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Applying Analytic Hierarchy Process (AHP) to choose a Human Factors technique: 

choosing the suitable Human Reliability Analysis technique for the automotive 

industry 

 

 

 

 

ABSTRACT 

 

The Automotive industry has been developed into a complex and highly automated sector. This level of 

automation and complexity has led to the establishment of a work environment, where human machine 

interface and human reliability are now critical factors of performance especially for safety critical tasks. 

Many different methodologies for performing risk assessment considering human factors are already available 

in the literature, but they were often developed for other domains (aviation, nuclear and process industry). 

Their purpose is to support the root cause evaluation and estimate the probability of faulty human actions. The 

present paper introduces a method to support the evaluation and the choice of a suitable Human Reliability 

Analysis (HRA) technique for the automotive sector considering the ones proposed from other industrial 

domains. The Analytic Hierarchy Process (AHP) provides a way of assisting safety managers and risk 

assessors in the HRA technique selection process. This allows the selected HRA techniques to be evaluated 

based on relevant criteria for an application in an automotive manufacturing environment. An example of 

selected HRA techniques in this paper will be demonstrated in a case study. The example can also suggest 

implications to improve existing industry guidelines, international standards and regulations, which are 

frequently calling for a wide range of ergonomic factors to be considered in the risk assessment process. 

Further the case study should show potential benefits to organizations coming from the selection and 

application of the right HRA technique. 

 

Keywords: Analytic Hierarchy Process (AHP), Human Reliability Analysis (HRA), Automotive 

manufacturing industry 

 

 

1. INTRODUCTION 

 

Since the introduction of mass production in the beginning of the twentieth century, the automotive industry 

has always been a leader in innovation (Ford, 1926). In recent years, the automotive manufacturing industry 

has been recognised as one of the most dangerous industries with respect to the workers’ health and safety 
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(Bureau of Labor Statistics (U.S. Department of Labor), 2011). Like many other technological systems found 

everywhere in modern society, the automotive industry is becoming more and more complex mainly due to 

the various phases of final automotive manufacturing product that require different systems and processes 

(Mirer, 1998). This creates crucial issues to health and safety management because several high risks must be 

considered at the industrial working place. The risks can be encountered outside the manufacturing and 

accident avoidance practices within the organisation. The Organisational systems of multinational automotive 

industries have changed considerably and, as a result, complexity of products, workplaces and job operations 

increased (Michalos et al., 2010). Particularly, in the automotive manufacturing there are technological 

machines with high level of automation and human-machine interfaces (Hassam and Mahamad, 2012), 

Rezazadegan et al. (2015) discussed the impact on the risk assessment. Kvarnstrom (1997) also observed that 

the implementation of high technological assembly lines resulted in more complicated manual operations. 

Edimansyah et al. (2008) and Oleske et al. (2004) evidenced that an automotive assembly line is a workplace 

environment with physical problems, such as noise, vibrations and dangerous equipment. Moreover, the 

presence of repetitive task has always been one of the most relevant safety issues in automotive industry 

(Graves, 1992; Spallek et al., 2010). Ulin and Keyserling (2004) noticed that auto industry had a high 

incidence of musculoskeletal disorders. Consequently, human machine interface and human reliability are 

critical factors of product quality, company performances and employers’ safety. Risk assessment is the main 

tool to identify, analyse, evaluate and control all kind of risks. It is generally performed by safety specialists, 

workplace managers and/or supervisors. The targeted risks are indicated in the specific national laws and 

standards (Rasmussen, 1997). With the introduction of WCM (World Class Manufacturing) management 

systems there has been a push toward the participative approach, with the direct involvement of field operators 

in the risk assessment and control procedures (Gnoni et al., 2013). The influence of human factors in safety 

issues, at different levels of different types of organizations, included vehicle manufacturing (Hale et al., 

2010), has been more increasingly considered. One of human factors related type of risk is that posed by 

human error, which becomes a more dominant issue as systems increase in complexity. Hence, accidents and 

occupational diseases in an automotive plant were correlated to the inadequate human factors conditions 

(Punnett et al., 2004). 

Several types of methodologies are used for identifying and evaluating human error and among them 

Human Reliability Analysis (HRA) techniques. HRA aims to identify and quantify human error (Kirwan, 

1994). These methods can help safety specialists to identify and analyse human errors also in the automotive 

manufacturing industry. Even a simple interactive system requires an examination of the links between every 

possible cause and every possible consequence, considering a probabilistic analysis (Hollnagel, 1998). 

According to Evans (1976) human reliability is the probability that a person correctly performs some system-

required activities in a required time, and performs no extraneous activity that can degrade the system. 

Hollnagel (1998) categorised HRA techniques into two categories: task-dominant approaches and cognition-

dominant approaches. Task-dominant approaches are primarily focused on possible deviations in the tasks 

executed by humans; while cognition-dominant approaches are primarily focused on human cognition 
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processes as the cause of human failure. Some of these techniques include classification schemes based on 

taxonomy to analyse human action impact on system failure. 

HRA techniques may be applied in the automotive sector to identify and help manage critical activities 

where human error may pose a significant risk. However, there are a wide variety of HRA techniques 

available, and it is not obvious which technique may be the most beneficial in this context. The suitability of 

any HRA methodology depends on the context that is being assessed (French et al., 2011). The primary aim of 

this study is therefore to determine how to select the proper HRA method required by applications in the 

automotive sector from the large number of HRA techniques available. Human and Organizational Factors 

(HOF) practitioners and researchers have previously reviewed different HRA methods for comparisons (Bell 

and Holroyd, 2009; Forester et al. 2006; Kirwan, 1997; 1998; Madonna et al. 2009), but up to now it seems 

that no method is, in an absolute way, better than the other, and most of the times, the HRA selection is case 

specific, e.g. Leva et al. (2006). 

The human factors discipline attempts to improve worker conditions and optimise overall system 

performance (International Ergonomic Association (IEA), 2000). Generally, application of Human Factors 

techniques in industrial sectors means combining and solving problems related to several disciplines, in search 

of answers that satisfy the improvement of Occupational Safety and/or System Performance. The 

interdisciplinary sector of Human Factors sometimes implies that different professionals should be involved in 

the selection procedure and this makes the choice even more difficult and sometimes excessively time-

consuming. However, decisional support tools have been developed for such difficult decisions, which involve 

many stakeholders and many factors. One of the most representative methods of Multicriteria Decision Aid 

(MCDA) is the Analytic Hierarchy Process (AHP). 

AHP is a method of MCDA developed by Thomas Lorie Saaty in the late 70s (Saaty, 1977; 1980). To 

date, there are many AHP applications to problems of assessment in various industries and several studies are 

dedicated on AHP application to occupational safety problems (Caputo et al., 2013; Podgórski, 2015; Zheng et 

al., 2012). AHP is used to determine the relative importance of a strategy set, which may be made up by 

different elements as actions, alternatives, criteria, securities. Its greatest characterization is that it structures 

any problem in a hierarchical way, even if it is complex, multi-person, multi-period or multi-criteria. The AHP 

can be used to determine the benefit / cost of a project, when this cannot be evaluated exclusively in terms of 

monetary benefits (Saaty, 1980; 1990; Saaty and Kearns, 1985). Among the most important steps of the AHP 

decisional analysis and basis of the procedure is the criteria selection. 

In this paper, four alternatives HRA techniques have been considered as suitable for the automotive 

domain and have been compared using AHP decisional analysis on a case study, with the integration of 

identified requirements (as multi-criteria) from the real automotive manufacturing industry. The selected HRA 

techniques in this paper are among the most representative ones in the literature. The selected task-dominant 

approach is the Technique for Human Error Rate Prediction (THERP) (Swain and Guttmann, 1983). This 

methodology can obtain the human error probability (HEP) in a quantitative way. In addition, we also 

considered The Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) (Gertman et al., 
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2005) as an alternative task-dominant approach, based on a human information processing model of human 

performance. While the Cognitive Reliability and Error Analysis Method (CREAM) (Hollnagel, 1998), was 

chosen as a method representative of the cognition-dominant approaches, which considers interactions 

between person-related, technology-related, and organization-related factors. Additionally, Human-HAZOP 

was considered as a qualitative approach, that uses a structured brainstorming technique (with 4-6 people) of 

experienced personnel to identify human factors and human/error issues affecting the design or operational 

intent of a system (Whalley, 1988).   

 

2.  REVIEW OF THERP, CREAM, SPAR-H & HUMAN HAZOP 

 

2.1 Technique for Human Error Rate Prediction (THERP) 

The Technique for Human Error Rate Prediction (THERP) is a methodology for the quantitative assessment 

for human reliability (or human error) within a control system (Swain and Guttmann, 1983). THERP was 

originally developed within the nuclear industry in the United States in response to the Three Mile Island 

incident whereby a poorly designed user interface was a contributory factor in a nuclear meltdown incident 

(United States. President's Commission on the Accident at Three Mile Island, 1979). Because of its origin, 

THERP has been used as a popular methodology of assessing human performance and has been cited as 

currently the most widely implemented technique (Kirwan, 1996). 

THERP implements an underlying framework of event trees as the basis of the technique, event trees are 

commonly implemented in reliability analysis where the probability of the steps that can lead to an 

undesirable outcome are assessed to develop a numerical probability of failure (Stanton et al., 2013). THERP 

uses event trees to arrive at a similar figure for a human failure. The event tree contains several human actions 

each with a possibility of failure or success. Using standard event tree logic, the probability of human failure 

can be calculated. The key resource to THERP analysis can be found within the THERP manual composed by 

(Swain and Guttmann, 1983). The manual contains a range of experimentally calculated HEPs for individual 

actions ranging from operating valves and switches, to interpreting data from a VDU or an analogue dial. 

THERP categories Human Error into the following categories: 

1) Errors of Omission – Leaving out a step in a task, or leaving out a whole task. 

2) Errors of Commission – This is an activity that is carried out, however an error occurred during 

carrying out this activity there are several different types: 

2.1) Errors of Selection – An error in the Use of controls, or an error in the use of commands 

2.2) Errors of Sequence – A Required action is carried out in the wrong order 

2.3) Errors of Timing – task is executed before or after when required 

2.4) Errors of Quantity – inadequate amount or in excess (too little or too much) 

THERP only deals the individual errors, however the approach provides results that have a high level of 

face validity (Kirwan, 1996). The THERP manual provides many different HEPs pertaining to the usage of 
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different equipment that can be encountered within a nuclear power plant (however a large number are generic 

and can be found across a variety of different organisation) and the possible errors that can emerge during a 

procedure (e.g. omission error etc.). THERP assumes that operators always take the same basic optimal route 

through a procedure which may not always occur. THERP is a representative of task-dominant HRA methods 

(Stanton et al., 2013) and the approach is overly simplistic when compared to Bayesian and modern 

approaches such as HEART, JHEDI etc. 

 

2.2 Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) 

The Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) is a quantification method 

developed as a simple-to-use tool for estimating Human Error Probability (HEP) in nuclear power plants 

(Gertman et al., 2005). SPAR-H has been applied to approximately 70 U.S. nuclear power plants (Groth and 

Swiler, 2012) and other research has observed that the underlying principles and HEP data are applicable to 

other sectors (Bell and Holroyd, 2009; Rivera and Mc Leod, 2012). SPAR-H is easily applied, with a 

necessary revision, to nominal and emergency situations of aerospace designs (Stamatelatos et al., 2011) and 

applied in the petroleum context (Øie et al., 2014). The full manual NUREG/CR- 6883 (Gertman et al., 2005) 

is available via the U.S. Nuclear Regulatory Commission website. The U.S. Nuclear Regulatory Commission 

has also released other guidance documents for the performing of the SPAR-H, such as the SPAR-H Step-by-

step Guidance (Whaley et al., 2011) and the Simplified Expert Elicitation Guideline for Risk Assessment of 

Operating Event (Boring et al., 2005). 

SPAR-H is founded on an information-processing model of human performance. The model of SPAR-H 

is also based on cognitive and behavioural sciences and Human Reliability Analysis (HRA) models. The 

general procedures of the HEP of a specifically described set of tasks are estimated through the calculation of 

1) a nominal error rate, 2) a set of factors that affect performance, 3) the Performance Shaping Factors (PSF), 

and 4) the error dependency between the tasks. The qualitative description sections of a HRA are dedicated to 

the data collection; the task identification and the task analysis are not present in the method. 

The flow diagram for completing the SPAR-H analysis is described by Whaley et al. (2011): 1) The first 

step of the method consists of the determination of the plant operation state as “at-power” or “low 

power/shutdown”. 2) Then the previously selected tasks are classified in two system activity types, which are 

either action task (related to errors of commission - active errors) or diagnosis task (related to errors of 

omission—latent errors). 3) Different worksheets are employed for quantifying action and diagnosis task 

related errors. In the worksheets, pre-defined nominal HEP values and PSF weights are combined with action 

and diagnosis errors. Under normal operating conditions, the nominal probabilities of action errors are one 

order of magnitude less than the ones of diagnosis errors. The eight PSFs are defined as: 

Time Available, 

Stress, 

Complexity, 

Experience and Training, 

Procedures, 

Ergonomics, 

Fitness-for-Duty, 

Work Process. 
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Finally, the overall probability of error is computed by adding together the probabilities of diagnosis and 

action. As a last step, the dependency is addressed, which is described as the negative influence of a human 

error on subsequent errors as influenced by crew numbers, time, location and cues. 

As advantages, SPAR-H was designed to be a quite fast tool. The worksheets and the checklist approach 

are standard and easy-to-use. It is not necessary that all users are expert in human performance. The model is 

also flexible and useful in situations where a highly realistic and detailed analysis is not required. However, as 

disadvantages, there is not any specific indication about the Human Error Identification in SPAR-H. The users 

have to understand the operation accurately. Additional guidelines were necessary in order to apply the 

method in a systematic and consistent way (Laumann and Rasmussen, 2014; Whaley et al., 2012). Another 

problem observed in SPAR-H was that the reliability assessment results were too optimistic. It was connected 

to the uncertainty in the evaluation of computer-based tasks (Gould et al., 2012; Hickling and Bowie, 2013; 

Liu and Li, 2014). 

 

2.3 Cognitive Reliability and Error Analysis Method (CREAM) 

Cognitive Reliability and Error Analysis Method (CREAM) is the representative of cognition-dominant 

HRA methods, which covers technical, human and organizational factors, and provides a relatively stable HEP 

output (Chandler et al., 2006). The framework is described as a Method-Classification-Model (MCM). 

CREAM has not been developed from the underlying model of cognition, but simply uses it as a convenient 

way to organize some of the categories that describe possible causes and effects in human actions. 

CREAM provides two methods that can be used to calculate Human Error Probability (HEP): the basic 

method and the extended method. Nine Common Performance Conditions (CPCs) was defined as 

Performance Shaping Factors (PSFs): 

CPC 1-Adequacy of Organization; 

CPC 2-Working Conditions; 

CPC 3- Adequacy of MMI and Operational Support; 

CPC 4- Availability of Procedures / Plans; 

CPC 5- Number of Simultaneous Goals; 

CPC 6- Available Time 

CPC 7- Time of Day (Circadian Rhythm); 

CPC 8- Adequacy of Training and Experience; 

CPC9- Crew Collaboration Quality 

The basic method uses task analysis to identify human actions, and assesses Common Performance 

Conditions (CPCs) by judging the expected effects and making a combined score of them with the triplet 

[Ʃreduced, Ʃnot significant, Ʃimproved]. Final results are interpreted through a control mode matrix defined by the 

Contextual Control Mode – COCOM. The four COCOM control modes are: 1) Strategic Control, the person 

considers the global context, thus using a wider time horizon and looking ahead at higher level goals. 2) 

Tactical Control, performance is based on planning, hence more or less follows a known procedure or rule. 3) 

Opportunistic Control, the next action is determined by the salient features of the current context rather than 

on more stable intentions or goals and 4) Scrambled Control, the choice of next action is in practice 

unpredictable or haphazard. 

The extended method aims to produce specific action failure probabilities. The actions may either be 
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those that have been defined by the PSA event tree, or actions that have been noticed during the screening 

process using the basic method. The extended performance prediction uses a cognitive task analysis to 

identify the cognitive activities required by the operator. The extended method consists of three steps: 1) Build 

or develop a profile of the cognitive demands of the task, which can be achieved by using the simplified set of 

cognitive functions that are part of COCOM. 2) Identify the likely cognitive function failures, which can be 

achieved by combining the cognitive demands profile with possible error modes. 3) determine the specific 

action failure probability, which can be achieved by using a table of nominal probabilities based on the 

commonly used reference works. With the described calculation of specific adjustment values or weights, 

finally, the cognitive failure probabilities (CFPs) is obtained (Hollnagel, 1993; 1998). 

In the practice point of view during the recent research works, CREAM can be applied in various 

industries and provides a two-level method to calculate Human Error Probability (HEP): the basic method and 

the extended method. 

The basic method enables safety managers making a fast decision with a macro consideration of HEP. 

The extended method deals with the specific action failure probability. Thus, safety managers can decide the 

level of methods for HEP estimation depending on the time limitation or critical tasks’ demands. As another 

advantage, CREAM also provides a good classification for the causes analysis of human errors (Geng et al., 

2015). However, CREAM still needs detailed knowledge on human cognition, which requires analysts to 

understand or be trained to apply CREAM. 

 

2.4 Human HAZOP 

HAZOP (Hazard and Operability Analysis) is one of the most widely used techniques for safety and risk 

assessment procedures. The first basis of this methodology was given at 1963 by the ICI chemical company 

(Kletz, 2009) and the first guide with the name HAZOP ‘A Guide to Hazard and Operability Studies’ was 

published later, in 1977, by ICI and the Chemical Industries Association (Imperial chemical, 1977). Initially, it 

was developed for analysing chemical process systems but now it has been extended to other types of systems 

and operations. The HAZOP technique belongs to functional analysis methods and it is a qualitative approach. 

Its main characteristics are that it is based on guidewords that are applied to parameters and it is carried out by 

a multi-disciplinary team.  HAZOP strategy can be human orientated and in this case, we have an 

investigation for human deviations technique called Human-HAZOP. 

Human-HAZOP is an application of the approach focusing on human factors and human/error issues 

(Whalley, 1988). It can deal with all forms of deviation from the design intent to planned procedures and 

human actions. Generally, HAZOP is a hazard identification technique, which considers system parts 

individually and methodically examines the effects of deviations on each part. The human HAZOP keeps the 

main structure of the method, it keeps guide words but modifies these and applies them to single task 

procedures and not to process parameters (Shorrock et al., 2003). Basic Guidewords are: 
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No action More time 

More action Less time 

Less action Out of sequence 

Wrong action More information 

Part of action Less information 

Extra action No information 

Other action Wrong information 

Human-HAZOP studies identify the potential for human failures during safety critical operating or 

maintenance activities and make recommendations to optimise the factors influencing human performance. 

The key stages in the Human-HAZOP methodology include: activity with risk of major accident, list key steps 

in activity, identify credible human failures at each step, assess potential for recover, assess consequences and 

risk control measures, and optimise performance influencing factors for task. The human HAZOP has to be 

repeated many times but generally the procedure follows the framework of the process of HAZOP study 

(Shorrock et al., 2003). Its main advantage is the team work which implies focusing on the method by various 

experts.  There are limitations of the method, such as the difficulty to quantify and predict the human failures, 

the fact that it does not consider psychological, mental factors and generally does not investigate thoroughly 

on human and organizational factors, but only the task deviation. 

 

3. ANALYATIC HIERARCHY PROCESS (AHP)-BASED METHOD FOR HUMAN 

RELIABILITY ANALYSIS (HRA) TECHNIQUE SELECTION  

 

3.1 Experts Chosen and Experts’ Judgment 

In the present study, the criteria and their weighting were selected by experts with significant experience in 

automotive domain, safety and Human Factor (HF) knowledge. The experts (Table 1) were divided in two 

groups:  

1) The Group 1 consists of five safety specialists who worked in the automotive industry, when the case 

study was carried on. Experts in Group 1 aim to provide the HRA selection criteria scheme according to the 

real application in the automotive industry.  

2) The Group 2 consists of four researchers in the HF domain. Experts in Group 2 aim to conduct the 

AHP expert judgment based on the HRA selection criteria and their HF knowledge. Note that, although Sub-

criteria were given by pairwise comparison, the Criteria ranking was given by the expert judgment with 

consideration of the objectives of the automotive manufacturing industry (Economic 0.15, Usability 0.25, 

Utility 0.30, Suitability 0.30). 
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Table 1. Experts Chosen and their Professional Background  

 
Experts 

Chosen 
Job Title 

Education 

Background 

Knowledge/Experience in the 

Safety Domain 

Knowledge/Experience on 

the Human Factor (HF) 

Domain 

G
ro

u
p

 1
: 

C
ri

te
r
ia

 S
el

ec
ti

o
n

 

Expert A 
Safety 

specialist 

Engineer master 

degree 

5.6-years working experience 

in Occupational Safety 
Training knowledge on HF 

Expert B 
Safety 

specialist 

Engineer master 

degree 

0.6-years working experience 

in Occupational Safety 
Training knowledge on HF 

Expert C 
Safety 

specialist 

Scientific master 

degree 

2.6-year working experience in 

Occupational Safety 

2.6-year PhD candidate in the 

Ergonomic domain 

Expert D 
Safety 

specialist 

Scientific master 

degree 

2-yearsworking experience in 

Occupational Safety 
HF expert 

Expert E 
Safety 

manager 

Scientific master 

degree 

8.6-year working experience in 

Occupational Safety 
HF Expert 

G
ro

u
p

 2
: 

H
R

A
 S

el
ec

ti
o

n
 

Expert C 

Human 

factor 

researcher 

PhD Candidate in 

the Ergonomic 

domain 

2.6-year working experience in 

Occupational Safety in 

automotive manufacturing area 

2.6-year PhD candidate in the 

Ergonomic domain 

Expert F 

Human 

factor 

researcher 

PhD Candidate in 

the Safety 

domain 

2.6-years working experience 

in the Risk Assessment 

Domain 

2.6-year PhD candidate in the 

HF integration into the risk 

assessment domain 

Expert G 

Human 

factor 

researcher 

PhD Candidate in 

the Ergonomic 

domain 

Training knowledge on Safety 
2.6-year PhD candidate in the 

Ergonomic domain 

Expert H 

Human 

factor 

researcher 

PhD Candidate in 

the Ergonomic 

domain 

Training knowledge on Safety 

and 0.6-year working 

experience in Industrial Safety 

2.6-year PhD candidate in the 

Ergonomic domain 

and HF majored Master degree 

 

3.2 Identification of Overall Goal, Criteria, and Alternatives 

The overall goal for the AHP-based HRA technique selection is to support the selection of the most suitable 

HRA technique designated for the automotive manufacturing industry. The HRA techniques preliminarily 

selected in the review section are considered as alternatives for our Hierarchy. Apart from these HRA 

techniques, scenario 0 is added. The option of scenario 0 means no HRA documented technique will be 

applied.   

To define the criteria of the HRA technique selection, the requirements were taken from a real 

automotive manufacturing industry via interview of safety managers, safety specialists, and on-site 

observations. Since it is difficult to get all people together for a brainstorming session or other free-flowing 

discussions in a group, semi-structured interviews were conducted which allows more freedom for a 

conversation. The procedures include:  

1）The objectives of the interviews: exploring the HRA selection criteria especially for Automotive 



10 
 

Manufactory Industry.   

2）A list of interviewees selected from relevant stakeholders: all safety specialists in the automotive 

manufactory industry were chosen.  

3） The major questions include:  

3.1）What types of hazards are considered in your risk assessments? 

3.2）Do you feel there is a need of improvement when human factors are included in risk assessments? 

3.3）Have you heard of Human Reliability Analysis techniques?  

3.4）What criteria do you concern when you want to select a Human Reliability Analysis technique? 

Why important? What aspects (or sub-criteria) do you concern for this criterion?   

After summarizing answers from interviewed safety specialists, the following issues are the most 

concerning (for selecting HRA):  

1) Background consideration: Usually, users of HRA techniques are Environment Health and Safety 

(EHS) groups including safety specialists, ergonomics specialists, and environmental analysts. EHS Team 

Managers should generally have high level education (e.g. Master Degree). 

2) HRA technique demand: The preferred HRA techniques should be able to guide EHS group to conduct 

the human reliability analysis (procedures, good application historical records, etc.). 

3) Time and financial limitation: There is not an optimum method, but a manager will choose the one that 

will give efficient results within acceptable time and financial consideration. Inside a single industrial plant, 

different HRA techniques or methods may be applied to different areas. 

4) Complexity of the HRA application: The complexity of HRA techniques may increase the difficulty of 

use, e.g. even high-level safety specialists or supervisors cannot use the HRA technique in a correct way if it is 

too complex.  

5) Accuracy of the outputs: The accuracy and reliability of the HRA techniques should also be considered 

to prohibit different results coming from the same method. 

According to the safety specialists concerned issues and on-site observations, four criteria were finally 

determined, which describe the preferences in a general way. Each criterion has six sub-criteria that describe 

in a way and complement each criterion (see Table 2). The sub-criteria are exstracted from interviews as well.     

The first criterion SUITABILITY was set in terms of the requirement: 2) HRA technique demand. The 

criterion covers the application scope of the HRA techniques. The preferred HRA techniques can be applied in 

the automotive manufacturing industry. The preferred analysis can support all process phases analysis, such as 

normal operation, maintenance, or non-routine situations. Good applied historical records are preferred that 

can provide a reliable information for the application. Support for the critical tasks or areas analysis and less 

interference are preferred as the efficiency consideration. Finally, the results of applying such HRA technique 

should satisfy the relevant national regulations. 

The second criterion ECONOMIC was set because of Time and financial limitation consideration. 

Direct costs, time for data collection, time for data analysis, hierarchical levels of people involved can directly 
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influence the cost and time consumption. Meanwhile, the frequency of required application and possible use 

of existing databases are the other indirect influential factors that can influence the time and costs.  

The third criterion USABILITY was set with the aim to fulfill the consideration of the knowledge 

background and the complexity of the HRA application. The preferred HRA techniques are not required long-

time or complicated training to understand. The necessity of pre-knowledge should match the users’ 

knowledge background. If it is not necessary, internal experts are preferred other than external consultants to 

apply the HRA techniques. Less users involved and less material support are better to conduct more efficient 

analysis without disturbing so many people and/or even the production process itself. The complexity of the 

HRA techniques should be considered. More complexity, more difficult to use, even cause the fault to use. 

The fourth criterion UTILITY was set with the consideration of the accuracy of the outputs. The 

qualitative, semi-quantitative, or quantitative outputs are identified, so that the decision makers or safety 

managers can choose depending on their demands. Clearness of results for understanding and making a 

decision is required. Level of output details should be balanced. Neither a quite summary nor complicated 

report are preferred. That information is difficult to support making a decision. If the outputs relevant to the 

production quality and workers’ health, that could be better. 

 

Table 2. Criteria for the AHP-based HRA technique selection method 

Selected Criteria 
Sub-criteria 

Criteria 

S
U

IT
A

B
IL

IT
Y

 

 

 

 

 

Applicability in 

Automotive Industry 

1S 
Applicability in the whole automotive industry domain 

Note: e.g. original domain of application, common domain of 

application, and whether it is already applied in the automotive domain 

2S 
Applicability in all process phases of the automotive industry 
Note: e.g. normal operation phase, maintenance phase, and non-routine 

situation 

3S Good applied historical records  

4S Prioritization Support for the critical areas or tasks analysis 

5S 
Interference with production  

Note: e.g. interviews with operators while working 

6S 
Results include support for Risk Assessment requests from national 

regulators 

Note: e.g. stress/ergonomic 

E
C

O
N

O
M

IC
 

 

Describes the extent to 

which time, effort or cost 

is well used for the 

intended task or purpose 

1E 

 
Direct costs 

Note: e.g. license, material, development of new software of tool 

2E Time for data collection 

3E Time for data analysis 

4E Frequency of required application 

5E 

 

Possible use of existing databases 

Note: e.g. Incident Events Record, Medical Examination Records, etc.  

6E 
Hierarchical levels of people involved 

Note: e.g. the number of managers, supervisors, operators, or 

technicians who will be engaged in during the method application 



12 
 

 

U
S

A
B

IL
IT

Y
 

 

 

Ease to use and 

learnability of a human-

made object 

1Us Need for training for the users to use the method 

2Us Number of users involved 

3Us 
Necessity of pre-knowledge of users 
Note: e.g. education, skills, experience 

4Us 
Necessity of external consultant 
Note: e.g. specialized in the method or in human factors 

5Us 
Type of material support 
Note: e.g. standard datasheet, or software for analysis 

6Us 
Complexity of the method 

Note: e.g. possibility to be used in a wrong way 

U
T

IL
IT

Y
 

 

 

Did the modelling 

methodology provide a 

useful output 

1Ut Qualitative or semi-quantitative Output 

2Ut Quantitative Output 

3Ut 
Clearness of results for understanding and making a decision 
Note: e.g. tables, graphics 

4Ut 
Level of details of output and their usefulness 
Note: levels of details useful for the needs of the automotive industry 

5Ut Output related to the production quality 

6Ut 
Output related to workers’ health 

Note: psychological and physical aspects 

 

3.3 Hierarchy Structure of the AHP-based HRA technique selection method 

The hierarchy structure is the main characterization of the AHP. Each level may represent a different cut at the 

problem. Elements that have a global character can be represented at the higher levels of the hierarchy, others 

that specifically characterize the problem at hand can be developed in greater depth (Saaty, 1990). According 

to the identified overall goal, criteria, and alternatives, the structure of AHP-based HRA selection is 

constructed (Figure 1).  

 

3.4 Pairwise Comparison Judgment for Criteria  

To compute the priorities for different criteria, the AHP first constructs pairwise comparison matrixes. A 

pairwise comparison matrix A is a m × m real matrix, where m is the number of selected criteria. Each entry 

ajk of the matrix A represents the importance of the jth criterion relative to the kth criterion, where ajk denotes 

the entry in the jth row and the kth column of A (Saaty, 1980).  The relative importance between two criteria is 

measured according to the fundamental scale of Saaty (1990) in Table 3.  
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Figure 1. Framework for the AHP-based HRA technique selection method 

 

Table 3. The fundamental scale according to Saaty (1990) 

Intensity of 

importance on an 

absolute scale 

Definition Explanation 

1 Equal importance Two activities contribute equally to the objective 

3 
Moderate importance of one over 

another 

Experience and judgment slightly favour one 

activity over another 

5 Essential or Strong importance 
Experience and judgment strongly favour one 

activity over another 

7 Very strong importance 
An activity is strongly favoured and its 

dominance demonstrated in practice 

9 Extreme importance 
The evidence favouring one activity over another 

is of the highest possible order of affirmation 

2,4,6,8 
Intermediate values between the 

two adjacent judgments 
When compromise is needed 

 

3.5 Priorities Calculation and Consistency Checking  

Once the matrix A is built, it is possible to compute priority vector, which is the normalized eigenvector of the 

matrix. The priority vector shows relative weights among criteria or sub-criteria. Aside from priorities 

calculation of criteria or sub-criteria, AHP measures also the consistency of the comparison by using the 

 

S
U

B
-C

R
IT

E
R

IA
 

SUITABILITY ECONOMY USABILITY UTILITY 

1S 

2S 

3S 

4S 

5S 

6S 

1E 

2E 

3E 

4E 

5E 

6E 

1Us 

2Us 

3Us 

4Us 

5Us 

6Us 

1Ut 

2Ut 

3Ut 

4Ut 

5Ut 

6Ut 

 

ALTERNATIVES 

Overall Goal: Selecting Suitable HRA Technique 

for Automotive Manufacturing Industry 

CRITERIA 

THERP SPAR-H CREAM Human 

HAZOP 

Scenario 0 
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Consistency Index CI, Random Consistency Index RI, Consistency Ratio CR, see Eq(1) & Eq(2). Perfect 

consistence means zero value of CI (CI=0), while accepted consistence ratio CR is less than 10% (CR<0.1), 

which means the subjective judgment can be accepted.  

                                                                     CI= (λmax-n)/(n-1)                                                           Eq (1) 

where,  

    CI is the consistency index; 

    λmax is the maximum eigenvalue; 

n is the size of the measured matrix. 

 

                                                            CR=  CI/RI                                                                              Eq (2) 

where,  

    CR is the consistency ratio; 

    CI is the consistency index; 

RI is the random consistency index. 

 

3.6 Ranking of Alternatives 

Once we calculate the priority vectors of Criteria and Sub-criteria, we continue with the calculation of priority 

vectors of alternatives based on each sub-criterion. Finally, the matrix combined with the alternatives and the 

weighted criteria will be established for the last ranking and decision making. 

 

4. APPLICATION 

 

4.1 Pairwise Comparison Matrixes and Priorities for Criteria and Sub-criteria 

Many application tools are available for automatically performing the AHP. In this case study, the free online 

BPMSG AHP online system® (Goepel, 2014) was applied. Given each of the four Criteria consisting of six 

Sub-criteria, four matrixes for priorities of each Criterion were established (see in Table 4). Note that, 

although Sub-criteria were given by pairwise comparison, the Criteria ranking was given by the experts’ 

judgment and objectives for the automotive manufactory industry. The comparison required the Human Factor 

(HF) knowledge and the on-site working experience in the automotive manufacturing industry. The priorities 

of Criteria were assigned: 
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Table 4. Comparison Matrixes and Priorities for Each Criterion 

Suitability 1S 2S 3S 4S 5S 6S 
Priority 

Vector 
Economic 1E 2E 3E 4E 5E 6E 

Priority 

Vector 

1S 1 7 3 1 3 8 37.90% 1E 1 1 0.5 0.5 1 3 12.70% 

2S 0.14 1 1 0.33 0.33 2 7.20% 2E 1 1 2 0.25 0.33 3 12.20% 

3S 0.33 1 1 0.33 0.25 1 7.20% 3E 2 0.5 1 0.25 0.5 5 13.00% 

4S 1 3 3 1 1 3 22.50% 4E 2 4 4 1 3 5 37.80% 

5S 0.33 3 4 1 1 3 19.60% 5E 1 3 2 0.33 1 6 20.40% 

6S 0.12 0.5 1 0.33 0.33 1 5.60% 6E 0.33 0.33 0.2 0.2 0.17 1 4.00% 

    λmax = 6.243, CR=3.9%     λmax =6.485, CR=7.7% 

 

Usability 1Us 2Us 3Us 4Us 5Us 6Us 
Priority 

Vector 
Utility 1Ut 2Ut 3Ut 4Ut 5Ut 6Ut 

Priority 

Vector 

1Us 1 4 3 4 1 0.33 19.90% 1Ut 1 0.5 0.14 0.14 0.17 0.11 2.70% 

2Us 0.25 1 4 3 1 0.2 11.20% 2Ut 2 1 0.33 0.2 0.17 0.11 4.10% 

3Us 0.33 0.25 1 0.33 0.17 0.14 3.70% 3Ut 7 3 1 0.33 0.33 0.33 10.90% 

4Us 0.25 0.33 3 1 0.33 0.2 6.10% 4Ut 7 5 3 1 4 1 32.20% 

5Us 1 1 6 3 1 0.2 14.60% 5Ut 6 6 3 0.25 1 0.33 17.20% 

6Us 3 5 7 5 5 1 44.50% 6Ut 9 9 3 1 3 1 32.90% 

    λmax = 6.501, CR=8.0%  λmax = 6.396, CR=6.3%    

 

4.2 Priority Vectors of Alternatives and Results 

In the case of 24 Sub-criteria, 24 matrixes were established and combined with the alternatives and the 

weighted sub-criteria. Table 5 provides the final results of alternatives ranking in terms of each Criterion. The 

labelled weights of Sub-criteria were referred to the priority vector of each sub-criterion shown in Table 4. 

The final ranking result is obtained (Table 6 and Figure 2). 

 

Table 5. Results of alternatives ranking for each Criterion 

Suitability 
% 

1S 
37.9% 

2S 
7.2% 

3S 
7.2% 

4S 
22.5

% 

5S 
19.6

% 

6S 
5.60

% 
Result 

Economic 
% 

1E 
12.7% 

2E 
12.2% 

3E 
13% 

4E 
37.8% 

5E 
20.4% 

6E 
4% Result 

THERP 43.5 7.8 28.5 19.8 6.0 33.7 2.66 THERP 4.2 4.2 3.1 8.5 21.4 8.3 0.94 

HUMAN 

HAZOP 
9.5 55.1 7.2 8.1 15.6 8.0 1.34 HUMAN 

HAZOP 
32.7 26.1 32.4 47.2 6.4 48.0 3.26 

CREAM 28.5 22.8 15.7 46.9 6.0 20.9 2.65 CREAM 7.0 13.8 8.4 31.5 39.2 26.7 2.46 

SPAR-H 15.7 11.4 45.7 19.8 6.0 33.7 1.76 SPAR-H 5.6 5.0 6.6 9.1 30.0 12.8 1.23 

Scenario 0 2.7 2.9 2.8 5.3 66.4 3.6 1.58 Scenario 

0 
50.4 51.0 49.5 3.8 3.0 4.1 2.13 
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Usability 

% 
1Us 
19.9% 

2Us 
11.2% 

3Us 
3.7% 

4Us 
6.1% 

5Us 
14.6% 

6Us 
44.5% Result 

Utility 
% 

1Ut 
2.7% 

2Ut 
4.1% 

3Ut 
10.9% 

4Ut 
32.2% 

5Ut 
17.2% 

6Ut 
32.9% Result 

THERP 11.8 7.7 4.6 6.2 7.9 22.2 1.48 THERP 7.2 41.5 23.0 19.9 23.9 26.4 0.98 
HUMAN 

HAZOP 
3.1 7.7 17.6 3.9 3.6 55.3 2.75 HUMAN 

HAZOP 
46.3 8.8 39.8 9.9 11.6 10.4 3.76 

CREAM 8.1 7.7 7.6 18.2 14.3 12.9 1.17 CREAM 33.8 8.8 9.5 37.9 28.8 29.2 2.73 
SPAR-H 9.8 7.7 4.8 6.7 8.4 6.5 0.75 SPAR-H 9.7 38.3 24.3 29.1 32.1 31.0 1.34 

Scenario 0 67.3 69.2 65.5 65.0 65.8 3.1 3.85 Scenario 0 2.9 2.6 3.3 3.2 3.6 3.0 1.19 

 

Table 6. The final Priority Vectors of Alternatives and Criteria 

 
ECONOMIC 

0.15 
USABILITY 

0.25 
UTILITY 

0.30 
SUITABILITY 

0.30 
Result 

THERP 0.9359 1.4791 0.9772 2.6618 1.6019 

HUMAN HAZOP 3.2616 2.7502 3.7576 1.3414 2.7065 

CREAM 2.4636 1.1694 2.7340 2.6472 2.2763 

SPAR-H 1.2251 0.7518 1.3377 1.7580 1.3004 

Scenario 0 2.1270 3.8518 1.1936 1.5842 2.1153 

 

THERP Scenario 0

1.6019

2.7065 2.2763

1.3004

2.1153

0

0.5

1
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Figure 2. Results of AHP-based HRA Technique Selection 

 

5. DISCUSSION 

 

5.1 Preferred HRA technique selection results 

5.1.1 Human-HAZOP as a qualitative approach is the most preferred 

Our decisional analysis shows Human-HAZOP as the most preferred HRA technique for the automotive 

manufacturing industry. Indeed, Human-HAZOP can deal with all forms of deviation, from the design intent 

to planned procedures and human actions. Its high score can be explained from the Usability, Utility and 

Economic criteria. 

Advantages of Usability: Human-HAZOP is quite flexible in terms of application of procedures, 

moreover does not require demanding supporting material. In the Usability criterion, Human-HAZOP was 

ranked high thanks to the sub criteria: complexity of the method (6Us) and the necessity of users’ pre-

knowledge (3Us), which means Human-HAZOP is easy to use and its team-work feature can guarantee the 

necessary learnability. 
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Advantages of Utility: Human-HAZOP gained its highest level of 1Ut and 3Ut. Results demonstrated 

that qualitative output (1Ut) and the clearness of results for understanding and making a decision (3Ut) are 

the major contributions to the Utility score. This probably relies on the method’s core: the guidewords. 

Economic Advantages: Generally Human-HAZOP is an economic HRA method, in almost all the 

economic sub criteria was high ranked except the possible use of the database (5E).  

Although Human-HAZOP is ranked as the most preferable, for the Suitability criterion ranked as the last 

one, because of the low score of the sub criteria 1S, 4S and 3S. The ranking results showed that Human-

HAZOP does not provide a prioritization support for the critical areas or tasks analysis (4S), moreover the 

method does not include applied historical records (3S) and it is based on guidewords that do not allow the 

analyst to predict an error. Since it is a procedural method, is not suitable for the whole automotive industry 

(1S) globally, but it can be applied individually to all subdomains and procedures of the industrial plant. 

 

5.1.2 CREAM as a semi-quantitative approach goes to the second place 

CREAM is the second preferred HRA technique under this decisional analysis. It owes its second place to 

Economic, Suitability and Utility criteria. A CREAM method needs only a few days of training and the 

supporting material is open source; this gives privilege in terms of economic criteria. Its suitability and utility 

second rank may result from its easy application, its clear inclusion of psychological characteristics and the 

workplace organization requirements. To be noticed that CREAM is first for two sub-criteria: a prioritization 

support for the critical areas or tasks analysis (4S) and level of details of output and their usefulness (4Ut). 

The ranking results showed its advantages of two-level methods. The basic method (as a semi-quantitative 

way) supports the macro risk evaluation (output) of a task. CREAM enables analysts or managers to make a 

fast decision, whether it is a critical task and the in-depth probability analysis of human failure is required. 

 

5.1.3 Scenario 0 is surprisingly placed at the third place: no HRA documented technique will be applied 

The most surprising result is that Scenario 0 was selected as the third preferred choice. This is paradoxically 

logical, because many companies avoid using known methods and create their own methodologies for HRA. 

Advantages of Usability: The Scenario 0 has placed at third position in consequence of its high ranking 

in Usability and the sub criterion no training is needed. Companies that use their own methodologies, or try to 

improve HRA without applying any of the known HRA techniques may rely on historical reports, experts’ 

support and organization.  

Economic Advantages: since no HRA documented technique are applied, the direct costs (1E), time for 

data collection (2E), and time for data analysis (3E) of the Scenario 0 are free to define. 

The major disadvantage of Scenario 0 that contributes the low ranking of the Utility criterion is an 

unknown output. The uncertainty and the lack of accuracy of Scenario 0 effect all sub criteria of the Utility: 

unknown output format (qualitative, quantitative, or semi-quantitative outputs’ support, 1Ut and 2Ut), 

unknown clearness of results for understanding and making a decision (3Ut), unknown output details and 

their usefulness (4Ut), and unknown of other supports for the production quality and worker’ health (5Ut and 
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6Ut). 

As a result, although Scenario 0 finally goes to the third place, safety managers should pay more attention to 

the output control. The uncertainty analysis should be conducted if the Scenario 0 is strongly suggested. 

 

5.1.4 THERP & SPAR-H as quantitative analysis approaches are the last two preferred HRA techniques 

THERP ranked at the fourth place. THERP was developed for the nuclear industry, to be easily understandable 

to engineers who may have a limited understanding of human factors and may not have the time or resources 

to commission a full human factors safety audit on site. However, THERP was still placed as the last one of 

the Economic criteria, because of its resource intensive activity which requires considerable time and 

resources from the assessors, and such resources may be difficult to achieve within an organization, in time 

and budget limits (Humphreys, 1988). With only the Suitability criterion that was placed as the first, this fact 

does not seem in accordance with THERP suitability since it has been developed for nuclear plants. But, 

THERP wins the first position for the Suitability criteria thanks to the S1 sub criterion and its big impact on 

the decision, 37.9% of importance. Indeed, THERP can be used throughout the whole lifecycle of a plant, it is 

not tied to the design HRA. The fault tree approach used within THERP allows the approach to be integrated 

with engineering reliability assessment techniques, which can assist designers in providing a numerical 

probability of failure, which is frequently required by regulatory bodies. 

SPAR-H is the last preferred HRA technique as the ranking result, mainly because SPAR-H was designed 

for nuclear plants and can be applied to other industrial sectors only after corrections. Although the method 

was considered fast and simple, the corrections to be done for automotive application may compromise time 

and add cost for making it suitable and advantageous. Consequently, SPAR-H was ranked as the least usable 

method. Each PSF level is associated with an HEP multiplier value. Therefore, the weighting factor depends 

on how the analyst or the group of analysts judges the PSF and at which extent it improves or reduce 

reliability. Moreover, the PSF are quite old in relation to the technology currently available in industries 

(Boring and Blackman, 2007; Laumann and Rasmussen, 2014). To notice that SPAR-H was still ranked first 

for the sub criteria 2Ut, 5Ut, 6Ut and 3S, because it may consider human’s individual characteristics, 

environment, organization, or task that specifically decrements or improves human performance, thus 

respectively increasing or decreasing the likelihood of human error (Blackman et al., 2008). This fact is very 

important, since different factors that contribute to human error can be re-evaluated and especially positive 

factors to human performance can be used for historical records and for relation to production quality and to 

the operators’ health. Overall, SPAR-H was considered a low resource-demanding, because the total resources 

required are not elevated compared to the detailed level of the results (Gould et al., 2012); Forester et al. 

(2006) considered SPAR-H a method with a proven track record due to its extensive use. 

A question may occur: “why those two quantitative analysis approaches go to the last places?” During 

the on-site observation and interview, it can be realized that unless some critical industries (e.g. aviation & 

space domain, military safety domain) requiring the human error probability to control the critical tasks, the 

automotive manufacturing industry itself, similar like other process industries, the consequences originated by 
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human error may not reach to the critical level that should conduct the probabilistic analysis. Safety managers 

prefer a general idea of human error classifications, to identify human errors and adopt mitigation measures. 

Only for some critical tasks is required in-depth analysis of the human error probability; for example, working 

tasks in the painting mixing room, in which the human error can potentially cause the fire or explosive 

hazards. This situation may also explain why safety managers preferred Scenario 0 instead of quantitative 

analysis approaches; it would be an exhausted workload if for the whole plant are applied such quantitative 

approaches frequently in terms of time-consuming and cost increasing because of the occupied human 

resources. 

 

5.2 Performance of Applying AHP to support the HRA technique selection 

5.2.1 Advantages of the AHP application to support the HRA technique selection 

With the number of available HRA techniques increasing, the difficulty on their selection and implementation 

acts as an increasingly common obstacle to the industrial companies in the application of the correct one for 

their domain. AHP can assist safety managers in selecting the right methodologies for their job and therefore 

improving the level of safety within their organization, thus reducing economic losses such as lost time 

incidents, absences due to injury, less scope for error etc. AHP structures any decision in a Hierarchy and this 

helps the stakeholders to understand the priorities of their selection. Another characteristic that shows the AHP 

flexibility is that allows more people to be involved within the decision. This multi-person approach is very 

useful in large organizations, where managers from different departments may face conflicting interests. In 

terms of the best HRA tool selection, the AHP initially structures the demands of the automotive 

manufacturing industry and then individuates the most suitable option. 

The decisional results also demonstrated that the AHP model is in accordance with the characteristics of 

the HRA techniques, therefore, utile for this kind of decisions. The present study can be useful to health and 

safety management as a decisional support. AHP can improve the HRA selection in terms of time and 

organization. Thanks to the hierarchical structure adds priorities to main aims of the company. 

 

5.2.2 Limitation of the AHP application 

The present decisional analysis is focused on a HRA technique to be adopted for the whole plant. It cannot be 

used for HRA techniques in separated industrial subdomains. Another important limitation is related on the 

core of the AHP method, which is the consistency matrix. The AHP can be used only for consistent decisions, 

and it is an important advantage if we want to avoid contradictions, but not all decisional problems can be 

consistent. 

Additionally, it is important to mention that the HRA decision is made by experts, who carefully evaluated and 

scored the criteria. The experts’ choices are subjective; nevertheless, the AHP structure provides an important 

support for minimising biased decisions.  
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6. CONCLUSION 

The experts involved in this study were 9 divided in two groups. One group of five safety professionals, and 

on group of 4 HF doctoral students that worked as interns in the same safety department of the international 

automotive company, which occupies about 4,000 employees at the production site. The educational 

qualification of all the components was the Master’s degree: two in mechanical engineering, four in 

environmental sciences, one in natural sciences, one in food technology and processing and one in HF. The 

evaluation of each component of the group was considered at the same level.  

       The Automotive industry has been developed into a complex and highly automated industry. Additionally, 

it is influential in terms of income and number of workers; it employed 2.2 million people within the 

European Union in 2011 (European Automobile Manufacturers Association (ACEA), 2014) and 0.9 million 

people within the United States in 2014 (Bureau of Labor Statistics (U.S. Department of Labor), 2014). In the 

last decade, it has seen a worldwide continuous increase due to the development of this business in emergent 

economies (Organisation Internationale des Constructeurs d’Automobiles (OICA), 2016). 

The level of automation and complexity along with the parallel increase of workers’ number worldwide, 

has led to the establishment of an intensive human working environment, where HRA techniques can better 

support the risk assessment for human activities. The AHP process was used to evaluate which HRA 

techniques can be more purposefully be applied. 

The approach allowed the selected techniques to be evaluated based on specific criteria, and the case 

study illustrated the example of a real automotive manufacturing industry, in order to verify that the needs of 

the organization are met. The AHP analysis may also help stakeholders to understand the priorities of the 

preferred selection. This can be provided beneficial to the industry allowing the provision of the right balance 

between complexity and accuracy for the level of analysis and output required. 

The basic aim of the present analysis was to select the best choice as a general method. Not surprisingly 

Human-HAZOP is the best HRA choice, since it can deal with all forms of deviation from the design intent to 

planned procedures and human actions. 
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