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EQUATION CHAPTER 1 SECTION 1 1 

CASCADING HAZARD ANALYSIS OF A HOSPITAL BUILDING 2 

 3 

Sebastiano Marasco 1, Ali Zamani Noori 2, and Gian Paolo Cimellaro 3 4 

ABSTRACT 5 

Recently, multi-hazards engineering has received more attention to analyzing the behavior of a 6 

system exposed to different types of hazards and to estimate the loss data from cascading events 7 

attributed to the primary hazard. In this paper, the principle of multi-hazards was investigated and a 8 

new methodology was developed to assess the total damage of structural elements caused by 9 

cascading hazards. For each hazard, a physical model is used to assess the conditional probability of 10 

exceeding a certain intensity level due to the occurrence of the previous hazard. The method was 11 

applied to a hospital located in California, US, subjected to the three cascading hazards (earthquake, 12 

blast, and fire). Non-linear time-history analyses were performed using seven ground motions scaled 13 

to five different earthquake levels and the seismic response of the structure was evaluated. The 14 

seismic input produces damage to the hospital’s power supply (Liquid Propane Gas reservoir tank) 15 

which may cause a blast. The probability of explosion was estimated by taking into account the 16 

probabilities of fuel leakage, fuel concentration, and ignition. A set of nine blast intensity levels was 17 

considered in the analyses, corresponding to different quantities of fuel content inside the tank. 18 

Afterward, a fire hazard is generated following the explosion, whose intensity level was evaluated 19 

using the compartmental heat flux. The fire effects were modeled assuming an increment of 20 

temperature in the steel frames. The proposed multi-hazard approach can be used for both improving 21 

the structural safety and reducing the building life cycle costs to enhance in the end, the resilience of 22 
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the hospital. Results show that this methodology can be used to provide risk mitigation measures 23 

within a more general resilience framework.  24 

Keywords: Cascading hazards; Earthquake; Fire; Blast; Damage; Resilience. 25 

INTRODUCTION 26 

Latest disasters have shown that large parts of the world are subjected to multiple natural, manmade, 27 

and artificial hazards. The rising of global population and the massive economic development in 28 

areas prone to disasters have increased the chance of multiple catastrophic incidents, which lead to 29 

disruption of buildings and infrastructures. After realizing that multi-hazard cannot be averted, 30 

modern societies are trying to enhance their capacity to withstand and to minimize the impact of 31 

multi-hazard on community infrastructure and human beings. Therefore, multi-hazard engineering 32 

and related mitigation risks are prompting attention in the topic of design and retrofitting of buildings 33 

and infrastructures. 34 

The concept of multi-hazard is defined as the “implementation of methodologies and approaches 35 

aimed at assessing and mapping the potential occurrence of different types of natural hazards in a 36 

given area. The employed methods have to take into account the characteristics of the single 37 

hazardous events as well as their mutual interactions and interrelations” (Delmonaco et al. 2006). 38 

Multi-hazard design starts with the structural and non-structural analysis for individual hazard. The 39 

location, magnitude, and frequency of occurrence of each hazard have to be estimated through a 40 

probabilistic approach. Several probabilistic approaches have been proposed for multi-hazard risk 41 

assessment. A quantitative risk analysis of industrial facilities in a seismic area was carried out by 42 

Fabbrocino et al. (2005) taking properly into account the multi-hazard effects. An oil storage plant 43 

with several atmospheric steel tanks containing flammable materials was considered as a case study. 44 

The vulnerability of the steel tanks was estimated through a quantitative probabilistic seismic risk 45 

analysis. The response of the industrial equipment was expressed in terms of limit states defined in 46 

accordance with the post-earthquake damage observations and the consequence analysis was 47 
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performed. Asprone et al. (2010) assessed the blast damage for a four-story reinforced concrete 48 

building in addition to seismic fragility. A possible blast scenario was assumed during the service life 49 

of a building located in a seismic zone, and then the probability of progressive collapse was 50 

calculated using a Monte Carlo simulation procedure.  51 

Recent evaluation of post-disaster effects has led to the implementation of significant changes in the 52 

modeling and numerical assessment of multi-hazards. Padgett et al. (2010) evaluated hazard 53 

intensities to accurately predict the vulnerability of bridges using a multivariate regression analysis 54 

of the data obtained by surveys after Hurricane Katrina. 55 

More specifically, when considering multi-hazard, the assessment has to be performed by comparing 56 

risks of cascading mechanisms related to the triggered hazard event. For instance, the impact of an 57 

earthquake on a gas pipeline may initiate gas leakage, which may likely cause an explosion. There 58 

are several examples of sequential hazards initiated by earthquakes which have caused fire such as 59 

San Francisco (1906), Tokyo (1923), Kobe (1995), and Northridge (1994) earthquakes (Usmani 60 

2008). The risk assessment of structures that are exposed to more than one hazard is determined by 61 

adopting the performance-based approach. Bruneau et al. (2006) investigated the performance of 62 

steel piers under seismic action. The simulation of large-magnitude earthquakes and the consequent 63 

explosions confirmed the capacity of the materials to resist to earthquakes and blast separately, but 64 

not a simultaneous combination of the two hazards (Bruneau et al. 2006). A novel assessment 65 

method was suggested by Barbato et al. (2013) to evaluate the individual impacts of the interaction 66 

among hurricane wind, flood, windborne debris, and rainfall hazards in the Performance-Based 67 

Hurricane Engineering (PBHE) framework.  68 

Furthermore, disasters are catastrophic to the socio-economic activities and affected communities 69 

(Lindell et al. 2006). Federal Emergency Management Agency (FEMA) developed HAZUS-MH 70 

(2011) to perform multi-hazard analysis. It is capable of estimating economic, physical and social 71 

effects by providing access to the average annualized loss and probabilistic results from the hurricane 72 

wind, flood and earthquake models and combining them.  73 
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The combination of cascading hazards to evaluate the real performance of a structure is among the 74 

most difficult tasks due to the intricacy involved in the process. Although the use of current 75 

probabilistic approaches is perceived as an important instrument to quantify the total loss, developing 76 

a simplified probabilistic methodology is clearly challenging. In this paper, a new approach to 77 

estimate the total amount of structural damage caused by series of cascading hazards is proposed. 78 

Earthquake, blast, and fire were considered as sequential hazards and numerical analyses were 79 

performed to assess the fragility functions for each hazard. The combination of the structural damage 80 

for cascading hazards was evaluated according to Bayes’ theorem. The conditional probability of 81 

exceeding a certain intensity level due to the occurrence of triggered hazard with a given intensity 82 

level was estimated by using physical models that take into account the vulnerability of a structural 83 

component. The methodology was applied to a steel structure hospital located in California, US.  84 

The first section of the paper will provide a detailed description of the proposed methodology, while 85 

the second part will illustrate its applicability through a case study building. Lastly, a numerical 86 

example of total structural damage estimation is performed. 87 

PROPOSED METHODOLOGY 88 

The application of the multi-hazard approach can improve the safety of structures and minimize life 89 

cycle costs and human losses. In the Performance-Based Earthquake Engineering (PBEE) framework 90 

(Porter 2003), the structural performance is conventionally expressed in terms of probability to 91 

exceed a stated performance objective when the structure is subjected to a certain level of hazard as 92 

follow: 93 

( ) ( | ) ( | ) ( | ) ( )P DV p DV DM p DM EDP p EDP IM p IM dDM dEDP dIM             (1) 94 

where DV identifies the Decision Variable, DM represents the Damage Measure, EDP is the 95 

Engineering Demand Parameter, and IM is the Intensity Measure that characterizes the hazard.  96 
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The term p(IM) represents the density probability function of exceeding a certain IM for a given 97 

hazard. In the case of cascading events, the correlation in terms of total exceedance probability of a 98 

given IM (P(IMi≥imi)) has to be estimated through the associated conditional probability (see Fig. 1). 99 

P(IMi≥imi|IMi-1≥imi-1) represents the conditional probability of exceeding an IM for the ith hazard 100 

(IMi≥imi) due to a given IM for the (i-1)th hazard (IMi-1≥imi-1).  101 

In a multi-hazard scenario, the effects of different hazards combination (chain effects) have to be 102 

considered. The damage caused by the occurrence of a hazard generates a degradation of the 103 

Structural Parameters (SP) that influences the response of the structure subjected to the next 104 

sequential hazard. The PBEE framework for multiple cascading hazards is shown in Fig. 2. To 105 

consider the multi-hazard cascading effects, Eq. (1) can be rewritten as  106 

1 1 1

2

( ) ( | ) ( | ) ( | , ) ( | ) ( ) ( )

n

i iP DV p DV DM p DM EDP p EDP IM SP p IM IM p IM p SP dDM dEDP dIM dSP

 
          
 
 
107 

(2) 108 

where IM1 indicates the intensity measure parameter associated with the main hazard (triggered 109 

hazard), the index i refers to ith hazard, and n is the total numbers of cascading hazards.  110 

Considering a multi-story building, the degradation of their structural characteristics (stiffness, 111 

strength, and damping) is evaluated according to FEMA P440A (FEMA 2009) (see Fig. 3). 112 

Assuming a rigid horizontal diaphragm, the general component of the reduced stiffness matrix is 113 

calculated by 114 

                                      
,

, 3
12

f j j

f jj

j

E I
k

h


                                                             (3) 115 

where kf,jj is the reduced stiffness component, Ef,j is the reduced elastic modulus, and Ij and hj are the 116 

inertia and height for the jth story, respectively. The damping matrix is evaluated according to the 117 

Rayleigh formulation considering the reduced stiffness matrix. 118 

The estimation of the probability of exceeding an IM for a hazard due to a given IM for the previous 119 

hazard is provided by using specific physical models. As an example, a steel tank containing 120 

flammable materials located in a seismic zone is considered. The probability to have an explosion of 121 
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the tank due to an earthquake with a given intensity level depends on the ignition mechanism of the 122 

fuel content and on the failure modes of the tank. A physical model has to be capable of describing  123 

the seismic fragility of the tank by identifying the most probable failure modes and the consequent 124 

fuel release mechanism.  125 

CASE STUDY 126 

The case study considered earthquake, blast, and fire as series of cascading hazards. A five-story 127 

steel building, located in Oakland, California, was designed according to the requirements of ASCE 128 

7-10 (ASCE  2010). The basic building plan dimensions are 82.3 m (270 ft) by 33.7 m (110.5 ft), 129 

with bays spanning of 9.1 m (30 ft) and 12.3 m (40.3 ft) in X and Y directions, respectively (see Fig. 130 

4 and Fig. 5). The stories height is equal to 4.6 m (15 ft) and the structure was classified as regular in 131 

both plan and elevation. The building is located on the relatively soft rock (site class C with 132 

reference shear wave velocity ranging from 365.8 m/s (1200 ft/s) to 762 m/s (2500 ft/s) according to 133 

ASCE 7-10 (ASCE 2010). The building has special steel moment resisting frame in the longest 134 

direction (X-direction) and bracing system in the other direction (Y-direction). The designs of the 135 

two considered lateral resisting systems are compliant with the code standards for design according 136 

to the equivalent lateral force method (ASCE 2010). The W shape were used for beams and columns 137 

while hollow structural sections (HSS) were designed for the bracing system (see Fig. 4 and Fig. 5). 138 

The building’s design comply with the occupancy category IV allowing the building to serve as a 139 

hospital and accordingly an importance factor equals to 1.5 was considered in the seismic design. 140 

The special steel moment resisting frame was designed with considering a response modification 141 

factor (R) of 8 while the bracing system was designed with a response modification factor (R) of 6 142 

considering the special steel concentrically braced frame according to ASCE 7-10 (ASCE 2010). The 143 

P-∆ effects from the gravity columns were considered and the effects of large deformations of beam 144 

and column elements were accounted for utilizing P-∆ nonlinear geometric transformation. 145 
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A standby power system was designed for providing an alternative source of electrical power for the 146 

building and facilities in case of power outage. This system includes an above ground Liquid 147 

Propane Gas (LPG) tank equipped with power sources, transfer equipment, controls, supervisory 148 

equipment and accessory which are located outdoor. The tank was designed to provide a total power 149 

of 2500 kVA and to maintain full capacity about 8 hours. The fuel capacity of the tank was assumed 150 

equals to 718 l (190 gal) per hour at full load. Thus, the total LPG tank has a capacity of 3597 l (950 151 

gal). The tank is 9.2 m (30 ft) away from the building according to National Fire Protection 152 

Association (NFPA 2013). The Fig. 6 illustrates the geometric configuration of the LPG tank and 153 

Fig. 7 shows its orientation with respect to the building. 154 

The sequence of hazards triggered by the earthquake is not known and depends on the localization of 155 

the high-risk potential elements inside and/or outside the analyzed structural system as well as their 156 

level of damages. As an example, Fig. 8 represents the logical tree of multi-hazard sequence for 157 

healthcare facilities. 158 

The earthquake occurs and it causes damage to both building elements and external fuel tank. The 159 

damaged tank may start fuel leakage and continues for a while in which gas ignites and causes 160 

deflagration of the fuel inside the tank. Then, the explosion of the tank could generate an impulsive 161 

air pressure load on the building façade which would cause localized damage to structural 162 

components. The heat released by the tank explosion may cause the ignition of the inflammable 163 

materials inside the buildings. In a short time, the ignition generates flashover and fire propagates 164 

through the building compartment.   165 

HAZARD ANALYSIS 166 

Earthquake 167 

The case study building is located in Oakland, California, US (Lat: 37.7792, Long: -122.1620).  168 

Three hazard levels: 2%, 10%, and 50% probabilities of exceedance in 100 years were selected, 169 

representing Collapse Prevention (CP), Life Safety (LS), and Immediate Occupancy (IO), 170 
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respectively (FEMA 2000). To better characterize the seismic hazard at the site, two additional sets 171 

of records representative of hazard levels at 5% and 20% probabilities of exceedance are also used in 172 

the analysis. The mean value of moment magnitude (MW,mean) and epicenter distance (Rmean) with the 173 

logarithmic spectral offset at reference period (ε(Tref)) were evaluated according to Boore-Atkinson 174 

attenuation law (Boore and Atkinson 2008) for each Hazard Level (HL). All data can be found 175 

through the interactive de-aggregation of USGS (http://geohazards.usgs.gov/deaggint/2008/ ) (USGS 176 

2013). The shear wave velocity at the uppermost 30 m has been assumed equal to 736 m/s (2415 ft/s) 177 

according to Global Vs30 Map Server (http://earthquake.usgs.gov/hazards/apps/vs30/) (USGS 2013). 178 

A new Ground Motion Selection and Modification (GMSM) procedure (Marasco and Cimellaro 179 

2017) was used to minimize the dispersion values of the Engineering Demand Parameter (EDP) 180 

calculated through dynamic analyses. The new GMSM is based on the energy content in the 181 

frequency domain of the motions and it was carried out for the five HL. Seven groups of acceleration 182 

histories (for both horizontal directions) were selected for each HL in such a way to match the target 183 

spectrum at reference period of the building according to ATC P-58 (FEMA 2012). The Conditional 184 

Mean Spectrum (CMS-ε) obtained from the de-aggregation study was considered as target spectrum 185 

(Baker 2010). The Boore-Atkinson attenuation model (Boore and Atkinson 2008) was used to define 186 

the predicted spectral accelerations at the site (USGS 2013), while the Baker and Jayaram model was 187 

considered as correlation law (Baker and Jayaram 2010). Since the building is regular, the first 188 

period was selected as conditioning period (Tref). The five CMS and the thirty-five groups of motions 189 

were obtained through the software OPENSIGNAL 4.1 (Cimellaro and Marasco 2015). A 190 

comparison between the target spectrum and the mean spectrum for HL of 2% and 5% in 100 years 191 

is depicted in Fig. 9 . For each HL, the mean spectrum was obtained as an average of the seven 192 

groups of spectra. The mean spectrum-compatibility is satisfied into the reference range of period 193 

(highlighted in grey in Fig. 9).   194 

Furthermore, the spectral acceleration at reference period (Sa(Tref)) was considered as seismic IM 195 

parameter in the analyses. Table 1 resumes the values of the IM parameters for each HL obtained 196 

http://geohazards.usgs.gov/deaggint/2008/
http://earthquake.usgs.gov/hazards/apps/vs30/
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from the CMS-ε spectra. The maximum value of spectral acceleration denotes a strong seismic action 197 

that may occur with a 2% of probability of exceedance in 100 years.  198 

Blast 199 

After an earthquake, the supply system (fuel tank, electrical components, etc.) may be slightly or 200 

severely damaged. Damage in the valves, connections or pipes of a fuel tank generates a fuel leakage 201 

that may cause an explosion. If the fuel concentration is less than the flammable concentration range 202 

or if the ignition sources are lacking, the explosion cannot occur. The three main factors influencing 203 

the explosion occurrence are the fuel leakage, concentration of fuel, and ignition source. Thus, 204 

considering the three parameters as stochastic variables, the total conditional probability of 205 

exceeding an IM for blast (IMB≥imB) due to a given IM for earthquake (IME≥imE) is expressed as 206 

( | )B B E E L FC IP IM im IM im P P P                                           (4) 207 

where PL represents the probability of fuel leakage, PFC is the probability to have maximum fuel 208 

concentration and PI defines the probability of ignition. 209 

Since the tank is relatively small in size, it is reasonable to assume that the damage occurs in the pipe 210 

connected to the tank. According to ATC P-58-2 (FEMA 2012), the probability to have large gas 211 

leakage for small diameter piping system (D<2.5 in) is given in terms of a fragility function with 212 

accelerations as EDP (μ=1.1g, β=0.5). The probability to have maximum gas concentration was 213 

estimated considering the pipe failure relative to the rigid joint connection. A simplified dynamic 214 

model was developed to assess the maximum horizontal drift of the pipe. 215 

The tank was considered as a rigid body upon shear flexible legs. The tank is fully restrained at the 216 

base by the anchor bolts designed according to ASCE 7-10 (ASCE 2010). 217 

The dynamic behavior of the tank depends on the Fuel Quantity (FQ) inside the tank. This parameter 218 

was considered as a stochastic variable normally distributed and nine different exceedance 219 

probabilities were considered as shown in Table 2. Since the LPG tank has to supply energy in the 220 

emergency conditions, its fuel quantity during an earthquake may not be less than a given minimum 221 
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threshold. In the case study, a normal distribution of the fuel quantity was assumed with a mean 222 

value of 70% of the maximum quantity and standard deviation of 10. These parameters were selected 223 

to accomplish a reasonable functionality of the supplying tank in case of emergencies. Since the tank 224 

was designed to supply energy to the hospital in the case of power outage, the probability to have 225 

low fuel volume was assumed close to zero. Furthermore, the exceedance probability to have 100% 226 

of fuel quantity was fixed to 1. 227 

Maximum fuel concentration (FCmax) is assumed to happen when the shear failure occurs in the 228 

vertical pipe. According to this hypothesis and considering the maximum shear stress value on the 229 

cross section of the pipe, the failure spectral acceleration (Sa,failure) is calculated by 230 

3
,

, 2 2 2 2 2

tan

45.44 1

( )( )

u d v
a failure

e i e e i i k

f L
S

g E D D D D D D T

  
     

      
                   (5) 231 

where fu,d  and E represent the ultimate stress and elastic modulus of the steel, respectively, De and Di 232 

are the external and internal pipe diameter, and Lv is the length of the vertical pipe, and g is the 233 

gravity acceleration. 234 

The spectral acceleration at the reference period of the tank (Sa(Ttank)) related to each selected ground 235 

motion was considered as the first IM parameter (IM1)  and fuel quantity as the second IM parameter 236 

(IM2). Then, for each IM value, the spectral acceleration at the reference period of the tank was 237 

compared with failure spectral acceleration. When Sa(Ttank) is greater than Sa,failure, the failure of the 238 

pipe occurs and the probability to have maximum fuel concentration is assumed equal to 1 and 0 239 

otherwise. Then, a tridimensional fragility surface was developed by fitting a lognormal distribution 240 

of the obtained results. 241 

Ignition probability is estimated according to the maximum released fuel quantity. The charts 242 

provided by International Association of Oil and Gas Producers (IAOGP 2010) were used to estimate 243 

the probabilities of hydrocarbon releases ignition for several scenarios. The total ignition probability 244 

is considered as the sum of immediate and delayed ignition. Only delayed ignition probability was 245 

considered in the case study since immediate ignition needs sources close to the fuel leakage point. 246 
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The release of flammable gases from small onshore LPG plant was considered as ignition scenario 247 

according to IAOGP (IAOGP 2010) and the related probability function was assumed (see Fig. 248 

10(c)).  249 

The probability of gas leakage, maximum gas concentration, and ignition are shown in Fig. 10. 250 

Maximum gas concentration (FCmax) was calculated according to the Bernoulli’s principle assuming 251 

failure of the pipe (FCmax=29.70 kg/s) and the related probability was derived (see Fig. 10(c)). 252 

Finally, the conditional probability of exceeding an IM for blast (IMB≥imB) due to a given IM for 253 

earthquake (IM1=Sa(Ttank)≥im1, IM2=FQ≥im2)  is calculated by using Eq. (2) (see Fig. 11).  254 

The fuel quantity does not have a considerable influence while the spectral acceleration at the period 255 

of the tank provides a sensitive contribution especially for values greater than 0.5 g. 256 

Fire 257 

The probability to have fire inside the building is related to the heat transmission due to the tank 258 

blast. Assuming the nine different exceedance probabilities for the fuel quantity, the heat flux (qf) for 259 

each point of the building in front of the tank was calculated according to the Stefan Boltzmann’s 260 

law. The combustion temperature of LPG was assumed equal to 2300 K° (Costin 2014), the 261 

transmissivity coefficient in the atmosphere as 0.66, and the transfer configuration factor was 262 

calculated for the entire external panel of the building (meshed with 0.5×0.5 m elements). Only the 263 

opening surfaces (windows, doors, etc.) on the façade were considered as susceptible to trigger fire 264 

inside the building. The internal walls are located between each two adjacent columns. Furthermore, 265 

the ceiling and the internal walls of the building are composed by fireproof gypsum plasterboard 266 

with steel studs. Thus, each fire compartment was identified as the volume confined between 267 

adjacent columns (see Fig. 12) and ceiling. 268 

The minimum value of heat flux capable of igniting the common flammable materials in a room was 269 

assumed equal to 30 MJ/m2 (Babrauskas and Krasny 1985). For each considered fuel quantity, the 270 

surfaces of the building  façade having a heat flux greater than 30 MJ/m2 is identified (see Fig. 13). 271 
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The fire may propagate through the opening surfaces located within the heat flux surface for a given 272 

fuel quantity (see Fig. 13) and the number and localization of the compartments under fire were 273 

identified (see Table 3). 274 

When the calculated heat flux is greater than the considered limit, the estimated conditional 275 

probability to have ignition of elements inside the building was assumed equal to 1, and 0 otherwise. 276 

The conditional probability of exceeding an IM for fire (IMF≥imF) due to a given IM for blast 277 

(IMB=FQ≥imB) was estimated (P(IMF≥imF|IMB≥imB)) by fitting a lognormal distribution of the 278 

obtained results (see Fig. 14). A mean μ=40% and standard deviation β=0.95 were estimated for the 279 

lognormal cumulative density probability (see Fig. 14). 280 

 281 

SRTUCTURAL ANALYSIS 282 

Earthquake 283 

The time history analyses were performed on a three-dimensional steel structure utilizing SAP2000 284 

(Computers and Structures, Inc.). The nonlinearity of the structural elements was taken into account 285 

according to concentrated plasticity model. According to FEMA 356 (FEMA 2000), Steel-beams 286 

Flexural Hinge (type Moment M3) was used for beam elements while  Steel-column Flexural Hinge 287 

(type P-M2-M3 with M-χ cylindrical domain) was applied for columns. The plastic hinges for brace 288 

elements were modeled as Steel-braces Axial Hinges. 3% of damping ratio was assigned to the 289 

frames using Rayleigh damping formulation with control frequency of 1.00 and 2.85 rad/s. The 290 

nonlinear dynamic analyses were performed using non-linear direct integration method, taking into 291 

account P-Δ effects and applying the horizontal acceleration time histories in the two principal plan 292 

directions of the building model.  293 

Blast 294 

Estimation of blast load parameters was focused in the number of studies during the last decades and 295 

several methods were proposed to determine the explosion wave properties. U.S. Army Technical 296 

Manual (TM5-1300 1990) is a widely used standard which presents a series of charts to determine 297 



13 

 

the basic parameters of blast loads. Charts provided by TM5-1300 were used in order to establish the 298 

blast load parameters required in structural analysis. As a general practice, the magnitude and 299 

distribution of the blast load are a function of the quantity of output energy released by detonation, 300 

charge weight (W), and the stand-off distance of explosive relative to the particular target (R). W is 301 

expressed as an equivalent weight of trinitrotoluene (TNT) and blast wave demands were determined 302 

in a function of universal scaled distance parameter (
1/3/Z R W ). TNT equivalent charge weight of 303 

LPG fuel is given by (Sutton et al. 1975) 304 

LPG

CTNT

C LPG

TNT

H W
W

H






                                                       (6)

 

305 

where 
TNTW is TNT equivalent charge weight of LPG (kg), 

LPGW is weight of LPG (kg), and 
LPGCH is 306 

LPG heat of combustion equals to 1. 099×107 (cal/kg), 
TNTCH is TNT heat of combustion equals to 307 

1.109×106 (cal/kg). The unitless parameter is a term empirically equals to 0.1, and takes in account 308 

the partial combustion and physical difference between TNT and gaseous explosion. In addition, an 309 

empirical weight equivalency factor to consider the effect of the tank shell was considered as 310 

(SBEDS 2008). 311 

 
0.8

0.2
1 /

b

c

W W
W W

 
  

  
                                                      (7) 312 

where 
bW is equivalent bare charge weight (kg), W is charge weight inside casing (kg), and Wc 313 

represents the weight of casing (kg). The spectral accelerations of the tank for each HL were 314 

considered as first IM (IM1), while nine different fuel quantities representative of the second IM 315 

(IM2) (ranging from 55% to 100%) were assumed for performing blast analyses were considered (see 316 

Table 2). 317 

Detonation of an explosive releases a large-scale of energy in terms of compressed air in a short 318 

period of time (blast wave). Blast wave generates an instantaneous rise to the value of pressure (Pso) 319 

above ambient pressure (Po). Then blast shock expands with very high velocity outward from the 320 
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explosion source into the surrounding areas (positive-pressure phase). As the blast wave travels into 321 

increasingly larger areas, the energy of blast wave is dissipated and positive incident pressure at the 322 

front decays. Within milliseconds of time, the air front pressure may drop below the normal 323 

atmospheric pressure over the time period (to) which creates partial vacuums (negative-pressure 324 

phase). The negative phase is usually of a longer duration (to-) than the positive phase and its 325 

amplitude (Pso
 -) is less than the ambient atmosphere pressure. When the blast wave encounters 326 

structure, reflection increases the overpressure to a maximum pressure (Pr) which is greater than the 327 

peak incident pressure (Pso) (see Fig. 15(a)).  328 

The reflected pressure is a function of the incident angle (between the shock wave and the line 329 

perpendicular to the target surface) and the incident pressure. The maximum reflected pressure and 330 

corresponding total reflected impulse (ir) were calculated through provided charts by TM5-1300. For 331 

design purpose, the blast time history overpressure was idealized by rising of an equivalent triangular 332 

pulse of maximum reflected pressure at an arrival time (tA) after the explosion (see Fig. 15(b)). The 333 

actual positive duration was replaced by a fictitious duration (trf) assuming the linear decay of 334 

overpressure is given by (TM5-1300 1990) 335 

2 /rf r rt i P                                                                     (8) 336 

A similar procedure for determining the negative fictitious duration (trf 
-) was used whereas rising 337 

time of negative peak pressure is considered equal to 0.25∙trf 
-. Different blast pressure time histories 338 

specific to each member were established corresponding to the different scaled distance parameter 339 

(Z) and potential charge weight for each blast IM. 340 

The blast load was applied to beams, columns and exterior walls on the exposed structural area on 341 

the front face of the explosion. The reflection areas of the building were assumed big enough in order 342 

that there is no blast wave diffraction around the structure. Exterior walls were considered as typical 343 

concrete masonry wall reinforced with vertical bars. Since the vertical span of the wall is less than 344 

the horizontal span, and also the connection between the wall and adjacent columns are typically 345 

weak, the most of the wall strength and stiffness is provided by the vertical direction. Hence the wall 346 



15 

 

components were considered as one-way spanning elements that can transfer only the equivalent 347 

static reaction load to the adjacent beams. 348 

To do blast analysis, each wall was simplified as a Single Degree Of Freedom (SDOF) system. The 349 

mass, stiffness and actual force of the wall were transformed into an equivalent system so that the 350 

deflection of the concentrated mass is the same as the mid-span of the actual wall (Biggs 1964). An 351 

elasto-perfectly plastic behavior for the wall was considered taking into account its dynamic 352 

characteristics under the high-velocity impacts (TM5-1300). The dynamic responses of the mid-span 353 

of the wall, considering the plastic hinge development (yield rotation capacity), were determined. 354 

Resulted time history reactions were calculated and directly applied to the adjacent beams in 355 

SAP2000 models (Computers and Structures Inc.) considering the rigid diaphragm for each floor. 356 

For the columns and beams, blast pressure time histories were determined and the corresponding 357 

pressures-time functions were applied directly on framing elements. The structural stiffness 358 

reduction caused by the earthquake was assessed according to FEMA P440A (FEMA 2009) 359 

degradation model. For each seismic IM, the mean values of stiffness reduction for the selected 360 

seven groups of ground motions were considered. 361 

Mechanical properties of steel materials were enhanced by means of Dynamic Increased Factors 362 

(DIF) in order to take into account the effects of high rapid load environment compared to static 363 

loading conditions (TM5-1300 1990). Since the blast load duration is very short compared to the 364 

fundamental natural period of the structure, the structural damping effects were not considered in the 365 

analyses. Transmission of the ground shock induced by the explosion to the foundation of the 366 

structure was not considered in this study. Finally, nonlinear time history analyses were carried. In 367 

the cases of the loss of the load-bearing capacity of key structural components, the progressive 368 

collapse analyses were performed and the dynamic effects of removal of the failed elements were 369 

evaluated using time history analyses. 370 

Fire 371 
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After ignition of inflammable materials inside the compartment, flashover occurs causing an increase 372 

in temperature. Design-basis fire standards are based on the evaluation of post-flashover time-373 

temperature relationships (fire curve) for the compartment. Naturally, the fire curve depends on the 374 

quantity of combustible materials (total calorific value), the velocity of combustion, and the 375 

ventilation conditions. The first two parameters affect the total heat flux generated within the 376 

compartment (qf). According to Euro Code 1 (EC1, 2002), the specific fire load is given in terms of 377 

mean value and standard deviation of a normally distributed function for different building 378 

categories. For hospitals, the mean specific fire load of 230 MJ/m2 and the standard deviation of 69 379 

are suggested. In the study case, the specific heat flux of the compartment was selected as first IM 380 

(IM1) and eight different exceedance probabilities were considered as shown in Table 4. 381 

The fuel quantity inside the tank was assumed as second IM parameter (IM2). 382 

Since temperature-time relationships are not suitable to describe the real post-flashover behavior 383 

(growth phase, steady-burning phase, and decay phase), several idealized temperature-time functions 384 

were developed. In this study, the temperature-time relationship developed by Lie (Lie et al. 1974) 385 

was considered as given below 386 
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                     (9) 387 

The first expression describes the heating phase, while the second one is referred to the cooling 388 

phase. The ventilation conditions are considered by means of the opening factor F 389 

(  
0.5

/v cF A H A  ), where Av is the total surface of vertical openings, H is the height of openings, 390 

and Ac is the area of the compartment. Two vertical openings with 1.50 m×2.00 m were assumed for 391 

each compartment (see Fig. 12) and the opening factor of 0.07 was calculated. 392 
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The constant C is associated with the type of burned materials and it is assumed equal to 1 for light 393 

materials and 0 for heavy ones. The top of the curve is described by peak time (tpeak) and peak 394 

temperature (Tpeak). These two parameters define the fire severity inside the compartment. These 395 

parameters were defined according to the time equivalence concept, that relates the real fire exposure 396 

to the standard test fire (standard curve). EC1 (EC1 2002) proposes the calculation of the equivalent 397 

time te expressed as 398 

e b ft k w q                                                                 (10) 399 

where qf  is the fire load in terms of heat flux and kb is a parameter taking into account the different 400 

compartment lining (generally equal to 0.07 min m2/MJ). Considering only vertical openings in 401 

compartment, the ventilation factor w is given by 402 

0.3 4

6
0.62 90 0.4 v

c c

A
w

H A

    
        
     

                                            (11) 403 

where Hc defines the height of the compartment.  404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

Table 5  resumes the main parameters of the temperature-time curves for each generated heat flux. 412 

According to the obtained results listed in  413 

 414 

 415 

 416 

 417 
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 418 

 419 

Table 5, the slope of the heating curve (Tpeak/tpeak) decreases with the increasing of the generated heat 420 

flux into the compartment.  421 

Degradation of the physical and mechanical characteristics of the materials and the actions due to the 422 

fire were evaluated. According to Fourier’s equation, the thermal distribution depends on the net 423 

transmitted heat flux (qf,n) in the time for a given fire scenario. Assuming all the structural elements 424 

as homogeneous and isotropic, the Fourier’s problem can be integrated into the volume of the 425 

element and rewritten in the discrete form as (EC3 2005) 426 

( ) , ( )

/m
i sh f n i

A V
T k q t

c
    


                                            (12) 427 

where ΔT(i) defines the ith increment of uniform temperature in the element cross section and Am/V is 428 

the section factor given by the ratio between the area of the element exposed to fire (Am) and its total 429 

volume (V). Density (ρ) and specific heat (c) are referred to the material composing structural 430 

element while Δt is the time step in which the increase of temperature occurs (Δt<5s). The fire 431 

protection system effect was neglected in the fire analysis. The current fire codes do not address the 432 

compound effects of hazards in a sequential manner. In fact, the damage to structural elements due to 433 

earthquake and blast, causes partial loss of fire protection (e.g. cracking of fireproof cladding, 434 

peeling of fireproof painting, etc.). Since in this case study, the fire load was applied on the structure 435 

damaged by sequential earthquake and blast, all the measures for fireproofing are deteriorated. The 436 

estimation of fire protection loss percentage is out of this study, then the total loss of fireproof 437 

system was considered as the worst case. 438 

The coefficient ksh takes into account the “shadow effects” that is responsible for a non-uniform 439 

thermal transversal distribution. In order to consider a pseudo-uniform transversal temperature 440 

distribution, the ksh coefficient was considered according to the real fire exposure. Parameter ksh=0.7 441 

was assumed for beams (fire exposure on three sides) and    0.9 / / /sh m mb
k A V A V   was 442 
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considered for columns according to Eurocode 3 (EC3 2005). The ratio (Am/V)b is the section factor 443 

of the element that was assumed as bin section and (Am/V) is the real section factor of the column. 444 

The fire exposure for the column was supposed for one side of the web and for both flanges. Three 445 

different section of beams and columns have been identified for the compartment. Table 6 446 

summarizes the uniform temperature on the steel cross sections of the compartment at tpeak time for 447 

each heat flux value where the sections W12x136 and W14x109 identify the columns and the section 448 

W21x44 is related to the beams inside the compartments.  449 

Fire resistance of steel elements inside the compartment was evaluated considering the maximum 450 

uniform thermal loads for each heat flux value. The software SAP2000 (Computers and Structures 451 

Inc.) was used to perform the analyses. The mechanical and physical materials properties were 452 

modified according to AISC (AISC 2005) depending on the temperature value. The nonlinearity of 453 

the structural elements was taken into account according to concentrated plasticity model and the 454 

progressive nonlinear analyses were performed. The structural stiffness reduction caused by the 455 

earthquake and blast was assessed according to FEMA P440A (FEMA 2009) degradation model. For 456 

each seismic IM the mean values of stiffness reduction for the selected seven groups of ground 457 

motions were considered. The reduced stiffness, strength, and damping were also calculated for each 458 

selected  fuel quantity value. 459 

DAMAGE ANALYSIS 460 

Earthquake 461 

A common approach is to correlate the performance of structural elements to one or more EDPs 462 

based on peak inter-story drifts.  Peak inter-story drifts are capable of providing information about 463 

the damage state of the elements.  According to ATC P-58 (FEMA 2012), four Earthquake Damage 464 

States (DSE) (slight, moderate, extensive, and complete) have been identified for the steel building 465 

depending on the transient drift ratio. The associated fragility curves are provided for both horizontal 466 

directions using the four DSE (see Fig. 16). 467 
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Blast 468 

In blast analyses, the evaluation of the structural building performance based on inter-story drifts 469 

limits the investigation to maximum local damage. The blast causes a damaged localized on the 470 

structural components depending on the distance to the blast source. In the case of intense blast load, 471 

a partial collapse may occur causing a redistribution of the actions in the slightly damaged 472 

components. Thus, the estimation of the damage on a building has to take into account the global 473 

behavior of the structure. In order to accurately assess the global response of a building under blast 474 

load, the loss of horizontal stiffness was assumed as EDP. The evaluation of the structural global 475 

response requires the maximum lateral displacements shape of the building due to the blast and the 476 

total induced elastic action. In the case study, the response of the structure in Y direction (see Fig. 5) 477 

was assimilated to a SDOF dynamic response given by 478 
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where top is the maximum top floor displacement and Vb is the base shear resulted at the same time 480 

of the maximum displacement. The real distribution of floor displacements was taken into account 481 

through the shape coefficients 
i  that represents the ith floor displacement normalized with respect 482 

the top one. Table 7 resumes the horizontal stiffness reduction for each selected fuel quantity level 483 

derived from the performed progressive collapse analyses. The lateral stiffness reduction was 484 

calculated for each selected earthquake scenario considering the chain effects. Thus, the degradation 485 

of the structural parameters was evaluated and the blast load was applied on the structure with 486 

modified mechanical characteristics. The first column of Table 7 represents the five different HLs for 487 

earthquake while the first row identifies the nine HLs selected for the fuel quantity. 488 

The yield drift for the braced system was calculated according to ATC P-58 (FEMA 2012) and the 489 

maximum drift threshold was assumed for four different damage states. The stiffness reduction limits 490 

were calculated assuming an elasto-perfectly plastic global behavior of the steel frame (see Table 7). 491 
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According to the estimated stiffness reduction values for each damage state, the associated 492 

exceedance probability (P(DSB≥dsB)) surfaces were evaluated (see Fig. 17). 493 

Fire 494 

The structural capacity assessment was carried out considering maximum deflection for beams and 495 

columns as EDP. Two different damage states were assumed: 496 

- Fire Damage State 1 (DSF,1): irreversible damage on the beam with maximum response; 497 

- Fire Damage State 2 (DSF,2): irreversible damage in the column with maximum response. 498 

The first damage state gives information about the maximum flexural capacity of the beam. The 499 

threshold vertical deflection (vb) for this damage state was assumed equal to the deflection causing 500 

an uncontrolled vertical displacement (Gernay et al. 2016). The second damage state is related to the 501 

maximum drift of the column (δc) under multiple stresses due to compression and bending moment, 502 

taking into account the P-Δ effects. The maximum limit for the drift was assumed coincident with the 503 

horizontal displacement that produces uncontrolled unstable displacement (Gernay et al. 2016). 504 

Several analyses were performed considering the different fuel quantity and heat ratio as HLs. The  505 

degradation of the structural parameters was evaluated and the fire load was applied on the structure.  506 

For each analysis, the probability to have irreversible damage to the structural elements was assumed 507 

equal to 1 if the response parameter is greater than the associated limit and 0 otherwise. 508 

The probability of exceeding certain damage state due to the fire hazard (P(DSF≥dsF)) was developed 509 

fitting lognormal distribution to the obtained data (see Fig. 18). 510 

NUMERICAL EXAMPLE 511 

The total probability of exceeding a given damage state was derived according to Eq.(2). In a 512 

cascading multi-hazard scenario, the probability of exceeding a given damage state has to be 513 

calculated considering the conditional probability of exceeding a certain intensity level due to the 514 

occurrence of the previous hazard. For the case study, earthquake-blast-fire was considered as 515 

cascading hazards. According to the numerical analyses performed and considering a complete 516 
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damage to the columns of the building as damage state, the probabilities of exceeding the selected 517 

level of damage was estimated for the three hazards. 518 

The spectral acceleration at the period of the structure, fuel quantity inside the tank, spectral 519 

acceleration at the period of the tank, and heat flux generated in the compartment were assumed as 520 

IM parameters. A numerical example was carried out with reference to the five different HL for the 521 

earthquake, 80% of the full capacity of the tank and heat flux equal to the average value. Table 9 522 

shows exceedance damage probability values for the case study building and the conditional 523 

probability of exceeding an IM for the one hazard due to a given IM for the previous hazard. The 524 

complete damage on the columns was selected as damage state and then the associated exceedance 525 

damage probability (P(DS>ds)) was estimated. 526 

It is clear that the probability to have blast after the earthquake is correlated to the size of the tank. In 527 

the case study, a low conditional probability of exceeding an IM for the blast due to a given IM for 528 

the earthquake was associated with the value of maximum gas concentration. But, for the cases of 529 

farm tanks, the conditional probability value may be considerable. 530 

CONCLUDING REMARKS 531 

Recent experiences have shown that buildings and infrastructures are significantly vulnerable to 532 

multi-hazard effects. The combination of cascading hazards is essential to evaluate the real 533 

performance of a structure and the respective economic losses. This study presented a new approach 534 

to assessing the conditional probability of exceeding a certain intensity level due to the occurrence of 535 

the previous hazard, estimating the exceedance damage probability and taking into account the 536 

interdependency between different hazards.  The main novelty of this research is the estimation of 537 

exceedance damage probability for a given damage state due to earthquake, blast and fire hazard by 538 

considering the physical models. The method can be considered as an alternative to the Monte Carlo 539 

simulations, thus it reduces the computational time to perform the analyses, but it requires accurate 540 

calibration of the physical parameters which plays a key role in reducing the epistemic uncertainty of 541 
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the model. In addition, the degradation of the structural parameters was taken into account for 542 

correctly assessing the performance of a structure subjected to cascading hazards. 543 

The application of the proposed cascading multi-hazard approach can be used for both improving the 544 

structural safety and reducing the building life cycle costs to enhance the resilience of the structure.  545 
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Fig. 1. Conditional probabilities for cascading hazards 635 

Fig. 2. Performance-Based earthquake Engineering for cascading hazards scenario 636 

Fig. 3. Cyclic degradation for structural elements (FEMA P440A 2009) 637 

Fig. 4. Lateral moment resisting frame configuration 638 

Fig. 5. Internal bracing frame configuration 639 

Fig. 6. Geometric configuration of the LPG tank 640 

Fig. 7. LPG tank orientation with respect to the building façade 641 

Fig. 8. Example of hazard sequence: earthquake-blast-fire 642 

Fig. 9. (a) mean spectrum compatibility for 2% of exceedance probability in 100 years, (b) 5% of 643 

exceedance probability in 100 years (reference range of period highlighted in grey) 644 

Fig. 10. (a) probability to have leakage, (b) probability to have maximum fuel concentration, (c) 645 

probability of ignition (according to IAOGP, 2010) 646 

Fig. 11. Conditional probability of exceeding an IM for blast (IMB≥imB) due to a given IM for 647 

earthquake (IM1=Sa(Ttank)≥im1, IM2=FQ≥im2) 648 

Fig. 12. Fire compartments division for the building plan 649 

Fig. 13. Building façade having a heat flux greater than 30 MJ/m2 for each fuel quantity value 650 

Fig. 14. Conditional probability of exceeding an IM for fire (IMF≥imF) due to a given IM for blast 651 

(IMB=FQ≥imB) 652 

Fig. 15. (a) blast overpressure-time history for a face-on reflected wave; (b) idealized blast 653 

overpressure time history (adopted by TM5-1300 1990) 654 

Fig. 16. (a) Probability of exceeding a given damage state for earthquake hazard (P(DSE≥dsE)) in X 655 

direction; (b) Y direction 656 

Fig. 17. (a) Probability of exceeding a slight, (b) moderate, (c) extensive, (d) complete damage state 657 

for blast hazard (P(DSB≥dsB)) 658 

Fig. 18. (a) Probability of exceeding a irreversible damage on the beams, (b) irreversible damage on 659 

the columns for fire hazard (P(DSF≥dsF)) 660 

 661 

 662 

 663 

 664 
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Table 1. IM parameters values for earthquake 665 

PVR,E [%] 50 20 10 5 2 

Sa(Tref) [g] 0.20 0.41 0.58 0.76 1.00 

Note: PVR,E is the exceedance probability in 100 years for earthquake hazard. 

 

Table 2. Selected exceedance probability for fuel quantity and associated values. 666 

PFQ [%] 90 75 65 50 20 10 5 2 1 

Fuel quantity    [%] 55 62 67 70 77 80 86 92 100 

Note: PFQ is the fuel quantity exceedance probability. 

Table 3. Number and localization of the compartments under fire for each fuel 

quantity value. 

PFQ [%] 90 75 65 50 20 10 5 2 1 

Fuel quantity [%] 55 62 67 70 77 80 86 92 100 

Compartment  area 

ID 

C5  

C14 

C5  

C14 

C5  

C14 

C4 

C5 

C6 

C13 

C14 

C15 

C4 

C5 

C6 

C13 

C14 

C15 

C4 

C5 

C6 

C13 

C14 

C15 

C4 

C5 

C6 

C13 

C14 

C15 

C4 

C5 

C6 

C13 

C14 

C15 

C4 

C5 

C6 

C13 

C14 

C15 

Compartment  

height ID 

H1 H1 H1 H1 H1 

H2 

H1 

H2 

H1 

H2 

H1 

H2 

H1 

H2 

Note: PFQ is the fuel quantity exceedance probability. 

 
 

Table 4. Selected exceedance probability for each generated heat flux. 667 

Pqf [%] 90 85 80 50 20 10 5 2 

qf [MJ/m2] 135 160 180 230 281 322 360 400 

Note: Pqf  is the compartmental heat flux exceedance probability. 

 668 
 669 

 670 

 671 

 672 

 673 

 674 
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Table 5. Characteristic time-temperature curve parameters for each generated heat flux. 675 

Pqf [%] 90 85 80 50 20 10 5 2 

te [min] 23.50 25.00 26.19 33.46 40.83 46.85 52.2 58.2 

Tpeak [K°] 1111 1131 1145 1173 1188 1205 1218 1228 

tpeak [min] 11.5 13.5 16 20.5 24.5 29.5 33.5 37 

Note: Pqf  is the compartmental heat flux exceedance probability. 

 

Table 6. Uniform temperature in the cross section of the structural elements within the 676 

compartments. 677 

  Pqf [%] 

 Element 90 85 80 50 20 10 5 2 

ΔTMAX [K°] 

W21x44 677 777 846 925 971 1,019 1057 1089 

W14x109 635 729 794 867 911 956 991 1021 

W12x136 560 643 700 765 804 843 875 901 

Note: Pqf  is the compartmental heat flux exceedance probability. 

 

Table 7. Percentage of the stiffness reductions for each fuel quantity and earthquake HLs. 678 

  PFQ [%] 

  90 75 65 50 20 10 5 2 1 

PVR,E [%] 

50 62.28 71.96 74.63 76.89 87.5 92.77 96.53 97.20 98.98 

20 65.32 74.12 77.03 78.29 89.13 94.73 97.66 98.22 100.00 

10 68.76 79.74 80.83 85.18 93.19 98.52 99.83 99.75 100.00 

5 72.33 84.16 87.44 91.28 98.36 99.79 100.00 100.00 100.00 

2 79.52 89.59 93.89 97.85 100.00 100.00 100.00 100.00 100.00 

Note: PVR,E is the exceedance probability in 100 years for earthquake hazard and Pqf  is the 

compartmental heat flux exceedance probability. 

 

Table 8. Blast Damage States and calculated stiffness reduction for blast analysis. 679 

Blast Damage State (DSB) Slight Moderate Extensive Complete 

Drift [%] 1.00 1.80 2.80 4.80 

Stiffness reduction [%] 30.00 61.00 75.00 85.00 

 680 

 681 
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Table 9. Numerical example for exceedance damage probability calculation due to earthquake, blast 682 

and fire hazards, considering complete damage on the columns. 683 

PVR,E 

[%] 

Sa(T) 

[g] 

Sa(Ttank) 

[g] 

P(IMB>imB|I

ME>imE) 

[%] 

P(IMF>imF|I

MB>imB) [%] 

P(DSE>d

sE) [%] 

P(DSB>d

sB) [%] 

P(DSF

>dsF) 

[%] 

P(DS>ds) 

[%] 

2 1,00 0.95 3.80 80.00 100.00 100.00 82.00 100.00 

5 0.75 0.85 1.60 80.00 80.00 98.00 82.00 82.62 

10 0.55 0.75 1.00 80.00 50.00 95.00 82.00 51.61 

20 0.4 0.65 0.80 80.00 22.00 86.00 82.00 23.21 

50 0.2 0.4 0.45 80.00 1.50 55.00 82.00 2.04 

Note: PVR,E is the exceedance probability in 100 years for earthquake hazard. 

 

 684 
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