and characterization of electrochemically-

deposited manganese oxides over a titanium support for the electrochemical oxidation of 

phenol molecules in wastewater. The electrodeposition parameters, such as current density, 

deposition time and precursors, were tuned in order to investigate their effect on the 

activity. Moreover, the effect of the temperature treatment on the electrodeposited MnOx 

was investigated by means of calcination in air. Additionally, the role of an interlayer 

between the MnOx nanostructures and the Ti substrate was considered, in order to evaluate 

its effectiveness in preventing the passivation of the Ti substrate and possibly increasing 

the electrode surface area [110-114]. For these reasons, the optimized parameters described 

above were used for deposition over a TiO2 nanotubes (TiO2-NTs) array, grown directly on 

Ti foil by means of the anodic oxidation method.  

TiO2-NTs obtained from anodization have attracted considerable interest in the last 

few decades, since their unique properties make them useful as active elements for several 

applications, ranging from energy production (dye-sensitized solar cells, [48, 115] water 

splitting, [116, 117]) and storage (Li-ions batteries, [118, 119] supercapacitors [120]) to 

sensing devices, such as gas sensing, [121] and molecular sensors [122]. The main 

advantages of TiO2-NTs concern their quasi-one-dimensional arrangement, which leads to 

a good compromise between the exposed surface area (about 40 m
2
/g) and superior 

electron transport properties, and results in a performance enhancement in all the different 

fields of application [123]. Moreover, compared to other synthesis approaches, 

electrochemical anodization is a simple, convenient and “green” technique to fabricate 

uniform layers of vertically self-oriented nanostructures, which, furthermore, is easy to be 

scaled up for large-scale industrial productions. 
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4.2 Materials and methods 
 

 

4.2.1 Ti substrate preparation 

 

Several 1 x 2 cm
2 

titanium (Ti) foils (Sigma-Aldrich, 99.7%, 0.25 mm thick) were 

mechanically polished with 320-grit sandpaper to obtain a mirror finish and were then 

ultrasonically washed in 2-propanol. After rinsing with DI water, the foils were degreased 

in a 40 % NaOH solution at 50 °C for 20 minutes and were then rinsed again and left to 

dry in air. 

Shortly before the electrochemical process, the titanium was etched in an HF (Carlo 

Erba, 40% w/w) aqueous solution 1.2 % w/w, at room temperature for 1 minute, in order to 

obtain a fresh metal surface for NTs growth. 

Titania nanotubes were synthesized on the pretreated Ti foils, by dipping 1 x 1 cm
2 

into a solution of ethylene glycol, NH4F (0.5 % w/w) and DI water (2.5 % w/w). The Ti 

was used as an anode, while Pt foil was used as both a cathode and a reference electrode. A 

constant voltage of 60 V was applied to the cell for 10 minutes and, the TiO2-NTs were 

calcined at 450 °C for 30 min after a long rinsing in water. Further details on the NTs 

growth and characterizations can be found elsewhere [124]. 

 

 

4.2.2 MnOx electro-deposition 

 

Since no literature reports are available on the direct electrodeposition of 

manganese oxides onto Ti, a base-case electrode was prepared on the base of the 

electrodeposition parameters found elsewhere [125], used in the deposition of manganese 

oxide films on FTO-coated glass for water splitting application. The samples were 

anodically deposited by immersing 1 x 1 cm
2
 of the Ti foil or the TiO2-NTs, in an unstirred 

and undivided cell containing 15 ml of a 0.1 M Mn(CH3COO)2 and 0.1 M Na2SO4 aqueous 

solution, by applying a current density of 0.25 mA/cm
2
 for 10 minutes (i.e. samples 

A000/Ti and A000/NTs).  

The electrodeposition parameters (i.e. current density, deposition time and Mn-

precursor concentration) were then varied to investigate their effects on the performances, 

as shown in Fig. 37. Also the deposition technique was modified, once the deposition 

parameters were optimized, using a cathodic electrodeposition method with a different 

precursor (i.e. a 0.01 M KMnO4 and 0.1 M Na2SO4 aqueous solution, applying a current 

density of -2.5 mA/cm
2
 for 10 min). Different calcination conditions were applied to some 

of the electrodes, in order to obtain different manganese oxidation states, and the 

temperature ramp was also varied to investigate its effect on the possible passivation of the 

Ti substrate.
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Fig. 37 – Nomenclature of the manganese oxide electrodes, electrodeposited on Ti and 

TiO2-NTs 

 

The samples were named by a letter and three numbers. The letter represents the 

type of synthesis: ―A‖ for an anodically electrodeposited film without calcination; ―B‖ for 

an electrode calcined in air at 500°C for 1 h; ―C‖ for an electrode calcined in N2 at 600°C 

for 3 h; ―D‖ for a sample synthesized with the cathodic deposition in the KMnO4 and 

Na2SO4 aqueous solution, then calcined in air at 500°C for 1 h. The first number represents 

the current density at which the electrodeposition occurs; the second number is the 

deposition time; the third number is the concentration of the precursor solution, either 

acetate or permanganate. The presence of an ―s‖ after the name of the sample stands for a 

slow calcination ramp (2°C/min), otherwise, a fast ramp (20°C/min) is applied. Deposition 

on titanium or on nanotubes is explicitly indicated. 

Fig. 38 presents a schematic view of all the syntheses carried out in this work. 

 

 

 

Fig. 38 - 3D scheme representing the manganese oxide electrodeposition processes  

over the Ti and TiO2-NTs substrates  
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A BIOLOGIC VMP-300 potentiostat was used for the electrodepositions. Ti was 

set as the anode, Pt wire was used as the cathode and Ag/AgCl 3M KCl (+ 0.209 V vs 

NHE) was used as the reference electrode. 

All the potentials reported in this work should be intended vs. RHE (ERHE in V vs. 

RHE), and calculated according to Nernst‟s equation (Eq. 115): 

 

 𝐸𝑅𝐻𝐸 = 𝐸𝐴𝑔/𝐴𝑔𝐶𝑙 + 0.209𝑉 + 0.059 ∙ 𝑝𝐻  Eq. 115 

 

 

4.2.3 Characterization 

 

The morphology, structure and physicochemical parameters of the electrodes were 

evaluated by means of X-Ray Diffraction (XRD, X'Pert PRO diffractometer, Cu Kα 

radiation λ = 1.54 Å), X-Ray Photoelectron Spectroscopy (XPS, PHI5000 VersaProbe) and 

Field Emission Scanning Electronic Microscopy (FESEM, Zeiss Merlin). The semi-

quantitative surface composition was estimated by means of Electron Energy-Dispersive 

X-ray spectroscopy (EDX, Oxford X-Act). 

 

 

4.2.4 Electrochemical characterization 

 

Cyclic Voltammetries (CV) and Linear Sweep Voltammetries (LSV) were carried 

out in an unstirred and undivided 3-electrode cell system, containing 15 ml of a 0.1 M 

Na2SO4 solution. The scan limits were fixed between 0.5 and 2 V (vs. Ag/AgCl) and the 

scan rates were 20 mV/s for the CV and 5 mV/s for the LSV, respectively.  

Electrochemical Impedance Spectroscopy (EIS) was conducted on some of the 

samples in the phenol solution (100 mg/l phenol and 0.1 M Na2SO4), in order to evaluate 

the charge transfer and charge transport properties of the films and the role of the nanotube 

interlayer on the electrochemical behavior of the anodes. An applied voltage of 3.3 V vs. 

RHE was employed, and the frequency was varied between 10
5
 Hz and 1 Hz. 

All the experiments were carried out on electrode areas of 1 x 1 cm
2
; a Pt wire was 

employed as the counter electrode and an Ag/AgCl 3 M KCl (+ 0.209 V vs. NHE) was 

used as the reference electrode. 
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4.2.5 Electro-oxidation tests 

 

The electro-oxidation tests were carried out in an unstirred and undivided glass cell 

containing 15 ml of phenol (C0 = 100 mg/l) and 0.1 M Na2SO4 as supporting electrolyte. 

The prepared samples (active area of 1 x 1 cm
2
) were used as the anode, while a Pt wire 

was set as the cathode and an Ag/AgCl, 3 M KCl (+ 0.209 V vs NHE) as the reference 

electrode. Constant currents were chosen in order to keep the working potential of the 

electrode under the limit of the instrument (10 V) over a reaction time of 5 h. The solution 

was then analyzed by High-Performance Liquid Chromatography (Shimadzu Prominence 

HPLC) with a Diode Array Detector (DAD) set at 269 nm. The column was a Rezex ROA 

(300 x 7.8 mm). The mobile phase was 5 mM H2SO4 and the flow rate was 0.5 ml/min. 

Chemical Oxygen Demand (COD) analyses were carried out by means of UV 

spectroscopy, using a HACH LANGE COD cuvette test (LCI 400) and a HACH LANGE 

DR5000 spectrophotometer. 

 

 

4.2.6 Accelerated lifetime tests 

 

In order to assess the durability of the synthesized electrodes accelerated lifetime 

tests were carried out on some of the samples in an unstirred and undivided glass cell 

containing 15 ml of a 1 M Na2SO4 aqueous solution. A Pt wire was used as the cathode 

and an Ag/AgCl, 3 M KCl (+ 0.209 V vs NHE) as the reference electrode. A current 

density of 100 mA/cm
2
 was applied to the cell. The electrode was considered deactivated 

when the measured potential reached 10 V. 
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4.3 Results and discussions 
 

For sake of brevity, some characterizations, such as XRD and FESEM, were 

performed only on the base-case electrodes (i.e. the ―000‖ samples), used as a reference, 

and on the most different films, which were the ―200‖ samples, deposited at high current 

density. 

 

 

4.3.1 XRD and XPS analysis 

 

In this paragraph, the base-case electrodes (―000‖) and the samples deposited at 

high current densities (―200‖) will be analyzed, both on Ti and on TiO2-NTs.  

 

 Base-case 

 

Fig. 39 shows the XRD pattern of the manganese oxides electrodeposited at 0.25 

mA/cm
2
 for 10 minutes with 0.1 M Mn

2+
 ion concentration. The XRD spectra of the 

electrodes calcined at slow ramp are not shown, as they presented the same pattern of their 

counterpart calcined at fast ramp. 

As expected, non-calcined A000/Ti showed no peaks that could be attributed to any 

crystalline phase of MnOx, thus demonstrating that electrodeposition alone resulted in a 

non-crystalline material; only Ti peaks were visible [117, 125, 126]. 

The A000/NTs sample showed similar results: the non-calcined manganese oxides 

did not show any crystalline phase, while TiO2 peaks and the Ti substrate were clearly 

visible and attributable to a tetragonal anatase phase (JCPDS 21-1272, I41/amd, a = b = 

0.379 nm, c = 0.951 nm), as expected, due to the calcination of TiO2-NTs at 450 °C. 

Instead, the MnOx electrodes calcined at 500 °C in air for 1 h, for both the  slow 

and fast ramps (i.e. B000(s)/Ti and B000/Ti), showed the particular peaks of a cubic 

bixbyite crystalline phase, α-Mn2O3 (JCPDS 41-1442, Ia–3, a = 0.941 nm) [117, 125]. The 

same oxide was obtained over TiO2-NTs (B000/NTs). 

Moreover, it can be noticed that two peaks appeared, at 27.6° and 36.2°, on the 

MnOx calcined samples, on both  Ti and TiO2-NTs. These peaks corresponded to the 

formation of a TiO2 rutile phase, whose transition from anatase can start to occur at about 

500 °C in air [127-131]. This observation confirmed the hypothesis of the formation of a 

titanium oxide layer between the Ti substrate and MnOx coating during the heat treatment. 

On the contrary, when the calcination was conducted under N2 flow at 600°C for 3h 

(i.e. C000(s)/Ti, C000/Ti, and C000/NTs), the peaks of rutile were not detected, due to the 

absence of oxygen in the atmosphere, thus avoiding oxidation of the Ti substrate. For both 

the sample deposited on titanium and on nanotubes, the identified peaks were attributable 
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to the tetragonal hausmannite phase, Mn3O4 (JCPDS 1-1127 I41/amd, a = b = 0.575 nm, c 

= 0.942 nm), as expected from the calcination parameters [125]. 

 

Fig. 39 – XRD patterns of MnOx electrodeposited at  

0.25 mA / 10 min / 0.1 M Mn
2+ 

 

 Current density modification 

 

The XRD patterns of the manganese oxides electrodeposited at 2.5 mA/cm
2
 are 

reported in Fig. 40. Such anodically deposited samples, as prepared (i.e. A200/Ti and 

A200/NTs), showed only Ti and TiO2 anatase XRD patterns, respectively, thus confirming 

once again that the implemented anodic electrodeposition led to a non-crystalline MnOx 

material. Instead, after annealing, the XRD pattern of the  B200/Ti sample showed a 
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noticeable difference,  compared to the electrode deposited at 0.25 mA/cm
2
. In this case, 

particular peaks of two MnOx crystalline phases were detected in the spectrum: a cubic 

bixbyite  α-Mn2O3 phase and a tetragonal manganese dioxide α-MnO2 phase (JCPDS 041-

1442, Ia–3, a = 0.941 nm; JCPDS 044-014, I4/m, a = b = 9.7847, c = 2.8630). This result is 

in contrast with the ones obtained for the same sample obtained at 0.25 mA/cm
2
, and it 

could be possibly due to the different potentials reached during electrodeposition, because 

of the higher currents provided to the electrode. In fact, a change in either the potential or 

pH at a constant temperature can have an important effect on the equilibrium of the 

deposition, and can thus modify the structure of the deposited oxide [132]. 

In the B200/NTs sample, an intense peak was observed at 32.9°, thus confirming 

the presence of a α-Mn2O3 bixbyite phase in the catalyst film, while α-MnO2 phase peaks 

were absent. 

 

 

Fig. 40 – XRD patterns of MnOx electrodeposited at  

2.5 mA / 10 min / 0.1 M Mn
2+
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 Precursor modification 

 

Fig. 41 shows the XRD patterns of the samples obtained by cathodic 

electrodeposition from a precursor solution of potassium permanganate (Mn
7+

). They were 

synthesized at -2.5 mA/cm
2
 for 10 min in 0.01 M KMnO4 and 0.1 M Na2SO4, then calcined 

at 500°C in air for 1 h. For both cathodic depositions on metallic titanium and titania 

nanotubes (i.e. D201/Ti and D201/NTs), the peaks of the tetragonal α-MnO2 (JCPDS 044-

014, I4/m, a = b = 9.7847, c = 2.8630) were observed, while no other peaks, apart from 

those of the substrates, were detected. Even though calcination conditions were identical to 

the anodic samples, a different phase was obtained. This behavior, again, could be 

attributed to the variation in deposition potential, which was negative in this case, and thus 

changed the thermodynamic stability of the MnOx phase. 

 

 

Fig. 41 – XRD patterns of MnOx electrodeposited at  

-2.5 mA / 10 min / 0.01 M Mn
7+

  

 

In general, the MnOx electrodes prepared at higher electrodeposition current 

densities did not show any formation of TiO2 rutile, as in the case of the ones prepared at 

lower current density values. This could be due to the higher amount of MnOx, which 

covered and protected the Ti substrate and TiO2-NTs surface from further oxidation. 
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 XPS analysis 

 

In order to investigate the surface composition of the electrodeposited MnOx and to 

support the XRD analysis outcomes, XPS analysis was carried out on some of the prepared 

samples: i.e. A200/Ti, B200/Ti, and D201/Ti. The results of the Mn 3s XPS spectra, with 

the estimation of the Average Oxidation State (AOS) [133] of the surface of the films are 

reported in Fig. 42. It is easy to see that the cathodic sample (i.e. D201/Ti) showed the 

highest AOS value (i.e. 3.56), which was close to the Mn
4+

, identified by the XRD. 

Instead, the AOS value for the B200/Ti was 3.11, which is also in agreement with the 

presence of a mix of Mn oxides with oxidation states of Mn
3+

 and Mn
4+

, as revealed by the 

XRD measurement. Finally, the non-calcined MnOx, A200/Ti, whose oxidation state could 

not be identified by means of XRD, gave an intermediate AOS value (i.e. 3.25), which 

probably means that also a mixed oxide Mn
3+

 / Mn
4+

 could have been formed after the 

electrodeposition, but with a slightly higher presence of Mn
4+

 than the B200/Ti sample. 

 

 

Fig. 42 – A) Deconvoluted XPS spectra of Mn 3s of: A200/Ti, B200/Ti, D201/Ti; B) 

Calculation of estimated Average Oxidation State (AOS) 
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4.3.2 FESEM and EDX analysis 

 

 Base-case 

 

Fig. 43 reports the FESEM images of the base-case MnOx, ―000‖, which were 

electrodeposited on Ti at 0.25 mA/cm
2
 for 10 min at 0.1 M Mn

2+
. After the MnOx 

electrodeposition, the typical formations of nanoflake structures, which have also been 

observed in other works [117, 125, 134], were formed for all the different types of 

electrodes. The thickness of the manganese oxide layer (~ 623 nm) was quite uniform, as 

can be seen in the inset of A000/Ti. A slight change in the morphology can be noticed 

when A000/Ti is compared with B000/Ti, which was calcined in air with the fast ramp at 

20 °C/min, however still maintaining the overall nanoflake disposition. The electrode 

calcined with a slow ramp, that is, B000(s)/Ti, instead, presented an almost unchanged 

nanoflakes structure with respect to A000/Ti. A similar trend was observed for the 

electrodes calcined in N2: the sample annealed with a slow ramp, that is, C000(s)/Ti, 

showed more defined nanoflakes similar to the as-deposited sample, though they seemed 

more aggregated than the electrode calcined in air; the film calcined with a fast ramp (i.e. 

C000/Ti), instead, presented a structure in which the nanoflakes resulted merged and less 

defined. 

 

 

Fig. 43 – FESEM images of the samples electrodeposited on Ti  

at 0.25 mA / 10 min / 0.1 M Mn
2+

 

 

The FESEM images of the base-case MnOx grown on TiO2-NTs are shown in Fig. 

44. The cross-section images of the TiO2 nanotubes, after the Ti anodization and the 

annealing procedure, are shown on the top left of Fig. 44. The NTs were 5 µm long and 

vertically aligned with respect to the Ti foil. The ordered distribution of the pores can be 

appreciated as an inset in the figure: the inner holes had an average dimension of about 70 
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nm and a wall thickness of around 20 nm. All the samples grown on NTs showed 

nanoflakes on the top of the nanotube layer. However, the deposition of nanoflakes on the 

TiO2-NTs substrate was less homogeneous than the deposition on metallic titanium, 

showing some uncovered areas, probably due to preferential pathways of the 

electrodeposition currents, where the electric resistance was lower. 

 

 

 

Fig. 44 – FESEM images of the samples electrodeposited on TiO2-NTs  

at 0.25 mA / 10 min / 0.1 M Mn
2+

 

 

 Current density modification 

 

Fig. 45 shows the FESEM images of the manganese oxide electrodeposited at 2.5 

mA/cm
2
, 10 min, 0.1 M Mn

2+
. The non-calcined anodically deposited samples, i.e. A200/Ti 

and A200/NTs, still showed a similar nanoflake structure to the one seen for the sample 

synthesized at lower current densities. However, the nanoflakes were smaller for both 

electrodes, due to the higher electrodeposition current density. In fact, the nucleation rate is 

higher and the critical nucleation radius is decreased, as the potential and current density 

are increased, thus the formation and refinement of the initial grain are improved [132]. 

The inset in the top left allows the thickness of the MnOx film on the A200/Ti sample (~ 

3.7 µm), which was six times higher than the base-case samples, to be appreciated. The 

calcined B200/Ti and B200/NTs samples, instead, showed very fine nanoflakes, that 

coexisted with another type of larger crystalline nanoparticles, which were present in a 

greater amount on the sample grown on the titanium substrate. Such a difference in 

morphology can be explained by considering the larger amount of the α-MnO2 phase in the 

electrode grown on Ti, as observed in the XRD analysis, which more likely composes the 

larger nanoparticles. 
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Unlike the base-case samples, the cross-sectional view of A200/NTs and B200/NTs 

(showed in the respective insets) exhibited evidence of the penetration of the manganese 

inside the nanotubes structure, similarly to the penetration of the electrodeposited Sb-

doped SnO2 films into TiO2-NTs [110]. This phenomenon was probably due to the high 

electrodeposition current densities which led to smaller nanoflakes that were able to grow 

inside the nanotube. 

 

 

Fig. 45 – FESEM images of the samples electrodeposited 

at 2.5 mA / 10 min / 0.1 M Mn
2+

 

 

 Precursor modification 

 

The FESEM images of the MnOx samples, that is, prepared by cathodic deposition, 

D201/Ti, and D201/NTs, pointed out a totally different morphology from the anodically 

deposited MnOx, as shown in Fig. 46. The nanoflakes formed a layer directly over the 

nanotubes, from which polycrystalline rod-like structures of a noticeable thickness (~ 3.6 

µm) grew. In this case, the cross-section of the D201/NTs sample, shown as an inset in the 

right picture, did not report a deep penetration of manganese oxide inside the nanotubes. 

This could be due to either a different wettability of the nanotubes by the KMnO4 solution 

from the Mn(CH3COO)2 used in the anodic deposition, or a different electric field induced 

inside and on the top of the nanotubes. 

 

 



87 

 

 

Fig. 46  – FESEM images of the samples electrodeposited 

at -2.5 mA / 10 min / 0.01 M Mn
7+ 

 

 EDX analysis 

 

Table 7 and Table 8 show some of the data from the EDX surface composition 

analyses of all the manganese oxides over Ti and TiO2-NTs. As can be noticed, for all the 

base-case samples, synthesized at 0.25 mA/cm
2
, the atomic ratio (Mn/Ti) is comparable, 

with a slightly higher manganese content for the non-calcined electrode grown on 

nanotubes (i.e. A000/NTs).  

 MnOx phase Mn/Ti   MnOx phase Mn/Ti 

A000/Ti non-crystalline 0.12  A000/NTs non-crystalline 0.16 

B000(s)/Ti α-Mn2O3 0.10     

B000/Ti α-Mn2O3 0.11  B000/NTs α-Mn2O3 0.11 

C000(s)/Ti Mn3O4 0.09     

C000/Ti Mn3O4 0.08  C000/NTs Mn3O4 0.08 

Table 7 – EDX results for the base-case electrodes 

 

For samples synthesized at ±2.5 mA/cm
2
, the atomic ratio, Mn/Ti, is up to 10 or 

even 100 times higher than the one reported for the electrodes synthesized at lower current 

densities, as a greater amount of manganese oxide was deposited on these samples. 

Moreover, the Mn/Ti values measured for the films grown on Ti were considerably higher 

than the ones registered for those grown on the nanotubes, and this could be due to the 

higher electric resistance of the TiO2-NTs than the metallic Ti, which limited the total 

amount of manganese oxide deposited. However, because of the higher surface area of the 

TiO2-NTs, it is more likely that the lower Mn/Ti ratios observed in the NTs than on Ti 

were due to the better distribution of MnOx on the top of the TiO2-NTs, as well as inside 

the NTs pores (Fig. 45). 

 MnOx phase Mn/Ti   MnOx phase Mn/Ti 

A200/Ti non-crystalline 15.2  D201/Ti α-MnO2 13.4 

A200/NTs non-crystalline  2.1  D001/NTs α-MnO2 7.4 

B200/Ti α-Mn2O3 /
 
α-MnO2 18.2     

B200/NTs α-Mn2O3 1.6     

Table 8 – EDX results for the electrodes synthesized at ±2.5 mA/cm
2
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4.3.3 Electrochemical characterization 

 

 Base-case 

 

Cyclic Voltammetries (CVs) and Linear Sweep Voltammetries (LSVs) were carried 

out in a 0.1 M Na2SO4, without phenol, to test the electrochemical behavior of the samples 

in neutral conditions, similar to most of the literature [135-138].  

Fig. 47, Fig. 48 and Fig. 49 show the CVs of the base-case electrodes (―000‖), 

synthesized at 0.25 mA/cm
2
, 10 min and 0.1 M Mn

2+
, both on titanium and titania 

nanotubes. The graphs were individually plotted in order to clearly evidence the shape of 

the CV and the stability of the electrocatalytic film. Fig. 50 and Fig. 51, instead, show the 

LSVs of the same anodes (deposited on Ti and TiO2-NTs, respectively), gathered to 

compare their electrochemical activity. As can be seen, many differences emerged from the 

CVs among the non-calcined, air-calcined and N2-calcined samples. Indeed, the as-

deposited film of MnOx on metallic Ti (i.e. A000/Ti in Fig. 47a) presented pseudo-

capacitive behavior, which is usually a characteristic of crystalline MnO2, or non-

crystalline MnOx phases [116]. Moreover, the stability of this electrode is not very high, as 

the observed current density at ~ 2.6 VRHE halved after 5 cycles.  

 

    
Fig. 47 – CV in 0.1M Na2SO4 of a) A000/Ti and b) A000/NTs. 

Scan rate 20 mV/s 

 

After calcination, either in air or in N2, the pseudo-capacitance of manganese oxide 

films on Ti was no more detected by the CVs (Fig. 48a, b and Fig. 49a, b). This 

phenomenon could either be due to the change in the crystalline phase, from non-

crystalline to α-Mn2O3 [117], or because of the variations in the morphology (growth in the 

particle sizes) of the deposited film after the thermal treatment [139]. 

For the samples calcined in air “B000‖, also the stability was greatly affected: even 

though current densities achieved at 2.6 VRHE were lower than the A000/Ti sample, the 

cycles were almost overlapped, especially for the B000/Ti calcined with the fast ramp. On 
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the contrary, the “C000‖ anodes, obtained by calcination in N2, showed low stability, 

similar to the non-calcined electrode. 

 

    

Fig. 48 – CV in 0.1M Na2SO4 of a) B000(s)/Ti, b) B000/Ti and c) B000/NTs.  

Scan rate 20 mV/s 

 

 

Concerning the depositions on TiO2-NTs (Fig. 47b, Fig. 48c, and Fig. 49c), it can 

be noticed that the pseudo-capacitive behavior is observed for all the types of synthesis, 

even for the calcined films, which did not show any pseudo-capacitive tendency when the 

deposition occurred on Ti metal. This phenomenon could be due to the presence of the 

titania nanotubes in the interlayer [116, 118, 119].  
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Fig. 49 – CV in 0.1M Na2SO4 of a) C000(s)/Ti, b) C000/Ti and c) C000/NTs.  

Scan rate 20 mV/s 

 

The pseudo-capacitance in the MnOx phase was caused by the electron transfer at 

the Mn surface sites, the charge transfer being balanced by either the 

chemisorption/desorption of the electrolyte cations or by the insertion/disinsertion of the 

protons [116, 140]. In the case of TiO2, due to its semiconducting properties, electrons are 

accumulated in the material when it behaves like a cathode (i.e. presence of negative 

current values) and they are then released when the electrode polarity is inverted and acts 

as an anode [116].  

Another interesting effect related to the presence of the nanotubes interlayer is the 

influence on the stability. Indeed, although the current densities were comparable, the 

manganese oxides grown on nanotubes showed a slight increment in the stability after 5 

CV cycles. 

The LSVs of the base-case electrodes deposited on titanium are shown in Fig. 50. 

The non-calcined sample (i.e. A000/Ti) showed the higher current density at ~ 2.6 VRHE, 

followed by the electrodes calcined in air, (i.e. B000(s)/Ti and B000/Ti), while the samples 

calcined in N2 gave the lowest current densities. Therefore, the electrochemical activity 

towards water oxidation followed the order: MnOx > α-Mn2O3 > Mn3O4, which was not the 

same trend observed for the same syntheses on FTO reported in other works [125], where 

the α-Mn2O3 phase reported the highest activity, followed by non-crystalline MnOx and 

Mn3O4. 

 



91 

 

 

Fig. 50 – LSV in 0.1M Na2SO4 of base-case electrodes deposited on Ti. 

Scan rate 5 mV/s 

 

 

The same sequence of activity was observed for the samples grown on TiO2-NTs, 

with similar current densities to films deposited on Ti. Some change in the shape of the 

LSVs of the calcined samples was detected, due to the pseudo-capacitive behavior of the 

nanotubes, as described above. 
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Fig. 51 – LSV in 0.1M Na2SO4 of base-case electrodes deposited on NTs. 

Scan rate 5 mV/s 

 

Due to the poor activity and stability of the hausmannite films and to the apparently 

moderate influence of the nanotubes interlayer on the CVs and LSVs, further 

electrodepositions with modifications of deposition time and Mn
2+

 concentration were 

conducted only on Ti, either without calcination (i.e. ―A‖ samples) or with calcination in 

air (i.e. ―B‖ samples). 

 

 Deposition time modification 

 

The time employed for the electrodeposition of manganese oxide was varied to 

analyze its effect on the performances of the catalytic film. Fig. 52 showed the CVs of non-

crystalline MnOx synthesized at 0.25 mA/cm2, for 5 min (A010/Ti, Fig. 52a) and 20 min 

(A020/Ti, Fig. 52b), at 0.1 M Mn
2+

. It is clearly evidenced that in both cases the pseudo-

capacitive behavior due to the MnOx phase is still present, and the film instability is 

remarkable (current density is halved after 5 CV cycles). Moreover, the average current 

densities achieved by these two samples were half than the A000/Ti base-case anode. 

Therefore, if it was somehow expected a decrease in performances for the electrode 

obtained with 5 min of deposition time, an increase in deposition time was not beneficial 

for the efficiencies of the samples deposited for 20 min. 
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Fig. 52 – CV in 0.1M Na2SO4 of a) A010/Ti and b) A020/Ti.  

Scan rate 20 mV/s 

 

A similar behavior was evidenced for the two electrodes calcined in air, as shown 

in Fig. 53. Both the electrodes showed no pseudo-capacitance, and the stability was better 

than the non-calcined electrodes. The sample deposited for 5 min (B010/Ti, Fig. 53a) 

reached less than half of the current obtained by the B000/Ti samples, while the one 

deposited for 20 min (B020/Ti, Fig. 53b) showed similar activities, but a more marked 

decrease in the current density after 5 cycles. 

 

    

Fig. 53 – CV in 0.1M Na2SO4 of a) B010/Ti and b) B020/Ti.  

Scan rate 20 mV/s 

 

A comparison between these samples was obtained by the LSVs reported in Fig. 

54. The most active electrode was the non-crystalline sample synthesized at 20 min, then 

the one synthesized at 5 min. The two electrodes air-calcined gave lower current densities, 

as before, with a slightly higher effectiveness for the sample deposited for 20 min. 
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Fig. 54 – LSV in 0.1M Na2SO4 of electrodes deposited on Ti at different times. 

Scan rate 5 mV/s 

 

Thus, also in this case, a change in the deposition time did not evidence any 

improvement in the electrochemical performances of the manganese oxide electrodes. 
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 Concentration modification 

 

Some works [141, 142] use very low concentrations of precursor in the deposition 

solution, so the possible influence of the manganese acetate concentration was analyzed. 

Fig. 55 and Fig. 56 show the CVs of the electrodes deposited from solutions containing 

0.01 M and 0.001 M Mn
2+

, without and with calcination in air. 

 

    

Fig. 55 – CV in 0.1M Na2SO4 of a) A001/Ti and b) A002/Ti.  

Scan rate 20 mV/s 

 

In both cases, the current densities were lower with respect to the base-case, and 

pseudo-capacitance and stability were not affected.  

 

    

Fig. 56 – CV in 0.1M Na2SO4 of a) B001/Ti and b) B002/Ti.  

Scan rate 20 mV/s 

 

For very low concentrations of 0.001 M Mn
2+

 (i.e. A002/Ti and B002/Ti samples), 

the currents were lowered more than one order of magnitude, as clearly evidenced by the 

LSVs reported in Fig. 57, while for the A001/Ti and B001/Ti samples the currents were 

almost halved with respect to the base-case. 
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Fig. 57 – LSV in 0.1M Na2SO4 of electrodes deposited on Ti at different Mn
2+

 

concentrations. Scan rate 5 mV/s 

 

In conclusions, the most suitable concentration of manganese acetate precursor for this 

type of synthesis was found to be 0.1 M Mn(CH3COO)2. 

 

 Current density modification 

 

The last parameter changed for this investigation was current density. Fig. 58 and 

Fig. 59 show the CVs for the electrodes deposited on Ti with a current density of 0.025 

mA/cm
2
 (Fig. 58a and Fig. 59a) and 2.5 mA/cm

2
 (Fig. 58b and Fig. 59b), or for the 

samples grown on TiO2-NTs employing a current density of 2.5 mA/cm
2
 (Fig. 58c and Fig. 

59c). 

The non-crystalline film obtained with low currents (i.e. A100/Ti) showed a less 

capacitive behavior than the base-case A000/Ti sample, probably because of the lower 

amount of deposited material. The achieved currents, on the contrary, were only slightly 

lower than the base-case electrode, even though the instability was found to be similar, as 

the currents at 2.6 VRHE halved after the end of the CV. On the other hand, the calcined 

sample synthesized at 0.025 mA/cm
2
, that is, B100/Ti, showed a decreased current, 

together with a more questionable stability than the B000/Ti sample. Therefore, low current 

densities were considered not suitable for the electrodeposition of manganese oxide films 

on Ti. 
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Fig. 58 – CV in 0.1M Na2SO4 of a) A100/Ti, b) A200/Ti and c) A200/NTs.  

Scan rate 20 mV/s 

 

The non-calcined samples synthesized with higher current densities (i.e. A200/Ti in Fig. 

58b), on the contrary, achieved high currents at potentials ~ 2.6 VRHE, with a noticeable 

capacitive behavior, which was probably due to the higher amount of deposited MnOx on 

the substrate. The stability of the film layer, however, was not improved by the change in 

the electrodeposition current. The same pseudo-capacitance is detected for the same film 

obtained on TiO2-NTs (i.e. A200/NTs in Fig. 58c), and stability is again slightly enhanced 

thanks to the presence of the nanotubes. 
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Fig. 59 – CV in 0.1M Na2SO4 of a) B100/Ti, b) B200/Ti and c) B200/NTs.  

Scan rate 20 mV/s 

 

Similar results, in terms of pseudo-capacitance, were reported for the calcined sample on 

nanotubes (i.e. B200/NTs in Fig. 59c), compared to the same film grown on Ti (i.e. 

B200/NTs in Fig. 59b). The pseudo-capacitive behavior of an electrode, in fact, was 

exclusively due to either the type of material (non-crystalline) or the presence of the 

nanotubes. Concerning the stability obtained during the CV analysis, the samples grown on 

TiO2-NTs reported again the best results. This phenomenon could be explained by the 

penetration of the MnOx nanoflakes inside the nanotubes, which improved the contact area 

and limited the detachment of the film from the interlayer, as can be appreciated in the 

cross-section of the FESEM images in Fig. 45.  
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 Precursor modification 

 

As far as the MnOx cathodically deposited on Ti is concerned (Fig. 60a), although 

the prevalent phase formed after their thermal treatment was α-MnO2, they did not show a 

pseudo-capacitive behavior. Such phenomena could be explained by considering the 

different rod-like morphologies of these MnOx samples, which have less exposed surface 

area than the nanoflakes, and this could lead to a lower capacitive effect. It has been 

reported that differences in MnO2 morphology under different electrodeposition conditions 

and the post-thermal treatments could contribute to the differences in the capacitive 

behaviors [143, 144]. Indeed, a lower capacitance effect has been observed for a smaller 

nanosheets spacing and more compactness of the structure, which make ion diffusion 

within the structure difficult [143]. Moreover, the interaction with the substrate seems to 

play a crucial role in the capacitive behavior of manganese oxide films and also leads to 

different morphologies, which in turn affects the electrochemical characteristics of the 

electrode [145, 146]. 

 

    

Fig. 60 – CV in 0.1M Na2SO4 of D201/Ti.  

Scan rate 20 mV/s 

 

On the contrary, pseudo-capacitance of the cathodically deposited MnOx was again 

observed for the film grown on TiO2-NTs (Fig. 60b), thus confirming that such behavior 

was due to the presence of the nanotubes interlayer. 

 

Fig. 61 and Fig. 62 show the LSVs for the samples synthesized on Ti and TiO2-

NTs, respectively, at different current densities and with the permanganate precursor. As 

previously stated, the anodes synthesized by low current densities, that is, 0.025 mA/cm
2
, 

presented the lowest currents at 2.6 VRHE, probably because of the low amount of material 

deposited on the substrate. 

For samples deposited on Ti, the non-crystalline MnOx (A200/Ti) demonstrated 

again to be the most active film in the LSV. As can be noticed, the cathodic MnOx sample 

grown on both Ti and TiO2-NTs (i.e. D201/Ti and D201/NTs) showed a flat LSV and low 

current densities (< 0.05 mA/cm
2
 at ~ 2.6 VRHE) towards the water oxidation. This was 
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probably due to the presence of the α-MnO2 phase, which had a lower tendency for that 

type of reaction [147]. 

 

Fig. 61 – LSV in 0.1M Na2SO4 of electrodes deposited on Ti at different currents and 

precursor. Scan rate 5 mV/s 

 

When analyzing the LSVs obtained by the electrodes grown on TiO2-NTs, an 

interesting phenomenon was found in Fig. 62. The B200/NTs sample produced the highest 

final current density (~ 0.4 mA/cm
2
 at 2.5 V vs. RHE, see Fig. 62), which was one order of 

magnitude higher than the similar MnOx film deposited on Ti (B200/Ti,), and than the 

cathodically deposited films (D201/Ti and D201/NTs). Moreover, it was two times higher 

than the current densities obtained for the respective non-calcined samples, on both Ti and 

TiO2-NTs. This trend was in agreement with the predominance of the α-Mn2O3 phase 

revealed by the XRD analysis on the calcined electrodes containing TiO2-NTs, which is 

capable of higher oxygen evolution rates than α-MnO2 [95, 104, 125], thus justifying the 

improved behavior for the water oxidation reaction. On the contrary, the presence of α-

MnO2 detected on the B200/Ti sample,  as well as in the cathodically deposited MnOx, led 

to a decrease in the water oxidation activity [147-149], which instead should be beneficial 

for the degradation of organic molecules (e.g. phenol) with a higher Nernst potential than 

water oxidation. 
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Fig. 62 – LSV in 0.1M Na2SO4 of electrodes deposited on NTs  

at 2.5 mA / 10 min 

 

 

4.3.4 Phenol electro-oxidation tests 

 

Fig. 63 shows the phenol degradation results obtained for all the electrodes 

synthesized in this work. The results obtained for the two substrates (Ti and TiO2-NTs), 

without any catalyst, are also reported for comparison purposes. The effects of the 

electrodeposition parameters (time, Mn
2+

 concentration, current density and type of 

precursor) are separated to better evidence the effect of these parameters on the film 

activity. 

 

 Base-case and substrates 

 

El-Ox tests for the base-case electrodes were carried out at 0.25 mA/cm
2
, not to 

exceed the limit of the potentiostat (10 V), and to start the process at around the same value 

of potential (~ 3 VRHE). 

Although the conversions were rather low, an interesting trend can be observed: the 

nanotubes interlayer seems to have a beneficial effect on both the degradation and the 

maximum potential reached after 5 h of reaction. In particular, the non-calcined A000/NTs 

sample reported the highest phenol conversion, that is, of about 12%. 
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It is also worth noticing (see the last box of Fig. 63a) that the blank test with the 

TiO2-NTs substrate showed a slight conversion of phenol (about 4%), unlike the Ti foil, 

which was totally inactive. Moreover, after the tests, Ti was passivated and its surface 

changed from gray to a brownish color, indicating that a poor conductive oxide layer was 

formed as a result of the current passed through the electrode. The nanotubes resulted in a 

comparable conversion to that of the calcined electrodes, which indicates a higher 

selectivity of the non-crystalline MnOx than of the sample containing α-Mn2O3 for this 

reaction; however, the reduction of the potential (more than 3 V) necessary to perform the 

reaction in the presence of the manganese oxide catalysts on the TiO2-NTs, is clear, which 

confirmed the effectiveness of these materials for phenol degradation. Probably, the role of 

TiO2-NTs is related to a decrease in the charge transfer resistance (i.e. kinetics of reaction), 

which could be induced by the good distribution and penetration of the manganese oxide 

on the high surface area and by the porosity provided by this 3D nanostructure, which 

enhance the diffusion of the electrolyte to the active material [93, 110, 111, 144]. 

As far as the effect of the temperature ramp during calcination is concerned, the 

electrode calcined at the slow ramp of 2 °C/min (B000(s)/Ti) did not lead to any 

conversion and resulted in a higher final potential than the similar sample calcined with a 

fast heating ramp (20 °C/min, sample B000/Ti). Therefore, the latter condition was 

implemented for the subsequent studies. Under such a condition, calcination improved the 

stability of all the samples and acted positively on phenol conversion in the case of the 

sample on the Ti substrate (B000/Ti). Calcined electrodes, in fact, were the only ones 

which remained under 4 VRHE for all the duration of the test. 

Films calcined in N2, instead, presented no conversion in all cases, i.e. calcined at 

slow or fast ramp, either on titanium or on nanotubes, proving that the hausmannite 

(Mn3O4) phase is non-active for the electro-degradation of phenol. Moreover, their 

working potentials resulted to be the highest for the samples grown over Ti, or comparable 

to the non-calcined electrodes for the film deposited on TiO2-NTs. 

 

 Deposition time modification 

 

The synthesis conducted at different deposition times (i.e. 5 and 20 min) are also 

presented in Fig. 63a, in the second box. The A010/Ti and A020/Ti samples, which were 

the non-calcined ones, showed little or no phenol and COD degradation, similarly to the 

electrode deposited at 10 min, which gave 1.2% phenol conversion. Also the samples 

calcined in air, i.e. B010/Ti and B020/Ti, did not show any increment in the oxidation 

effectiveness towards phenol, thus confirming the results obtained by the electrochemical 

characterization: the deposition times investigated did not significantly affect the 

performances of the MnOx films. 

On the contrary, when looking at the working potentials in Fig. 63b, all the time-

modified samples presented higher final potentials than the base-case counterparts. Thus, 
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all the following electrodes were synthesized with a deposition time of 10 min, which 

proved to provide the most stable performances. 

 

 Concentration modification 

 

The third boxes in Fig. 63 show the performances of the electrodes synthesized at 

different concentrations of Mn
2+

 precursor, either non-calcined or calcined in air. Both the 

samples obtained with 0.01 M Mn
2+

 (i.e. A001/Ti and B001/Ti) gave similar conversions to 

the base-case electrodes, with similar or slightly higher working potentials, therefore 

confirming the hypotheses of the electrochemical characterization, in which the difference 

between 0.1 M and 0.01 M Mn
2+

 was not determining. On the contrary, the samples 

obtained at 0.001 M Mn
2+

 were totally non-active, and their working potentials were 

higher than the base-case, probably due to the low amount of deposited material on the 

substrate. 

Thus, the precursor concentration for further syntheses was 0.1 M Mn
2+

. 

 

 

Table 9 - Electrooxidation results for all tested electrodes 

Electrode 

Faradaic 

efficiency 

(%)  

TON 

(molPhenol / 

molMn) 

Relative  

conversion 

(molPhenol / molMn∙W∙h) 

A000 / Ti 7.8 0.25 37.2 

A000 / NTs 33.2 2.36 469.0 

B000(s) / Ti 0.0 – – 

B000 / Ti 10.7 0.86 212.6 

B000 / NTs 37.1 1.15 314.8 

C000(s) / Ti 0.0 – – 

C000 / Ti 0.0 – – 

C000 / NTs 0.0 – – 

Ti 0.0 – – 

TiO2-NTs 22.4 – – 

a – Base-case electrodes and substrates 
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Electrode 

Faradaic 

efficiency 

(%)  

TON 

(molPhenol / 

molMn) 

Relative  

conversion 

(molPhenol / molMn∙W∙h) 

A010 / Ti 0.0 – – 

A020 / Ti 11.7 0.19 27.9 

B010 / Ti 9.8 1.58 390.1 

B020 / Ti 15.6 0.63 230.6 

b – Time modification 

 

Electrode 

Faradaic 

efficiency 

(%)  

TON 

(molPhenol / 

molMn) 

Relative  

conversion 

(molPhenol / molMn∙W∙h) 

A001 / Ti 10.7 0.86 212.6 

A002 / Ti 0.0 – – 

B001 / Ti 3.9 0.13 18.6 

B002 / Ti 0.0 – – 

c – Concentration modification 

 

Electrode 

Faradaic 

efficiency 

(%)  

TON 

(molPhenol / 

molMn) 

Relative  

conversion 

(molPhenol / molMn∙W∙h) 

A100 / Ti 0.0 – – 

A200 / Ti 43.3 0.51 17.1 

A200 / NTs 42 0.48 20.1 

B100 / Ti 0.0 – – 

B200 / Ti 45.9 0.35 25.1 

B200 / NTs 26.7 0.26 25.7 

D201 / Ti 44.6 0.82 43.7 

D201 / NTs 45.3 0.75 46.7 

d – Current and precursor modification 
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Fig. 63 - Phenol and COD conversion (a), initial and final potentials (b) for all the 

electro-oxidation tests 
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 Current density and precursor modification 

 

Fig. 63 shows the performances obtained for the samples deposited at different 

current densities and with the cathodic method, on the right side of the bar charts. The 

electrodes obtained by electrodeposition at 0.025 mA/cm
2
 were tested at 0.25 mA/cm

2
 (due 

to poor stability), whereas the samples deposited at ±2.5 mA/cm
2
 were tested at an El-Ox 

current density of 0.75 mA/cm
2
. It was not possible to carry out the tests for Ti and TiO2-

NTs under the El-Ox current density of 0.75 mA/cm
2
, as the two substrates reached the 

limit potential of the instrument (10 V) after just a few minutes. 

First of all, it is worth noting that both the electrodes synthesized at 0.025 mA/cm
2
, 

non-crystalline and calcined (i.e. A100/Ti and B100/Ti), showed no activity and their 

working potentials resulted in the highest among their type of material, even though the El-

Ox current was only 0.25mA/cm
2
. Therefore, no more consideration was given to this type 

of deposition. 

Concerning the samples deposited at ±2.5 mA/cm
2
, the as-prepared electrodes 

containing non-crystalline manganese oxides reported similar phenol conversion 

efficiencies, probably because of the higher thickness of the MnOx on the top of the NTs 

substrate, whose activity prevailed over that of the material within the pores. Nonetheless, 

the role of NTs played in reducing the final reaction potential was again confirmed. 

The highest conversion was obtained for the D201/Ti electrode, while the lowest 

one was reached for B200/NTs. Interestingly, as revealed by the XRD analysis, the higher 

the presence of α-MnO2, the higher the conversion, while the higher the presence of α-

Mn2O3, the lower was the degradation efficiency. The lower effectiveness of the latter type 

of electrodes could be due to the higher production of molecular oxygen, as Mn2O3 (Mn
3+

) 

is considered the most active phase for water splitting [117, 125, 147, 148], and it leads to 

the indirect oxidation of phenol through a reaction with O2. MnO2 (Mn
4+

) is instead more 

active for phenol oxidation [96, 97] or in heterogeneous catalysis [149, 150], due to its 

ability to degrade organic molecules by producing hydroxyl radicals (OH·).  This has also 

been confirmed by the XPS analysis, which showed they were the samples with the highest 

AOS values (i.e. closer to the oxidation state of Mn
4+

).  

Although the presence of nanotubes in the calcined material, induced a small 

reduction in the activity (~5%), the final potential was about 1 V lower in the B200/NTs 

sample than for the B200/Ti sample. This can be explained by considering the induced 

formation of both the α-Mn2O3 and α-MnO2 phases on the TiO2-NTs substrate. The LSV 

of the B200/NTs sample resulted in the highest current densities in 0.1 M Na2SO4 (Fig. 7), 

which showed a higher tendency of this electrode towards the water splitting reaction. This 

feature, i.e. greater stability and oxygen evolution activity, is worth exploiting using this 

type of electrode in mild Catalytic Wet Air Oxidation (CWAO) conditions (Temperature, 

T < 200 °C; Pressure, P < 30 bar), in order to be able to exploit the O2 produced to degrade 

phenol in a high T - high P electrochemical multifunctional reactor. 
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The Faradaic efficiency (FE) was calculated from the COD conversion, using  

 Eq. 116: 

 𝐹𝐸 =
𝐶𝑂𝐷−𝐶𝑂𝐷0  

8𝐼∆𝑡
∙ 𝐹𝑉𝑟    Eq. 116 

where COD0 and COD are the chemical oxygen demand before and after the test, F 

is Faraday‟s constant (96487 C/mol), V is the reaction volume (l), I is the applied current 

(A) and Δt is the reaction time (s). 

The Faradaic efficiency of the base-case electrodes was higher for the samples 

grown on the nanotubes (see Table 9a), because of the good performances obtained in 

terms of COD conversion. By changing the deposition time and the Mn
2+

 concentration, 

the variation of faradaic efficiency was negligible (see Table 9b, c) 

The Faradaic efficiency was generally higher for the electrodes deposited at ±2.5 

mA/cm
2
 (see Table 9d), than for the ones observed for the samples synthesized at lower 

current densities, due to the fact that the conversion of both phenol and COD was much 

improved. In this case, with the exception of the B200/NTs electrode (α-Mn2O3), the FE 

was similar for all the electrodes, even for those samples which showed a lower phenol 

conversion. This implies that phenol can be readily converted into more oxidized 

molecules, such as benzoquinone or maleic acid [151, 152], but any further degradation is 

more difficult, thus a difference between the phenol and COD conversions have been 

observed. 

Even though the complete removal of phenol was not achieved, the specific 

activities of the MnOx-based electrodes were quite high, as shown in Table 9. The 

theoretical amount of Mn that was deposited on the electrode surfaces during the 

electrodeposition experiments can be calculated according to Faraday‟s law as: 

𝐼 ∙ ∆𝑡 = 𝑧 ∙
𝑚

𝑀𝑊𝑖
∙ 𝐹 (3) 

where I is the electrodeposition current (A), ∆t is the electrodeposition time, z is the 

number of electrons involved (2 for anodic deposition, 3 for cathodic deposition), m is the 

mass deposited (g), MWi is the molecular weight of the ionic species (g/mol) and F is 

Faraday‟s constant (96487 C/mol). Hence, the theoretical amount of Mn in the electrodes 

deposited at 0.25, 2.5 or -2.5 mA/cm
2
 for 10 min were 0.043, 0.427 and 0.285 mgMn/cm

2
, 

respectively.  

The Turn Over Number (TON) referred to the Mn (active sites) was then calculated 

as mols of phenol degraded by mols of Mn in the electrodes (see Table 9a, d). In the same 

manner, a conversion efficiency related to the energy consumption was calculated by 

dividing the TON by the total applied energy (in Wh) provided to the electrode during the 

5h of the degradation test and the results are also reported in the last column of Table 9a 

and Table 9d. 



108 

 

The TON for the electrodes deposited at 0.25 mA/cm
2
 was lower for the samples 

grown on Ti than the one obtained for the films synthesized over the nanotubes, especially 

for the non-calcined samples. The energy relative conversion followed the same trend, with 

the best performances being observed for samples on the TiO2-NTs. 

The electrodes deposited at 2.5 mA/cm
2
, in general, led to lower TONs than the 

electrodes synthesized at 0.25 mA/cm
2
, probably due to the elevated thickness of the films, 

which did not allow all the deposited manganese oxide to be exploited. As for the phenol 

degradation, the anodically deposited and calcined films and the samples grown on 

nanotubes were slightly less performing than the samples over titanium. However, the 

energy related conversion, had an inverse trend, with better results for the above-

mentioned electrodes. This was due to the improved stability and, thus, to the lower 

potential reached during the electrooxidation process.  

The cathodic manganese oxides proved to be the best performing synthesized 

electrodes, for all the analyzed parameters (phenol degradation, COD reduction, TON and 

energy relative conversion). 

A comparison was made with one of the most effective SnO2-Sb sample on the 

TiO2-NTs electrode [111], that converted 90% of phenol in 1.7h, at a current density of 10 

mA/cm
2
, which corresponds to a working potential of about 2.85 V vs RHE. For this type 

of electrode, the deposited mass was 2.50 mg/cm
2
 and the TON was 0.88 molPhenol / 

molSnSb, which is similar to the one obtained for D201 and lower than the electrodes grown 

at 0.25mA/cm
2
 on the TiO2-NTs. When the energy given to the electrode for 1.7 h was 

considered, the conversion related to the energy consumption was of 18.2 

molPhenol/(molSnSb·Wh), that is, 58 % less than our best electrode (D201/Ti) which achieved 

43.7 molPhenol/(molSnSb·Wh). 
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4.3.5 EIS analysis 

 

Electrochemical Impedance Spectroscopy (EIS), a well-known technique that is 

often employed to characterize electrochemical systems with the aim of comparing their 

charge transfer and transport properties [47, 48, 116], was also performed on the phenol 

solution. An applied DC potential of 3.3 VRHE, which was the average initial potential 

achieved during the El-Ox process for all the considered samples, was employed for the 

EIS analyses. The results are reported in Fig. 64B and Fig. 66B (Nyquist plots) and in Fig. 

65 and Fig. 67 (Bode plots: phase and modulus of impedance |Z| vs. frequency). 

 

  

Fig. 64 – (A) Electro-oxidation potentials and (B) Nyquist plots of the EIS 

measurements at 3.3 V vs. RHE of base-case samples
 

 

The most stable electrodes that were able to sustain the constant potential (i.e. for 

which the total increase of potential over time was lower than 0.5 V) were found to be the 

calcined anodically deposited MnOx electrodes over both the Ti and TiO2-NTs substrates 

(see Fig. 64A and Fig. 66A), which can be attributed to the presence of highly stable α-

Mn2O3 crystalline phase. Accordingly, the Nyquist plots of the same samples in Fig. 64B 

and Fig. 66B show that they evidenced lower impedance values for these electrodes than 

for the other electrodes, which in turn indicated an increase in the number of electrons 

transferred through the electrode/electrolyte interface on those materials. In fact, a 

reduction in the diameter of the semicircle in the Nyquist plots indicated a lower resistance 

to the charge transfer because of an enhancement of the reaction kinetics, which, in this 

case, depends on the surface properties of the MnOx-based electrode materials [117]. 

Nevertheless, it was not possible to identify which was the prevalent reaction between 

water oxidation and phenol degradation from these electrochemical measurements, and, the 

phenol and COD conversion were therefore chemically determined as reported in Par. 

4.3.4. 
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Fig. 65 – Bode plots of EIS at 3.3 VRHE of base-case electrodes in 100 mg/l phenol and 

0.1 M Na2SO4: Impedance modulus (A) and phase (B) 

 

Instead, all the non-calcined MnOx samples (see Fig. 64A and Fig. 66A) reached 

very high potentials, of up to 8.6 V. An intermediate behaviour was observed for the 

thermal-treated cathodically deposited MnOx samples, which were constituted by rod-like 

α-MnO2, and steadily increased the potential up to 6 V. 

Interestingly, in all the samples, TiO2-NTs contributed to the reduction of the 

applied potential for phenol El-Ox (from 0.5 to 1.5 V) with respect to the Ti substrate. In 

particular, the B000/Ti and B200/Ti samples settled at a higher potential (of about 0.4 V 

and 1 V, respectively) than the similar materials deposited on the TiO2-NTs substrates. 

This trend can be attributed to the presence of a certain amount of α-MnO2 for the B200/Ti 

sample, but not for the other material. 

Besides, the difference between the El-Ox potential of the MnOx on the Ti, for the 

non-crystalline MnOx electrodes (Fig. 64A and Fig. 66A), with respect to that on the TiO2-

NTs substrate increased during the time-course of the reaction. On the other hand, TiO2-

NTs interlayer in cathodically deposited electrodes (Fig. 66A), did not decrease the 

potential with respect to the sample on Ti in the same extent as the anodically deposited 

MnOx, but a certain improvement was also achieved in this case. A possible explanation 

for such behavior could be the lower tendency of the cathodically deposited manganese 

oxide to enter the nanotube pores, as already observed in the FESEM cross-sections (Fig. 

46), and, to a certain extent, could also be due to a loss of adhesion of the MnO2 to the 

substrate. 

In short, the positive influence of the NTs substrate on the behaviour of the 

electrodes was evident as it increased the reaction kinetics and led to a lowering of the 

necessary potential, which was also demonstrated by the lower impedance of the MnOx 

samples deposited on TiO2-NTs than their counterparts supported on the Ti foils, as can be 

seen in Fig. 64B and Fig. 66B and in the modulus of impedance |Z| at 1 Hz reported in Fig. 

65 and Fig. 67. 

Since the charge transport differences in the samples were not so evident in the 

Nyquist plots in Fig. 64B and Fig. 66B, the EIS measurements were also plotted in the 
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form of Bode diagrams (Fig. 65 and Fig. 67). Bode plots are usually useful to separate 

charge transfer and charge transport processes in electrochemical systems because the 

latter is characterized by faster time constants [47, 104]. The phase spectra in Fig. 65 and 

Fig. 67 show a clearly distinguishable peak for all the electrodes in the range between 100 

and 1000 Hz (approx. centered at about 200 Hz for most of the samples), which can be 

attributed to the charge transport process in such electrodes. Instead, the charge transfer 

process at the electrode/electrolyte interface can be analyzed from the |Z| at frequencies 

lower than 100 Hz, in the same way as for previous works [116, 117]. For comparison 

purposes, the |Z| values at 200 Hz and at 1 Hz could be ascribed to a measure of the charge 

transport and charge transfer resistances, respectively, of the different electrodes. As 

expected, the values of |Z| at 1 Hz followed an equivalent trend to the diameter of the 

Nyquist plots semicircles, and the same conclusions as before can, therefore, be drawn. 

 

  

Fig. 66 – (A) Electro-oxidation potentials at and (B) Nyquist plots of the EIS 

measurements at 3.3 V vs. RHE of samples synthesized at ±2.5 mA/cm
2 

 

In the thin samples (see the FESEM images in Fig. 43) deposited at 0.25 mA/cm
2
, 

the highest conductivity of the Ti substrate is confirmed by the low |Z| values (e.g. 58 Ω at 

200 Hz) of the non-calcined MnOx sample supported on Ti foil (i.e. A000/Ti). Obviously, 

such resistance values also accounted for the resistivity of the non-crystalline MnOx film 

towards the electrons flow and, consequently, it could not be null. As a consequence, the 

charge transport resistance was higher for the sample deposited on the TiO2-NTs, with a |Z| 

value of 118 Ω at 200 Hz, which can be attributed to the lower conductivity of TiO2 than 

the metallic Ti.  

However, after the thermal treatment, the charge transport was similar, with a 

higher value of |Z| for all the samples. The sample calcined with the slow ramp, B000/Ti 

(s), showed the highest impedance (i.e 257 Ω at 200Hz), while the fast heating ramp 

decreased the impedance to 172 and 198 Ω in the B000/Ti and B000/NTs samples, 

respectively. Considering that all these calcined samples contained α-Mn2O3, their charge 
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transfer properties can be attributed to the formation of the TiO2 passivation layer on the 

surface of the Ti foil (as observed from the XRD), which caused a considerable drop in the 

metallic behaviour of this substrate, especially for the slow heating ramp, which exposed 

the sample to high temperatures for longer times. 

 

 

Fig. 67 – Bode plots of EIS at 3.3 VRHE of electrodes synthesized at ±2.5 mA/cm
2
 in   

100 mg/l phenol and 0.1 M Na2SO4: Impedance modulus (A) and phase (B) 

 

The electric conduction properties of the TiO2 nanotube arrays are mainly related to 

defects produced during the electrochemical growing process (anodization), which lead to 

the well-known n-type semiconducting behavior. Oxygen vacancies and Ti
3+

 states in TiO2 

nanotubes, which dominate optical and electrical properties of the material to a great extent 

[123] are particularly important. In comparison to a compact oxide layer, such as the 

thermal oxide formed under the MnOx (on Ti) after annealing, the doping level obtainable 

inside the crystalline TiO2 nanotubes is generally very high (10
20

 cm
-3

, as calculated by 

Mott–Schottky analysis in a previous work [119]). This can explain the different behavior 

observed for the A000/Ti and B000/Ti samples in comparison with their counterparts in 

TiO2 NTs. The metallic behavior of titanium in the non-crystallized sample leads to a 

higher charge transport from the MnOx to the current collector, while the rutile layer 

without defects that is formed on the top of the metal substrate after calcination at 500 °C 

becomes less effective than the self-doped nanotubular carpet, despite their different 

thicknesses. 

On the other hand, when the MnOx amount and the film thickness is increased, after 

an increase in the electrodeposition current to 2.5 mA/cm
2
, both of the non-calcined 

samples on Ti foil and TiO2-NTs reported similar |Z| values (i.e. 100 Ω at 200 Hz). After 

the thermal treatment, their charge transport resistance increased slightly, showing |Z| 

values of 133 and 115 Ω, respectively, at 200 Hz, which once again is probably due to the 

formation of a passivating layer after the calcination. Moreover, the impedance modulus 

was higher for the B200/Ti sample, which contained α-Mn2O3 and α-MnO2, unlike the 

sample on the TiO2-NTs which only contained α-Mn2O3, as observed from the XRD 

analyses. 
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In the case of the calcined cathodically deposited samples, although both were 

constituted by α-MnO2, the one on the Ti substrate reported a lower charge transport 

resistance than the similar sample on TiO2-NTs, which had a |Z| value at 200 Hz of about 

59 Ω and 200 Ω, respectively. In this case, the poor charge transport could be due to the 

limited contact area between the α-MnO2 film and the nanotubes, as shown by the cross 

section of the FESEM images. 

 

4.3.6 Accelerated lifetime tests 

 

The accelerated lifetime tests were carried out on some of the synthesized samples: 

the base-case anodes and the electrodes obtained at high current densities, either anodically 

and cathodically deposited.  

It was not possible to perform durability tests on the non-calcined electrodes, 

deposited at 0.25 mA/cm
2
 or at 2.5 mA/cm

2
, and on the electrodes calcined in N2, as those 

electrodes immediately reached 10 V. As a consequence, it is possible to state that 

calcination was essential to reach a resistant film that could withstand high current 

densities, without being damaged or reaching too high working potentials. 

Fig. 68 shows the tests that were carried out on the calcined electrodes 

electrodeposited at 0.25 mA/cm
2
 and it can be observed that films grown on TiO2-NTs 

were able to resist up to 3 h, while the samples on Ti had a lifetime of about 2 h, with a 

slight increase in durability when the calcination occurred at a fast ramp. 

 

 

Fig. 68 – Accelerated lifetime test at 100 mA/cm
2
 in 1 M Na2SO4 of base-case samples 
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Fig. 69 reports the results of the durability tests on the calcined electrodes 

electrodeposited at ±2.5 mA/cm
2
, among which the B200/NTs sample reached about 15 h 

of an accelerated lifetime, while the same film deposited on metallic titanium stopped at 12 

h. Both the D201/Ti and D201/NTs cathodic electrodes resisted for about 7 h, thus 

confirming that the calcined anodic samples were the most durable electrodes. If compared 

to previous literature works, the results obtained on the most stable sample were 

comparable in order of magnitude to the durability tests carried out for similar electrodes 

based on SnO2-Sb synthesized via electrodeposition over TiO2-NTs, which had durabilities 

of about 36 h [113]. 

 

 

Fig. 69 – Accelerated lifetime test at 100 mA/cm
2
 in 1 M Na2SO4 of samples 

synthesized at ±2.5 mA/cm
2
 

 

 

  



115 

 

4.4 Conclusions 
 

In conclusion, MnOx electrodeposited on titanium and titania nanotubes were 

synthesized, fully characterized and tested. Various techniques, which led to different 

morphologies and phases of manganese oxides, were employed, as reported by means of 

the FESEM, XRD and XPS investigations.  

Electro-deposition parameters such as time, precursor concentration, deposition 

current and type of precursor were varied to investigate their effects on the performances 

of the films. For the anodic deposition from a Mn
2+

 precursor (i.e. manganese acetate), 2.5 

mA/cm
2
 for 10 min in 0.1 M Mn

2+
 was found to be the best synthesis, which led to the 

highest conversions. For the cathodic deposition in potassium permanganate, the best 

combination was -2.5 mA/cm
2
 for 10 min in 0.01 M Mn

7+
. 

Also the ramp applied during the calcinations was studied, proving that a fast ramp 

at 20°C/min provided better results than the slow ramp at 2°C/min. 

Concerning the activities of the different phases, α-MnO2 on titanium demonstrated 

the highest activity for the electro-degradation of phenol, while α-Mn2O3 on titania 

nanotubes provided the highest stability during the reaction. Hausmannite Mn3O4, on the 

contrary, gave the lowest activity and stability, therefore it was no more considered after 

the preliminary tests. 

Synthesis on TiO2-NTs allowed the manganese oxide to penetrate inside the 

nanotube array when the anodic deposition was carried out, while cathodic deposition did 

not show any relevant growth of manganese oxide inside the nanotube structure. MnOx 

deposited on TiO2-NTs resulted in lower working potentials (about 1-1.5 V) during the 

electro-oxidation of phenol, than the same electrodes grown on Ti metal. This result was 

investigated through an EIS analysis, which confirmed the fundamental role of TiO2-NTs 

in enhancing the charge transfer properties and improving the conduction from the metal 

substrate to the MnOx film, especially in calcined electrodes, as the formation of a 

passivating layer of rutile on the metallic Ti was avoided. Thus, excellent performances 

were obtained on the optimized substrates, even though total phenol and COD conversions 

were not reached in this work. However, it is important to underline that the electro-

oxidations were carried out at very low current densities with respect to those adopted in 

most of the literature. Furthermore, these results should be considered in relation to the 

amount of deposited material, which was lower than for the other reported syntheses, due 

to the fast electrodeposition times. 

Moreover, the durability tests proved that the electrodes anodically deposited at 

high current densities had the longest lifetime, which was further increased by the presence 

of the nanotubes layer (up to 15h), thanks to the better adhesion obtained from the 

penetration of the MnOx film inside the nanotubes. More studies are required in order to 

better understand the deactivation causes, in order to be able to further improve the lifetime 

of these materials.  
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The easiness of the procedure and the thermal energy saving obtained with the 

proposed synthesis method should be considered as positive points, since there is no need 

for long layer by layer preparations, such as the one used to deposit alternate layers of Sb 

and Sn from their respective precursors solutions and for which the calcination times are 

higher. Hence, further improvements should be made to increase both the performance and 

stability of such electrodes, in order to find an interesting alternative to the commonly 

used, and more expensive (e.g. IrO2, RuO2) or more toxic electrodes (e.g. PbO2) for the 

treatment of organics in wastewater. Moreover, the here presented results open interesting 

perspectives for additional phenol degradation studies, even under intensified process 

conditions, with the aim of boosting phenol conversion at high temperatures and high 

pressures (CWAO conditions). 
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CHAPTER 5 
 

 

 

ELECTRO-OXIDATION OF PHENOL AT 

HIGH TEMPERATURES AND PRESSURES 
 

 

 

 

 

5.1 Introduction 
 

After having performed the characterizations and the electro-oxidation (El-Ox) tests 

at ambient conditions, to compare the activities of the MnOx-based anodes with the state-

of-the-art, tests under high temperatures and high pressures (HTHP) were carried out on 

some of the most promising samples. In particular, the B200/Ti sample (i.e. anodically 

deposited with α-Mn2O3 / α-MnO2 phases), and the D201/Ti sample (i.e. cathodically 

deposited with α-MnO2 phase) were selected among the others, due to their high activity 

and/or stability. 

As reported in chapter 4, in fact, cathodic electrodes (type D) showed the higher 

efficiency of degradation phenol, while the anodic samples (type B) proven to give a stable 

working potential throughout all the El-Ox tests. 

Tests on the samples deposited on TiO2-NTs will not be shown, as the nanotubes 

interlayer resulted too fragile for the operative conditions employed in the experiments, 

and both the film and the nanotubes detached from the substrate of titanium foil. 

The manganese oxide electrodes were compared with two of the most performing 

types of anode used for this application: electrodeposited antimony-doped tin oxide (SnO2-

Sb
5+

) film on titanium and thermally deposited ruthenium oxide (RuO2) over titanium. 

Two main results are expected:  

 

1) the increase of the efficiency for phenol removal and the degree of mineralization, 

due to the improved exploitation of the current given to the system (evolved O2 is 

used as well as hydroxyl radicals for the oxidation of phenol, instead of being wasted 

as a by-product) 

2) the decrease of the cell potential for the reaction, since the higher temperatures 

should favor the electrolyte conductivity and improve the charge transfer 
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5.2 Materials and methods 
 

 

5.2.1 Ti substrate preparation 

 

Titanium foils (Sigma-Aldrich, 99.7%, thickness 250 µm) of 40 cm
2
  were prepared 

according to the procedure described in Par. 4.2.1 [153]: polishing with 320-grit sandpaper, 

ultrasound cleaning in 2-propanol for 15 minutes. degreasing in 40% NaOH at 50°C for 20 

minutes, and etching for 1 minute in HF solution 1.2% w/w shortly before the deposition 

process to remove the native oxide layer. 

 

 

5.2.2 MnOx electrodes synthesis  

 

Electrodeposition of manganese oxides was conducted under similar conditions to 

Par. 4.2.2, with a BIOLOGIC VMP-300 potentiostat. Ti was set as the anode, Pt wire was 

used as the cathode and Ag/AgCl 3M KCl (+ 0.209 V vs NHE) was used as the reference 

electrode. 

The B200/Ti sample was prepared by anodic deposition, by dipping the titanium 

foil (40 cm
2
) in 150 ml of a solution containing 0.1 M of Mn(CH3COO)2 as Mn precursor 

and 0.1 M Na2SO4 as supporting electrolyte. A current density of 2.5 mA/cm
2
 was applied 

to the system for 10 min. 

The D201/Ti sample was deposited by cathodic deposition, by dipping the Ti foil 

(40 cm
2
) in 150 ml of 0.01 M of KMnO4 and 0.1 M Na2SO4 solution and applying a 

current density of -2.5 mA/cm
2
 for 10 min. 

Both the samples were calcined in a muffle oven at 500°C for 1 h, with a 

temperature ramp of 20°C/min. 

 

 

5.2.3 SnO2–Sb
5+

 electrodes synthesis 

 

Synthesis of antimony-doped tin oxide films was carried out with a procedure 

described elsewhere [110]. The Ti foil (40 cm
2
) was alternatively dipped in precursor 

solutions of SbCl3 (Fluka, > 99.0%)and SnCl4·5H2O (Fluka, 98.0%). Sb
3+

 ions were first 

electrodeposited on the Ti substrate in a solution containing 0.01 M of SbCl3 and 0.05 M 

citric acid (Sigma Aldrich, 99%) for 1 min at a constant current density of -2 mA/cm
2
. 

After rinsing with DI water, the electrode was then dipped in a solution containing 0.1 M 

of SnCl4 and 0.05 M H2SO4 (Fluka, 95-98%), and a current density of -2 mA/cm
2
 was 
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applied for 25 min. This procedure was repeated for 2 times to obtain a layer-by-layer 

electrodeposited material. The sample was then rinsed and left to dry in air. 

Finally, the electrode was annealed in a muffle oven at 550°C for 6 h, with a 

calcination ramp of 20°C/min. 

 

 

5.2.4 RuO2 electrodes synthesis 

 

The film of ruthenium oxide was obtained via the thermal deposition method, 

described elsewhere [154]. The precursor solution was 0.1 M RuCl3·xH2O (Sigma Aldrich, 

38-42% Ru basis) dissolved in 2-propanol (Sigma Aldrich, 99.5%), with the addition of 

some drops of HCl (Fluka, 37%). The solution was applied to the surface of the Ti foil (40 

cm
2
) by brush coating, dried at 80°C in air for 10 min, and then calcined in a muffle oven 

at 500°C for 15 min. The procedure was repeated 10 times. Finally, the sample was 

annealed at 500°C in air for 2 h. 

 

 

5.2.5 Standard electro-oxidation tests 

 

Firstly, all the electrodes were synthesized on a Ti foil of 1 cm
2
, to test them in 

standard El-Ox conditions (i.e. at ambient temperature and pressure). Experiments were 

carried out in an undivided and unstirred cell containing 15 ml of phenol (C0=100 mg/l) 

and 0.1 M Na2SO4 as supporting electrolyte. The samples were employed as the anode, 

while Pt wire was set as the cathode. A constant current density of 2.5 mA/cm
2
 was applied 

to the system for 5 h. This value is far lower than those commonly used in literature 

(around 10-20 mA/cm
2
). It was chosen as it is the minimum theoretical current, needed to 

completely oxidize phenol, according to   Eq. 117 and Eq. 118: 

 

 𝐶6𝐻6𝑂 + 7𝑂2 = 6𝐶𝑂2 +  3𝐻2𝑂               (28𝑒−)  Eq. 117 

 

  𝒊 =
𝑰

𝑨𝒆𝒍
=

𝒛 ⋅ 𝑭 ⋅
𝑪𝟎𝒑𝒉𝒆𝒏𝒐𝒍

𝑷𝑴𝒑𝒉𝒆𝒏𝒐𝒍
 ⋅ 𝑽𝒔𝒐𝒍

𝜟𝒕 ⋅ 𝑨𝒆𝒍
=

28 ⋅ 96500 
𝐶

𝑚𝑜𝑙
  ⋅

100

94
 
𝑚𝑜𝑙

𝑙
  ⋅ 0.015 𝑙

3600 ⋅ 5 ℎ ⋅ 1 𝑐𝑚2
= 𝟐.𝟒𝟎 

𝐦𝐀

𝐜𝐦𝟐
 Eq. 118 

 

rounded up to 2.50 mA/cm
2
. In this way, the TOC conversion coincides with the 

faradaic efficiency (FE), defined as: 

 

 𝑭𝑬 =
𝑻𝑶𝑪𝒇𝒊𝒏−𝑻𝑶𝑪𝒊𝒏

∆𝑻𝑶𝑪𝒕𝒉𝒆𝒐𝒓
 Eq. 119 
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Higher current densities could have been applied, but the reaction overpotential 

would have reached higher values, thus decreasing the Faradaic efficiency of the process. 

 

 

5.2.6 High-Temperature High-Pressure electro-oxidation tests 

(HTHP El-Ox) 

 

HTHP El-Ox tests were carried out in a prototype reactor at Politecnico di Torino. 

The lab-scale reactor consists of two separate chambers (500 ml each), where anodic and 

cathodic reactions take place. A pipe connects the two compartments, where a membrane 

can be placed, in case separation of the two chambers is required, e.g. to have wastewater 

treatment on the anodic side and hydrogen production from clean water on the cathodic 

side.  

 

 

Fig. 70 – Scheme of the HTHP reactor 

 

The equipment is made of AISI 316 stainless steel and can resist to 50 bars and 

200°C. A magnetic hotplate stirrer provides both the heat and the mixing. There are 

temperature and pressure sensors on the top of the chambers. The system works in batch 

conditions, but it could also operate in continuous conditions (liquid inlet and outlet lines 

are predisposed on the top of the reactor). Gas outlets are provided with back pressure 

regulation and pressure relief valves so that they could be connected to a gas 

chromatograph for further analysis. 

Different conditions were employed during the tests. Firstly, an experiment was 

conducted at 85°C and 30 bar, i.e. similar to some PEM electrolysis conditions [155], to 

investigate the potential application of the manganese oxide samples in standard PEM 

electrolyzer. Then, a test was carried out at 150°C and 30 bar, which are comparable with 
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mild CWAO conditions [56]. The synthesized electrodes were used as the anode, while a 

Pt foil (~ 15 cm
2
) was employed as the cathode. No reference electrode and membrane 

were employed. 

For both the experiments the electric charge passed through the system was the 

minimum for complete the mineralization of phenol, calculated by: 

 

𝒒 = 𝑰 ⋅ 𝜟𝒕 = 𝒛 ⋅  𝑭 ⋅
𝑪𝟎𝒑𝒉𝒆𝒏𝒐𝒍

𝑷𝑴𝒑𝒉𝒆𝒏𝒐𝒍
 ⋅  𝑽𝒔𝒐𝒍 =

28 ⋅ 96500  
𝐶

𝑚𝑜𝑙
  ⋅

100

94
 
𝑚𝑜𝑙

𝑙
  ⋅ 1 𝑙

3600
= 𝟕𝟗𝟖 𝐦𝐀 ⋅ 𝐡

 Eq. 120 

 

rounded up to 800 mA·h. Therefore, also for these tests, the faradaic efficiency is 

equal to the TOC conversion. 

 

 

5.2.7 Ohmic drop compensation 

 

As one of the critical issues in the employment of the HTHP device is the high 

distance between the anode and cathode (~ 10 cm), a preliminary characterization of the 

reactor by Electrochemical Impedance Spectroscopy (EIS) was made, to evaluate the 

ohmic drop in different conditions of temperature and pressure. The same procedure was 

carried out for the standard El-Ox tests. Measured cell potentials were then compensated 

by the ohmic overvoltage, in order to allow the comparison among all the samples and the 

operative conditions.  

 

 

5.2.8 HPLC and TOC analysis 

 

High-Performance Liquid Chromatography (Shimadzu Prominence HPLC, with a 

Diode Array Detector DAD, set at 269 nm) and Total Organic Carbon (Shimadzu TOC-

VCPH Carbon Analyzer) analysis were performed to determine the phenol degradation and 

the degree of mineralization. 

HPLC was also used to determine the intermediates formed during the degradation, 

in order to compare the reaction pathways with the ones presented in the literature. 
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5.3 Results and discussion 
 

 

5.3.1 Ohmic drop compensation analysis 

 

 

Tests in beaker at ambient conditions 

 

Firstly, the measurement was carried out in the beaker, where, the standard El-Ox 

tests were performed. Two Pt wires were used for the experiment. A cell potential of 4.5 V, 

which is commonly reached in electro-oxidation treatments [152], and an alternate current 

(AC) frequency of 10
5
 Hz were set, to determine the resistance of the solution. Results 

showed that the initial solution (100 mg/l phenol and 0.1 M Na2SO4), has a resistance of 

30-35 Ω when the electrodes are placed at a distance of ~ 2 cm. Thus, the cell overpotential 

due to the ohmic drop is about 0.08 V, if a current density of 2.5 mA/cm
2
 is applied to an 

anode of 1 cm
2
.  

 

 

Tests in the HTHP reactor 

 

In order to investigate the response of the system to the variation of the operative 

conditions, the impedance analysis for the ohmic drop measurement was carried out in a 

wide range of temperatures and pressures. This would also be useful to understand the 

trend of the electrolyte resistance with both temperature and pressure. 

The cell potential was set at 4.5 V and the AC frequency was set at 10
5
 Hz, as for 

the ambient conditions test. Two Pt foils were employed as electrodes. For the same 

solution (100 mg/l phenol and 0.1 M Na2SO4), and a distance of ~ 10 cm between anode 

and cathode, the following ohmic drops were found at different operative conditions: 
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Fig. 71 – Effect of the pressure on the electrical resistance of the solution 

 

As shown in Fig. 71, the influence of the pressure on the electrolyte resistance 

resulted very small, especially at high temperatures, where the resistance decreased from a 

value of 11.1 Ω to a value of 9.9 Ω (at 150°C). At 25°C, instead, the solution resistances 

fell from 21.2 Ω to 17.4 Ω. Also the pressure range affected the trend of the resistance: 

from 5 to 10 bar, the decrease was more pronounced than in the range 10-30 bar, in which 

a very small change was observed. Indeed, in the first pressure interval (5-10 bar), the drop 

of resistance was almost equal to the decrease in the second part (10-30 bar), and this trend 

was detected for all the temperatures analyzed. 

Probably, this effect was due to two phenomena [156]:  

1) the increase of the pressure partially compressed the volume of the solution thus 

slightly increasing the concentration of the electrolyte (Na2SO4). However, this 

enhancement should account only for a part of the total effect;  

2) the change in the dissociation equilibrium of sodium sulfate could have improved 

the amount of Na
+
 and SO4

2-
 ions in the solution; 

At such low pressures, the effect of the rise in the liquid viscosity could be 

neglected. 
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Fig. 72 – Effect of the temperature on the electrical resistance of the solution 

 

The effect of the temperature on the electrolyte resistance is shown in Fig. 72. The 

strong influence of this parameter on the conductivity of the solution is clearly evidenced, 

as expected [157]. Great differences were observed, moving from ambient temperature (i.e. 

25°C) to 150°C. The variation was not perfectly linear, but it was slightly more 

accentuated in the range of the lower temperatures. The drop of resistance from 25°C to 

150°C was more noticeable for 5 bar (21.2 Ω to 11.1 Ω) than for 30 bar (17.4 Ω to 9.9 Ω). 

The strong effect of the temperature is easily explained by the enhanced ion 

mobility, due to the drop in the solution viscosity, which is a more determining factor than 

pressure influence. 

The electrolyte resistance at 25°C is lower in the HTHP reactor than in the beaker, 

even though the distance between the electrodes is higher. According to  Eq. 121, this 

phenomenon is due to the fact that the area in which current is carried (A) is larger because 

of the different geometry, thus compensating the higher distance (l). Since the electrolyte 

solution is the same, the resistivity (ρ, Ω·m) is unvaried  

 

 𝑅𝑠 = 𝜌 ⋅
𝑙

𝐴
 Eq. 121 
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5.3.2 Standard electro-oxidation tests 

 

Fig. 73 shows the performances of the electrodes containing the manganese oxides, 

namely B200/Ti and D201/Ti, compared to the bare substrate of titanium foil, and the 

electrodes of antimony-doped tin oxide (named SnO2-Sb) and ruthenium oxide (named 

RuO2). 

As can be seen, Ti foil is totally non-active, as previously described in Chapter 4, 

and it is moreover easily oxidizable. Indeed, when it is used as anode, even at low current 

densities it tends to form an oxide layer, which passivates the electrode and increase the 

potential required to carry on the reaction. This phenomenon occurred during the 

experiment at 2.5 mA/cm
2
 in ambient conditions: few minutes after the beginning of the 

test, the cell voltage reached the limit of the potentiostat (> 10 V) and the surface of the Ti 

foil became darker. The experiment was then stopped just after 3-4 min. 

The B200/Ti sample, which was obtained by anodic deposition and presented a 

mixed manganese oxide film, that is, α-Mn2O3 / α-MnO2, showed the lowest electro-

degradation efficiency of phenol (22.3%), with a poor degree of mineralization, as 

indicated by the TOC analysis (11.3%). This behavior, as previously explained in Chapter 

4, was due to the presence of the α-Mn2O3 phase, which is mainly active towards the water 

splitting reaction [117, 125, 147, 148]. As a consequence, a large part of the current 

provided to the system was wasted for the oxygen evolution reaction. 

On the contrary, when the D201/Ti sample, which was synthesized by cathodic 

electro-deposition, the overall phenol abatement, and TOC reduction were greatly 

improved (42.7% and 27.6%, respectively), achieving efficiencies double than the ones 

obtained by the tests on the anodic sample. This trend is reasonably explicable by the 

composition of the cathodic film of manganese oxide, which contained only the α-MnO2 

phase. In fact, α-MnO2 is largely considered as the most active for the electro-oxidation of 

organic compounds [96, 97]. 

If the two types of manganese oxide are compared from the stability point of view, 

instead, the employment of the anodic sample resulted in a lower cell voltage and in a 

smaller increase of the potential during the El-Ox experiment. Averagely, B200/Ti worked 

at ~ 5 V (almost constant), instead of ~ 6 V showed by D201/Ti, which reached 6.5 V at 

the end of the test (after 5 h). 
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Fig. 73 – Phenol and TOC reduction, initial and final potentials for El-Ox tests  

carried out in ambient conditions at 2.5 mA/cm
2
 

 

The two “reference” anodes, which represent the state-of-the-art in the field of the 

electro-degradation of recalcitrant organics, effectively managed to reduce the 

concentration of phenol to acceptable values, considering that the current provided to the 

cell was slightly more than the minimum required to achieve 100% of TOC reduction. 

The SnO2-Sb sample, which was obtained by cathodic layer-by-layer electro-

deposition, reached a phenol conversion of 77.2% and a TOC reduction of 58.1%, which 

were the double of the cathodic deposited MnOx electrode (i.e D201/Ti) and four times 

than the anodic sample (i.e B200/Ti). The high oxygen evolution overpotential attributed to 

this type of electrode is well-known in the literature [88, 158-163], and is the main factor 

that allows antimony-doped tin oxide films to reach high efficiencies. The working cell 

potential employed with the SnO2-Sb electrode was about 3.6 V, almost constant 

thoroughly the experiment. 

The electrode based on the thermally brush-coated RuO2 proved to be the best 

performing anode for phenol electro-degradation, achieving phenol conversions as high as 

86.1% and degree of mineralization equal to 66.4%. Such efficiencies of the ruthenium 

oxide film lie in its high activity towards a number of electrochemical reactions, including 

water electrolysis [164, 165], chlorine evolution [165, 166] and organics abatement [84, 

86, 154, 167]. The cell potential achieved in the test was ~ 2.7 V and was unchanged 

during all the reaction time. 
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Although the phenol and TOC conversion obtained with the MnOx electrodes were 

not complete, the specific activities of the MnOx-based electrodes were quite high, as 

shown in Fig. 74. The weight of the MnOx samples and the SnO2-Sb electrode were 

estimated with the Faraday‟s law, and they resulted equal to 0.427 mgMn/cm
2
 for B200/Ti 

and 0.285 mgMn/cm
2
 D201/Ti, while SnO2-Sb gave a value of 2.170 mgSn/cm

2
, 

respectively. The ruthenium oxide electrode, instead, was weighed on a microbalance 

(Mettler Toledo UMX2, with 0.1 µg of resolution) after the brush-coating deposition, 

obtaining a value of 4.312 mgRu/cm
2
. 

 

 

Fig. 74 – Turn Over Number (TON) and Relative Efficiency (RE) for El-Ox tests  

carried out in ambient conditions at 2.5 mA/cm
2
 

 

Both the Turn Over Numbers (TONs) and the Relative Efficiencies (REs) of the 

MnOx samples were far higher than the ones obtained from the tin and ruthenium oxide 

electrodes, which was largely due to the lower amount of material deposited on the Ti foil. 

Layer-by-layer electrodeposition of the SnO2-Sb film, in fact, required an overall 

deposition time of about 1 h, mainly for tin oxide, which is 6 times higher than the one 

employed for the synthesis of the manganese oxide samples. 

Thermal brush-coating deposition of  RuO2 deposited even more material on the 

surface of the titanium foil, which is one of the drawbacks of this methods, due to the lack 

of control over the amount of metal oxide. 
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As shown in Fig. 74, even though the anodic MnOx electrode provided a phenol 

conversion of about 22%, its TON and RE were comparable to the ones obtained with the 

two reference samples, whereas the cathodic sample demonstrate to have a good 

compromise between absolute and relative conversion, achieving around 43% of phenol 

oxidation and showing a TON and an RE three times higher than the state-of-the-art 

electrodes. 

 

 

5.3.3 HTHP electro-oxidation tests 

 

Blank tests 

Before starting with the experiments on the electrodes, two blank tests were carried 

out in the HTHP reactor to assess the thermal stability of phenol in the most demanding 

conditions of temperature and pressure. For this purpose, 1 l of phenol solution (100 mg/l) 

was put in the HTHP reactor, then heated up to 150°C and compressed with N2 up to 30 

bar. After 5 h the reactor was cooled and pressure released.  

In the first blank test, no purge with a nitrogen flux was done on the solution before 

heating and compressing. As a consequence, some dissolved air remained in the starting 

solution, and a certain degree of degradation was expected due to the presence of oxygen 

which could react with phenol. 

On the contrary, the second blank test was conducted after purging the system with 

a nitrogen flow for 1 h, thus removing the largest part of the dissolved oxygen in the 

solution. 

Both HPLC and the TOC analysis for the degradation of phenol were carried out on 

the solution after the blank tests. Table 10 sums up the results obtained. 

 

 Phenol conversion TOC conversion 

Blank test – no N2 purge 8.6% 4.6% 

Blank test – N2 purge 1 h 2.3% 1.1% 

Table 10 – Phenol and TOC conversions for the blank tests in the HTHP reactor 

 

As can be seen, the effect of residual oxygen gas inside the starting solution was far 

from being negligible, as it reduced the concentration of phenol by 8.6% and the TOC by 

4.6%.  

This phenomenon was due to the reactivity of molecular oxygen towards the 

organic molecules in operative conditions similar to Catalytic Wet Air Oxidation (CWAO), 

which were the ones reached in the blank test. Moreover, the residence time of the solution 

inside the reactor was sufficient for the partial mineralization of phenol to CO2 and H2O. 
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By purging the solution before entering the CWAO region, the degradation was 

limited to 2.3%, with a degree of mineralization equal to 1.1%, which means that less 

oxygen was present in the system during the experiment. 

 

 

Fig. 75 – Reactor used for the High-Temperature High-Pressure  

(HTHP) tests 

 

 

i) 85°C, 30 bar, high current densities 

The first test was carried out at 85°C and 30 bar, which are operative conditions 

similar to a PEM electrolyzer. A current density of 10 mA/cm
2
 was applied to the system 

for a reaction time of 2 h. Under this conditions, the total charge passed should be the 

minimum required to complete mineralize phenol in the solution, as described in par. 5.2.6. 

Fig. 76 shows the performances of the synthesized electrodes, in addition to the Ti 

substrate.  

The test with bare titanium foil was carried out to investigate possible activity 

towards the reaction in HTHP conditions. As stated before, Ti inert for phenol oxidation 

and easily oxidizable in ambient conditions, reaching rapidly high potentials due to the 

formation of an inert oxide layer. 

Surprisingly, at 85°C and 30 bar titanium foil gained some small activity for the El-

Ox reaction, achieving ~ 20% and ~12% of phenol and TOC abatement, respectively. 

Also the degradation efficiency of anodic manganese oxide (i.e. B200/Ti) was 

improved, and the phenol conversion resulted more than doubled at 85°C, 30 bar, reaching 

values of phenol and TOC reduction (55.6% and 43.9%, respectively) even higher than the 

cathodic MnOx sample (i.e. D201/Ti). This trend could be attributed to the higher tendency 
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of manganese in its Mn
3+

 form, which is present in the anodic film, to oxidize water to O2, 

that would be wasted in ambient conditions, while should be reactive at high temperatures 

and high pressures.  

The same phenomenon was observed for Ti, which also improved the working 

potential of the cell. This effect could be explained considering the influence of the 

temperature on kinetics and overpotential. Higher temperature, in fact, should improve the 

charge transfer, the solution conductivity (as seen in par. 5.2.6), and the reaction 

overpotential, thus allowing also titanium to evolve oxygen without passivation. On the 

other hand, pressure should enhance gas solubility in the aqueous solution, avoiding the 

loss of oxygen as the bubbles are formed on the surface of the anode. 

 

 

Fig. 76 - Phenol and TOC reduction, initial and final potentials for El-Ox tests  

carried out at 85°C, 30 bar at 400 mA 

 

The cathodic sample (i.e. D201/Ti), instead, did not increase its efficiency with 

respect to the ambient El-Ox test. This can be attributable to the absence of the α-Mn2O3 

phase, more active for water splitting. Thus, no boost of the phenol and TOC degradation 

(48.3% and 35.7%) was observed for this electrode, due to the O2 evolution. 

A similar behavior was obtained with the employment of the two reference anodes: 

SnO2-Sb and RuO2. In both cases, in fact, only a slight increase in the efficiency was 

reported: phenol conversion was 82.3% for SnO2-Sb and 88.9% for RuO2. On the contrary, 
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the TOC reduction was noticeably enhanced, proving the beneficial effect of temperature 

and pressure, which contributed to a higher degree of mineralization of the wastewater. 

 

 

ii) 85°C, 30 bar, low current densities 

Another test was conducted in the same operative conditions, concerning 

temperature and pressure. However, in this case, a current density of 5 mA/cm
2
 was 

applied to the system, but for a reaction time of 4 h, thus leaving unvaried the total amount 

of charge needed to completely degrade phenol and TOC. In this way, the effect of the last 

two parameters (current and time) on the efficiency of the process was analyzed. As 

expected, a halved current density with doubled residence times resulted in higher faradaic 

efficiencies, since the TOC reduction was increased for all the samples. 

Averagely, for bare titanium and for the manganese oxide electrodes, both the 

phenol and TOC reduction raised of about 15-20%, whereas the increment for the two 

references, i.e. SnO2-Sb and RuO2, was more limited (less than 5%), as represented in Fig. 

77. 

 

 

Fig. 77 - Phenol and TOC reduction, initial and final potentials for El-Ox tests  

carried out at 85°C, 30 bar at 200 mA 
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This steep increase in the performances of the MnOx samples was most probably 

due to the reduction of irreversibilities which are usually caused when the system is 

brought far from the equilibrium, represented by the open circuit potential. Indeed, the 

higher the applied current density, the greater the influence of phenomena such as ohmic 

drop, polarization and mass transfer limitation. Besides, improved exploitation of the O2 

evolved at the anode could be an additional explanation for this trend. In fact, if the 

employed current density is too high, the amount of oxygen at the surface of the electrode 

is formed too quickly to react with the organic molecules, as the mass transfer of phenol 

from the bulk of the solution becomes the limiting factor. Therefore, not all the O2 electro-

generated is used for electro-degradation but could be wasted as gas bubbles. 

 

 

iii) 150°C, 30 bar, high current densities 

The second set of tests in HTHP conditions was conducted at 150°C and 30 bar. In 

the first experiment, a current density of 20 mA/cm
2
 was passed through the system for 1 

h, and the results are shown in Fig. 78. 

If compared to the tests at 85°C, the performances of all the electrodes, especially 

for MnOx electrodes, were visibly improved. The phenol and TOC conversion for 

manganese oxides were comparable with the test ii (85°C, 30 bar at low current), but in 

this case, the current density was four times higher. This high effectiveness, despite the 

demanding operative conditions, was probably due to the fact that the reaction was carried 

out under CWAO conditions, so the O2 reactivity towards the degradation of phenol was 

boosted and prevailed over the irreversibilities and the mass transfer limitations described 

before. 

Also the working potential of the system was kept at limited values (after ohmic 

drop compensation), even though the applied current was elevated, thus proving the 

beneficial effect of the temperature on the electrochemical process. 
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Fig. 78 - Phenol and TOC reduction, initial and final potentials for El-Ox tests  

carried out at 150°C, 30 bar at 800 mA 

 

The overall performance of both the B200/Ti and the D201/Ti electrodes was then 

similar to the one of the reference anodes, thus encouraging the application of these 

materials for the electro-oxidation of recalcitrant organics. 

 

 

iv) 150°C, 30 bar, low current densities 

The last test was carried out in CWAO conditions, by applying a current density of 

4 mA/cm
2
 for 5 h, to investigate the performances of the system in the absence of mass 

transfer limitations of the organic reagent. 

The results obtained, which are shown in Fig. 79, are surprisingly good for all the 

sample examined, and even for the bare titanium foil. The conversion of phenol was > 85% 

for Ti and > 90% all the coated anodes. TOC reduction, which is numerically equal to the 

faradaic efficiency, was between 80% and 90% for the manganese oxides and between 

85% and 90% for SnO2-Sb and RuO2. 
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Fig. 79 - Phenol and TOC reduction, initial and final potentials for El-Ox tests  

carried out at 150°C, 30 bar at 160 mA 

 

The beneficial effect of a higher residence time, with a decreased current, was again 

confirmed by the test in CWAO conditions. Giving the electro-generated oxygen enough 

time to react with the organics, the conversion achieves almost the complete 

mineralization, moreover obtaining elevated current efficiencies. 

Of course, by increasing the charge passed through the system more than the 

minimum (stoichiometric) needed for the mineralization, the residence time could be 

reduced to meet industrial-scale demands. This method would obviously require higher 

current density, thus decreasing the faradaic efficiency. 

 

The last comparison between the HTHP tests was made by analyzing the TurnOver 

Numbers (TONs) and the Relative Efficiencies (REs) of the coated electrodes. 

To calculate these parameters, the amount of deposited material was measured by 

weighing the electrodes after the deposition process. The values of the film weights are 

reported in Table 11: 

 

 B200 / Ti D201 / Ti SnO2-Sb RuO2 

Weight 

(mg) 
16.118 10.804 87.137 180.448 

Table 11 – Weights of catalyst on coated samples 
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The purple dots in Fig. 80 represent the TONs for the tested anodes. Only one value 

for each sample is showed, as the weight was considered equal for all the syntheses. As can 

be seen, the TON for the manganese oxides is much higher than the one obtained for the 

references. In particular, the B200/Ti sample, gave a TON that was 4 times higher than 

SnO2-Sb and 8 times higher than RuO2, whereas the D201/Ti sample provided a TON 5 and 

10 times greater than SnO2-Sb and RuO2, respectively. 

The REs are represented by the bar chart and followed the same trend of the TONs: 

higher efficiencies for the MnOx electrodes and lower for the references. In this case, 

however, the values changed with the type of experiment, as the REs depends on the 

energy given to the system, that is, current, time and potential. Therefore, they are useful to 

analyze the influence of the operative conditions on the effectiveness of the process. The 

operative conditions as indicated in the legend of Fig. 80 are recalled here below: 

 

 

i) 85°C, 30 bar, 10 mA/cm
2
, 2 h 

ii) 85°C, 30 bar, 5 mA/cm
2
, 4 h 

iii) 150°C, 30 bar, 20 mA/cm
2
, 1 h 

iv) 150°C, 30 bar, 4 mA/cm
2
, 5 h 

 

 

As clearly shown, the changes in the operative conditions strongly influenced the 

manganese oxide electrodes, especially when moving towards CWAO ranges and/or 

slower reaction rates. The trend is less accentuated for the reference anodes since the 

original conversions were already high and the HTHP reactions did not noticeably affect 

their performances. 
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Fig. 80 - Turn Over Number (TON) and Relative Efficiency (RE) for El-Ox tests  

carried out in HTHP conditions 

 

 

5.3.4 HPLC spectra analysis 

 

Since few works exist on the electro-oxidation of phenol on manganese oxide 

electrodes, and no works, as far as is known, concerns the El-Ox of phenol in such 

operative conditions, an investigation on the intermediates produced during the reaction 

was carried out by the analysis of the HPLC spectra. 

First of all, the HPLC analysis was performed on the solutions treated in ambient 

conditions (see Fig. 83). Then, after a literature review, some standard solutions with pure 

compounds, which were hypothesized to be the intermediates of the phenol electro-

degradation, were prepared and analyzed at the HPLC to detect their retention times, in 

order to compare them with the ones obtained by the treated solutions. 

A large number of intermediate products were recognized in the various solutions 

treated with different types of electrode. Fig. 81 shows all the spectra of the identified 

compounds and their retention times. It is worth mentioning that no quantitative analysis of 

the intermediates was made, as their concentrations were estimated to be around 1-2 ppm, 

or even less, for each compound. In addition, the intensity of the peaks is not associated 

with the relative amount of the by-products, as some substances tend to absorb more than 

others at the considered UV wavelength (~ 206 nm). For instance, maleic and fumaric 
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acids always showed the highest peaks, even though their concentration was similar to 

other compounds. 

 

Fig. 81 – Retention times of standard solution of detected intermediates for the phenol 

El-Ox reaction by HPLC analysis 

 

In particular, benzoquinone (tR = 40.8 min) and hydroquinone (tR = 37.9 min) were 

found in the final solutions, as aromatic intermediates, which are usually in redox 

equilibrium, since the cell is undivided and the benzoquinone could migrate and be 

reduced at the cathode. This is commonly recognized as the first step in the 

electrochemical degradation of phenol, after the formation of phenoxy radicals, which are 

also the responsible for possible fouling of the electrodes when reacting with quinones to 

form insoluble polymeric compounds [151, 152, 160, 168, 169]. Their peaks are clearly 

distinguishable, since their retention times are noticeably higher than the other 

intermediates, which are all organic acids (mainly dicarboxylic acids).  

The main acidic compound detected in this group is the maleic acid (tR = 10.4 min), 

which is also the most absorbing in the UV range used for the analysis, so it was the most 

easily recognizable. It is largely accepted that the step following the formation of the redox 

couple benzoquinone and hydroquinone is the aromatic ring opening, which leads to 

maleic acid [151, 152, 160, 168, 169] and its trans isomer: fumaric acid (tR = 17.8 min) 

[151, 168]. Other lower molecular weight intermediates were identified. Succinic acid (tR = 

14.0 min) [151, 152] is directly derived from the couple maleic/fumaric acid, by reduction 

at the cathode, which is not uncommon [152]. Further oxidation could occur, by formation 

of malic (tR = 12.0 min) [151, 169] and tartaric acid (tR = 9.7 min) [169]. All these acids, 
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composed by four carbons, can be transformed into malonic acid (tR = 12.7 min) [152, 168, 

169], which is a three-carbon molecule. From malonic acid two different intermediates 

could be obtained: oxalic acid (tR = 8.6 min) [151, 152, 160, 168, 169] as the lowest weight 

dicarboxylic acid, which in turn could be mineralized; acetic acid (tR = 18.9 min) [152, 

168], which could be degraded to formic acid (tR = 15.6 min) [151, 168] and, finally, to 

CO2 and water. 

Fig. 82 illustrates the proposed reaction mechanism of the electrochemical 

degradation of phenol, described above, including all the substances individuated by HPLC 

analysis. 

 

 

Fig. 82 – Reaction pathway of phenol El-Ox 
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For all the electrodes tested at ambient conditions (Fig. 83), with the obvious 

exception of the Ti foil, peaks of intermediates were detected in the HPLC spectra. 

Averagely, all the samples showed the presence of the most important by-products, such as 

maleic, fumaric and oxalic, thus proving that the reaction mechanism should be similar for 

all the catalytic films. Small residuals of benzoquinone and hydroquinone were detected in 

the SnO2-Sb and RuO2 samples. The presence of these couple of by-products means that 

probably, in both the electrodes, some difficulty in the ring opening step was encountered. 

On the other hands, in the MnOx electrodes, no trace of quinones was found, 

showing that this type of electrodes was not limited by the ring opening step. A difference 

between the intermediates of the B200/Ti and D201/Ti samples was detected: the cathodic 

sample, in fact, presented two peaks corresponding to malic and acetic acid, which were 

absent in the anodic sample, whereas the tartaric acid was present only for the anodic 

sample. 

The SnO2-Sb and RuO2 samples mainly showed maleic, fumaric and oxalic acids, 

with some amount of tartaric and malonic acids in their treated solutions. 

 

 

Fig. 83 – HPLC spectra for El-Ox tests carried out at ambient conditions at 2.5 mA 

 

The following images (from Fig. 84 to Fig. 87) show the spectra of solutions 

treated in the different HTHP conditions. 
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Fig. 84 shows the results of test i), at 85°C, 30 bar and high current densities (10 

mA/cm
2
). Since also Ti presented some activity, here some intermediates were found in its 

HPLC spectra, such as maleic, fumaric, succinic, malonic and oxalic acids. For the 

manganese oxide anodes, the by-products were similar to the standard experiment, with no 

detection of aromatic intermediates (i.e. the quinones). For the SnO2-Sb electrode, the 

predominant peak was the maleic acid, together with the oxalic acid. RuO2 presented more 

intermediate compounds than the other electrodes. For both the reference anodes, 

benzoquinone was found in the solution, while hydroquinone was absent. This 

phenomenon could be explained by the geometry of the reactor, and especially by the 

higher distance between anode and cathode, which did not allow the formed benzoquinone 

to migrate to the cathode and to be reduced to hydroquinone (at least in a relevant amount). 

 

 

Fig. 84 – HPLC spectra for El-Ox tests carried out at 85°C, 30  at 400 mA 

 

Fig. 85 shows the results for the solutions treated at 85°C, 30 bar and low current 

densities (5 mA/cm
2
). Just like previous considerations, for manganese oxide anodes, the 

predominant by-products found were maleic and oxalic acids, with some malic acid. In this 

case, the two HPLC spectra for the B200/Ti and D201/Ti samples are similar, probably 

because of milder reaction conditions, with higher reaction times, which allow the 

intermediates to react almost completely. All the TOC conversions, in fact, were improved 
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in this experiment. Concerning the two reference anodes, a greater amount of tartaric and 

malic acid were observed, with some traces of aromatics (mainly benzoquinone). The Ti 

foil gave maleic, oxalic and fumaric acid as intermediates. 

 

Fig. 85 – HPLC spectra for El-Ox tests carried out at 85°C, 30  at 200 mA 

 

The last analyzed groups of solutions are the one tested under CWAO conditions, at 

150°C, 30 bar and 5 or 20 mA/cm
2
, as shown in Fig. 86 and Fig. 87. Even though, as stated 

before, the HPLC analysis was not carried out to quantify the concentration of the 

intermediates, a reduction in the intensity of the peaks occurred in experiments at 150°C, 

with a decrease also in the number of compounds. Indeed, if compared with standard El-

Ox tests, only maleic, fumaric and oxalic acids were largely observed in HTHP conditions. 

This trend is in accordance with the steep increase in TOC conversion and could be 

possibly due to increased kinetics and lower overpotentials, which contributed to further 

mineralization of the intermediates. 
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Fig. 86 – HPLC spectra for El-Ox tests carried out at 150°C, 30  at 800 mA 

 

Therefore, is possible to state that experiments at high temperatures and pressures 

did not directly influence the reaction pathways for the degradation of phenol but improved 

transformation into lower weight molecules, and finally into CO2 and H2O. 
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Fig. 87 – HPLC spectra for El-Ox tests carried out at 150°C, 30  at 160 mA 
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5.4 Conclusions 
 

Two types of MnOx-based electrodes deposited on titanium were synthesized. One 

sample was obtained by anodic electrodeposition from a Mn
2+

 precursor (i.e. manganese 

acetate), whereas the other one was synthesized by cathodic electrodeposition from a Mn
7+

 

precursor (i.e. manganese permanganate). Both these electrodes were tested at ambient 

temperature and pressure, to investigate their activity for the electrochemical degradation 

of phenol in wastewater. In standard electro-oxidation conditions, the anodic sample 

showed a poor conversion (~ 22%), while the cathodic electrode proved a moderate 

activity (~ 43%). This behavior was attributed to the different composition of the catalytic 

film: in the anodic sample a mixed manganese oxide was detected by the XRD analysis, 

that is, α-Mn2O3 / α-MnO2; the cathodic sample, instead, presented only the α-MnO2 phase.  

α-Mn2O3 is commonly recognized as the most active for water splitting reaction, 

with a lower oxygen evolution overpotential. Therefore, its activity for the degradation of 

recalcitrant organics is lower, being the water electrolysis the preferred reaction. On the 

contrary, α-MnO2 is largely accepted as the most active phase for electrochemical 

abatement of refractory organics, due to higher production of active OH· radicals. The 

results were compared to the bare Ti substrate and two of the most performing electro-

catalysts: layer-by-layer electrodeposited SnO2-Sb and brush coated RuO2. Both these 

reference anodes showed high activities (~ 77% and ~ 86%, respectively), whereas the 

metallic Ti was rapidly passivated and the test was stopped after few minutes. 

To investigate the effect of high temperature and pressure (HTHP) on the electro-

oxidation of phenol, the two manganese oxides were tested in a lab-scale HTHP reactor. 

The experiments were carried out at 85°C and 30 bar (similar to PEM electrolyzers) and at 

150°C and 30 bar (mild CWAO conditions). Also the influence of the current density was 

studied, applying a higher and a lower value for each operative conditions. As 

hypothesized, by increasing T and P, the MnOx anodes, especially the anodic one, boosted 

their efficiency, due to the beneficial effects of the operative conditions. Temperature 

contributed to improve kinetics and lower overpotentials, while pressure enhanced the 

oxygen dissolution, thus allowing its exploitation for phenol degradation. Surprisingly, 

even the bare Ti foil increased its conversions, and the passivation was avoided. On the 

other hand, the references SnO2-Sb and RuO2 did not show any noticeable benefit from the 

employment of high T and P, probably because of their lower tendency to evolve O2.  

At 85°C and high current densities (10 mA/cm
2
) the anodic sample more than 

doubled its efficiency (~ 55%), whereas the cathodic electrode was almost stable (~ 48%). 

At half of the current, the anodic MnOx gave almost 72% phenol conversion, while the 

cathodic sample reached only ~ 64%. In CWAO conditions conducted at high current 

densities (20 mA/cm
2
), the anodic sample achieved comparable efficiency to the state-of-

the-art reference anodes (~ 77%), and the cathodic one was slightly less performing (~ 

72%). When the current density was lowered to 5 mA/cm
2
, all the conversions exceeded 
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90%, and even Ti obtained ~ 85%, thus proving that electro-generated oxygen is highly 

reactive towards organics and can be easily exploited for recalcitrant organics degradation, 

without using expensive or toxic anodes, such as RuO2, BDD, and PbO2. 

HPLC analysis of the treated solutions detected a large number of intermediates, 

commonly observed also in other works, such as benzoquinone and hydroquinone, or 

maleic and oxalic acids. The change in the operative conditions and in the electrocatalyst 

did not evidence any noticeable trend, showing that the reaction mechanism is similar for 

all materials and it is not influenced by temperature and pressure. 
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