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Abstract

Driven by need or curiosity, as humans we constantly act as information seekers.
Whenever we work, study, play, we naturally look for information in spaces where
pieces of our knowledge and culture are linked through semantic and logic relations.
Nowadays, far from being just an abstraction, these information spaces are complex
structures widespread and easily accessible via techno-systems: from the whole
World Wide Web to the paramount example of Wikipedia. They are all information
networks.

How we move on these networks and how our learning experience could be made
more efficient while exploring them are the key questions investigated in the present
thesis. To this end concepts, tools and models from graph theory and complex
systems analysis are borrowed to combine empirical observations of real behaviours
of users in knowledge spaces with some theoretical findings of cognitive science
research.

It is investigated how the knowledge space structure can affect its own exploration
in learning-type tasks, and how users do typically explore the information networks,
when looking for information or following some learning paths. The research
approach followed is exploratory and moves along three main lines of research.

Enlarging a previous work in algorithmic education, the first contribution fo-
cuses on the topological properties of the information network and how they affect
the efficiency of a simulated learning exploration. To this end a general class of
algorithms is introduced that, standing on well-established findings on educational
scheduling, captures some of the behaviours of an individual moving in a knowledge
space while learning. In exploring this space, learners move along connections,
periodically revisiting some concepts, and sometimes jumping on very distant ones.
To investigate the effect of networked information structures on the dynamics, both
synthetic and real-world graphs are considered, such as subsections of Wikipedia and



word-association graphs. The existence is revealed of optimal topological structures
for the defined learning dynamics. They feature small-world and scale-free proper-
ties with a balance between the number of hubs and of the least connected items.
Surprisingly the real-world networks analysed turn out to be close to optimality.

To uncover the role of semantic content of the bit of information to be learned
in a information-seeking tasks, empirical data on user traffic logs in the Wikipedia
system are then considered. From these, and by means of first-order Markov chain
models, some users paths over the encyclopaedia can be simulated and treated as
proxies for the real paths. They are then analysed in an abstract semantic level, by
mapping the individual pages into points of a semantic reduced space. Recurrent
patterns along the walks emerge, even more evident when contrasted with paths
originated in information-seeking goal oriented games, thus providing some hints
about the unconstrained navigation of users while seeking for information.

Still, different systems need to be considered to evaluate longer and more con-
strained and structured learning dynamics. This is the focus of the third line of
investigation, in which learning paths are extracted from advances scientific text-
books and treated as they were walks suggested by their authors throughout an
underlying knowledge space.

Strategies to extract the paths from the textbooks are proposed, and some pre-
liminary results are discussed on their statistical properties. Moreover, by taking
advantages of the Wikipedia information network, the Kauffman theory of adjacent
possible is formalized in a learning context, thus introducing the adjacent learnable
to refer to the part of the knowledge space explorable by the reader as she learns
new concepts by following the suggested learning path. Along this perspective, the
paths are analysed as particular realizations of the knowledge space explorations,
thus allowing to quantitatively contrast different approaches to education.
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Chapter 1

Introduction

Need or just curiosity pushes us, as humans, to continuously seek for information. In
any activity, from work to play, we learn, retrieve old knowledges and simply forget,
while the entire environment around us ceaselessly proposes new stimuli. In this
sea of flowing information, our greatest effort is not to get lost, rather find our path
through it.

Indeed, as soon as we look for any piece of information, we walk in a space. It
could be individual – the space of our knowledges, memories and personal asso-
ciations – or collective, such as the cultural heritage, as it results from the human
evolution. These spaces are complex, evolving structures where pieces of our knowl-
edge and culture are interlinked through semantic and logic relations. In these spaces
we shape our ways, by moving from a bit of information to another, maybe wander-
ing, until the temporary target is reached. More intriguingly, as soon as novelties
are discovered, entire new possibilities enrich our personal space, thus becoming
available for learning [68].

Far from being just an abstraction, these evolving information spaces are widespread,
from the whole World Wide Web to the paramount example of Wikipedia [27, 118,
62], from word-association graphs [49, 55] to ontologies and taxonomies. Moreover,
accessing them has become easier for more and more people, thanks to freely acces-
sible internet and progresses in technologies. Along with this, the explosion since
2012 of Massive Open Online Courses (MOOCs) witnesses the exponential growth
in the demand for access to education, as it is similarly done by the recent success of
web platforms and applications designed for learning, e.g., Anki [40] or Duolingo [1].
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Introduction

Thus, the knowledge space is more accessible, but still it continuously enlarges and
more and more people claim their right to learn and contribute to the collective
knowledge. In this scenario, no enough teachers can account for the world-based
demand for education. Still, technologies can fill the gap, for example by proving
the society with innovative tools for learning, maybe tailored to the needs of every
distinct self-learner [89].

To this end, the needed novel educational software should enable learners to
efficiently define their proper ways in the information spaces, as modern global
positioning systems allow human beings to locate themselves and find their way in
the physical space. Thus, the very first challenge is to understand how the knowledge
spaces are shaped, and how they should be in order to improve our experience as
information seeker. Moreover, understanding how we behave as learners [83, 57], and
if any common pattern exists in our behaviours, is crucial to rethought the classical
educational schemes, not ready to account for the complexity of the challenge.

Indeed, not only is the cognitive process of learning deeply complex. Learning
is a matter of brain interconnections, of memory, of elaboration of information,
and still before of perception of the world around us. This is of course a complex
process that filters out enormous amounts of data and flags potentially relevant
information to allow the individual to navigate the world as function of her needs
and the environment’s affordances [48, 66, 99].

Yet, another source of complexity should be considered, namely that of the
knowledge space in which we move while looking for information. The space can
be thought as the co-evolving overlapping of individual and collective spaces, their
structures reflecting the complexity of the phenomena originating it, such as of our
brain evolution and also of the continuous and evolving relationships between us, as
for example in language. Indeed, even when we consider some very well defined
entities, such as the thesaurus of word of a particular language, still this entities
feature properties of complexities.

As a consequence, if we want to tackle the complexity of the learning challenge,
first of all the structure of the space over which we move needs to be formally repre-
sented, to encompass its richness, heterogeneity and dynamical nature. Indeed, every
information space can be though as a bunch of pieces of information, interconnected
by logical, semantic, phonetic, spatial, temporal, linguistic relations, just to draw few.
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Complex network analysis, and more in general complex systems theory, provides
the proper formal and quantitative framework to investigate it.

Networks allow to represent associations, graph theory and statistical analysis
are the tools to investigate the space properties, maybe recurrent in diverse systems.
Moreover, any information-seeking task can be modelled as an exploration of the
networked space, thus allowing to investigate both the role of the topology in
hindering or enhancing the exploration and the common ways the exploration is
performed.

In some systems, the networked representation spontaneously emerges. That
is the case of all hyperlinked systems, such as the World Wide Web and, even
more related to the picture of an networked knowledge space, Wikipedia [7], often
considered as a primary source of well-established and reliable information. It
represents a huge system of pieces of knowledge, continuously created, updated and
modified by users, as well as the networked structure in which they are embedded.
In this knowledge space, our walks from article to article can be effectively thought
of as learning paths [88], either oriented towards very specific pieces of information
or moved by curiosity. Comprehending how we act in such a space could be key to
design new and more effective learning strategies as well as to improve the actual
systems and platforms designed for knowledge search.

That is the proper aim of the present thesis. Within the complex systems frame-
work, it is investigated how the knowledge space structure can affect its own ex-
ploration in learning-type tasks, and how users do typically explore the accessible
information networks, when they look for information or follow some learning paths.
The research approach followed is exploratory. Far from giving exact, quantitative
results, three main lines of research are defined, along with novel concepts and
representations to deal with available data and previous results on cognition, learning
and information networks.

The first line of investigation [96] aims at enlarging a previous work by Novikoff
et al. [88] on algorithmic education, i.e., algorithms which are able to propose to
a learner the optimal scheduling of the study sessions of any bunch of items to
be learned. Optimal, in their work, refers to a temporal notion. Indeed, there are
results from cognitive research [39] stating that some temporal constraints should be
considered while balancing the introduction of new materials and the repetition of old,
already acquired, ones, in order to minimize forgetting. Novikoff et al. formalized

3



Introduction

mathematically this problem and developed some models for the generation of
learning schedules that would yield to lifelong learning or cramming, without any
forgetting during the time considered. However, in their scheme, no correlation
between the units to be learned is taken into account, while empirical results suggests
that they affect learning [18].

The work here proposed moves along this direction, by using a complex network
representation of the units to be acquired and their interconnections. Their possible
effects in learning are discussed and modelled, based on previous literature in
cognition and word learning. With all this, a stochastic algorithm is devised to order
the introduction and reviews of the interconnected materials, while still satisfying
constraints on timing. Far from being a truly educational software, or a model of
actual learning dynamics, it allows to investigate which topological properties are
key to boost the efficiency of exploration, and if these crucial properties are found in
information networks based on real systems.

With the starting aim of further enriching the proposed model with empirical
observations of how information-seekers tend to explore real information spaces, the
research effort has moved to a different track. The investigation of the dataset of
clickstream of users in Wikipedia is the research object of the second contribution
presented in this thesis. From this dataset, the possible paths followed by Wikipedia
readers are simulated and analysed to identify possible statistical patterns and reg-
ularities. To this end, a novel abstract representation of the Wikipedia articles is
devised, by which any article is mapped into a multidimensional space of broad
general topics, thus synthesising their topical content. The proposed topical mapping
is based on the category systems of Wikipedia, thus relying on the collective and
aggregate perception of knowledge, as it emerges in the online encyclopaedia and its
categorical structure.

The dataset and the scheme defined allow to distinguish between different brows-
ing strategies, according to the task motivating the navigation and the source from
which the user enters Wikipedia, thus posing the presented contribution [97] close to
other researches on semantic driven navigation of user in information networks. Still,
the analysis done on the exploration habits of Wikipedia readers is based on simu-
lated paths of users across pages in the encyclopaedia. The overcome this problem,
and rather focusing on true learning paths, some textbooks of advanced scientific
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content are also considered, thus defining the third line of research presented in this
manuscript.

Indeed, any textbook could be though as a particular path across the knowledge
space, namely the path suggested by the textbook author. The order with which
different concepts are presented is assumed to be a result of both preliminarity
constraints and style of writing and teaching. The writer chooses how and when to
present the educational material as well as when reviewing old one. However, she
carries the reader in the exploration of an (partially) unknown – conceptually, for the
reader – area of the knowledge space. Indeed, while we read a course book of follow
some lectures, any concepts introduced pave the way for others, thus uncovering
many potential new paths of learning and exploration. In this sense, it is here realized
the idea of adjacent possible proposed by Kauffman [68] in a biological framework.
Every textbook is indeed one possible walk in the known space of the author, while
the adjacent possible of the reader, namely what has become available for learning,
enlarges as she comes across the book.

With this perspective, the textbooks are analysed, firstly by looking for the
supposed underlying knowledge space. To this end, the classical level of analysis in
quantitative linguistics, namely words and n-grams, is left for a more conceptual level
of description. The texts are evaluated as streams of semantic units, extracted from
each sentences. In particular the choice of using the external software TAGME [44]
to tag each sentence into pages of Wikipedia allows for a direct mapping of each
textbook into a path of exploration of the Wikipedia graph. Preliminary results are
reported on this approach to the study of suggested learning paths, which could
in future lead to the study of very different educational tools and the underlying
teaching strategies.

Before entering into the details of the presented lines of investigations, brief
reviews are reported on the contributions of complex network theory to the analysis
of information systems, such as language, and of information-retrieval tasks, in
memory as well as in actual information hyperlinked systems.
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Chapter 2

Semantic network

For the last decades, concepts, tools and methods borrowed from statistical physics
have been widely applied to the study of diverse, interdisciplinary phenomena, all
characterized by features of complexity. Typically, with complexity it is denoted the
spontaneous appearing of macroscopic properties, from microscopic interactions of
their constituents. Notably, common regularities, features and quantitative behaviours
are recovered over several different types of systems, from biological to socio-
economics ones. Thus, the scientists aiming at formalizing so diverse phenomena
have focused on the structural properties of the systems, their “organization, their
pattern and form”, rather than their single constituents [25].

To this end, networks have proven to be the proper structures to represent a
large variety of complex systems [9, 85], as well as where to reproduce dynamical
processes of interactions. In the complex system perspective, a network is a graph
of nodes connected by edges, which can abstractly represent any type of interaction
or relationship between the nodes. Because of this, and since the complex network
approach allows to tackle the large amount of data from techno-social systems, which
are nowadays available, it has resulted in a extremely versatile mathematical tool.

The novel quantitative perspective offered by complex network theory has deeply
influenced the research in many different domains, like language and cognition
sciences. In this area, complex networks theory has contributed with its own more
abstract, coarse-grained approach, thus abroad addressing questions about structure
and universal properties of linguistic systems as well as of cognitive processes, with
respect to the traditional methods of linguistics and psycholinguistics.
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2.1 Semantics, networks and cognition

Besides language, other collective information systems are widely represented
through complex networks, and, as well as linguistic systems, they are also shown to
present statistical signatures of complexity. That is the case of the World Wide Web
and of its smaller subgraph Wikipedia.

Indeed, the mentioned systems are by their own nature networks, where pages
are connected through hyperlinks. As for language, the structure and properties of
such information systems have been largely studied. Moreover, thanks to the vast
amount of available data, also the users’ behaviour on them has been investigated,
by looking for patterns and models to explain the empirical observations.

In the present chapter some essential literature is reviewed in order to define
the framework of the work presented in the following. In particular, in the first
section some results of the complex networks theory approach to language and
cognition are surveyed. Far broad reviews on the topic can be found in the works
of Borge-Holthoefer et al. [22] and Baronchelli et al. [15], here considered as main
references. Then, results are presented on research carried on the structures of and
the user behaviours on complex information graphs.

2.1 Semantics, networks and cognition

2.1.1 Linguistic networks

As already pointed out, graph theory and complex networks advances have allowed
to gain a novel perspective in the study of human language [18]. Indeed, in the
complex networks framework, the complexity of language structure, its generation
and evolution can be tackled in a formal representation [103], thus overcoming the
classical linguistic approach, more focused on a static analysis of language.

The first issue of a complex network approach to any system is of course the
identification of the elements constituting the networks and of the type of associations
to depict. Language networks can be built upon different types of human data, usually
extracted from empirical observations of language use as in free association tasks,
in corpora of written texts, in ad-hoc designed experiments. In all cases, several
different linguistic aspects can be selected, such as words phoneme, semantics,
morphology etc. Still, whatever the type of relationships between words, they can be
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Semantic network

depicted by means of a graph, whose structure and topology reflect the complexity
of the words connections.

The first contribution of complex network science has indeed focused on the
structure of the various language graphs. Interestingly, different language networks
share statistical features at a global level. Why these common signatures appear, and
what they reflect about the key properties of the language organization and evolution,
both at individual and collective level, have become the research questions of the
networks scientists interested in language [103]. The object of analysis has then
shifted from the mere structural properties of language networks to the processes
leading to their formation as well taking place on them, thus putting the complex
network approach closer to the cognitive one [22, 18].

Statistical signatures of language complexity

One type of network widely used to investigate words organization into language
is the co-occurrences networks. In them, starting from a corpus of texts, words are
connected when appearing close in a text, up to a distance to be chosen. Changing
the distance allows indeed to take into account different types of correlations be-
tween words [45, 21]. The work of Ferrer-i-Cancho and Solé [45] is the first broad
investigation of co-occurrences networks of English language. They recover the
presence of features of complexity common to several other social and biological
networks, namely the small-world effect [110] and a power-law degree distribution.

The former, firstly observed by Watts and Strogatz [110], consists in the co-
presence of two different topological properties. Networks are small-world if the
average shortest path between any pairs of node is small, i.e., similar to the one found
in a random graph with same order and average connectivity. Moreover, they have to
display a transitivity higher than in a comparable random graph. With transitivity
the average clustering coefficient of the network is referred to, which measures
how much the network is clustered, i.e., how many pairs of neighbours of a node
are also neighbours of each other, on average. Together with these properties, the
power-law scaling of the degree distribution, found in the co-occurrences graphs,
is another common signature of complex systems and typically associated to a
particular generation rule, namely the preferential attachment [14]. In particular for
the co-occurrences graph, it is found that two classes of words can be distinguished,
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2.1 Semantics, networks and cognition

with different co-occurrences frequency profile, thus resulting in a double slope of
the degree distribution [45].

The above mentioned properties, small-world effect and power-law scaling of
degree distribution, are actually recovered also in other networked representations of
human language [103]. For instance, Steyvers’s et al. [105] analyse different types
of linguistic graphs, based on data collected in a free word association experiments,
and on two diverse thesauri of words. Although the three graphs represent different
semantic relations between words as originated from three diverse processes, the
resulting semantic networks share the above mentioned statistical properties, typical
of scale-free complex structures.

The fact that statistical signatures of complexities are ubiquitous in different
semantic representation of language suggests that they could actually have a cognitive
role, i.e., they could reflect properties of human cognitive processes [18]. For
instance, small-world properties in networks have been proven to lead to efficient
and robust retrieval of information [31]. Research has then focused on possible
generative end evolutionary models for the linguistics networks, with an effort to put
them in the right cognitive framework.

Lexicon generation and language use

The recurring small-world, scale free topologies recovered in various language
networked representations have suggested that a underlying mechanism of language
acquisition should exist. To uncover this, different models have been presented
and tested against real data. Among the others, the generative model presented by
Stevyers and Tennenbaum [105] provides one “testable hypothesis on how structure
in language might emerge during the process of acquisition” [18]. Indeed, to account
for the observed scale-free patterns and high clustering, the authors propose a
modification of the preferential attachment model [14]. In their augmented version,
any new node entering the network during acquisition differentiates an existing
one, chosen with probability proportional to its actual degree, as in the preferential
attachment rule. The introduced differentiation consists in the fact that any novel node
is connected to a subset of neighbours of the chosen existing one, as to differentiate
its meaning/context. This mechanism is proven to generate networks with properties
comparable to what found analysing the adult semantic network. Moreover it
provides an explanation for another empirical results, namely the positive correlation
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Semantic network

between word age of acquisition, their frequencies and their connectivity profile in
semantic networks.

Along the same direction, the works of Hills et al. [60, 59] and of Beckage [17]
investigate the developmental networks, namely the language networks as they
evolve in children. These are based on data registered by parents about production
of words in their children during early months of language acquisition. Connections
between learned words are then assumed by referring to other corpus or thesaurus,
as associative of features norms.

By only looking at the structural differences between development network of
individual children, atypical patterns of language development can be identified, thus
allowing to predict typical and late talkers [17]. On the aggregate dataset, typical
(normative) networks of children with different ages can be obtained, and used to
test language acquisition model.

In [60, 59] three mechanisms of word acquisition are tested. The first one is
the preferential attachment, according to which words are early acquired if they
would connect to the hubs of the known network at each stage, i.e., to the known
words which also are the mostly connected. The other two mechanisms are the
novel contributions of the authors, namely the preferential acquisition and the
lure of associates. With the former, words are earlier introduced if they are more
connected in the learning environment, i.e., to the most connected words in the adult
semantic network. According to the the lure of associates, instead, words with more
connections with the known words are early acquired.

While all three models fail to account for the development of feature networks, the
preferential acquisition model and the lure of associates outperform the preferential
attachment in predicting the evolution of association networks, thus uncovering the
role that contextual diversity [59] can have in enhancing words learning in children.
Indeed, the more diverse is the context of a word in the adult semantic network, the
more frequently that word can be used with other words in the children learning
environment, thus correlating with its observed early age of acquisition.

As emphasized by Beckage [18], the results in [60, 59] point out the relevance
of language representation used to gain insight into cognitive processes. In this
perspective, a very recent contribution has shown the promising power of a novel
development of complex network theory, namely multilayer networks. Indeed, a
comprehensive network representation of language has been proposed by Stella et
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2.1 Semantics, networks and cognition

al. [104]. The authors introduce the multiplex lexical networks as a unique mathe-
matical structure which absorbs 4 different interconnected layers, corresponding to
different networked language representations (associative, co-occurrences, features
and phonological networks). On this structure, where early learning acquisition is
investigated, the superiority of the novel, multiplex approach is shown, for instance
in detecting different stages of the language development in children.

2.1.2 Information retrieval and memory

When knowledge, as words or concepts, are represented by means of a network, then
several cognitive processes may be modelled as dynamical processes placed on it.
This could be the case of information retrieval tasks, i.e., when it is asked to find
the way to a target piece of information, as well as of mental exploration [22], when
instead from a stimulus the memory is activated as in a broad search without targets.
Both types of tasks find in the network representation of memory the ideal structure
where to be simulated as navigational processes, thus allowing to investigate how
their efficiency if naturally affected by the network topology, i.e., by their own
organization.

The milestone contributions in this type of approach on cognitive processes
is found in the Quillian’s idea of semantic memory and later extensions. In their
work in 1969, Collins and Quillian propose a tree-like hierarchical model of the
human semantic memory, i.e., the memory which includes “properties of language
storage and retrieval” [18], according to the psychological definition. In their model,
the semantic memory is represented so that concepts are nodes and connections
represent class-inclusion relations. On this type of representation, the retrieval times
for sentences of the type “A canary can fly” [32] are computed in a computer and
then contrasted with real human retrieval times. The model over which the search
process on the semantic network is based is called spreading activation model. It
assumes that, from the input concepts, the search diffuses in parallel over the links,
activating a tag on all the nodes visited, until a node already activated is met (in this
case the path followed to connect the two concepts is evaluated and the information
is possibly retrieved), or indefinitely, in the case of priming, as for mental navigation.

The constrained model proposed by Quillian was then extended in [31] to account
for other empirical observations on cognitive tasks. The final proposed model of
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Semantic network

semantic memory assumes a more general graph, where concepts can be not only
nouns but also adjectives. Connections here are weighted with the aggregate semantic
similarity of the nodes connected, that is how many properties are shared by them.
Still, activation spreads as in a breadth-first diffusion from the stimulated inputs,
decreasing with the distance thus activating other nodes with different strengths. This
activation model is in the cited work tested to ease information retrieval, and indeed
the authors shown that human performances in retrieval tasks can be effectively
investigated as processes taking place on networks [18].

In the following decades, the very simple psychological mechanism suggested
by Quillian and Collins has inspired further investigations on the possible role in
cognitive tasks of structural properties of nodes in language networks. That the case,
for example, of the possible effect of neighbourhood density of nodes in phonological
networks on retrieval and word identification tasks [109], and, more in general of
the connectivity profile in semantic networks. For instance, Griffiths et al. [56]
propose and observe a novel correspondence between human memory organization
and functioning and PageRank [90] algorithm. They focus on investigating fluency,
namely how fast people can retrieve different information, e.g., all words starting
with B. This type of retrieval processes is claimed to be very similar, computationally,
to any Internet search engine, as Google. Indeed, the problem in both cases is to find
the relevant items to answer a query, by looking in a large network of interconnected
nodes – semantic concepts or Web pages. It follows the authors’ idea to test, in a
semantic memory network, the PageRank algorithm used by Google to compute the
relevance of Web pages. Roughly speaking, the algorithm computes the centrality of
each page by considering the importance as flowing across the links and pages, so
that most relevant pages receive a major flux because they are connected to other
highly relevant page, in a recursive definition. When the same algorithm is applied to
a semantic network, the PageRank predictions outperformed other measures of word
prominence in memory, like word usage frequency. It is worth to stress, as done by
the authors, that the PageRank performance could indeed be explained by assuming
the simple cognitive mechanism of spreading activation proposed by Collins and
Loftus [31]. Indeed, in both cases the efficiency of the cognitive tasks depends
on how information flows in the network [22], and thus finally on its topological
properties.
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2.2 Information graphs

2.2 Information graphs

2.2.1 Structure of information networks

The World Wide Web is an important example of information network, in which
pages containing information are interconnected by hyperlinks. From its very begin-
ning, research has focused on investigating its graph structure, as needed step both
to gain insights into the generation of the system and to improve search engines and
navigability.

On the Web structure, many different investigations have focused on both micro-
scopic and macroscopic statistical properties. Since the very first researches [10, 71],
small-world properties and scale-free profile in and out-degree distributions of pages
were recovered.

In the first large-scale analysis, Broder et al. [24] confirmed the power-law
distribution of in-degree and the large tail of the out-degree distribution, as well as
for the scale-free distribution of strongly connected components. Furthermore, on
a macroscopic scale, they proposed the bow-tie picture of the Web. Indeed, they
observed a region of pages strongly connected (the CORE of the Web), a set of nodes
not from which the COREs are reached, but not reachable from there (IN region)
and a further region reachable from IN and CORE but do not directly connected to
them (OUT region). Other set of nodes (TENDRILS and TUBES), are not part of the
CORE, but still can be reached (or reach) IN (or OUT) nodes. This bow-tie structure
was further observed in successive crawls, with the fraction of nodes belonging to
each region depending on the crawl considered [38].

Interestingly, a similar bow-tie-like structure and connectivity profile was found
by Capocci et al. [27] while investigating the Wikipedia graph. Indeed, as for the
World Wide Web, the structure of pages connected by hyperlinks of the on-line
encyclopaedia naturally suggests a graph-like representation, where directed edges
interconnected the nodes/pages as hyperlinks do. The Wikipedia graph is continu-
ously evolving, because the Wikipedia editors continuously add novel pages or, more
frequently [27], novel edges between existing pages, thus possibly modifying the
topological structure of the graph.

Still, other studies have pointed out the stability of its statistical microscopic
properties, both across language versions [118] and across time [26]. By looking
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at the temporal evolution of the Wikigraph, an evolving bow-tie structure is also
recovered, the relative size of the CORE region enlarging as the OUT shrinks, and
the graph becomes denser.

2.2.2 Browsing behaviours

The analysis of the structure of the hyperlinked network is key to investigate its
navigability and the ease of information retrieval tasks by its users, exactly as for
the semantic memory. Different models have been proposed to reproduce possible
behaviours of users in information networks and how topology can affect traffic flows.
In this sense, the paramount case is the PageRank algorithm of Brin and Page [23].
By assuming random surfers browsing the World Wide Web, their algorithm allows
to rank pages in function of their centrality in the browsing activities.

Still, insights into the users browsing behaviours on information networks arrived
as soon as data were available. From the very early studies of [64], attention has
been focused on statistical regularities on how the WWW was explored, trying to
quantitatively differentiate typical browsing strategies.

For instance, mainly based on server logs analysis of limited domains, studies
have focused on characterizing the activity of web users, by observing cyclic regular-
ities in their temporal patterns [53, 78]. Also the way users exploit the hyperlinked
structure was object of analysis, revealing that teleportation via directly accessing
pages of interest outperform navigation by following hyperlinks [78]. In [77] Meiss
et al. contrasted individual patterns and aggregate patterns, recovering at the aggre-
gate level the large tail distribution of site popularity (thus impeding any possible
definition of typical traffic), as a result of log-normal distributions at the individual
user levels.

Also regarding Wikipedia usage patterns, servers logs served as main dataset
types for the early studies on the Wikipedia users. Ratkiewicz et al. [95] cross-
correlated web requests outgoing the Indiana University over some months of brows-
ing activities with article hits and other dataset to characterize traffic throughout the
online encyclopaedia. Wikipedia in their analysis is observed to be a sink of traffic
flowing into mostly from the same Wikipedia, from few referrers – typically search
engines – and from empty referrer for around %9. Furthermore, by investigating the
incoming flux from external sources and the outgoing flux originated in Wikidepia,
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two predominant usage modes are recovered, namely encyclopaedia and browsing,
in which respectively users tend to arrive from outside and remain in the Wiki, or to
browse internally from page to page.

While being useful to understand local transitions between Wikipedia pages,
log requests data do not provide complete information about individual user path.
Despite the possibility of simulating paths from them, as later discussed in this thesis,
other tools have been devised to obtain real navigation paths. For Wikipedia, games
have been proposed in which users are asked to browse the encyclopaedia (or some
reduced versions of it) while to fulfil the gaming task under some temporal or spatial
constraints. The Wiki Game by Clemesha [30] and Wikispeedia [8, 112] are two
notable examples.

In Wikispeedia players were asked to navigate on a reduced version of Wikipedia
to go from a given starting page to a given target page always hopping on Wikipedia
pages. Based on the paths gathered, West et al. reported [111] about hight effi-
ciency of humans in identifying shortest paths and of emerging common navigation
strategies. The Wikispeedia players early rely on hubs in the network, being they
very common as first click. With this choice, they move from the first, assigned
page, to a node where more options are typically available to push forward their task.
While degree is crucial in the first phases on the games, after similarity becomes
more important. Semantic similarity is computed by West et al. as a TF-IDF (text
frequency-inverse document frequency) distance. With this they find that, after a few
click, players get slowly semantically closer to their target, while also the semantic
distance between consecutive pages visited diminishes.

Recently, the availability of large clickstream dataset extracted from the request
logs of Wikipedia on a monthly bases for some months since January 2015 [115],
has driven novel research on the issue of navigational behaviours of Wikipedia users.
Indeed, these data report all requests of Wikipedia pages in the main namespace,
i.e., articles and MainPage, performed by all users of the Desktop version during an
entire month, thus providing crucial information to understand how navigability is
affected by different features [72, 37]. That is the case of spacial/semantic features,
concerning the position of the browsed hyperlinks in the article pages, of structural
features related to the topological role of the pages in the Wikipedia graph or also
semantic features. All these are observed in [37] to influence the success of a
Wikipedia hyperlink, which is preferred if driving the reader towards the graph
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periphery, semantically similar pages or if it placed in the top or left-hand side of the
article.

Naturally, any kind of empirical observation about navigation preferences and
patterns calls for navigational models which could account for them. Typically, it
was done by properly steering the random surfer model, crucial in the navigation
description because the main assumption of the PageRank [23] ranking algorithm.

Indeed, the classic model of a user who moves by following uniformly at random
the hyperlinks while browsing information networks structure, sometimes jumping
on the graph, has been investigated and modified, by introducing biases affecting
how the link are selected at each step [50]. Still, whatever the rule according to
which the next step is chosen, many models rely on a crucial property of the simulate
random surfer, namely its markovianity.

With this, it is intended that the stochastic step of the modelled surfer is only
affected by the particular transition probabilities from one page to another, regardless
of its previous navigational history. Despite its extreme simplicity, this assumption
has been recently proven to be statistically suitable to model the navigation of a
system characterized by many states, as the pages of an information networks like
Wikipedia. In particular, Singer et al. [102] tested varying order Markov chains
models against navigational data from both goal-oriented and free tasks. Models are
compared by means of different statistical model selection methods.

Given the sparsity of the available navigational data with respect to the high
number of possible states, they conclude that memoryless Markov chains are the
most suitable to model navigation on a page level. Indeed, they also report evidences
that, as soon as navigation is considered between page semantic features, second
order Markov chains models outperform the others. Thus, they recover that human
navigation is indeed not memoryless, similar memory patterns emerging on a topical
level of pages representation.
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Chapter 3

Optimal dynamics on information
networks

This chapter is dedicated to the description of the first line of research presented in this
thesis, namely the investigation of the topological properties of information networks,
on which an educational algorithm is simulated. This question is approached by
starting from a previous, recent work on algorithmic education [88], in which the
mathematical framework is defined of the timing issue in learning.

Indeed, as reported by a wide literature since 1885 with Ebbinghaus [39], it is
known that timing is crucial in scheduling the study sessions of any material to boost
the learning and minimize forgetting episodes. In [88] the problem of finding the
proper balance between reviews and introductions of novel notions is addressed, and
several scenario are discussed depending on the student performance, i.e. its rate of
learning.

Here, the schema proposed in [88] is enlarged to account for interconnections
between the units to be learned. Indeed, many empirical results suggest that associa-
tions between the material to be studied affect the learning process. The possible
effects are formalized and taken into consideration while devising a class of educa-
tional algorithms. Such algorithms allow to explore, until complete coverage, the
network of items to be learned by an abstract user, providing her with an ordered
schedule of sessions in which either new material is proposed or old one is revised.
With the devised algorithm, the role of the network structure embedding the item
to-be-learned is investigated, by testing how different topological properties affects
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the learning efficiency of the process simulated. To this end, both synthetic graph
structures and real-world ones are tested, namely some subsections of the Wikipedia
graph and the Human Brain Cloud network of free word associations [49].

The chapter is organized as follows. Firstly it is established the background of
this work. Then the devised class of algorithms to explore an information network
is presented, along with a discussion on the assumptions made to take into account
possible effects from semantic associations between the units to be learned. The
graphs used to test the algorithms as well as the real-based ones treated as proxies
for real information networks are presented. Finally the results obtained when the
educational processes are simulated on them are reported and discussed. The content,
discussion and results hereafter discussed have been already published in [96].

3.1 Background

3.1.1 Timing issues in learning

In the last century, large discussions on learning and memory in the context of
cognitive and psychological research have been conducted. Particular attention has
been paid on the issue of allocating the study practices of items over time to gain the
best learning performance, in terms of successful retrievals as well as long retention
of the acquired knowledge. The milestone work is considered to be the one of
Ebbinghaus in 1885 [39], in which he introduced the spacing effect. This finding
refers to the notion that spreading the study sessions of any item over time makes its
learning more durable than massing them in a short period, where the inter-study
session intervals can be empty or filled with practices of other items. This effect is
considered as “one of the oldest and best documented phenomena in the history of
learning and memory research” [12]. Many different theories have been proposed to
explain it in term of the psychological mechanisms involved. References are [34, 61]
or the review by Dempster [36] where many experimental evidences of its validity
can be also found.

Among all the possible inter-study intervals, research supports another finding
on how to improve retention by optimally scheduling the reviews. It has been indeed
reported [13] that the benefits gained by spacing are enhanced if, for each item, the
intervals between its study practices expand with the reviews rather than remaining
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3.1 Background

fixed. This phenomenon is usually referred to with lag effect or expanded retrieval.
A qualitative and quantitative review of the effect of these distributed practice can
be found in [29]. By the way, many of the early experimental studies were related
to immediate retention tasks, often involving exclusively paired-associate learning.
Only recently more research has been focused on the effect of the distributed practices
for long-term retention [12].

An example of practical formalization of these findings was already proposed
by Pimsleur [94] who introduced and justified exponential expanding inter-study
sessions. His approach is still now used as a valid language learning method. Several
other efforts have been made in defining algorithms to compute the optimal times
for practices [92] and in designing computer based learning systems, mainly based
on flashcard (a famous example is the SuperMemo method and software package
[114] or the most recent free software Anki [40]). Finally, another novel notable
implementation of the spaced repetition technique, not based on flashcard procedure,
is the free language-learning website Duolingo [1].

In addition to the results on the temporal constraints to make the learning more
efficient, also the role of possible semantic connections between the materials to be
studied are considered. This has been accomplished by referring to the the seminal
spreading-activation theory for information retrieval [32, 31], and in particular to the
assumption that, while learning, semantically related concepts could be primed or
reinforced in memory. Further fundamental references are some results of previous
research on the early words learning in toddlers [60, 59] or in second language
learners, for which cognitive rather than linguistic associations seem to enhance the
acquisition process [107], as already discussed in the previous chapter.

3.1.2 Algorithmic education

The spacing and lag effects defined are mathematically formalized as constraints in
a learning schedule already in the cited work by Novikoff et al. [88]. They present
a mathematical model to sequence educational material over time, in which the
introductions and repetitions of abstract to-be-learned units are deterministically
scheduled, thus defining a learning agenda in an optimal way. Their idea is to take
the learner’s needs and skills into account through two spacing constraints on the
time useful for reviewing each item. For any given educational unit ui, the temporal
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distance between its k-th and (k+1)-th occurrence has to lie in the temporal window
[ak,bk], with ak ≤ bk. Both the bounds are weakly increasing functions of the number
of repetitions k. These two constraints, ak and bk, represent respectively the time
before which any repetitions is useless for a better retention and the last time useful
for reviewing before the item gets forgotten. The time steps interval [ak,bk] is thus
the temporal interval in which the ideal (k+1)-th review should occur to optimize
the later retention.

More in details, the cited work focuses on two different educational goals:
cramming and lifelong learning. The first one concerns an educational programme
which aims at presenting and retaining a finite amount of units until a particular time.
In contrast, the main goal of a lifelong learning is to schedule presentations and
reviews in order to maximize the later retention, never forgetting anything, while the
items to be learned grow without bounds. With reference to this last scenario, in their
paper some algorithms are proposed to create agendas which allow to gain infinite
perfect learning while satisfying different spacing constraints. Both constraints with
{ak, bk} exponential and polynomial in k are considered and the resulting learning
rates are discussed. The function considered for quantifying the efficiency of the
process is the introduction time function tn, which accounts for the time when the
n-th unit is introduced.

Among the several results presented, the authors show that schedules can be
constructed for which both infinite perfect learning is achieved and tn is arbitrarily
close to a linear dependence on n. In particular, however fast a function r(n) grows,
an agenda can be defined with tn growing as Θ(n · r−1(n)). However, in this case it is
required that bk and (bk −ak) grow as Θ(k · r(k)) i.e. the spacing constraints must be
increasingly lax. Nevertheless, the result is proofed that no constant c exists such that
tn ≤ cn for all n, i.e. the fastest learning corresponds to a superlinear introduction
time function.

Their results and methods are here considered as main reference for the algorith-
mic scheduling approach. In particular, the analysis presented aims at tackling two
major issues only cited in the referenced work, namely the algorithm flexibility to
account for possible failures of the learning procedures and the role of correlations
between the units. How these two issues are dealt with is the object of the next
section.
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3.2 Learning schedules

The set of items to be learned are nodes in a graph, whose topology is representative
for all the possible semantic connections between the items. The learning is the
dynamical process of graph exploration, described by means of a learning schedule,
namely the sequence of successive visits an hypothetical student would make to
the nodes of the graph. In this scheme, the algorithm which generates the learning
schedule is probabilistic, in order to be more adaptable to any learner performances
or needs during the learning process, for example by taking into account failures
like forgetting events. Moreover, different strategies are investigated to take into
account the effect arising from the underlying topology of semantic interconnections
between the items.

3.2.1 Algorithm – Time constraints

In this section it is described how the lag and spacing effects are implemented in
the generation rules of the learning schedules, i.e., in the devised algorithm. The
ordered sequence of nodes is defined as follows. At each time either a new node
(never visited before) can enter in the sequence, or an already considered one can be
repeated (subfigure (A) of Figure 3.1). In particular, at each time step, the item i to
be presented to the student, i.e., appended to the learning sequence, is stochastically
chosen according to three factors:

• the time, ti, elapsed for each item i since its last presentation;

• the time, tnew, elapsed since the last introduction of a brand new item;

• the knowledge strength Si(t) of item i at time t, where the knowledge strength
quantifies how much the i-th item is well-known. It will be defined in details
in the next paragraph.

Constraints on the time window useful for reviewing an item are provided, thus
taking into account the spacing and lag effects. As in a previous work [88], in order
to prevent the forgetting of the item, any two successive occurrences of the same item
i should take place within the given temporal interval [aSi(t),bSi(t)], whose bounds
are monotonic non-decreasing function of the knowledge strength Si. In particular,
at each discrete time t:
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(A) Learning schedule

ui ui ui ui . . . . . . ui

Expanding gap between reviews

0 ≡ aSi(t) bSi(t) t− tk

optimal review forgetting

Probability
of review

∝ FSi(t)(t− tk)

(B) Mechanisms of knowledge reinforcement

ki
0

S1

S2

S3

S4

Active effect

Item i
introduction

ki

j

Passive effect

Item i
repetition

Fig. 3.1 Model illustration. (A) In a learning schedule the interval required between any two
successive presentations of the same item i expands with the number of reviews. To this end
the probability of a repetition is computed for every node already introduced as illustrated. If
the k-th presentation of a node i with knowledge strength Si occurred at time tk, the (k+1)-th
happens at time t with probability proportional to FSi(t)(t − tk). This function is non null
in the temporal interval [aSi(t),bSi(t)], whose bounds are increasing functions of the total
knowledge strength of item i. After bSi(t) steps without being repeated, the item i is forgotten
and has to be reintroduced. In (B) the supposed mechanisms of knowledge reinforcement
are illustrated. When item i is introduced, it gains a starting knowledge value ki

0 depending
on how much its neighborhood is known. This mechanism is referred to as active effect.
Afterwards, at every successive repetition, its knowledge is reinforced by 1 and one among
its introduced neighbours, say j, is randomly selected to receive a passive reinforcement, i.e.,
kpass

j is incremented by a quantity α . In all the simulations here conducted α = 0.1.

1. for each item i among the n(t) already introduced in the schedule, the temporal
distance since its last occurrence is evaluated: ∆it = (t − ti), where ti is the
last time at which the item i entered in the sequence. If ∆it > bSi , the item is
forgotten, put into a forgetting queue and its knowledge strength Si is reset
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to zero. If ∆it ≤ bSi , a monotonic non-decreasing function of ∆it, FSi(∆it),
determines the probability for node i to be repeated at time t.

2. the probability of introducing in the sequence a new item instead of repeating
an already introduced is evaluated as Fnew(t) = 1

2 · (t − tnew).

Thus two complementary events could occur, namely an item i is chosen to be
reviewed or a novel item is introduced. The corresponding normalized probabilities
are:

Pi
rep(t) =

FSi(∆it)
n(t)

∑
u=1

FSu(∆ut)+Fnew(t)

Pnew(t) =
Fnew(t)

n(t)

∑
u=1

FSu(∆ut)+Fnew(t)

(3.1)

In the case of a new introduction event, the oldest item stored in the forgetting
queue is reintroduced, without updating tnew. If the forgetting queue is empty, a
brand new node is introduced to the learning schedule and tnew is updated.

It is worth noting here that a strong approximation is made when considering
what happens after bSi time steps without any new review. An abrupt forgetting is
assumed, regardless of the usually supposed exponential decreasing forgetting curve,
firstly introduced by Ebbinghaus [39]. The assumption made is just a first attempt to
insert the possibility for some units to be missed, thus reflecting the simplification
for which a unit is either remembered or forgotten, without evaluating the strength
of its memory trace.

In the present scheme, many elements are free to be adapted to the learners
capacities, as the functional expressions for the temporal bounds aSi(t),bSi(t) and the
repetition probability function FSi(∆it). In the analysis here presented, they are set
as follows:

• the temporal bounds are aSi(t) = 0 and bSi(t) = 2Si(t)+3, as illustrated in Fig-
ure 3.1, subfig. (A). In so doing, it is supposed that the temporal window useful
for a review to occur expands exponentially with the number of reviews [94];
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• the repetition probability function is defined so that a review is more likely
to happen the closer the time is to the upper bound bSi(t), thus taking full
advantage of the lag effect. For each item i:

FSi(∆it) =
F∗

Si
(∆it)−F∗

Si
(0)

F∗
Si
(bSi)−F∗

Si
(0)

, (3.2)

where

F∗
Si
(∆it) =

1
2
·
{

tanh
[

LR
bSi

(
∆it −

bSi

2

)]
+1
}
. (3.3)

In this definition, LR is the only free parameter, which stands for learning
rigidity and fixes the function slope. In the following, it is set LR = 23.

Flexible learning

The parameter LR affects the slope of the repetition probability function, thus bal-
ancing the urgency of a repetition in the temporal width [aSi(t),bSi(t)]. How its value
affects the learning is here tested and reported for the case of uncorrelated items,
where the knowledge strength of each item Si(t) corresponds only to the number of
reviews of item i occurred up to time t. In particular, to quantify the efficiency of the
process the following quantity are considered: the average number of units forgotten
⟨n f q(t,LR)⟩t , the average number of time steps a unit has to wait in the queue before
being reintroduced ⟨t f q(u,LR)⟩u, and the introduction rate n(t), i.e., the number of
distinct units introduced as a function of the time.

In Figure 3.2, for several values of LR it is reported the corresponding repetition
probability function (subfigure (a)) and the values of the above mentioned quantities.
Regarding the introduction rate (subfigure (c)), the trends are fitted with a sublinear
function n(t) ∝ texp. The fitted exponents are reported in the inset. The data are con-
trasted with the limit case in which FSi(t) is a step function of t, thus corresponding
to the case LR = ∞. It is worth noting that an efficiency criterion based on the only
introduction rate does not lead to the same evaluation of the learning performances
as when the forgetting dynamics is considered. Indeed, while LR gets larger, the
introduction rate monotonically increases, this corresponding to a faster learning
process. Nevertheless, more units are forgotten during the procedure as well as more
time is needed for them to be reintroduced from the forgetting queue. However, the
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Fig. 3.2 Learning rigidity and schedule efficiency. In (a), different plots for the function
FSi(t) (Eq. 3.3) in the interval [0,bSi(t)] are reported, while tuning the value of the parameter
LR. Correspondingly, in the figures (b) and (c) some properties of the agendas obtained by
running the simulations on sets of 104 disconnected nodes are displayed. In particular, in
(b) it is reported the average number of units in the forgetting queue (subfigure at the top)
and the average number of time steps a forgotten unit has to wait before being reintroduced
(bottom). In (c) the introduction rates n(t) are reported, with the exponent of the fitting
function n(t) ∝ texp in the inset. All the data are averaged on 50 runs. Standard errors are
reported.

functional form of the introduction dynamics (quantified by the introduction rate
n(t)) is not affected by changing the learning rigidity parameter, remaining sublinear.

In the following analysis, the value LR = 23 is chosen, only because of the
definition of the bound bSi(t) and of the repetition probability function, equation 3.3.
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3.2.2 Algorithm – Taking connection into accounts

The algorithm rules described so far have only taken into account the temporal
constraints of the process, as they arise from the spacing and lag effects. Along with
these effects, in the algorithmic scheme here proposed, the semantic connections
between the units to-be-learned must be also taken under consideration.

Without entering into the details of all the possible types of connection, and
their role on learning, two main mechanisms are here described and implemented,
as a result of several suggestions from previous studies [32, 31, 107, 60, 59, 17],
reviewed in the previous chapter. Here it is assumed that the relations between the
units may indeed influence the learning rate and retention both because of a direct
associative effect of the previously gained pieces of knowledge on the novel ones
acquired, and because of the way the new entries are sorted, depending on their role
in the whole network. These two different effects are put into the stochastic model
as explained in the following subsections.

Mechanisms of knowledge reinforcement

In the previous section, the knowledge strength of item i at time t, Si(t) was intro-
duced as a general quantifier of the extent by which the item is well-known and
retained in memory. It is defined as the sum of three distinct contributions, corre-
sponding to three different mechanisms that are supposed to lead to the acquisition
and reinforcement of any item knowledge:

Si(t) = ki(t)+ k0
i + kpass

i (t) (3.4)

where:

• ki(t): number of repetitions. It is the number of times the item i is repeated
since its first introduction or since its reintroduction from the forgetting queue.
Each repetition is supposed to equally contribute to the reinforce of the item
in memory.

• ki
0: active effect. When an item i enters in the sequence for the first time or

from the forgetting queue, its starting knowledge ki
0 is a weighted average of
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the knowledge acquired so far on its neighbours. The underlying assumption
here is that the better the context of a new item is known, the easier learning it.

• kpass
i (t): passive effect. Every time an item j is repeated, one among its

neighbours already introduced (and not forgotten), say i, is randomly selected
(uniformly or with probability proportional to the weight of the connecting
link, respectively in unweighted or weighted graph) and kpass

i increases by
a value α < 1. This passive effect is introduced to account for the fact that
the repetition of a unit may reinforce the memory of one among its already
introduced nearest neighbours, as it can happen due to an explicit recall or
because of a natural associative learner’s behaviour.

More in details, for what concerns the active effect, it is assumed that the starting
knowledge ki

0 of an item reflects the knowledge of its context, i.e., of its neighbours.
It is defined by:

ki
0 = max

(
1 , int

[
⟨k⟩nni ·

(
1− 1

nni
intro

) ])
(3.5)

where nni
intro is the number of neighbours of i already introduced and not forgotten

and ⟨k⟩nni is the average no-passive knowledge strength over the set of neighbours
Ni of item i. It is defined as:

⟨k⟩nni =
1
si

∑
j∈Ni

(k j
0 + k j)wi j (3.6)

where wi j is the weight of the link connecting node i to node j (wi j = 1 in an
unweighted graph) and si is the strength of node i: si = ∑ j wi j. With this choice, the
acquisition of a low-degree unit (as a very specific word or concept) is enhanced
only if the connected units have high memory strengths, while for a hub (a common
word or a very general concept) the extension of the knowledge over its many linked
units becomes more relevant.

Regarding the passive effect, there are of course many choices for modeling this
mechanism and quantifying its range. For instance, it might contribute to ki and be
considered like a proper repetition, or it might be involved only in the computation
of either the repetition probability or other units starting strength k j

0. Its magnitude
might depend on the units degrees, number of repetitions, time gaps since their last
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occurrences, type of association, time distance between their first presentations into
the agenda and so on. Similarly, the reinforced neighbour of the repeated node might
be selected according to different criteria, e.g. proportionally to its degree, to the
temporal gap since its last review, etc.

Here, the passive effect is introduced as follows. Every time a unit is repeated, the
introduced neighbour that gains the reinforcement is randomly, uniformly selected
among the available ones, if any. In this way, during the learning procedure, each
node can accumulate a contribute kpass exclusively from the passive effect, possibly
reset to zero if it got forgotten. As a consequence, this contribution reveals how often
the unit is recalled because of a repetition in its neighbourhood.

The particular value for the parameter kpass is chosen to be the same for all the
units. It is indicated with α . Tests have been done on how this parameter can affect
the learning schedules proprieties, and some results will be later discussed. However,
if not diversely stated, α is to be considered fixed and set to α = 0.1.

Entry selection criteria

The order used to explore the learning environment is particularly relevant, since
differently sorting the entries means differently considering the information stored
in the topology. The question of finding the optimal sorting is indeed related to how
it is usually perceived the environment in acquiring new knowledge, i.e., the way in
which the information networks grow.

For instance, the early language acquisition by toddlers may underlie the forma-
tion of the observed scale-free associative networks in adults. In this case, several
models for acquisition have been proposed and analyzed by studying how the norma-
tive children early semantic networks evolve. With respect to the case of language
learning, throughout different word types, two main factors seem to be relevant, i.e.
the contextual diversity and the consistency of the context, using the same definitions
as Hills et al. have in their papers [60, 59]. The former refers to how rich the
neighbourhood of a given word is, i.e., its connectivity. The latter is instead related
not only to the properties of the learning environment but also to the already known
words and their connections: it refers to the presumed principle that the more the
neighbourhood of a word is already known, the earlier that word is acquired, thus
yielding to a clustered local exploration of the network.
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3.2 Learning schedules

Starting from these results, the following different criteria are here considered to
sort the entries, i.e., to select the particular brand new node to be introduced in the
learning schedule:

• Random Learning (RL) – each new entry is randomly selected among the
ones not already introduced into the agenda. This sort of selection uses no
information of the network. When scale-free graphs are considered, this leads
to the earlier entering of low-degree nodes.

• Preferential Acquisition (PA) – the new entries are chosen with probability
proportional to their degrees (or strength, in case of weighted graph), thus
firstly preferring the ones more contextual diverse. With this choice, the more
frequent concepts in the learning environment (or the ones with mostly diverse
context) enter earlier in the schedule.

• Random Surfing (RS) – inspired by the PageRank algorithm proposed by
Brin and Page [23, 90]. The new entries are selected as the learner could
randomly follow the connections. This could for example happen to a learner
while researching about something on a encyclopedia, or on a dictionary (in
this case, the connections being semantic or morphological). Formally, every
time a new unit has to be chosen, with probability p a nearest neighbour of the
last new one is selected among the non introduced ones, if any, with probability
proportional to its degree. Otherwise, a jump is made in the network and a
random node is selected with a PA step. In case of weighted graph, strengths
are considered instead of degrees. The non-jumping probability p is set equal
to 0.9.

The mechanism for the toddlers’ early acquisitions network growth proposed by
Hills et al. [59] and inspired by the consistency of the context principle, is here not
considered. Indeed, although it could be significant in the selection of new entries,
presumably leading to the earlier exploration of high clustered groups of units than
that less clustered, the principle that units with more connections among the known
ones are easier learned than those less related is already present in the model, through
the active effect.
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3.2.3 Quantifying the learning efficiency

On the generated sequences, two main quantities are studied to evaluate the efficiency
of the corresponding learning processes. The first one is the introduction rate n(t),
namely the number of distinct nodes presented throughout the sequence as a function
of time and not forgotten. The second variable is the graph coverage time, that is
tN such that n(tN) = N, i.e., the time needed to present every node at least once
and to empty the forgetting queue. For these quantities two different behaviours
can be expected in the limit cases of totally disconnected and connected graphs.
Because of the generation rule previously explained, and in particular the active
knowledge reinforcement term, interconnections between nodes lead to a faster rate
of introductions and therefore to a shorter coverage time.

However, for intermediate connectivity values, the learning efficiency does
depend on both the topology of the graph explored and, for a given topology, on the
criterion according to which novel nodes are to be introduced. For this, simulations
on different types of synthetic graphs and on networks generated from real data are
performed. In the first case, for each graph type the sequences obtained from graphs
with increasing average degree are compared. For the real networks, methods of
perturbation have been developed to increase and decrease the connectivity while
only slightly modifying the other statistical properties, such as the degree or strength
distributions. They are described in the next section.

3.3 Methods and graphs

To understand the role of the topology in affecting the learning process, i.e., in
affecting the properties of the learning schedules, two main groups of graphs were
considered: synthetic and real graphs.

By testing the algorithm on the synthetic graphs, it is possible to understand the
role of particular statistical properties of the topologies, by tuning proper parameters
in the graph generations. In particular, for different classes of synthetic graphs, their
mean connectivity is tuned, while keeping fixed all the other properties.

The synthetic graph classes considered are generated through the Random graph
model [41] (ER), the Barabaási-Albert model [14] (BA), the Holme-Kim [63] model
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and the Uncorrelated configuration model [28]. They are all reviewed in the Ap-
pendix section A.2.

In contrast, the real graphs considered represent true semantic networks. Since
they differ in generation rules, strength and weight distributions, any direct com-
parison of the learning schedules obtained on them would be meaningless. For
this reason, to evaluate the resulting learning efficiencies, the original networks are
contrasted with slightly perturbed version of them. Both the real graphs analysed
and the perturbation strategies are here described.

3.3.1 Real semantic networks

With regards to the real semantic graphs, both free-associated words networks and
subgraphs of Wikipedia are considered.

Free association words dataset

Among all possible semantic network representations of language, word association
graphs can be considered as a proxy for how human mind stores and organizes words
and related meanings [55]. Here, two datasets are used, namely the Human Brain
Cloud [49] (HBC) dataset and Edinburgh Associative Thesaurus [69, 2] (EAT).

EAT dataset The Edinburgh Associative Thesaurus is a thesaurus of empirical
word association norms [2] as they emerged through discrete associative tasks
conducted in a controlled experimental environment in 1973. For the detailed data
collection method, see [69]. Here, the main properties of the applied procedure are
summarized.

A small set of stimulus words were defined at the beginning of the data collec-
tion procedure. The items in this nucleus set were selected according to previous
studies on norms and word frequency counts. The responses obtained to these cues
words were then used (with “only a minimal amount of selection” [69]) as stimuli
themselves in successive experimental sessions. This sort of cycle was repeated until
8,400 stimuli were used.

Each cue word was presented to 100 different subjects. The stimuli were ran-
domly gathered in groups of 100 words for each participant, who, as a consequence,
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contributed with 100 responses. Similarly, due to this data collection procedure, each
word used as cue resulted to have an upper-bounded out-going strength of 100.

The data of word associations are free available in [2]. From them, a undirected
weighted network is generated, without self-loops. The final graph is composed by
23,219 nodes and 289,116 associations. The experimental set-up constraint about the
number of possible responses for each cue results in a peaked strength distribution,
as shown in Figure 3.3, subfigure (B)).

HBC dataset The Human Brain Cloud database is the largest word association
database available at the present [55]. The associations have been collected through a
multi-player web-based game [49], designed without any particular scientific purpose
of analysis. In this game, players are asked to response with a target word to a cue
word randomly proposed by the system. No control is performed on the number of
participant, nor on the number of associations with which each player contributes.
On the words proposed as cues, a sort of user-based filter procedure is designed,
so that only the words with a minimum quality level1 are used as stimulus. The
game indeed started with only a word, while the internal dictionary from which
the stimulus words are extracted automatically grows by gathering the answered
responses at the end of game sessions.

After a data collection within a period of a year, the data set consists of around
600,000 words and 7,000,000 associations. Of these words, the ones have been
discarded which have been reported by the same users as inconsistent, e.g. because
misspelled or offensive. Further filtering of the data by removing the non valid
words selected with the same criterion as the cues were was performed by Gravino et
al. [55]. In the cited work, the authors also proved the robustness and reliability of the
dataset, by recovering significant correspondences with other free word association
graphs, based on controlled linguistic experiments.

The final network, by courtesy provided by Gravino [55], consists of around
90,000 words and 6,000,000 associations. In this work, while edge weights are
preserved, any information about link directionality is lost, thus treating the graph as
undirected.

1They are the same participants who are asked to attribute to each word a validity score, based on
its popularity.
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Wikipedia subsections

Of the entire Wikipedia graph [7], some subgraphs corresponding to the following
particular scientific area are extracted: Physics, Mathematics and Chemistry. To
this end, the MediaWiki API [4] were used2 as described. First, the list of thematic
Wikipedia article titles was fetched by enquiring the API for the corresponding sci-
entific area, i.e., by restricting to the corresponding category, e.g., Category:Physics
articles by importance. Then, each page referring to the titles collected was scanned
for the included links to other pages. Pages containing talks, templates and categories
were not taken into account as well as connections toward pages not belonging to
the subsection.

In the following, the particular case of the Physics subgraph is discussed, as
representative of all the Wikipedia subsections considered. Indeed, while slightly
different for size, the three above mentioned subgraphs are statistically similar and
similar results have been obtained simulating the learning agendas on them. The
Physics subsection is chosen as representative only because it is the biggest among
the three. All the results obtained on the other sections can be however found in the
Supplementary Information file to [96].

The Physics subgraph is treated here as undirected, and results as composed
by 16426 nodes and around 424k edges. From this graph also some inner k-cores
(see Appendix A) are extracted to evaluate the role of the least connected node in
affecting the process.

Perturbation of real-world graphs

The real graphs considered are diverse for network order, topological properties
and type of data represented. Thus, directly contrasting the results obtained by
running the learning algorithm on them could is not meaningful. Instead, some
techniques are devised to slightly modify the original topologies, thus obtaining
some perturbed versions for each of the starting graphs. By contrasting the learning
efficiency gained on these perturbed topologies with what obtained from the original
graph, meaningful insights could be acquired.

2Date of access: 22/11/2013
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The perturbation procedure is here described. Starting from a real-data based
graph, a predefined percentage of links is created or deleted according to the fol-
lowing criteria. When it is required to remove some connections, they are randomly
selected and deleted, regardless of their weights or of the degrees of the connected
nodes. As a main consequence, some disconnected components might emerge.

In adding links, two different strategies are implemented. In a first case, two
reciprocally disconnected nodes are randomly selected and a connection is created
between them, regardless of their distance on the graph. As a consequence of this
rule, the transitivity of the graph is strongly affected, rapidly decreasing as new
edges are inserted. According to a second procedure, a node is randomly selected
and a new connection is created with one among its second-neighbours, in this way
reducing the effect on the graph transitivity.

Both in case of removal or addition, the new link weight is possibly assigned
by sampling the original weight distribution. In particular, an edge in the original
network is randomly selected, and its same weight is assigned to the new link.

Figure 3.3 displays the original strength and degree distribution for all the real
graph considered, together with the same distribution after perturbing the original
graphs.
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Fig. 3.3 Strength and degree distribution for original and perturbed real graphs. data
are displayed which refer to (A) HBC graph, (B) EAT graph and (C) Wikipedia Physics sub-
section graph. Red symbols refer to the unperturbed graphs. Starting from each unperturbed
structure, 50% of links were randomly removed (blue squares), randomly added (filled green
circles) or randomly added only between second neighbours (empty green triangles). The
data are averaged over 10 different realizations of each perturbation procedure. Standard
deviations are shown.

All the original topologies display degree/strength distributions with large tails,
corresponding to the presence of hubs in the networks. When perturbed, the nodes
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least connected are largely involved, with the appearing of peaks in the low-middle
connectivity range as soon as novel links are added.

3.4 Results

3.4.1 Learning on artificial topologies

From the analysis of the learning schedules obtained by applying the algorithm
on synthetic networks, a global insight into the role of the graph topology and its
connectivity properties can be gained, especially by investigating the coverage time.

In Figure 3.4 the average coverage times is shown as obtained for the following
synthetic network types: random graphs [42] (subfigure (A)), scale-free BA [14]
graphs (subfigures (B)) and graphs generated with the Uncorrelated Configuration
Model (UCM) [28] (subfigures (C)-(D)). For each graph type, the results obtained for
the three entry selection criteria earlier defined are displayed with different colors.

Firstly, it can be observed that a scale-free topology together with no random
criteria of exploration leads to optimal learning performances, i.e., the fastest, for
intermediate average connectivities. The improvement in the coverage time is even
more meaningful in graphs with the same maximum degree but a larger fraction of
hubs, as it emerges by comparing the UCM networks with two different exponents of
the degree probability distribution, reported in subfigures (C) and (D). With regard
to the selection criteria, an efficiency gain is achieved in the scale-free graphs when
they are locally explored, namely when the random surfing criterion is used.

For the particular cases of random ER graphs and scale free graphs based on BA
model, it has been investigated the dependence of the coverage time on the size of
the systems, i.e., the networks orders N. More in details, it was studied the variation
of the rescaled coverage time (tN/N) as a function of N for some fixed values of the
average connectivity (⟨deg⟩). For both the graph types the following trend is found:

tN
N

∼C(⟨deg⟩) logN (3.7)

that is, the rescaled coverage time scales logarithmically with the network order. The
coefficient is a function of the mean graph connectivity. This functional dependence
is very slight for ER graph, while more significant in the BA. In these graphs
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Fig. 3.4 Coverage times on synthetic graphs. In the figures, the mean coverage times
scaled to the network order N = 104 as a function of the network average degrees are shown
for different synthetic graphs, generated according to the (A) Erdös-Rényi model [42], (B)
Barabási-Albert model [14], (C) uncorrelated configuration model [28] where P(deg) ∝

deg−γ and γ = 2, (D) same as in (C) with γ = 3. The data are averaged over 10 different
graph realizations and 5 learning agendas for each of them. Standard errors are also reported
but they are covered by symbols. Different colors refer to the three criteria used to select
the entries: random learning (RL, magenta), preferential acquisition (PA, blue) and random
surfing (RS, green). Note the logarithmic scale of the horizontal axis for (A) and (B).

C(⟨deg⟩) is a decreasing function of the mean connectivity. It turns out that, while
in ER the coverage time increases with the system size, in the scale free graph the
learning process is differently affected by a system size modification, depending on
the average link density.

It is worth noting here that it could appear as barely meaningful testing the
algorithm on scale-free graphs with very high values of connectivities, as for BA
networks with a high average degrees with respect to the total size of the network,
because of the poor heterogeneity in the node connectivities. Nevertheless, some
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insights could still be learnt. First, it is exactly by compressing the degree distribution
that the need for a structured, heterogeneous topology appears in order to improve
the learning performance. In addition, despite the narrow distribution of degrees, it
can be tested how much different exploration criteria could still lead to significantly
different outcomes. Finally, it is always possible to contrast the results obtained
on BA networks with very high average degree with equivalently connected ER
graphs. Indeed, from this contrast it is obtained that even a slight heterogeneity in
the degree distribution leads to an improved learning performance when compared
to completely homogeneous networks.

In order to investigate the role of transitivity in determining the learning efficiency,
simulations are conducted on graphs generated according to the model proposed by
Holme and Kim [63] (see Appendix A). Indeed, this model allows to control the
average clustering coefficient by properly tuning a parameter in the graph generation,
while preserving the scale-free degree distribution. Results for the coverage times
on graph with different minimum degree are reported in Fig. 3.5, for both the PA
and RS entry selection criteria. Changes in the transitivity do not affect the learning
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Fig. 3.5 Coverage times and graph transitivity. The figure shows the average coverage
times scaled to the network order (N = 104) obtained on scale-free graphs generated accord-
ing to the model proposed by Holme and Kim [63] as functions of the average clustering
coefficient. Different colors refer to graphs with different minimum (and thus also average)
degree, while empty or filled symbols distinguish data obtained when respectively the PA or
the RS entry selection criterion is used.

procedure when PA criterion is used, while a higher clustering coefficient in the
network hinders the learning procedure if the RS rule is implemented. This result
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could be explained by the fact that, when RS criterion is used, the learner tries to
explore locally the graph, as far as any new unexplored nodes are available. If the
graph is largely clustered, clusters are quickly covered and the learner is forced to
jump somewhere else in the graph, thus loosing possible reinforcement effects from
the context.

Along with the study of the coverage time, another insight into the dynamics of
the learning schedule construction process is given by looking at the introduction
rate n(t). In Figure 3.6 (subfigure (A)) results on random and BA graphs with similar
average degree are compared. In subfigure (B) the data refer to graphs generated
with the UCM model with low, intermediate and high values of average connectivity,
and exponent γ = 2 in the power law degree distribution P(deg) ∝ deg−γ .
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Fig. 3.6 Introduction rate on synthetic graphs. Fraction of distinct nodes introduced as a
function of the (rescaled) average time needed to cover them. In figure (A) we report data
obtained on Erdös-Rényi model [42] and Barabási-Albert model [14] graphs with average
connectivity ⟨deg⟩ ∼ 100. In (B) the graphs considered are generated according to the
uncorrelated configuration model [28] with P(deg) ∝ deg−γ and γ = 2 and different average
connectivities. In all the cases, the graph size is N = 104 and the algorithm used to select
the entries is the random surfing RS. In both (A) and (B), with black dots we report the
introduction rate for an equivalent set of uncorrelated items. It is fitted with a sub-linear
curve y ∝ xβ , with β = 0.85. The fitting curve is shown with red line in the main graph,
while in the insets we report an eye-guide power-law with same exponent. An eye-guide
linear (β = 1, grey line) curve is also reported in the main figures. The insets axes are
in log-log scale. The data are averaged over 50 agenda simulations. Standard errors are
reported, though not visible at the plot scale.

In both figures, the data are contrasted with the results obtained on an equivalent set
of completely disconnected nodes (and a linear trend is also reported for comparison).
For uncorrelated items, the introduction rate turns out to be a sub-linear function
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of time (n(t) ≃ tβ , with β < 1), in accordance with Heaps’ law [58]. Instead, for
items embedded in a graph, two different behaviours can be identified. As long as
the graph is largely unexplored, the introduction rate has the same trend as in the
case of disconnected items, namely sub-linear. Later on along the learning dynamics,
new items are introduced with higher frequency, featuring a super-linear tail for the
introduction rate, i.e., n(t) = c∗tγ , with γ > 1 and c∗ ≪ 1. It is worth underlining that,
for a short time interval, such a super-linear rate is still compatible with the schedule
constraint that at most one brand new unit can be introduced at each discrete time.
The origin of this super-linear behaviour is related to the active effect contributing to
the knowledge strength of each item. Indeed, when a significant fraction of items
have already been introduced, new items typically enter the schedule with higher
and higher knowledge strengths, thus requesting longer intervals before they need to
be reviewed, allowing in this way the introduction of further new items.

Active and passive effects on scheduling

Further tests have been conducted to isolate and validate the contributions of the
active and the passive effects on the learning efficiency of the generated schedules.

In order to better analyse the role of the active effect on the learning efficiency,
schedules have been generated in which each node enters the agenda with a pre-
assigned ki

0 value, in this way keeping fixed and independent of the dynamics the
total knowledge reinforcement gained throughout the procedure. In particular, for
both the cases without passive effect and with a passive contribution (α = 0.1):

• a learning schedule on a optimal UCM [28] graph is generated (where the
degMIN = 7 and γ = 2 in P(deg) ∝ deg−γ ), using the RS entry selection
criterion;

• the ki
0 with which each node was introduced in the previous agenda are reshuf-

fled on the entire graph. Then a new schedule on the same graph is simulated,
without recomputing the active effect, rather using the pre-assigned values.
The resulting agenda is referred to with UCM resh.;

• as in the previous step, a further schedule is simulated starting from the
same preassigned ki

0 but now considering as underlying an ER [42] graph,
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with average degree around 500 (this value corresponding to a random graph
yielding to the best performance, as reported in § 3.4).

In this way, while fixing the absolute values of the knowledge strength entering
throughout the schedule because of the active effect, any correlation of the individual
values ki

0 from the underlying graph is destroyed.
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Fig. 3.7 Results of the ki
0 reshuffling procedure. Two series of 50 learning agendas are

generated on a UCM graph with average degree 20 and γ = 2 (UCM, pink) without passive
effect (empty symbols) and with it, setting α = 0.1 (filled symbols). At the end of each
schedule creation, the values of ki

0 are reshuffled over the nodes. Then, new agendas are
generated both considering the same underlying UCM graph (UCM resh, blue) and a ER
graph (ER resh, green) with average degree 500. In both cases, the nodes enter the agenda
with the preassigned ki

0-s. Of the resulting data, it is reported the introduction rate n(t) (on
the left) and the average ki

0 of introduced nodes as a function of their introduction time
(subfigure on the right). In all the cases, the RS criterion is used to select the new entries.

The results are reported in Fig. 3.7. Since, on average, in the reshuffled cases the
nodes enter the agenda with a higher starting knowledge strength, the introduction
rates is initially faster in these cases. However, the final coverage times are higher
than in the schedules without reshuffling. Moreover, in the reshuffled cases, no
meaningful difference appears if the underlying topology is a random graph rather
than a scale-free one. This means that all the scale-free graph properties useful in
enhancing the learning procedure are ineffective if the active effect is separated from
the dynamics.

Regarding the passive effect, simulations have been done on UCM graphs, with
different proportion of hubs, namely with degree distribution P(deg) ∝ deg−γ , and
γ = 2.0,2.5,3.0. In particular, for the usual fixed order N = 104 and for the only
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entry selection criteria PA and RS, the agendas have been simulated with a reduced
passive effect, α = 0.05, and without it, α = 0. Two main results are obtained. First,
a reduction in the passive effect does not affect the coverage time uniformly over
the range of connectivities. When different values of α are used, the spread in the
resulting coverage times is larger for highly connected graphs, regardless of the
exponent γ of the degree distribution. This can be explained as follows. With high
connectivity, the passive effect affects in a quite uniform way the entire network,
i.e. the higher α , the longer the delay in the need of repetitions, and thus the minor
the coverage time. A second observation regards the results in case of low average
degree. In this cases, the degree distribution plays a role in determining the learning
efficiency. In fact, while a reduction of the passive effect parameter α still leads to
a (slightly) increase in the coverage time for γ = 3.0, the same reduction enhances
the learning when γ = 2.0. A no-null passive effect, delaying the repetitions, could
indeed lead to a reduction in the ki

0 of the new entries, if they are low-degree nodes.
This can explain the differences between different exponents, since for the same
average degree, the smallest the exponent γ , the smallest the allowed minimal degree
in the network.

3.4.2 Learning on real semantic networks

The coverage times resulting from simulations on real-world graphs and their per-
turbed versions are shown in Figure 3.8. In the subfigures at the top, the coverages
times obtained on the two free-associations words graphs generated from the Human
Brain Cloud [49] and the Edinburgh Associative Thesaurus [2, 69] are reported. At
the bottom, data refer instead to the subgraph in Wikipedia corresponding to the
Physics subsection and some of its first inner cores.

As for the synthetic graphs, the random learning algorithm for choosing the new
entries does not lead to meaningful performances, the coverage time monotonically
decreasing as the connectivity enlarges. On the contrary, when the information
stored in the topology is used to more shrewdly select the novel nodes, the minimal
coverage time is achieved for intermediate connectivities.

More interestingly, the structures leading to the optimal performance coincide
with the original HBC graph (subfigure (aA)) and with the original Physics graph,
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(a) Free-associations graphs: Weighted networks generated from (A)
HBC[49] and (B) EAT[2] datasets.
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Fig. 3.8 Coverage times on real-world graphs. It is reported the coverage times obtained
by simulating the learning agendas on some real-world graphs (red circled points) and on
three perturbed versions of them. The real-world graphs are indicated in the subcaptions
corresponding to the two subfigures. In each figure, the squares refer to data resulting on
graphs with reduced connectivity, obtained by randomly selecting and deleting different
amounts of links in the original graphs. With circles and triangles data are reported when two
different procedures for increasing the connectivity are considered. In the first case (circles,
solid line), links are created by randomly selecting pairs of unconnected nodes. In the latter
(triangles, dashed line), new links are added only between second-neighbor nodes. In all
the cases, the fraction of links deleted/created are equal to 0.01, 0.05, 0.1 and 0.5. Different
colors refer to the three criteria used to select the entries: random learning (RL, magenta),
preferential acquisition (PA, blue) and random surfing (RS, green). The data referring to the
unperturbed graphs are averaged over 50 agendas. In all the other cases, for each type of
perturbation procedure and percentage of edges added or removed, 10 different perturbed
versions of the graphs are generated and 5 agendas are simulated on each of them. Then, the
averages are done over the 50 aggregated agendas realizations. Standard errors are reported,
though not visible at the plot scale.

when the least connected nodes are removed, i.e., when the inner cores are considered
and treated as unperturbed new graphs.
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3.4 Results

Based on the results obtained, two main observations can be made. First, it
emerges a clear difference between HBC and EAT cases. The great difference in the
strength distribution between the two graphs can help explain what found. Indeed, as
shown in Figure 3.3, before any perturbations, EAT graph has a fare larger fraction
of poorly connected nodes with respect to HBC. Only if the graph is positively
perturbed, i.e., further links are added, its topology becomes more efficient for the
learning algorithm. Interestingly, exactly the same result are obtained when the
graphs are considered as unweighted.

The investigation of the results obtained in the Physics subgraph further confirm
the assumption that the presence of too isolated nodes is key in hindering the learning
efficiency. Indeed, as soon as the leaves are removed from the original graph, the
topology of the Wiki subgraph becomes closer to the optimal one, with respect
to a further increase of the number of connections, as can be seen by comparing
subfigures 3.8(b).

It is worth noting that the improvement in the learning efficiency as soon as the
internal cores are considered is not only an issue of accessibility, as it is for random
walk type processes. Indeed, in the present case, since direct access to a node is
allowed when needed for the information retention, the main drawback for the least
connected node its their poor context, which makes their retention in memory less
robust, thus requiring more repetitions.

This finding can be used in future to suggest a topological reorganization of
Wikipedia subgraphs resulting in an optimization of thematic learning paths. Sim-
ilar results, although not reported here, are obtained when other subsections of
the Wikipedia graphs are considered, such as Mathematics and Chemistry subsec-
tions. Coverage times obtained on these subgraphs are exhaustively reported in the
Supplementary Information document of [96].

Finally, by looking at the data acquired when the two positive perturbation
procedures are implemented (circles vs triangles points in the figure), it can be
concluded that it is not the average connectivity that triggers the most efficient
learning performance, rather the relative presence of poorly connected nodes with
respect to the hubs.
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3.5 Discussion

The analysis presented in this chapter has focused on the role of the topology of
complex information and knowledge networks when generating efficient learning
schedules for the items they embed. To this end, a general class of stochastic
algorithms is proposed to sequence the introductions of the different items and their
reviews over time, while satisfying some constraints on the best timing, as they can
be derived from previous results of cognitive science research. Furthermore, it is
studied how the topological structure representing the complex semantic between
the items to be learned can affect the learning procedure. In particular, it has been
investigated how different statistical properties and topologies of the graphs in which
the items are embedded affect the process, as well as the ways such graphs should be
explored while introducing new material in order to achieve efficient learning paths.

The main result obtained is that some topologies lead to optimal learning sched-
ules, i.e., schedules that minimize the learning time while preventing forgetting
episodes. They are small-world, scale-free structures, in which the relative number
of hubs and low-connected nodes are balanced. In fact, structures with either too
many hubs or poorly connected nodes hinder the learning process. In the first case,
the context for items is indeed too large to take advantage of it. In the latter case, the
more specific and low connected the nodes, the more difficult it is to access them or
to achieve a gain in the knowledge reinforcement throughout the learning process.
Furthermore, the order through which the networks are explored as new items are in-
troduced in the agenda is essential for taking full advantage of the topology features,
a random exploration turning out to be ineffective in eliciting the information stored
in the graph.

Finally, a very interesting outcome of this study is that the real-world graphs con-
sidered here, the Human Brain Cloud word-association network and the Wikipedia
subgraphs, turned out to be almost optimal with respect to some perturbations of
their topological structures. Other graphs not emerging from user free activities,
as the graph build on the Edinburgh Associative Thesaurus, do not show optimal
topological characteristics. This points to a subtle link between the way in which
humans organise their knowledge, i.e., the structure of the knowledge space, and
the way in which the information could be retrieved, for instance through a learning
path.
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3.5 Discussion

However, many aspects have not been taken into account. Indeed, to drive the
exploration of the spaces only the topological properties of the nodes embedded in
the knowledge spaces has been considered. Nothing is assumed on how the content
of each knowledge unit could influence the process. In fact, the order of exploration
might constraint the section of the knowledge space actually available for the learner,
who could need to firstly cover preparatory materials to have the possibility to
explore new broad region of the knowledge space. Moreover, it could be needed to
differentiate among the paths, some possibly being more educationally preferable
than others. Different mechanisms would allow to implement such situations into the
algorithm proposed, for example by adding attributes of directionality to the edges
or by limiting the section of the space explorable at each step. Still, a greater insights
must be firstly gained into the real behaviour of learners in true knowledge spaces.
This is exactly the aim of the work presented in the next chapters.
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Chapter 4

Free exploration of knowledge spaces

In the previous chapter a class of algorithms has been presented which allow to
explore a knowledge space while respecting some temporal constraints on the most
suitable times for reviewing old material or introducing novelties. Moreover, some
assumptions have been made on how the learning process could be hindered or
enhanced by possible semantic relationships between the item to-be-learned, depicted
as nodes in a complex network. With all this, it has been possible to investigate
the performance of different topologies, isolating the key factors in enhancing the
process.

However, beyond the topology, the navigation behaviour of the users on the
Web is not strictly a random exploration of the space if other information are taken
into account, as for the information content of the nodes visited. Indeed, many
results [111, 102] have already pointed out that patterns and strategies can be found
in different information-seeking tasks of Web and Wikipedia users which do not
mirror memoryless dynamics, as already reviewed in section 2.2.

In this chapter, a work is presented which moves in this proper direction and
recently published [97]. It is addressed whether regularities are observed in the
way users surf Wikipedia, by tapping on the recent release of data about Wikipedia
readers, namely the Wikipedia Clickstream [115]. These datasets, covering some
months during 2015 and 2016, provide large sets of (referer, resource) pairs extracted
from the request logs of Wikipedia on a monthly bases. There, “a referer is an
HTTP header field that identifies the address of the webpage that linked to the
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resource being requested” [115], while a resource can be any of the pages in the
main namespace of the Wikipedia, i.e., all the articles pages and the MainPage.

The analysis prosed in this chapter is based on the particular release of the
dataset regarding the English Wikipedia Cliskstream (EWC) gathered during Febru-
ary 2015. From these data, the graph of the actual traffic flows streaming in and
within Wikipedia has been derived. Moreover, since no direct data about the nav-
igation histories of individual users are yet available, the EWC dataset allows for
the construction of first-order Markov chains, where the transition probabilities are
given by the traffic flows. These simulated paths could be considered statistically
legitimate proxies for the real paths navigated by the users [102]. Both the dataset
description and the rules devised to generate the simulated users’ paths are presented
in the next section.

It follows the description of the procedure devised to map the Wikipedia pages
into a more abstract space, where to look for meaningful patterns of the users. Indeed,
the analysis presented here aims at characterizing the emerging paths from a semantic
point of view. To this end, a vectorial representation is introduced in which each
Wikipedia page is represented by a vector of features in a 13-dimensional space [70,
102] whose dimensions correspond to broad Wikipedia topics/main categories [6, 3].
These very general subjects are here treated as coordinates of a topical abstract space
in which the simulated users’ paths are studied. The vector coordinates for each
page in this space are computed so that the weights are proportional to the semantic
relatedness of each topic with the page’s parent categories.

Finally the results are presented of the analysis of users’ path, based on the
semantic mapping. To gain a deeper insights into the results, the data are also
contrasted with paths originated in a very different task, like the goal-oriented walks
of Wikispeedia [111] players.

4.1 Navigation paths on Wikipedia

4.1.1 The English Wikipedia Clickstream dataset

The main dataset here considered is the English Wikipedia Clickstream [115], re-
leased on February 2015. The dataset includes 22 millions of aggregated requests
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of articles in the main namespace of the English Wikipedia, together with their
referers, i.e., the webpages from which the requests were performed by the users
during the month of February 2015, and the number of occurrences of each pairs, if
exceeding 10 requests. More in details, the data were extracted from the request logs
of Wikipedia and aggregated so that the referer can correspond to an article or to an
external source. In the first case, the article title is given, whereas if the page is not
an article, it is explicitly reported the proper category among the following: google,
twitter, bing, yahoo, facebook, wikipedia (any page in Wikipedia different from an
article), internal (any page belonging to a different internal Wikimedia project), an
empty referer, or other for any different referer.

The available data in the dataset are then not raw, but already aggregated. In
their last and available form, only the requests to the Wikipedia server for the pages
in the main namespace are recorded and already filtered (for example by removing
pages with less than 10 requests from clients clients who made too many requests).
Thus, based on the information provided [115] with the dataset, only the actual clicks
produced by the users are included.

Recently, several works have been proposed based on the EWC datasets. The
transitions counts were used mainly to investigate how the position of links in the
articles can bias the users’ browsing behaviours [72, 73], to validate different link
recommendation algorithms [98] and also to extract semantic relatedness between
words [87, 35].

Here, the article to article counts are instead the basis for simulating real users
unconstrained navigation paths on Wikipedia and thus identifying possible recurrent
meaningful patterns on a semantic, abstract level of description.

To this end, the original dataset has been cleaned as here described. The requests
to non existing articles (e.g., articles requested by following any redlink1) were
removed. All the other (referer, resource) pairs were kept, regardless of the fact that
an hyperlink exists directly connecting the two articles. The MainPage of Wikipedia
was treated as an external source of navigation, even if it appears i the original
dataset in the main namespace in the Wikipedia system as the other articles. As a
consequence, it was added to the set of external sources previously listed (in the
following: mainpage). This choice was due to the fact the the MainPage is often used

1It is worth reminding that a red link represents a link to a page that is either non-existent or
deleted.
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as a starting point for a research or navigation in the online encyclopedia similarly to
any external web search engine, and it not semantically representable as done for the
other articles (and as it is described in the next paragraph).

After cleaning, the dataset includes 3,087,211 articles. The requested {article,
article} pairs are 14,076,289. Among these, the pairs of pages connected by a hyper-
link are around 88%. The requested {external-source, article} pairs are 8,231,312.
An illustration of the different fluxes coming from the external sources is reported in
Fig. 4.1(A).

Fig. 4.1 Datasets under consideration. In (A) the English Wikipedia Clickstream dataset is
illustrated. The 9 different external sources plus the MainPage are displayed with the fraction
of flux outgoing from them. The paths considered in the present analysis start from one of
the 9 sources to randomly walking over the Wikipedia articles accordingly to the transition
counts provided by the dataset. As an illustration, in red line a decorative path starting from
Google and them jumping on different pages of the Wikipedia graph is reported. (B) Two
examples of paths followed by players of the Wikispeedia game, whose task was that of
navigating on a reduced version of Wikipedia from a given starting page to a given target
one (from House to Electric_Field in the example).

4.1.2 From EWC to random walks on Wikipedia

The EWC dataset provides the transition counts between pairs of Wikipedia pages.
This information can be used to drive a random walker, whose paths over the
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Wikipedia pages are here considered as proxies for the real behaviours of users
who navigate Wikipedia. In doing so, it is assumed that the navigation over the
encyclopedia can be represented by a stochastic process without memory. Indeed,
while it was proven [102] that the human navigation processes are better modelled
by second (or third in free navigation) order Markov chains in topical and abstract
level of description, still memoryless models are statistically legitimate to simulate
human navigation on a page level, as done in the present analysis.

To take full advantage of the available dataset, the starting pages of the simulated
walks are selected based on the traffic flowing into Wikipedia from the external
sources. On the other hand, every page can be the last one of the walk with a
probability proportional to the net difference between the incoming (from other
pages and from external sources) and outgoing (only towards other wikipedia articles)
traffic flux on that page.

More in details, the random walks on Wikipedia based on the EWC dataset are
simulated as follows. Each of the different external sources listed in the previous
paragraph is in turn selected as the external origin of the simulated walker. This is
the starting point of the walk.

• The first node after the origin is randomly selected among the ones reached by
the source, with a probability proportional to the incoming flux;

• on every node encountered across the walk two complementary events can
occur: either the walker takes one more step or the walk stops. The stopping
probability at node i is defined as:

probi
stop = max

(
0,1− sint

out(i)
sint

in (i)+ sext
in (i)

)
(4.1)

In the above definitions, sext
in (i) and sint

in (i) are the incoming strength on node i
coming, respectively, from all the external and internal source (with sin(i) =
sint

in (i)+ sext
in (i)) and sint

out(i) is the outgoing (i.e., towards other pages) strength
of node i. In all the mentioned cases, the strength of node i with respect to a
set of pages/sources S is here defined as sin(out)(i) = ∑ j∈S wi j, where wi j is the
counts of transitions from(to) j to(from) i;

• when the walk does not stop on a node, the next node is selected among its
neighbours with a probability proportional to the transition counts.
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With the above defined procedure, 107 paths are generated from each of the 10
different external sources. The average path length is around 1.4-1.5 nodes for all
the sources, with the only exception of the MainPage for which it is slightly higher
(around 1.8 nodes). In Fig. 4.2, the distribution of the lengths of the simulated paths
are reported, from all the available sources.

Fig. 4.2 Distribution of the path lengths. For the 10 different external sources, the average
distributions of the lengths of the simulated walks are reported. The averages are performed
over 107 simulations for every source.

4.1.3 Goal-oriented navigation paths

The simulated free navigation paths generated from EWC data are contrasted with
real paths of users on Wikipedia, originated from a goal-oriented task. These paths
are the sequence of articles followed by players of the Wikispeedia game, described
in sec. 2.2.2. In particular, in the present analysis a subset of the total paths containing
around 50,000 successfully paths is considered. An example of a Wikispeedia task
with two different successful realizations is reported in Fig. 4.1(B).

4.2 Semantic mapping of Wikipedia pages

In order to identify whether regular patterns exist in the way the information seekers
browse Wikipedia, an abstraction from the microscopic page level to a coarse-grained,
semantically meaningful, representation is needed.
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The problem of extracting a meaningful semantic mapping of Wikipedia pages
is frequent in the literature. Many authors considered the pages content to derive a
vector representation via Natural Language Processing Analysis, e.g., TF-IDF, short
for term frequency-inverse document frequency, or word count analysis. This is
the case of the already cited works by West et al. [111] and Ratkiewicz et al. [95].
In other studies the page content is not taken into account and one focuses instead
on Wikipedia category structure. In particular, some top-level categories can be
considered as main topical concepts, suitable for a semantic characterization of the
pages. Here, following previous studies [70, 106, 102], the top-level subcategories
of the Main_Topic_Classification [6] container category are treated as coordinates of
a novel reduced space.

Unlike Singer et al. method [102], the semantic complexity of each page is not
here reduced to just one representative topic (in their work, the one from which
the shortest-path to the page is the minimal). Instead, it is assigned to each page a
topic distribution, as in [70], thus mapping the article into a point of the semantic
space with 13 dimensions. These 132 topics/main categories [3] are the very general
subjects which define, as coordinates, the topical abstract space where all the pages
and users’ paths are studied. In the following, the coordinates are simply denotes as
topics.

Each article of Wikipedia is mapped into a point of this 13-dimensional space, its
corresponding semantic vector being computed so that the weights are proportional
to the semantic relatedness of each topic with the article’s parent categories (see next
paragraph). Once obtained the vectorial representation of each page, some common
measures in euclidean spaces, such as norms and similarities measures, can be used
to give a semantic interpretation of the position each page occupies along as their
inter-relations. With these tools, the simulated paths can be read in the topical space
and contrasted to some real paths, as the ones gathered with the Wikispeedia game.

Extraction of a vector representation The Wikipedia category system has a
pseudo-hierarchical structure, where each page and category can have multiple
parent categories. This fact, along with the lack of any central root from which the
structure starts branching, turns into the possibility to quite always find a path along
the categories structure to connect any category pairs. In particular this is true for

2On the 2015-10-22.
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the main topics categories listed in the previous paragraph. Indeed, if the category
tree rooted in each of the topics is evaluated, every other category can be reached
via breadth-first search starting from the roots. It follows that the depth at which
the category is firstly encountered in a tree is meaningful of the relevance of the
rooting topic in charactering that category. Indeed, the lower the depth, the closer
the category to the topic at the root, the higher the topic semantic relevance. Thus,
by computing the smallest depth of each of the trees rooted in the 13 main topics,
the mostly relevant topics can be assigned to each category, namely the ones from
which the depth(s) is(are) minimal. The procedure followed is illustrated in Fig. 4.3
and now explained in details.

Fig. 4.3 Example illustrating the construction of the topical vector for the Isaac Newton
article. For the Isaac Newton page one first considers the list of parents categories (panel A).
For each category, one identifies the most-representative-topics (panel B), selecting the ones
from which the depth of the category in the categories tree is minimal. For each page, the
most-representative-topics and corresponding depths are listed (panel C). For instance the
category copernican_revolution has the smallest depth (equal to 3) in the tree of the topic
SCIENCE. The vector representation of the coordinates of the main topics is now obtained
by weighting each topic with the inverse of the minimal depth computed above (panel D).
For instance the topic SCIENCE appears in the topical vector with weight 1/2.

For any page, first the parent categories which the page belongs to are listed (panel
A of Fig. 4.3). To each parent category the set of the most-representative-topics is
assigned. They are selected because are the ones, among the 13, from which the
category depth is minimal (Fig. 4.3, panel B). In this way, one obtains for each page
a set of the most-relevant-topics and their corresponding-depths (panel C). From this
set, the final vector representation is easily derived by computing the weight of each
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topic as the inverse of the minimal depth found for it (panel D). It has been chosen to
consider the inverse so that the weights are proportional to the semantic values, and
the most-representative-topics would mostly contribute in the evaluation of typical
vector measures like the norm.

All the data about the category system has been extracted from the Wikipedia
category links dump [5], accessed on date 2015-10-22. While generating the trees
rooted in the topics, the maintenance categories are ignored, such as tracking and hid-
den categories. Specifically, the following categories and their direct subcategories
have been filtered out: wikipedia categorization, hidden categories, tracking cate-
gories, disambiguation categories, namespace example pages. For some pages no
vector representation could be derived, since at the time of the dump, they belonged
only to some maintenance categories. They were about 5% of the total number of
pages appearing in the EWC dataset and they were excluded from the successive
analysis.

Robustness analysis

To validate the semantic representation obtained for each Wikipedia articles, also
a different dump was considered to derived the topical space coordinates and the
articles topical vectors. This dump, presented here only for robustness analysis was
dated 2015-03-04. Moreover, the procedure implemented on this dataset to build
the vector representation is a slightly modified version of the procedure previously
described.

In the category system dump here considered the subcategories of the
Main_Topic_Classification were 38, and namely: agriculture, architecture, arts,
chronology, creativity, culture, education, employment, energy, environment, geogra-
phy, goods, government, health, history, humanities, humans, industry, information,
knowledge, language, law, mathematics, medicine, mind, nature, objects, people, pol-
itics, science, sports, structure, systems, technology, telecommunications, universe,
world.

For each page, in extracting its vector representation based on the 38 coordinated
listed above, the first three phases as explained in the main text (Fig. 2 A-C) were
similarly implemented: the categories to which each page belongs to were found, and
for each category its most representative topic(s) is(are) identified. It(they) was(were)
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the one(s), among the 38, from which the category depth is minimal. This depth is
the semantic representativeness of the topic. In the original procedure, for each topic
only the smallest depth over the categories was considered when deriving the final
vector. Its inverse was chosen as corresponding weight. Here, instead of considering
the smallest contribution, for each topic the depths over all the categories for which
that topic is the most representative are averaged. The inverse of the average is the
novel weight for the topic in the final vector.

With this choice of vector representation, some of the analysis to be presented
in the next sections were replicated. Since no meaningful differences emerged with
respect to the main procedure presented, they are skipped from the next results
description.

4.2.1 Observables used for analysis

To characterize the Wikipedia articles in the reduced semantic representation, two
main measures are considered: the norm and the entropy of the corresponding topical
vectors.

• The vector norm is the usual L2 norm, normalized to the square root of the
space dimension, i.e., the number of topics. For a generic page A, whose
vector wA has components wt

A for the different topic t ∈ [1,T ], with T = 13:

∥wA∥=
√

1
T

T

∑
t=1

(wt
A)

2 (4.2)

With this choice, the norm is always in the (0 : 1] range, with higher values
corresponding to pages with more abstract content and lower values to more
specialized pages.

• In order to measure the level of multidisciplinarity of a vector, the entropy
S(wA) of vector wA is computed as:

S(wA) =− 1
log2(T )

T

∑
t=1

ŵt
A log2(ŵ

t
A) (4.3)
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with ŵt
A = wA/∑

T
t=1 wt

A, so that the weights sum to 1. High values in entropy
means a very general or multidisciplinary content, while the low-entropy pages
are pages semantically connected with only one knowledge field.

Fig. 4.4 reports the distributions of the norms and entropies for all the pages consid-
ered as well as some example of pages lying at the extremes of the distributions. It
is worth noting the particular shape of the resulting entropy distribution, reported
in the subfigure on the right. Indeed, the topical vector entropies tend to distribute
in isolated spikes. This is due to the input points. In fact, the norm function is
defined on the the hypersquare S = {w ∈QT : wt ≤ 1∀ t ∈ [1,T ]}. However, only
few points in S could be actual arguments of the function, namely the points whose
coordinates are of the form 1/p, where p could be any depth in the topic trees. Given
the finite size of the Wikipedia system, the maximum depth at which any page is
found in any topic tree is ∼ 30. As a consequence, the input set is a finite subset of
S . For the entropy, the vectors in S are rescaled in order to satisfy the constraint
on the coordinates sum. In this way, they are mapped into a finite subset of the
hyperplane in ([0,1]∩Q)13 defined by ∑

T
t=1 wt = 1. The spiked entropy distribution

is a consequence of this particular sample of the function domain.

Fig. 4.4 Distributions of page norms (left) and entropies (right). The distributions are
computed over the set of all pages for which a vector representation was derived. They
correspond in the figure to the white areas under the red and blue continuous lines respectively.
For both norm and entropy, in the boxes some exemplar pages are reported to illustrate the
meaning of extreme values.

In addition to the observables introduced above, also distances and similarities
between vectors are evaluated:
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• distance d(wA,wB) - It is the usual L2 distance between the vectors wA and
wB:

d(wA,wB) =

√
1
T

T

∑
t=1

(wt
A −wt

B)
2; (4.4)

• similarity sim(wA,wB) - It is the cosine similarity of the two vectors wA and
wB:

sim(wA,wB) =
1
T

wA ·wB

∥wA∥∥wB∥
(4.5)

These two quantities give complementary information about how close two pages
are in the semantic space. Indeed, while the distance provides an overall idea of
how far two pages are in terms of both content diversity and depth, the similarity is
more directly related to the extent of their semantic overlap, i.e., regardless of the
difference in depths.

4.3 Results

4.3.1 Google vs Wikispeedia

This section reports the results obtained by means of the semantic measures defined
in the previous section on the simulated browsing paths.

The walks have been split in classes depending on their lengths l. For each class,
all the nodes encountered in any walk belonging to the class were considered and
gathered according to their position k along the path counted from the end. In this
way, it is replicated for sake of simplicity the same alignment proposed by West et
al. in their work [111], thus assuming that the node where the navigation ends is
the target node of the user surfing the encyclopedia. With this choice, in terms of
notation, the first nodes encountered have index k = l, while the last ones have k = 0.
Furthermore, it is denoted with wl

k the vector of a node encountered k steps before
the end on a path of length l.

At a first level of analysis, the observables defined in the previous section are
evaluated by averaging over all the nodes appearing at position k of the walks,
for fixed path lengths. In particular, it has been computed: (A) the average norm∥∥wl

k

∥∥, (B) the average entropy S(wl
k), (C) the average distance d(wl

k,w
l
k−1) and (E)
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similarity sim(wl
k,w

l
k−1) between each node and the next visited along the path, (D)

the average distance and (F) similarity between each node and the last one in the
corresponding path, respectively d(wl

k,w
l
0) and sim(wl

k,w
l
0).

Figure 4.5 displays the results obtained on simulated walks where google was
chosen as the external source to weight the starting probabilities. In this figure, as
well as in the following ones, the last nodes of the paths (i.e. position k = 0) are
aligned to the right.

Fig. 4.5 Paths generated from the external source google: averages. The 107 paths
simulated with google as source were split by lengths. For each fixed length l, the averages
of the following quantities were computed over all the nodes(pairs) at k steps(jumps) from
the end: (A) the average norm

∥∥wl
k

∥∥, (B) the entropy S(wl
k), (C) the distance and (E) the

similarity between all the pairs of nodes consecutively visited along each path, respectively
d(wl

k,w
l
k−1) and sim(wl

k,w
l
k−1), (D) the distance and (F) the similarity between every node

visited and the ending node along each path, i.e. d(wl
k,w

l
0) and sim(wl

k,w
l
0). The error bars

display the standard errors of the means. Each color refers to a path length, from 3 (blue) to
9 (light green).

Regular patterns across different lengths of the paths can be clearly observed
in the trends of the six observables. From the norm subfigure (A), it emerges that
by the first step, whatever the length of the walk, the simulated walker moves from
quite general and abstract pages to more specific ones, further slightly increasing the
specificity of the pages while pushing the walk. Complementary, by investigating the
entropy variation along the paths (B), it is suggested that the simulated Wikipedia
reader typically access the encyclopedia from google via interdisciplinary articles,
focusing on more defined field in the very first steps of her navigational path.
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From the analysis of the pairs measures it appears that the reader tends to span
a bigger space – both in terms of distance (C) and similarity (E) – at the beginning
and ending of her walks, the steps in the middle still contributing to get her closer to
the node where she stops the navigation. Quite interestingly, patterns very similar to
the ones emerging in the semantic distance between consecutive nodes, subfigure
(D) in Fig. 4.5 are found by Mastroianni et al. in a recent contribution [76], while
investigating via GPS tracking the average spacial distance travelled by single
vehicles. In their work, they found a rescaling law of the patterns, which turns into
the emergence of a universal behaviour of the drivers, independent of the path length,
with the longer distances between successive stops appearing – as in the present case
– at the beginning and ending of the paths.

To gain a deeper understanding of the results shown in Fig. 4.5, other two sets of
data are also considered. The first one is a null model set of 107 paths, still generated
using google as external source, but after renaming the nodes, i.e. after reassigning
randomly the semantic vector representations to the whole set of pages. By doing this
reassignment, any semantic correlation between the pages are destroyed, while the
topology of the transition counts graph is preserved. The second dataset considered
is the dataset of the paths gamed in Wikispeedia [112].

Moreover, in order to investigate whether the pattern emerging are actually
independent of the paths length, all the computed quantities are suitably rescaled. To
this end, the data regarding each observable are normalized with the average of the
considered observable over all the nodes in the paths of corresponding length. For
instance, the rescaled average norm reads

∥∥wl
k

∥∥/⟨∥∥wl
k

∥∥⟩k, with ⟨
∥∥wl

k

∥∥⟩k =
1
k ∑k

∥∥wl
k

∥∥,
and similarly for the other observables.

The global averages used to rescaled the data are here listed and shown in Fig.4.6
for the three datasets (google, the null model, and Wikispeedia): (A) the average
norm ⟨

∥∥wl
k

∥∥⟩k, (B) the entropy ⟨S(wl
k)⟩k, (C) the distance and (E) similarity between

consecutive nodes, respectively ⟨d(wl
k,w

l
k−1)⟩k and ⟨sim(wl

k,w
l
k−1)⟩k, and finally (D)

the average distance and (F) similarity to the last node of each path, respectively
⟨d(wl

k,w
l
0)⟩k and ⟨sim(wl

k,w
l
0)⟩k.

As expected, no patterns emerge in the results for the null model. Diversely, the
averages over google paths seems to follow a trend, e.g. the average norm or the
distance between consecutive nodes decrease over paths of increasing length.

59



Free exploration of knowledge spaces

Fig. 4.6 Averages over the aggregated paths. The averages of measures already introduced
in Fig.4.5 are here computed over all the nodes encountered along walks of fixed length
l. Squares, circles and triangles refer respectively to the paths generated from the source
google, to the same paths but semantically reshuffled (null model) and on the paths generated
in the Wikispeedia game. Using the same palette of Fig.4.5, each color refers to a length.
The standard errors of the means are reported, though not visible at this scale.

With regards to the scaled observables, they are reported in Fig 4.7, after having
rescaled also the x-axis, in such a way that all the paths show unitary length. With
this rescaling of both axes, interesting overlaps of the curves of corresponding to
different path lengths are found.

First, it is worth remarking that after breaking the semantic correlations between
the pages visited (in the null model), any regular pattern in the quantities observed
disappears, as can be seen by comparing the figure in the left column with the central
ones. It could also be noticed a regularity which is not destroyed in the null model,
related to the presence of loops in which users jump from the last visited page to the
previous visited one, before definitively ending in the last. In those cases, both in the
actual paths and in the reshuffled ones, the distance and similarity between the third
to last and the last nodes (which coincide) are respectively zero and 1, reflecting in
the odd behaviour of the point before the last in graphs (D) and (F), central column
(those cases occur in our simulations with frequency within 0.05 (for 3 jumps walk)
and 0.07 (for length 9)).
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Fig. 4.7 Rescaled averages over the simulated paths. Continued in the next page.
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Fig. 4.7 Rescaled averages over the simulated paths. In this panel the same data of Fig.4.5
(left column) are reported, after rescaling. The walks lengths are normalized to 1. The
corresponding averages for step of the different measures (A)-(F) are rescaled with the mean
value of the same measures evaluated over the whole set of nodes belonging to paths with the
same length. The averages used to rescale the data are displayed in Fig.4.6. In the central and
right columns similarly processed data are reported which refer respectively to a semantically
uncorrelated model based on the google paths and to the Wikispeedia paths. Each color
refers to a path length, from 3 (blue) to 9 (light green). The standard error of the means are
reported.

In both the remaining cases, google and Wikispeedia, the curves referring to
different path lengths collapse into diverse and defined patterns, thus differently
characterizing the strategies followed by the users/gamers. The reader who accesses
Wikipedia from google, enters the encyclopedia via pages more abstract and more in-
terdisciplinary than the ones she will click on in the following steps. On Wikispeedia,
where both the starting page and the target are randomly assigned by the system,
the player needs to move towards most abstract articles to find her way through
the hyperlinks towards the target article. This strategy is independent of the path
lengths and was already observed by West et al. [111], after analysing a bunch of
heterogeneous measures over the same paths. Interestingly, while the starting and
final pages are quite general, the article the player goes through to connect them are
more specific to narrower fields of knowledge.

Also the investigation of the pairs quantities (distance and similarity) points
clearly out the different strategies of the information-seeker user of Wikipedia and
of the goal-oriented player of Wikispeedia. The first steps are used by the player to
make big semantic jumps, the distance to the known target starting diminishing only
after some steps. From that moment on, the player gets closer and closer to the target.
Still, the similarity between successive pages and between each node and the target
increases monotonically. This means that every step is used to enlarge the semantic
overlapping, for example in terms of common fields of knowledge supporting the
corresponding vectors.

The reader of Wikipedia, instead, uses the first page to direct her navigation: the
first jump is always the one connecting the most distant pages. Then the following
jumps are smaller and much similar, until the last one, significantly longer than the
previous ones. A similar, but reversed, behaviour emerges for the similarity.

62



4.3 Results

4.3.2 Other sources of navigation

When sources different than google are considered, similar trends emerge, even if
the entropy is in some cases less informative. In Figure 4.8 the data obtained over
paths simulated from the sources main_page and empty are reported, because the
mostly contrasting with what found from google (Fig. 4.5).

More in details, two main differences are worth being noted. First, the entropy
trends are quite dissimilar. In the empty case it is quite flat, and no trend emerges.
From the main_page, and unlike all the other sources, on average, whatever the
path length, the entropy alternates both an increasing and a decreasing phase, as
the user needed to explore diverse multidisciplinary levels in her browsing. The
second worthy difference is found after contrasting norm average trends in google
with empty originated paths, respectively Fig. 4.5(A) and subfigure 4.8(bA). Indeed,
it is missed the large jump towards low normed articles in the first step if the user
enters Wikipedia directly, from an empty referer, as she went straight to her content
(and level of abstractness) of interest.

4.3.3 Measuring strategies difference

So far, the diverse trends in the observables across sources and path lengths have
been only qualitatively discussed. Here, it is proposed a quantitative approach to
further stress the variety of strategies found.

For the two observables norm and entropy, their unrescaled average trends along
the simulated paths are considered (as the one displayed in Fig 4.5 and 4.8). More
in details, for any pair of sources, say A and B, for any length l between 4 and 9, it
has been computed the Spearman coefficient of the average observable along the l
steps. Then, the coefficients found have been averaged over the different lengths, to
synthetically express an average similarity between the two sources considered by
means of a similarity score. For norm and entropy respectively, it reads:

sim_score(A,B)∥∥ = ⟨spear(
∥∥wl

A

∥∥,∥∥wl
B

∥∥)⟩l (4.6)

and
sim_score(A,B)S = ⟨spear(S(wl

A),S(w
l
B))⟩l. (4.7)
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Fig. 4.8 Paths generated from the external source main_page and empty: averages. The
107 paths simulated with the two sources were split by lengths. For each fixed length l, the
averages of the following quantities were computed over all the nodes(pairs) at k steps(jumps)
from the end: (A) the average norm

∥∥wl
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∥∥, (B) the entropy S(wl
k), (C) the distance and (E) the

similarity between all the pairs of nodes consecutively visited along each path, respectively
d(wl

k,w
l
k−1) and sim(wl

k,w
l
k−1), (D) the distance and (F) the similarity between every node

visited and the ending node along each path, i.e. d(wl
k,w

l
0) and sim(wl

k,w
l
0). The error bars

display the standard errors of the means. Each color refers to a path length, from 3 (blue) to
9 (light green).
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Given these definitions, any information about variability of the averages values
between which the correlation is computed is lost. Nevertheless, similarities in
the norm and entropy trends along any walk can be outlined, as shown in Fig.4.9.
Here the similarity coefficients are reported for all the possible pairs of sources and
Wikispeedia, for the norm (subplot on the left) and the entropy (subplot on the right).

Fig. 4.9 Similarity scores between sources. For the two observables norm (left panel) and
entropy (right panel), we report the matrix of similarities score between all the sources and
Wikispeedia. The score is defined by equation 4.6 and eq. 4.7. For each pair of sources, the
unrescaled averages values of the observable are considered (as in Fig. 4.5). Then, for each
path length between 4 and 9, the spearman correlation coefficient is computed between the
averaged values of the observable. The final score is the obtained after averaging over all the
lengths.

The Wikispeedia case stands out clearly as very uncorrelated (or even negatively
correlated) to all the other sources. Contrasting the EWC sources only, the entropy
maps allows to confirm the qualitative observations done in the previous paragraph
about the unlike behaviour of empty and main_page sources. In particular for the
former, the dissimilarity with respect to all the other sources is even sharper than for
the Wikispeedia case.

4.4 Discussion and perspectives

In this chapter, it has been presented an analysis of the possible strategies of the
Wikipedia users. In particular, their walks over the online encyclopaedia have been
simulated, based on the English Wikipedia Clickstream (EWC) dataset [115]: an
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aggregated collection of clicks log of Wikipedia users activity during February 2015.
In spite of the simplicity of the underlying assumption, i.e., that a memoryless
Markov model could indeed be a good proxy for real user navigation [102], clear
and different patterns emerge by analysing the paths on a semantic level.

Indeed, the simulated paths have not been analysed on the microscopic page level,
rather in a more abstract space. The Wikipedia category system has been used to
map each page into a point of a topical space, where different generalizations of the
usual L2 metric have been defined to characterize the semantic profile of the articles
in such space, e.g., norms, entropy, distances and similarities. These quantities
are the observables considered to quantify the users’ strategies while navigating
Wikipedia. The novel procedure devised to create a semantic vector representation
of each Wikipedia article is the first main contribution of the work presented.

The novel proposed semantic representation has been the tool to uncover strate-
gies of the atypical Wikipedia reader. Indeed, while the simulations suggest that the
typical distance travelled by a user is between 1 and 2 pages visited after accessing
the encyclopaedia, the semantic analysis carried on has focused on longer paths over
the graph.

Although the results obtained cannot be generalized as universal for the typical
Wikipedia reader, because of the rareness of the longer paths analysed, still some
interesting results have been obtained which uncover regularities and patterns across
the simulated paths. To this end, the analysis has focused on contrasting paths
originated from different sources of access into the system, with suitably devised
null models and with the results based on the real navigation paths of players of the
Wikispeedia game.

For instance it was observed that the longer the walk, the longer the user nav-
igates deeper and deeper levels of specificity. Still, regardless of the length, the
navigation strategy emerges as quite universal, with the very first page navigated
being more abstract and of high level, and used by the reader to access her content
of interest, typically more specific and concrete. As in real physical paths travelled
by car drivers [76], the semantic distances spanned by the readers are not uniformly
distributed along the jumps. Readers, when remaining in Wikipedia more than few
steps, tend to perform the longest semantic jumps at the beginning and towards the
end of their exploration. However, the semantic coherence keeps increasing through-
out the paths. Moreover and in accordance with the expectations, the differences with
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Wikispeedia paths reveal that Wikipedia readers do not have a well defined target in
mind, their longer and rarer paths being no so goal-oriented as for the Wikispeedia
players.

In conclusion, some features emerged as universal of the simulated Wikipedia
users’ navigation paths. When longer than 3 steps, different lengths of the paths
correspond to different levels of specificity of the corresponding information-seeking
tasks. Furthermore and most intriguingly, the strategies are independent of the task
difficulty. Indeed, when the user keep surfing in Wikipedia, they go from an abstract
starting page to access more specific content, whatever the external source they come
from. Still, further work is needed to understand whether the semantic profile of the
first page accessed from the external source could be an indicator of the user future
behaviour, and in particular of her will to proceed the browsing.

Despite the simple assumptions made to generate realistic navigation paths, still
the hints provided in this chapter represent important indications of the strategies
used by learners/information seekers while exploring well structured knowledge
spaces, as Wikipedia.

This kind of indications could provide important hints to improve the design
of information networks and recommendation strategies. However, a systematic
investigation of the true users habits while surfing a knowledge space would be key
to the construction of more semantically effective learning paths. Because of the
lack of availability of such data about real browsing histories, in the next chapter a
similar question is addressed, but considering as navigated paths the ones suggested
by textbooks authors in their pieces.
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Chapter 5

Suggested learning paths: textbooks
analysis

In the previous chapter, walks over Wikipedia of information seekers have been
simulated based on the collection of page-to-page clickstream logs, as provided
by the Wikimedia community [115]. To analyse the simulated paths, a procedure
has been devised by which any article of Wikipedia is mapped into a point of a
multidimensional topic space, whose coordinates are the Main_Topic_Classification
Wikipedia categories [6]. Then, by investigating the simulated paths on this abstract
semantic space and by contrasting them with real paths originated by goal-oriented
tasks, some clear strategies emerged thus allowing to differentiate between users’
tasks and sources of navigation.

Here, the analysis proposed aims at statistically investigating possible patterns
and signatures in a very different type of learning paths, namely some advanced
scientific textbooks. Indeed, the main assumption made is the following: every
textbook is one of the possible diverse exploration paths a reader can do in the
subject-related knowledge space. More in details, it is the path suggested by the
textbook author through chapters, sections and paragraphs. While reading them,
i.e., while exploring the space so-well-known by the author, the reader learns novel
concepts, often revisits others and sometimes makes semantic jumps, thus creating
novel connections in her proper information space, the one she is enlarging while
studying the textbook.

68



5.1 Textbooks: data and preliminaries

In this perspective, any textbook study is a matter of innovations for the reader,
while the author covers only a small area of the entire knowledge space. In particular,
only that area the reader is ready to explore. This kind of dynamics is reminiscent of
the adjacent possible theory, introduced by Kauffman [68] and recently reconsidered
in the investigation of innovation dynamics [108, 54, 81].

Given this framework, the textbook analysis here conducted has a twofold scope.
First, it aims at identifying and extracting the underlying knowledge space over
which the narration walks are assumed to take place. This turns out into the problem
of identifying the knowledge units and then the connections among them. The second
goal of the proposed work is to investigate each textbook as a dynamical process of
exploration of the defined spaces.

In the following sections, firstly the set of textbooks used for analysis is described,
along with the preprocessing and cleaning procedures implemented. Then, two
approaches are proposed to tackle the problem of the knowledge space definition.
While the first takes advantages of only internal information, the second approach
relies upon the Wikipedia graph as external knowledge space and on the recent
software TAGME [44] to map the textbooks into a proper set of Wikipedia articles.

After defying a possible knowledge space, either a more static analysis is per-
formed over the knowledge units defined and a dynamical one, thus following both
the more traditional quantitative linguistic approach and the more recent one, from
innovation dynamics analysis.

5.1 Textbooks: data and preliminaries

The dataset under analysis is a collection of 78 textbooks covering broad different
subjects, mainly in the context of advanced Physics and Mathematics.

The textbooks were downloaded from Project Gutenberg (www.gutenberg.org)
and received as raw plain text1. Their are listed in Fig. 5.5, clustered by their semantic
interdistances, as defined in the section 5.2.2).

Every textbook was cleaned and preprocessed as described in the following
paragraph.

1Courtesy of Stefan Thurner and Bo Liu.
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5.1.1 Cleaning and preprocessing

From each textbook, only the core sections from the beginning of the first chapter
until the end of the last one were preserved, thus discarding possible indexes, prefaces
and appendixes. Headers and footers were filtered out, as well as figures and tables
captions. The subjects indexes were also separately saved for subsequent analyses.

The cleaned texts were split into their shortest meaningful linguistic units, namely
the sentences. This was accomplished automatically by means of the PunktSentence-
Tokenizer available in the Natural Language Toolkit platform [19]. Such module is
equipped with a customizable set of parameters, used to distinguish true sentence
separators from functional expressions (e.g. abbreviations, unit of measures). Al-
though such set of parameters was enriched to deal with context-typical expressions
as identified by inspection, few sentences were not correctly tokenized. They could
for example result in empty tokens of meaningless punctuation as well as in very long
tokens, encompassing several actual phrases, or in tokens embracing both subsection
titles and their next sentences. In the following analysis, this first source of noise has
been taken into account.

5.2 Building the knowledge space: units

The fundamental assumption under the analysis here presented is the possibility
to statistically read and study each textbook on a more abstract level with respect
to the words level. To define and characterize such abstract knowledge space, the
elementary bricks of the space must be chosen, as representative of the text content.
In the following, such fundamental semantic elements are referred to as semantic
units.

However, the units choice is not unique for each textbook. Indeed, many different
sets of units could be selected as key to identify its content. Some starting attempts
were performed to select the units via keywords extraction algorithms, as the ones
proposed by Najafi et al. [82] or in [75]. While this keyword extraction approaches
allowed to consider every word appearing in the text as a possible unit, they failed in
easily identify more significant n-grams of words.

As a consequence, other two strategies have been devised and implemented to
extract the knowledge units, leading to the definition of two different types of units,
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concepts and tags. The first strategy is based on the author’s choice of the main
subjects covered in the textbook: the subject index. From it the units concepts are
extracted and thus located in the textbook sentences. The second novel strategy has
been based on the use of TAGME [44]. It is a system which is able to tag short text
fragments by Wikipedia pages. In the present framework, the original sentences are
the textual inputs to be tagged, while the resulting tags are the semantic units. Both
the strategies are described in the following sections.

5.2.1 Concepts from subject index

The subject index of any book is one among the tools provided to the readers to
understand the main subjects covered and locate them across the pages. Thus, it
supplies the following two key information: the set of concepts (single words or
n-grams) semantically representative of the textbook according to its own author and
the location(s) where such concepts are mainly discussed. As a consequence, the
greatest pro in referring to the subject index concepts as knowledge units is their
high significance.

Nevertheless, three major weaknesses are to be considered, which could become
particularly severe if one would generalize the strategy to other frameworks. First
of all, and more obviously, the possibility of extracting semantic concepts from the
subject index depends on the actual existence of a subject index. Thus, the analysis
here performed is limited to this kind of books.

The second disadvantage is related to the difficulty of automatizing the concepts
extraction from the subjects index. Indeed, different subjects indexes use different
formatting rules to list words and their combinations into concepts, where here a
concept is every instance to which a (set of) page number(s) is associated. As a
consequence, for every textbook a novel set of rules should be devised to account for
its particular formatting style or a by hand cleaning of the indexes must be carried on.
In this analysis, the recombination of the original subject indexes entries has been
performed by hand, because of the scarceness of the sample under consideration.

The final issue regards the localization of the extracted concepts across the
sentences. Indeed, while the author provides the pages where the concepts are
discussed, in the textbook cleaning procedure the page numbers could be filtered out,
if even present in the original raw text, thus losing the possibility to directly take
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advantage of the author’s indications. On the other side, it is rare that any concepts
composed of more than one word appears in the text exactly as it appears in the
subject index, because of the words’ order or their particular inflection.

To overcome this problem, the following procedure has been designed. Each
concept was reduced to a set of stemmed words, after removing stop words and
numbers. The same procedure was applied to each sentence, thus maintaining
the set of significant words, but regardless of their order of appearance in the
phrases previously selected. Then, the intersection of each possible combination
sentence/concept was evaluated, thus resulting in the list of sentences where each
concept was contained.

5.2.2 Wikipedia tags from TAGME

To identify the semantic units relevant for each textbook, the second strategy devised
relies on an external platform: TAGME. This software system was developed by
Ferragina et al. [44] and aims at annotating short text fragments by articles of
Wikipedia, by taking advantages of the entire semantic context of the fragment.
Before entering more deeply into the details of TAGME, some remarks are needed
over the key positive and negative aspects of using this system to extract semantic
significant tags.

Actually, many advantages can be identified. First of all, TAGME can be used
against any textual source, without any limitation (except for the length, being the
algorithm optimized to tackle short fragments). A second pro regards the outputs
of the engine. Indeed, the tagging procedure results into a set of uniquely identified
Wikipedia pages, together with several parameters useful to evaluate the tagging
goodness. These pages are well defined and they can be broadly further characterized,
since they are part of a larger system, namely Wikipedia. For instance, a semantic
characterization of the articles can be made, by taking advantage of the Wikipedia
category system, thus reproducing the same semantic reduction and abstraction
procedure described in the previous chapter.

Concerning the most critical aspect in dealing with TAGME, the tags coherence
with respect to the starting sentences must be taken into consideration. Indeed, as
already stated, the input sentences could be too long, encompassing more original
phrases or they can be composed by only few words, because of a not correct
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tokenizing, thus turning out in ambiguous or misleading textual fragments. To limit
possible incorrect tagging, the software free parameters were tuned appropriately.
The final choice is described and justified in the next paragraph, along with a general
description of the the software algorithm.

Software description

Details about the design of the software are reported in the original paper of Ferragina
et al. [44]. This article is also referred for the terminology and the notation here used.
In this paragraph, hints are provided on some technical aspects and the general idea
implemented in the software.

The version of TAGME used in the present analysis was built upon the Wikipedia
dump of April 7, 2016. From this, the software indexes the set of anchors, namely
the texts used in any page whichs point to another Wikipedia page. With this, given
a text fragment T, TAGME looks for all the possible anchors occurring in it. For each
of them the software disambiguates their best sense, i.e. the pages to which they
would more likely point given the context, to then eventually prune them, in this way
discarding any not meaningful anchor.

Concerning the disambiguation phase, two features are considered to select the
best candidate annotation pa among all the possible pages pointed by any anchor a,
i.e. among all its senses, Pg(a). The two features are the goodness of the annotation
and its commonness. The goodness is quantified by the score rela(pa). It is computed
by considering all the other anchors bi appearing in the text together with all their
possible senses Pg(bi) and evaluating the relatedness of each pair of senses pa, pb,
with pb ∈ Pg(bi). After the goodness score is computed for all the senses of anchor a,
only the top-ε senses are saved. Among them, the one with the highest commonness
is selected as candidate, being the commonness the probability that a particular
occurrence of a points to that sense pa.

The ε parameter can be chosen by the user. A higher value should be set in case
of ambiguous and short texts, while it could be decreased for long texts, where the
context should be more taken into account. In the present analysis, ε is set to 0.3, i.e.
to the default value in the online TAGME platform.

After the senses are disambiguated for all the anchors, the resulting candidate
senses are pruned. This phase takes into account the link probability of each anchor
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and the coherence of its candidate sense with respect to the candidate senses of all
the other anchors. This two features are combined into a score ρ(a 7→ p′a), where
a 7→ p′a indicates the candidate annotation of anchor a with the disambiguated sense
p′a. Only the candidates with a score greater then a threshold ρNA are kept.

This second free parameter is suggested by the authors to lie in the interval
[0.1,0.3]. In all the present work, the threshold is set equal to 0.3, thus asking
the system for the most severe pruning of the candidate senses, in the interval of
feasibility.

Finally, by inspection it was observed poor coherent annotations when the anchor
contained numbers. For this reason, they were discarded from the analysis.

Semantic characterization of tags

One of the most valuable advantages in tagging the textbooks sentences by Wikipedia
pages is undoubtedly the possibility of exploiting the Wikipedia framework. Indeed,
the entire Wikipedia graph represents a general and well-defined knowledge space,
where to study the textbooks. Here, connections between pages are already signs of
semantic relations between them, and thus meaningful in the present analysis.

In addition, the Wikipedia category system allows to move further in abstracting
the semantic characterization of the pages. This was done in Chapter 4, by devising
a semantic representation of the Wikipedia articles. Here, the same procedure
described in section 4.2 was replicated. From the category system corresponding to
the Wikipedia dump over which TAGME is built, each tag was mapped into a topic
vector. The topics, i.e. the coordinates of this topic spaces, are listed in Figure 5.3.

Given this enriched semantic representation of the tags, many different informa-
tion can be obtained about the textbooks, thought as streams of tags, or even just as a
collections of point in the topic space. Both the interpretations are discussed in the
next sections.

5.3 Mapping the textbooks in the knowledge spaces

In the previous section, the strategies to define and extract the semantic units were
described. Both the procedures result in the set of units (concepts or tags) occurring
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in any phrases, if any. In the following, the sentences which do not contain any units
are discarded.

For each textbook, the average number of units co-occurring in its (not units-free)
sentences is computed. They are reported, for both units type, in Figure 5.1, along
with the corresponding standard deviations.

Fig. 5.1 Average number of semantic units per not empty phrases. For both units types,
the average number of units per phrases is computed for each textbook and diplayed in the
figure in function of its index. The averages are evaluated after discarding any sentence
without units. The bars represent the standard deviations on the averages.

While the average number of both concepts and tags per sentence is almost in
every textbook between 1 and 2, it is worth noting the presence of large deviations.
Indeed, the distribution of the number of sentences as a function of the number of
units occurring in them decades typically exponentially. However, in some books
and in particular when the concepts are considered, the decay rate is slow enough
that many more than 10 different units per phrases are still observed. Such large
deviations could be mainly explained by the very different lengths of the concepts,
and also by the fact that many concepts can share one of more words, thus being
their co-occurrences in a sentence more likely. In addition, as already stated, the
tokenizing procedure implemented cannot guarantee a precise sentence recognition.

For all these reasons, the units appearing in each textbooks were aligned, thus
representing each book as a plain stream of units. More in details, from each
textbook many different in line realizations were considered, to account for the
possible co-occurrences of units in a sentence. In fact, the relative order of sets of
units appearing in different phrases was kept unchanged, while the bunch of units
co-occurring within any phrase were randomly reshuffled in each stream realization.
This procedure is depicted in Figure 5.2. In the following, 100 realizations of units
streams are considered for each textbook and for each unit type.

Moreover, further 100 streams are generated for each textbook and units type,
where the units are completely randomly reshuffled, without any constraint. There

75



Suggested learning paths: textbooks analysis

Fig. 5.2 Textbook representation as streams of units. Illustration of the procedure used to
align the semantic units. Each capital letter represents a distinct semantic unit appearing in a
sentence (coloured boxes). In order to obtain different streams of units realizations from any
textbook, while the inter-phrases order of appearance is maintained, the order of any set of
units co-occurring in the same phrase is reshuffled.

random streams (in the following referred to with the label rnd) will be considered
as reference null model in the subsequent analyses.

5.3.1 Topics representation of texts

Regardless of the order with which the semantic units occur in the phrases across
the text, many information can be obtained by only looking at their collection. In
particular, this is the case for the tags units. In fact, they could be synthetically
represented as points in the topic space, as described in section 5.2.2. Moreover,
the number of occurrences of each tag in a text is a signature of its relevance, thus
a perfect proxy for the mass of the tag in the topic space. As a consequence, each
textbook can be represented as the centre of mass of the system of its tags.

More formally, given the collection of tags {ui} found in a textbook B and their
number of occurrences nui , the system of points {(w⃗ui,niui)} is considered in the
space of topics, where w⃗ui is the topic vector of tag ui:

w⃗ui = (w0
ui
,w1

ui
, . . . ,wt

ui
. . . ,wT

ui
), (5.1)

being wt
ui

the topic-t coordinate and t ∈ [1,T ], with T = 14. With this notation, the
textbook vector w⃗B could be simply derived as centre of mass of the system (w⃗ui,nui).
Its coordinates are the convex combination:

wt
B =

1
∑i nui

∑
i

wt
ui

nui. (5.2)
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The final vector w⃗B places the book B in the topic space, thus giving an immediate
reduced representation of its content by the main categories used as topics. In
Figure 5.3, the topic vectors obtained for two textbooks among the ones under
analysis are shown.

Fig. 5.3 Textbooks topic vectors. For each topic of the topic space, the corresponding coor-
dinates are reported of the final topic vectors obtained for the textbooks Pure Mathematics
for Advanced Level(blue bars) and A treatise on Electricity and Magnetism (red bars). The
topic vectors were computed as center of mass of the tags appearing in them.

The different contributions of the topics in characterizing the textbooks are in
agreement with the expectations, given the books considered, namely a textbook on
Mathematics for advance level and a treatise regarding electricity and magnetism.
Not only are the topics resulting as the most representative in line with the intuition,
but also their relative proportion in representing the textbook content.

Starting from these observations, the analysis performed in Chapter 4 is here
replicated, in order to characterized the textbook topic vectors in terms of their norms
and entropies, thus quantifying respectively their abstraction and interdisciplinarity.
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The two measures, already introduced in the previous chapter, are here reported for
convenience. The norm is the L2 norm:

∥w⃗∥=
√

1
T

T

∑
t=1

(wt)2 (5.3)

while the entropy is defined as:

S(w⃗) =− 1
log2(T )

T

∑
t=1

ŵt log2(ŵ
t
A) (5.4)

with ŵt = w/∑
T
t=1 wt , so that the weights sum to 1.

With these observables, all the textbooks under analysis could be represented in
a norm/entropy plane, as reported in Figure 5.4. Here some textbooks titles are also
displayed, corresponding to points with extreme values of entropy or norms, among
the set.

Fig. 5.4 Norm/entropy map of the textbooks topic vectors. For all the 78 textbooks under
analysis, the norm and entropy of their topic vectors were computed. Some textbooks titles
are reported as a guide to discriminate different areas of the norm/entropy plane. In blue and
red the point are coloured corresponding to the textbooks whose topic vectors are displayed
in Fig. 5.3.

As can be seen, entropy and norm allow to discriminate focused and abstract
textbooks – as many of pure calculus and mathematics – with respect to more
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concrete and topic-broad texts, such as the one concerning electricity and magnetism,
highlighted in red.

In addition to the individual characterization obtained by computing norm and
entropy of each textbook vector, also the semantic distances between all pairs of
textbooks can be computed. The distance matrix can be the input for any clustering
algorithms. In Figure 5.5 it is reported the dendrogram resulting from a hierarchical
clustering of the textbooks, performed using the average linkage scheme, by means
of the SciPy hierarchical clustering package [65].

The textbook hierarchical clustering based on the semantic distance between
topic vectors succeeds in distinguishing two main clusters of books mainly focused
in Mathematics or in Physics related issues (red and green clusters respectively. It is
worth noting that books covering similar matters result to be correctly close. This is
the case of the Differential and Integral Calculus volumes, of the college Chemistry
texts and of the Electricity and Magnetisms volumes just to mention few. Future
work could test the validity of the presented approach, by contrasting the semantic
clustering of the textbooks with the one obtained by using more common natural
language approaches, based on the bags of words representation of documents, or
even with external, independent classification data, like the ones obtained from
librarian classification systems.

5.4 Statistical signatures of the dynamics

Before completing the supposed knowledge spaces with proper connections between
the units, here the textbooks are studied as bare streams of concepts and tags. To this
end, some observables are investigated quite common in the quantitative linguistics
analysis of written texts. Indeed, for decades a great effort has been made to uncover
statistical regularities in human language, and to relate and explain them through
generative model [100, 74, 51, 11]. In contrast with the classical approach, while
more in line with very recent work [33], here the single words are not taken into
consideration, but rather the previously defined semantic units. Thus, the statistical
properties of the texts are investigated on a reduced, and more abstract level than the
individual tokens.
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Fig. 5.5 Dendrogram of textbooks. Given the distance matrix between any pair of textbook
topic vectors, a hierarchical clustering is performed, by using the average linkage scheme.
The resulting tree is displayed.
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The first observable considered is the frequency of occurrences of the units into
the stream, which was also historically the first to be quantitatively investigated by
George Zipf in the late 30s. His empirical observation, known as Zipf’s law [117],
states that the words frequencies scale with their ranks r as a power-law, f (r) ∝ r−α .
Actually, the Zipf’s law has been observed in many different complex systems,
beyond the linguistic ones [74], while several refinements of the laws have been
proposed to account for further empirical observations, like a double scaling in the
frequency-rank plot for very large databases [47, 51].

For the five longest textbooks among the 78 under analysis, the frequency-rank
plots of concepts and tags representations are reported in Fig. 5.6 Here, an exact

Fig. 5.6 Zipf’s law in individual textbooks. The frequency of occurrences of the units in
some books are reported as a functions of their ranks, in log-log scale. The five textbooks
analysed, displayed in the plot with different colors, are the top five longest among all the 78
books of the dataset considered. The frequency/rank analysis is reported for both concepts
(left figure) and tags (on the right) units. An eye-guide linear ( f (r) ∝ r−1) curve is reported
in both figures with dashed line.

power-law scaling is not recovered, but this result could have been expected because
of the small size of the texts. In contrast, if all the textbooks in their tags stream
representations are gathered together, and the frequency-rank plot is computed for
all the tags appearing in the collection, a double scale power-law is recovered. It is
reported in Fig. 5.7(A), along with two pure power-law eye-guide curves.

Two main observations can be made, namely the double scaling and the exponents
values. With respect to the latter issue, a scaling exponent closer to 1 is usually found
in texts, although large deviations have also been observed [116, 46].

Regarding the double scaling, it has been already often reveled when considering
large size texts and corpora [93, 47, 51]. In particular, to explain the emergence of
the two different scaling intervals, Ferrer-i-Cancho and Solé in [47] suggested that
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Fig. 5.7 Zipf and Heaps’ laws, tags units, entire collection. In (A) the whole set of
documents is considered as a unique text. From it, the frequency/rank plot of all units
appearing is computed and reported, in log-log scale. To make more evident the double-scale
of the resulting curve, two power-law of the type f (r) ∝ r−α are reported in red dashed draw,
with α = 0.69 and α = 1.62, as resulting from a two-sloped least/squares fitting of the data.
In (B), for each text of the collection, its number of distinct tags as a function of the total
text length is reported. The scatters are fitted with a power-law function N(l) = a · lβ with
exponent β = 0.63±0.03, as reported in red in the figure.

the two regimes could result from the coexistance of tho different groups of words,
namely a core group of words frequent an recurrent in all textbooks (the kernel
lexicon), and a second group of more technical and topical words (unlimited lexicon).
While they explain the double regimes in terms of cognitive constraints of the human
brain in memorizing vocabulary, recently Williams et al. [113] have proposed that
the observed dual scaling is just a result of the combinations of heterogeneous texts,
i.e. what they call text mixing.

The investigation of the frequency of occurrences of the semantic units provides
a global insight into the textbooks. To start investigating the dynamics of exploration
of the knowledge space as long as the textbook is read, a second observable is
considered, namely the introduction rate of novel units in the streams. First observed
by Heaps [58], the number of distinct words typically grows sublinearly with the text
length, i.e., N(l)∼ lγ with γ < 1. This empirical laws has been observed together
with the Zipf’s one in several systems (please refer to [74] as review) and thus their
coexistence has been a focus for many generative model proposed so far.

In the textbooks analysed, the sublinear growth of the number of diverse units
with the textbooks length is recovered for both concepts and tags unit type. For the
usual five longest textbooks, results are displayed in Fig. 5.8. For all the textbooks,
the exponent has been fitted using a two-parameters fitting curve N(l) = a · lγ , via
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Fig. 5.8 Heaps’ law in individual textbooks. For the same textbooks of Fig. 5.6 it is here
reported the number of distinct units N(l) presented as a function of the text length l, for
both concepts (on the left) and tags (on the right). For each textbook, the data displayed
are the averages over the 100 textbooks streams realizations. Standard deviations are also
displayed. As a reference line, a sublinear curve N(l) ∝ l0.7 is reported with dashed line.
Both the figures are in log-log scale.

least square fitting procedure. The resulting exponents are reported with deviations
in Fig. 5.9, for both concepts and tags units (blue and red points respectively).

Fig. 5.9 Heaps’ law sublinear fit exponents. For each textbook and unit type (blue and red
points for concepts and tag respectively), the number of distinct units as a function of text
length N(l) (averaged over the text streams) has been fitted with a power law N(l) = a · lγ .
The parameters were estimated by means of a least square fitting procedure. The resulting
estimated exponents γ are here reported, together with the corresponding deviations.

In all cases the sublinearity is recovered, while no correlation appears between
the exponents obtained in the two diverse representations. However, it is worth
noting the wide range over which the fitted exponents lie, thus suggesting significant
dissimilarities in the rate at which novel content is introduced among the different
textbooks.

In order to consider the entire collection of texts, a diverse formulation of the
Heaps’ law has to be considered. In subfigure 5.7(B), for each document the size of
their vocabularies are reported as a function of the total lengths, as in [93, 51, 52].
The sublinear Heapsian trend is confirmed, the vocabulary sizes growing which the
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texts length according to a power-law N(l) ∝ lγ . The exponent γ has been estimated
through a least-square fitting of the data, thus resulting in γ = 0.63±0.03.

It is worth noting that the estimated Heaps’ exponent is compatible with what
observed in the frequency rank plot. Indeed it is reported that, in systems fulfilling
both Zipf and Heaps’ laws, asymptotically γ = α−1 [100, 74].

The investigation of Zipf and Heaps’ laws has allowed to gain insights into
some statistical signature of the dynamics of exploration suggested in the textbooks.
Still, other quantities can be measured to focus more on the single unit occurrences
stream. Indeed, for each semantic unit, its events in a text are far from being
randomly distributed. It could be expected to recover for the single units burst
occurrences, as quite commonly observed in quantitative linguistics and social
dynamics systems [67].

To look for evidence of such patterns, two quantities introduced by Tria et
al. [108] are here considered, namely the entropy S of each unit stream of occurrences
and the distribution of the triggering intervals f (l). In their work, Tria et al. used
the mentioned measures to quantify the presence of correlations between events
associated to a same properly defined semantic group, in different systems of human
activities. Among them, also some textbooks were considered, where each word was
treated as constituting its own group. With this, they recovered that also in single
texts, there are evidences of triggering effects among each word occurrences. Also in
the present analysis each unit is treated as a single semantic group2. The observables
definitions are here reported.

Given the stream of occurrences for each unit u across the entire textbooks, the
corresponding entropy is a function of the number of occurrences of u, say k: Su(k).
It is defined as

Su(k) =−
k

∑
i=1

fi

k
log

fi

k
(5.5)

where fi is the number of occurrences of unit u if the i-th block of the text, obtained
by dividing the entire stream in k section, starting from the first occurrence of the
unit. With this definition, if the k events are equally distributed over the k blocks, the
total entropy is Su(k) = logk, i.e., its maximum value, while if all the occurrences

2However, further investigation could be done, by taking advantage of the previous defined topic
vector representation of tags to create more meaningful semantic groups of words and look for
correlations in the text between them.

84



5.4 Statistical signatures of the dynamics

were inside one only chunk, the resulting entropy would be zero. Finally, for each
textbook, the average value is considered of the word entropies, aggregated for
number of occurrences k.

Also the triggering intervals are defined from the stream of events of each unit.
In particular, the intervals between successive occurrences are computed and thus
their distribution.

To evaluate the resulting entropies and triggering intervals distributions, the same
observables have been computed also on the random realizations of the original
sequences.

In Fig. 5.10, for the five longest textbooks the computed entropies are displayed.
As expected, in all the cases, the original sequences show lower level of entropies

Fig. 5.10 Normalized entropies in real and reshuffled streams. For each textbook and
unit type, the normalized entropy of the sequence of occurrences of any unit appearing was
computed as a function of its number of occurrences k. The entropies displayed are the
averages over all the units with the same number of occurrences k, and over all the stream
realizations of each textbook. With different markers, the five different textbooks already
presented in Fig. 5.6 are referred, while blue and green points concern original and reshuffled
streams respectively. In both figures, the x-axis is in logarithmic scale.

for the occurrences streams, with respect to the randomized cases, in particular for
low number of occurrences. The more rare a unit is, the more their occurrences are
clustered in the text. This holds for both types of units.

Regarding the triggering intervals, the aggregate distributions of all the 78 text-
books are reported in Fig. 5.11, for both types of units. The significant presence
of short intervals with respect to the random case yield a further evidence for the
presence of clusters in time of the same unit.
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Fig. 5.11 Average distribution of triggering intervals. For each textbook streams and
unit type, the distribution of the corresponding triggering intervals was computed, i.e. of
the distances between successive occurrences of the same unit. In the figure, the average
distribution computed over all 78 textbooks is displayed with blue points. The same procedure
was applied to the reshuffled streams. The corresponding final average distribution is reported
with green points. Standard deviations are also reported. All the axes are in log scale.

5.5 Building the knowledge space: connections

The analysis presented so far has been focused only on the stream of semantic units
across the textbooks, regardless of any semantic correlation between them. However,
possible correlations between the units could be relevant to better understand the
statistical regularities found, as well as to quantify novel aspects of the dynamics of
exploration in the knowledge spaces.

As for the choice of the elementary units constituting the spaces, several different
definition of semantic connections between the units could also be proposed. In
particular, both information grasped from the textbooks themselves and from external
sources could be considered to define and quantify any semantic connection.

Here, two different approaches are presented. The first one refers to the use of the
textbooks streams to quantify how much a pair of units is correlated. In particular,
it is based on the entire occurrences history of all the units appearing in a single
textbook. Thus, it is named here GLocal approach. In the second case, the source of
information for inferring any correlation between units is the entire Wikipedia graph.

In the next section, the first novel approach is presented along with the drawbacks
encountered in dealing with it. Then, some indications on the Wikipedia graph are
reported.
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5.5.1 GLocal approach

Computation of semantic correlations

The assumption underlying the approach here presented is the following: two units
are semantically correlated if their temporal patterns of occurrences across a textbook
are positively correlated. However, for any unit, its temporal pattern of occurrences is
a plain binary stream, where only presences or absences of the units are given. Many
common measures [101] of (dis)similarity between boolean vectors only compares
the binary vectors bit by bit, by evaluating variables matches or mismatches. Here a
different measure is needed to account for closeness, and not just overlapping, of the
units occurrences.

To this end, the original sequence of occurrences of each unit across the phrases
in the text was transformed into a temporal series, by mean of a running average
procedure. Given the starting binary sequence for any unit occu(t), a novel series
RAu(t ′) is built so that:

RAu(t ′) =
1
n

t ′−1

∑
t=t ′−n

occu(t). (5.6)

The window width n was chosen differently for each textbook. It was set to be the
mean inter-distance between successive repetitions of the same unit, averaged over all
the units appearing in the text. An example of the transformation from the temporal
binary vectors of occurrences to the smoothed temporal series for two concepts
appearing in the textbook Advanced_Level_Physics is displayed in Fig. 5.12.

Then, for every pair of units u1 and u2 and corresponding temporal series RAu1(t)
and RAu2(t), their Spearman correlation coefficient was computed, spear(u1,u2).
To give significance to the resulting correlation coefficients, the following null model
was designed. Given any sequence of occurrences occu(t), 100 randomizations were
performed of the original phrases/occurrences patterns so that:

• the distribution of number of units per phrases was unchanged;

• the first occurrence of each unit each was maintained.

On these partially randomized sequences, both the running averaging and the cor-
relations procedure were performed. In particular, for every pair of units (u1,u2),
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Fig. 5.12 From binary occurrences vectors to smooth temporal series. For the two
concepts A = {angular,momentum} and B = {veloc,angular} appearing in the textbook
Advanced_Level_Physics, their boolean vectors of occurrences across the textbook sentences
are displayed on the top. In the figure at the bottom, the smoothed temporal series are
reported, obtained after a running averaging of the occurrences vectors, as in eq. 5.6. Their
resulting Spearman correlation coefficient is spear(A,B) = 0.37.

the correlation coefficient of their randomized sequences was averaged over all the
randomizations, resulting in spearrnd(u1,u2), with associated deviation σu1,u2. At
the end, only the pairs of units for which

spear(u1,u2)≥ max(0,spearrnd(u1,u2)+3σu1,u2) (5.7)

were considered significant. A weighted connection was drawn between them, with
weight equal to their correlation coefficient.

GLocal knowledge spaces

The procedure described in the previous section allows to enrich the knowledge space
of both concepts and tags with connections between the units, for every textbook
in the database under analysis. In the table 5.1, some topological properties of the
resulting graphs for some textbooks are reported, for both unit types.

In particular, only the data regarding the first five biggest graphs are reported
(corresponding to the five top longest textbooks, already displayed in Fig. 5.6 and
5.8). For these five textbooks, the greatest largest component covers more than
90% of the graph. Both concepts and tags graphs have a high clustering coefficient
(with respect to a random graph with similar size and edge number). Moreover, the
concepts graphs show typically an assortative profile, more significant than in the
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Table 5.1 GLocal graphs properties for some textbooks. For the textbooks listed below,
some topological properties are reported of the Glocal graphs build on them for both concepts
and tags units (respectively white and violet background cells). In particular, the following
quantities are reported (from left to right): the number of vertices, the number of edges,
the fraction of node belonging to the greatest connected component, the mean clustering
coefficient, the assortativity index[84] and the mean shortest distance between pairs of nodes
in GCC. Please refer to Appendix A for definitions.

Textbook id – title #vertices #edges GCC cc a 〈dist〉
0 – Advanced Level Physics

877 4713 0.97 0.44 0.21 4.8
977 6382 0.92 0.19 -0.02 4.3

12 – College Chemistry
687 3172 0.91 0.34 0.25 4.4
1211 11460 0.97 0.25 -0.13 3.6

26 – General College Chemistry
1239 9192 0.95 0.40 0.21 4.2
1262 11065 0.98 0.30 -0.08 3.7

46 – Physical Chemistry 4th
1046 5344 0.90 0.34 0.25 4.8
1191 7795 0.92 0.35 0.06 4.2

48 – Physics For The Enquiring Mind
668 2550 0.91 0.27 0.09 4.5
1177 10194 0.93 0.25 0.08 4.0

tags graphs. Finally, in both types of graph, the small world property is recovered,
as the average shortest path between nodes in the greatest connected component is
around 4.0.

For the same GLocal graphs, the degree distributions are displayed in Fig. 5.13.
It is worth noting that the nodes in concepts graphs have not a large heterogeneity,

Fig. 5.13 Degree distributions for some Glocal graphs. For the GLocal graphs obtained
from the textbooks listed in Table 5.1, the corresponding degree distributions are reported,
for both concepts and tags graph units types (left and right subfigure, respectively). Axes are
in logarithmic scale.

while in contrast, the degree distributions display fatter tails in the tags graphs. In
both cases, the distribution is homogeneous for the smallest connectivity values
(degree less than 10).
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As soon as the smaller textbooks are also considered, the degree distributions
become very homogeneous. The textbook size (typically around 100 units) do not
allow for connectivity hubs to appear. Moreover, many disconnected components
are observed, along with large fractions of completely disconnected nodes.

Because of such properties, this type of textbook network-representation seems
not to be ideal for the subsequent analyses. As a consequence, only the networks over
the Wikipedia global graph will be considered for further investigations, presented in
the following sections. Still, the approach here presented could provide useful hints
for future works on innovative network representations of books.

5.5.2 Global graph: Wikipedia

The Wikipedia graph, composed by articles connected via hyperlinks, is the straight-
forward structure in which the tags are naturally embedded. Furthermore, and how
already discussed in the second chapter, it is the largest, collaborative, freely available
realization of a knowledge space as a complex network.

The version here considered was build upon the dump [5] dated April 7, 2016,
i.e. the one on which also TAGME [44] software version here used was based. Since
redirects were not filtered out, the final directed graph contains aroud 12m articles
and around 390m edges. Among all the nodes, around 15k distinct tags are counted
over all 78 textbooks under analysis.

5.6 Exploration of the knowledge space

In the previous section, two different approaches were presented to enrich the
knowledge spaces with connections between the semantic units. However, for the
reasons already discussed, only the results obtained on the Wikipedia knowledge
graph are here presented.

In particular, to characterize the dynamics of exploration on the graph suggested
by each textbook, the following measures have been considered:
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• topological distance Gd(u1,u2) – it is the shortest path on the graph from tag
u1 to tag u2. If no directed path exists from tag u1 to tag u2, their topological
distance is set to Gd(u1,u2) =−1.;

• topic distance Td(u1,u2) – it is the euclidean distance between the topic
vectors w⃗ui corresponding to the units ui, as introduced in sec. 5.3.1. For
convenience, it is reported here its expression:

Td(u1,u2) = d(w⃗u1, w⃗u2) =

√
1
T

T

∑
t=1

(wt
u1 −wt

u2)
2; (5.8)

In Fig. 5.14 for one textbook and then for the entire collection, the histogram
of topological distances between consecutive pairs of tags (subfigure (A)-(C)) and
between only new-introduced tags (subfigure (B)-(D)) are reported, together with the
results obtained in the randomized sequences. It is worth noting that in both cases

Fig. 5.14 Topological distances between textbooks tags. In subfigure (A), with red points
the histograms of topological distances between consecutive tags in the textbook Advanaced
Level Physics is reported. The dashed line corresponds to the average distance, while the
area coloured in red defines 1 sigma of deviation from the norm. Green points, line and
area refer to the randomized sequences. In subfigure (B) the same data are reported, but
computed on the sequence of novel tags, i.e., discarding any repetitions. After averaging the
histograms over all the textbooks, results are shown in subfigure (C) and (D), respectively
for the topological jumps between pairs of tags in the complete sequences of in the novelties
one. Standard deviations are reported.

(all pairs, only novel tags) shorter jumps are more recurrent in the true sequences
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with respect to their randomized versions. This is more significantly true for the
complete sequences, where a large fraction of jumps is made on the same node.
Indeed, around %10 of times, the same tag is subsequentially repeated, thus yielding
null topological distance spanned.

Similar results are obtained if the topic distance is computed instead of the
topological ones. Results for the Advanced Level Physics textbook and then averaged
over the entire collection are reported in Fig. 5.15(A)-(C) and (B)-(D), respectively
for all consecutive pairs of nodes and for only novel tags pairs. For all the textbooks,

Fig. 5.15 Topic distances between textbooks tags. As in Fig. 5.14, in subfigure (A),
with red points the histograms of topic distances between consecutive tags in the textbook
Advanaced Level Physics is reported. The dashed line corresponds to the average distance,
while the area coloured in red defines 1 sigma of deviation from the norm. Green points, line
and area refer to the randomized sequences. In subfigure (B) the same data are reported, but
computed on the sequence of novel tags, i.e., discarding any repetitions. For all textbooks,
the binned distributions (as the one reported in subplot (A) and (B)) are averaged. The final
values together with the corresponding standard deviations are displayed in subfigures (C)
and (D) for respectively all consecutive pairs of tags (red points) and only between novel
ones. (blue points).

their distributions are averaged and displayed in subfigures 5.15(C) and (D), together
with their randomized versions. Although in all textbooks the true topic jumps
are on average shorter than in the randomized case, it is to be noted that only if
all the repetitions are considered a significant difference appears in the original
sequences. Indeed, a peak on topic distance around zero is in the complete true
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sentences always recovered, as a (partial) results of the repetitions of the same tags
across the sequences.

However, to better understand the possible implications of a null topic distance
on the topological characterization, correlations and overlapping of the two measures
are investigated. To this end in Fig. 5.16, left subfigure, the distribution of topic
distance between nearest neighbours tags on the graph is reported. On the right, the
histograms of topological distances between tag pairs with null semantic distance is
instead shown. Tags with the same topic representation are typically 2 or 3 steps far

Fig. 5.16 Topological and topic profiles of close tags pairs. In the subfigure at the left, all
the pairs of tags which are nearest neighbours on the Wikipedia graph are considered. Of
them, the topic distances are computed. Their distributions is reported in the plot. In the
subfigure at the right, first the pairs of tags with null topic distance are selected. Than, their
topological distances are evaluated, and reported in the figure.

on the graphs while only a small fraction (around 5%) of nearest neighbours pairs of
tags have the same semantic profile.

Moreover, it has been computed the correlation between the two distances,
looking for the Spearman correlation coefficient computed over all pairs of tags
appearing subsequently in at least one textbooks of the collection. It results to be
ρ = 0.26 with p-value = 0.. The two distances are slightly correlated, but still the
information they provide are not overlapping. Rather, it could be interesting to
investigate whether the semantic distance could be useful to forecast missing links
in the Wikipedia graphs, for example by looking at the semantic distances of any
Wikipedia page with its topological neighbours, across its revisions history.

Still, regarding the exploration of the graph along the textbooks, the empiri-
cal distributions of jumps discussed so far can steer possible stochastic dynamics
reproducing the graph exploration.
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5.6.1 Expansion of the adjacent possible

The analyses proposed so far provide some insights into the dynamics of exploration
of the Wikipedia space which the reader is steered to follow as she reads the books.
It is understood that the suggested path is not continuous either on the Wikipedia
graph or in the topic abstract space, although close tags (in both spaces) appears
more frequently sequentially than in a random case.

Still, in the analysis of the spanned spaces, nothing is assumed about what area
of the graph is really available. Indeed, so far the entire Wikipedia graph has been
treated as always explorable by the learners, without any constraints. Actually, any
learning experience is strictly bounded by what already known, while propaedeutics
issues restrict the space of what can be learned as well as the mere possibility to find
ways toward the unknown.

This scenario reflects, in a learning and information-retrieval context, the “adja-
cent possible” theory proposed by Kauffman [68] in a biological framework while
reasoning about biosphere evolution. The adjacent possible is what is ahead of time,
continuously expanding and reshaping “at every step forward in the unknown” [54].

Recently, the same suggestion has driven the quantitative investigation of the
dynamics of innovations and creativity [108], as they appear in many social systems
like social annotation of music products [81], or the network of movies and inspira-
tion links between them [54]. In particular in the latter work, the notion of adjacent
possible at each timestamp of the system evolution has been formalized by looking
at its coverage, i.e. its a posteriori realization as actual history of the system.

Indeed, the main problem in dealing with the quantification of what could be
realized ahead of time in any system evolution is the lack of information about its
possible future states. In this sense, any evaluation of the adjacent possible can only
be done a posteriori.

In the learning context tackled here, the stated issue about the knowledge of the
future possible states of the system can be partially overcome. Here, the adjacent
learnable can be introduced for any learner as that part of the knowledge graph –
Wikipedia in the present formalization – actually accessible, for instance because
their preliminary requirements have already been satisfied, or just because a bridge
towards them is stated from something already known. Any novel concept learned
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contributes to cover the adjacent learnable as well as to expand it, by making novel
materials accessible.

Thus, if the Wikipedia graph is considered as the (more o less stable) compendium
of all the knowledge available, at each timestamp of any textbook narration the entire
set of nodes accessible to the next step exploration would be available. From the
reader point of view, only a subset of that nodes will be learned, thus becoming part
of her individual graph of knowledge.

However, how this individual knowledge graph expands in relation to the adjacent
learnable can be expected to depend on the knowledge background of the reader
(how much of the collective space does she already know?), author’s choices and
content. Does the adjacent learnable expand steady along the book or its expansion is
characterized by bursts? How fast is it covered by the introduction of novel materials
rather than enlarged?

In the following, some preliminary attempts are discussed aiming at formalizing
the previous questions. To this end it is worth noting that, in contrast to the sys-
tem of cinematographic influences between movies studied in [54], here no direct
information are available about the appropriate order of exploration of the tags in
the Wikipedia graph. Instead, the most simple assumption is made, namely that the
edges directionality in Wikipedia constrains the space properly accessible. With this
assumption, each node exploration makes its out-neighbours accessible, i.e., puts
them into the adjacent learnable.

Still, two different estimates can be done. In fact, the expansion of the adjacent
possible could be analysed with respect to the entire context, represented by the
whole Wikipedia graph. In this case, every time a novel node is explored, all its
out-neighbours became available for further exploration, thus spanning over many
different semantic contents, as typically in any Wikipedia page. That would be lead
to a large estimate of the actual adjacent learnable as it appears from the reader
perspective.

On the other hand, the adjacent possible analysis could be narrowed to look only
at the subset of tags semantically related, because they will be explored during the
book narration. Rather than looking for the adjacent possible, the adjacent future
would be in this way investigated, as a proxy of the way in which the author organize
and present a predefined set of material in the narration. In the following both
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the large estimate of the adjacent learnable and the adjacent future are defined and
analysed.

The adjacent possible at each time t, AP(t) is valued on the entire graph of
Wikipedia. In particular, given its directed graph G(N,E), first it is defined the set of
tags already actualized at time t:

A (t) := {u ∈ G(N,E) : t0(u)≤ t} (5.9)

where t0(u) denotes the first time unit u has been introduced in the unit stream. With
this, the adjacent possible AP(t) is defined as follows:

AP(t) := {v ∈ G(N,E)\A (t) : ∃E(w,v) ∈ G(N,E) for some w ∈ A (t)} (5.10)

in which E(w,v) is an edge from tag w to tag v. Equation 5.10 defines the adjacent
possible as the set of all nodes not already actualized, which are reachable by at least
an edge from the set of nodes already introduced.

As already pointed out, this definition provides a large estimate of the space
actually available, without constraints on the semantic relatedness of the novel
adjacent nodes.

Still, given the above definitions, several quantities can be defined to characterize
how the adjacent possible grows and is covered. First of all, the rate at which it
enlarges as new materials are introduced by the author is investigated. As shown
in Fig. 5.17 for the usual five longest textbooks, the adjacent possible expands as a
power of the number of tags introduced. There the curve are obtained by looking at
the average size of AP(t) averaged over all the streams realization for each textbook
as a function of the average size of the actualized set A (t), corresponding to the
number of distinct tags introduced up to time t. For smaller texts, the power-like
trend is confirmed, in particular for the curve tails. The resulting exponents of least
squares fitting procedures of the curves with a function of the type AP(N) = aNβ

are reported in Fig. 5.18. In the vast majority of cases, the adjacent possible grows
sublinearly with the number of distinct tags presented in the stream. This means that,
the more the reader progresses on the textbook study, the fewer the novel concepts
lead to a further increase of the adjacent possible. Still, there is a large variability in
the resulting exponents, thus meaning a large variability in the ways the different
authors let the readers explore the space. Indeed, as an extreme exception, the
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Fig. 5.17 Adjacent possible expansion as a function of the number of tags introduced.
For the five longest textbooks, the cardinality of the adjacent possible is reported as a function
of the number of distinct units introduced N(t), corresponding to |A (t)|, after averaging
over the different stream realizations. For each textbook, the average curve is fitted via a
power-law function AP(N) = aNβ , via least square method. The resulting fitted curves as
well as their exponents are also displayed.

Fig. 5.18 Power of expansion of |AP(N(t))|. For each textbook, the expansion of the
Adjacent possible is fitted as a power function of the total number of tags introduced
AP(N) = aNβ . The resulting fitted exponents are reported in the figure, together with the
corresponding deviations (even if not visible at this scale).

textbook with id 24 – which corresponds to Fluid Mechanics – shows a superlinear
expansion of the AP with the number of different tags introduced. In this case, being
the exponent slightly over 1, on average, every unit introduced contributes to the
almost constant expansion of the adjacent possible space.

Besides the (typically) sublinear trend in the expansion of the adjacent possible
as novel units are introduces, its rate of expansion is far from being steady. Of course
this is due to the fact that different nodes have a broad different neighbourhood sizes,
since the out-degree distribution in Wikipedia is highly heterogeneous.
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To obtain a deeper insight into the local exploration of Wikipedia with respect to
each textbook content, the above mentioned adjacent future observable could be more
significant. It is defined as follows. On the Wikipedia graph G(N,E), the subsets
of tags belonging to each textbook i is considered, T Bi. According to the definition
eq. 5.9 of the actualized set of tags at each time t, it follows that T Bi ≡ A (tmax),
where tmax denotes the final timestamp of the corresponding textbook. Thus, the
adjacent future is defined as:

AF(t) := {v ∈ T Bi \A (t) : ∃E(w,v) ∈ G(N,E) for some w ∈ A (t)} (5.11)

i.e., at each time it corresponds to the set of tags which will be actualized in the
textbook and that are reached by at least one edge from an already actualized
tag. Here, the global graph of Wikipedia still serves to define directionality of
dependences between nodes.

From the above definition it follows that, contrary to the adjacent possible case,
the adjacent future is the null set at the beginning and at the end of any textbook
timeline. How it evolves during the narration is significant of the author’s strategy of
exploration (and) of the content to be presented.

In Figure 5.19, for the usual set of selected textbooks plus a novel one, the size of
the adjacent future is reported as a function of the number of distinct tags introduced
up to time t. Both axes are rescaled with the total number of tags appearing in each
textbook, |T Bi|. Different texts explore differently the space of tags they want to
propose to the reader. In some cases, the large majority of tags is early ready to be
learned by the reader, as the introductory material were presented quite soon in the
text. This results in the peaks in the adjacent future size, lying in approximately
the same region for the different textbooks considered, around 10-20% from the
beginning.

From that moment on the adjacent future can only diminishing in size, more or
less constantly. That is the case of reported textbooks with id 12 and 26, respectively
corresponding to College Chemistry and General College Chemistry. On the contrary,
in some textbooks like the one with id 76 (Vibration and Sound), the adjacent future
displays successive enlarging and shrinking phases, thus meaning that the area of the
corresponding knowledge space becomes available only during the narration across
the text.
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Fig. 5.19 Adjacent future size evolution as a function of the number of tags introduced.
For the five longest textbooks (ids 0,12,26,46,48) and the textbook with id 76, the fraction of
nodes in the adjacent future with respect to the maximum number of tags presentable(|T Bi|)
is reported as a function of the fraction of distinct units introduced to the total N(t)/|T Bi|,
after averaging over the different stream realizations.

However, the comparison between books belonging to different semantic clusters
(with respect to what reported in Figure 5.5) has some severe limitations, partially
suggested by the fact that the peaks in the adjacent future size are closer among
text semantically closer, i.e., with possibly more tags in common. Indeed, different
subsets of tags in the Wikipedia graphs can very differently sampling the underlying
distribution, thus revealing the role of the network (sub)structures considered in
influencing the present observable.

With this limitation in mind, some further observations are worthy to be made,
useful for future analyses. From the differences between the profiles of evolution of
the adjacent future across textbooks, both different topics and styles of teaching could
be identified. To this end, measures should be introduced to quantify the diverse
trends, while textbooks covering similar content could be more deeply analysed in
order to bypass the heterogeneity of the underlying network structures. For example,
the texts with the most overlapping set of tags introduced could be contrasted.

A second observation regards the profile of modification of the adjacent future
along individual texts. Indeed, it would be interesting to recover that spikes and falls
in its dynamics correspond to structural sections succession in the original textbooks.
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Finally, future works could try to semantically characterize the adjacent learnable,
in both the forms introduced in this section, by investigating whether semantics
reasoning can reproduce the order by which the adjacent learnable is early covered
by exploration.

5.6.2 Cognitive effort

So far, several measures have been introduced to quantified very different aspects of
the dynamics of exploration of a knowledge space, as suggested by authors in their
scientific textbooks. By properly combining the various information provided by
the investigations, another key characterization of the textbooks could be recovered,
namely its readability. With this, it is referred how hard or easy for the reader is to
follow the authors suggested path through the space, i.e., the cognitive effort needed.

Independently of the specificity of the textbook contents, this measure should
rather account for the cognitive jumps the reader is forces to do to follow the author
narration, and how often and rapidly these jumps are asked.

Given the bunch of quantities introduced in the last sections, one could for
example refer to the average semantic distances of consecutive pairs, or on the rate
at which the adjacent possible is enlarged but not covered, thus making easier for the
reader to deviate from the main path of exploration.

Of course, these are all conjectures, which cannot be validate until independent
data from the textbooks readers and users are available. Still, they are here reported
as hints for future work.

5.7 Discussion

In this chapter, some preliminary work has been presented on the possible analysis
of advanced scientific textbooks in the framework of learning. On the books the
investigation proposed has aimed at identifying semantically charged units, relevant
for representing on an abstract level the content covered in each textbooks. The
defined units were chosen to serve as constituting elements of proper knowledge
spaces, over which each textbook was supposed to suggest a learning path to the
reader. Over these paths, analyses were performed to gain insights into their dynamics
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of exploration of the knowledge spaces, both from a semantic and a spatial point of
view.

It is worth to stress here the originality of the strategies proposed to abstract
the texts from the word-level analysis up to the semantically significant level of the
proposed units. Indeed, to this end, two different approaches were presented and
discussed, relying on the subject index of each book or on the external software
TAGME [43]. By means of this software, which tags short text fragments with
Wikipedia pages, it has been possible to represent each textbook as a dynamical
exploration of Wikipedia.

As soon as each textbook can be related to a subset of pages in Wikipedia, their
semantic topic representation, as devised in the previous chapter, allows for an
aggregate semantic characterization of each book, both in terms of their specificity
and interdisciplinarity. Intuitive relations between different books were recovered by
computing their semantic distance, thus proving a first proof of the suitability of the
topic vectorization procedure.

On the stream of units representing each book narration flow, different observ-
ables from quantitative linguistics were considered. The Heap’s law was recovered,
as well as a very clustered profile of the units occurrences along the streams, thus
confirming what observed in other linguistic and social systems characterized by an
innovation dynamics [108].

Indeed, in every learning path suggested in the textbooks, the reader is supposed
to discover novel bits of knowledges. As they are acquired by the reader, her own
individual knowledge space enlarges with new nodes or connections. Moreover,
other areas of the collective knowledge space, in the present analysis represented
by Wikipedia, become available for further learning. In this perspective, the Kauff-
man [68] adjacent possible is an adjacent learnable by the textbook reader. This
approach has been preliminarily tested in this chapter, by proposing two different
definitions of the adjacent learnable, based on the particular context of Wikipedia.
With these, the textbooks exploration dynamics can be quantified, along with the
teaching and writing styles of their authors.

In conclusion, while still lacking a definitive quantitative characterization of the
texts, innovative tools and approached are explored. Several hints can indeed serve
as starting points for future effort in the statistical analysis of the knowledge spaces
explorations suggested in any educational course or book.
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Chapter 6

Conclusions

Any activity we daily perform while studying, working or just playing requests infor-
mation, and pushes us to explore knowledge spaces. These spaces, far from being
only an abstraction, are complex systems where bits of informations interconnect
each other, as in the paramount case of Wikipedia [7]. Technological advances
have helped us access the knowledge systems, as well as enriching our personal
knowledge networks with novel stimuli and associations. Still, the same technologies
should provide us innovative tools to exploit the richness of this information space
while learning.

To this end, the classical educational schemes should be renewed, in view of the
complexity of the information system to which we are exposed. In this perspective,
complex systems theory can provide the proper framework where to investigate
the complexity features of the knowledge spaces we explore by learning, and the
way we usually move in them. This was the scope of the present thesis. The work
done was articulated in three major contributions, focused on three different yet
complementary aspects of the humans exploration of complex knowledge spaces.

Firstly, the crucial topological properties of the information network to boost the
efficiency of a simulated learning exploration were investigated. This was done by
devising a class of educational algorithms for scheduling the study practises of a
pre-defined collection of items to be-learned, embedded in a network of semantic,
linguistic, logical, etc. relationships. While satisfying constraints on the best timing
for reviewing and introducing novel material, as suggested by previous research
in cognitive science, the algorithms should account also for the possible effects on
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learning of the connections between the units. In fact, it was observed in language
learners that associations between words can hinder or enhancing the words learning
and retrieval. In order to account for this, assumptions had to be done on how to
formalize and quantify the possible effects from associations.

After testing the resulting algorithms on different synthetic graphs, it emerged the
crucial role of an heterogeneous distribution of connectivity among the nodes. Still,
in order the topology to serve for an efficient exploration, a balance between hubs
and least connected nodes must be preserved, too specialized items hindering the
process. Similarly, the process is impeded by a too clustered topology. Interestingly,
these properties are found in the real information networks investigated, namely the
free association graph of Human Brain Cloud [49] and some sections of Wikipedia,
after removal of the least connected nodes. Their topologies turned out to be almost
optimal with respect to some perturbation of their structures. Furthermore, it was
found that the order through which the networks are explored as new items are
introduced to the learner is essential for taking full advantage of the topology features.
Indeed, a random exploration turned out to be ineffective in eliciting the information
stored in the graphs.

Of course, the work has some severe limitations. First of all, the assumptions
made on how to represent possible effects on learning from associations have not
an empirical direct confirmation. Rather, they were inspired by the results obtained
in a mere linguistics ambit, which a-priori could not be generalizable to different
domains, such as a more articulate information system like Wikipedia. Second,
the scheme propose is still too abstract to be immediately comparable with actual
learning processes. The same applies to the modelling of the “putative" conceptual
networks here considered. Still, the results obtained provide important hints about the
role that specific topological structures could have on a class of learning algorithms
informed with well-established psychological results. Moreover, the quasi-optimality
found of the real information networks considered clearly points to a subtle link
between the way in which humans organise their knowledge, i.e., the structure of
the knowledge space, and the way in which the information could be retrieved, for
instance through a learning path.

In order to further investigate how information is actually retrieved in real in-
formation networks, the second contribution discussed focused on the navigation
behaviours of Wikipedia readers. Though no real navigation paths are available,
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the English Wikipedia Clickstream (EWC) dataset [115] was exploited, gathered
by Wikipedia during February 2015 and providing the transition probabilities be-
tween pairs of Wikipedia pages. Fed by these transition probabilities, simulated
users navigation paths were generated through a memoryless markovian model. To
study the simulated walks across pages, a novel abstract topic space was defined,
whose coordinated are the main topics of the Wikipedia classification systems in
categories [6]. Thus, still exploiting the category system, a mapping procedure was
devised to represent each Wikipedia article as a vector of topics in the mentioned
multidimensional topic space. Generalizations of the euclidean distances and the
Shannon entropy allowed to characterize the semantic profile of each article, and the
semantic distance/similarities between pairs. Such observables, evaluated along the
paths, permitted to distinguish between different strategies of the Wikipedia readers,
with respect to the source through which the reader enters the encyclopaedia and
with respect to other target-oriented information retrieval tasks. Indeed, the real paths
generated by players in the online game of Wikispeedia [112] were also considered
to contrast the simulated free navigation walks.

Clear patterns emerged in the user’s navigation behaviours. Simulated users move
differently in the semantic space if their task is goal-oriented – as in Wikispeedia –, if
they come from search engines like Google or if they directly enter the encyclopaedia
on their pages of interest. Moreover, the longer the walk, the longer the user navigates
deeper and deeper levels of specificity, while, independently of the path lengths, the
semantic coherence keeps increasing throughout the paths.

Here, the major limitation comes from the simplicity of the assumption made
to generate realistic navigation paths. Humans are not markovian while browsing
the information networks, and the result found in the semantic topic space confirm
previous observations on the need of a semantic representation to fully recover
the non-memoryless navigation behaviour of the information-seeker, at least on a
aggregate level. Still, a memoryless model from the page probability transitions is
the more suitable approach, from a statistical point of view [102], to simulate true
navigational paths. Further work could overcome this limitation, if individual real
paths of browsing activity would be available for analysis, or more directly inferable
from other data. Nevertheless, it is worth to stress the novel approach proposed to
represent in a semantic abstract space the Wikipedia articles, thus enriching previous
works which did not fully take advantages of the entire category systems of the
encyclopaedia.
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The proposed schema of semantic abstraction served in the last contribution
presented to investigate, semantically, the learning paths suggested by some authors
in a bunch of advanced scientific textbooks. Indeed, with the aim at investigating
real exploration of knowledge spaces, textbooks were considered as proper ways
through field of knowledges, as proposed by their authors to the readers. To the
author knowledge, this approach is deeply innovative in the analysis of textbooks,
beyond the classical quantitative linguistics aspects.

Indeed, the word level analysis approach was overcome, by identifying semanti-
cally charged units in each sentences of the texts as nodes in a proper knowledge
network, explored by the reader as she comes across the text. The issue of defin-
ing the proper semantic units was largely discussed, as well as the two proposed
solutions. In particular, the choice of using the articles of Wikipedia as elementary
semantic units seemed to be more promising, allowing to again consider Wikipedia
as the predefined and collective available knowledge space were to investigate the
textbook narrations.

In order to identify in each sentence the more plausible and context related
Wikipedia articles, the TAGME [43] platform was used, thus tagging each short
sentence with pages from the encyclopaedia. With this, and with the topical rep-
resentation of each article, the textbook were studied, looking for similarities and
field-related statistical features. The preliminary results reported, suggested that
Heaps’ law [58] holds still at the abstract level of the semantic units, and that differ-
ent textbooks could correctly distinguished in their contents by their aggregate topic
vector representation.

Moreover, first steps are moved in the direction inspired by the Kauffman’s
adjacent possible theory [68]. Could the the texts be investigated as particular
realizations of knowledge space exploration? In this sense, different authors can
provide different paths across the space, thus diversely enlarging during the narrations
the space of the adjacent learnable for the reader. Indeed, as she starts the textbook
study, the reader is supposed not to know the content presented in the text, at least
partially. This can be represented by assuming that the knowledge space is not
entirely available for the learner, for example because some prerequisites are missed.
As she reads the text, she explores the space with the author, covering the missing
preparatories, enlarging her individual known graph and, here the idea of adjacent
learnable, expanding the space of what she could learn in the future.
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Conclusions

All the three proposed lines of research contribute to addressing the stated
question on the exploration of knowledge spaces in a large exploratory perspective,
mainly proposing and investigating novel tools and approaches. Still, interestingly
hints can be drawn from the analyses reported, to be considered both for future
research and for future educational applications, improving recommendation systems
and classical educational schemes. Only by investigating actual ways of human
exploration of information networks, and how semantic relationships witween bits
of knowledge are exploited by learners and information seekers, novel tools can be
implemented to provide not just content, but true learning paths through it.
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laborative web-based encyclopedias as complex networks. Phys. Rev. E,
74:016115, Jul 2006.

115



Appendix A

Network theory: terminology

This chapter reviews some concepts and definitions from network theory, used
throughout the thesis. For a more comprehensive survey on complex networks and
their properties, please refer to [9, 85, 16, 86].

A.1 Notation and observables

A network is a graph contituted by vertices (nodes) and edges (links) connecting
them. Using a notation borrowed from graph theory, it is typically denoted by
G(V,E), where V and E are the set of nodes and edges respectively. The edges can
carry different types of information, typically directionality and weight. Depending
on this, networks can be (un)directed and (un)weighted. If not differently specified,
any edge ei j is a direct link from node i to j. Its weight is denoted by wi j. In case of
unweighted network, it holds: wi j = 1∀i, j ∈V .

Connectivity

For each node i, its degree degi and strength si hold information about its connectivity.
In case of undirected graph, they are defined as the number of links connected to that
node and the sum of their weights, respectively. If the network is directed, degree
(and thus also strength) can be specialized to account only for the links incoming or
outgoing in/from each node.
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A.1 Notation and observables

By introducing the adjacency matrix A, whose (i, j)-th element ai j is 1 if nodes i
and j are connected, 0 otherwise, the in-degree and out-degree are defined:

degin
i =

N

∑
j=1

a ji (A.1)

degout
i =

N

∑
j=1

ai j (A.2)

with N number of nodes, i.e. network order: N = |V |. The strengths are similarly
defined, after multiplying the adjancency matrix elements ai j with the corresponing
edge weights wi j. It follows that, in unweighted graphs, the two quantities coincide.

The neighbourhood of node i, is the set of vertices direclty connected to node i.
In case of directed networks:

N in
i = { j ∈V : ∃ e ji ∈ E} (A.3)

N out
i = { j ∈V : ∃ ei j ∈ E}. (A.4)

Components

Given the connectivity profiles of all nodes, it is possible to identify different regions
in the newtroks, depending on the reachability of their nodes. A graph G = (V,E) is
said to be:

• strongly connected if for every pair of node a path connecting them exists;

• connected if for any pair of nodes (i, j), either i is reachable from j or j is
reachable from i;

• weakly connected if its undirected version is connected.

In case of undirected graph, the definitions coincide. If one of the previous cases is
verified only on a subgraph G′ of the original graph, it is said to be a strongly/weakly
connected component of G.

Between any two node a distance can de defined. Typically, the shortest path
is considered, i.e., the length of the shortest path among the ones connecting the
nodes. If two nodes are not reachabled or they belong to different components, their
distance is set to infinity.
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K-cores decomposition

The subgraph G′(V ′,E ′) is said to be the k-core of G if it is the maximal connected
subgraph whose nodes have degree equal or greater than k. It can be extracted from
a (k−1)-core by iteratively filtering out nodes with degree smaller than k.

Clustering coefficient

The clustering coefficient c.c. allows to quantify the network transitivity, i.e. the
probability that two nodes sharing a neighbour are connected. Two definitions of the
coefficient can be considered [85]. The first one refers to the fraction of triangles
in the network up to the number of the possible triples. The second one, hereafter
considered, consists in evaluating for each node i its local clustering c.c.i

c.c.i =
# triangles connected to node i

# triples centered on node i
(A.5)

and then averaging it over the N graph nodes:

c.c.=
1
N ∑

i
c.c.i. (A.6)

Assortative mixing

With assortative mixing the tendency of nodes with similar properties to be connected
is usually indicated. When the similar property is the degree, the (dis)assortative
nature of a graph implies the presence of positive (negative) degree-degree correla-
tions.

Different tools are available to investigate the graph assortative nature. For
example, the conditional probability that a node with degree deg′ is linked to a node
with degree deg, P(deg′|deg), is usually considered. Numerically, it is quantified by
the nearest neighbour average degree of nodes with degree deg:

⟨degnn(deg)⟩= ∑
deg′

deg′P(deg′|deg). (A.7)

For uncorrelated networks P(deg′|deg) ∝ deg′P(deg′) and thus ⟨degnn(deg)⟩ be-
comes independent of the degree deg. On the contrary, an increasing (decreasing)
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dependence of ⟨degnn(deg)⟩ on deg is a signature of positive (negative) degree-
degree correlations, i.e. of assortative (disassortative) mixing in the network [91].

In contrast, the correlations can be quantified through diverse assortative indexes
(a) [85]. In the thesis, the following scalar assortativity is considered, for undirected
networks:

a =
1

σ2
q

∑
jk

jk(e jk −q jqk), (A.8)

where j,k runs on the possible node degrees, q j is the probability distribution that an
edge leads to a node with degree ( j+1), e jk is the joint probability distribution that
an edge connects two nodes with degrees ( j+1) and (k+1), and σq is the variance
of the distribution qk, so that −1 ≤ r ≤+1.

A.2 Generative models

In this section, the generative models reffered to in the present manuscript are
described.

A.2.1 Random graph

The random graph model proposed by Erdös and Rényi [41, 42] has been considered
and graphs of the ensamble GN,m have been generated in the following way. In a
set of N vertices, m links are randomly placed, where m is a fraction of the possible

node pairs, m = p · 1
2

N(N −1), depending only on the connection probability p. In
the infinite size limit, this approach leads to a Poisson-like degree distribution with
mean degree ⟨deg⟩= p(N −1):

P(deg) =
(

N
deg

)
pdeg(1− p)N−deg ≃ ⟨deg⟩degexp−⟨deg⟩

deg!
. (A.9)

Graphs so generated have neither assortativite nor disassortative mixing.
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A.2.2 Scale free graphs

Barabási-Albert model

As a classic example of a scale-free network, the model proposed by Barabási and
Albert [14] has been considered. Starting with a full-connected set of m0 nodes,
a network of N nodes is built, by adding one-by-one N −m0 nodes each of them
with m (m < m0) edges to be linked in the network. Each edge is attached to
another existing vertex according to the preferential attachment principle, i.e. with
probability proportional to its degree. This growth rule yields to a small-world
network with a power-law degree distribution P(deg)∼ deg−γ , the exponent being
γ = 3. The resulting clustering coefficient is higher than in a random graph with of
the same order and size.

Holme-Kim model

The generation model proposed by Home and Kim[63] allows to create graphs with
properties very similar to the standard scale-free graphs, i.e., power-like degree
distribution and small world effects (small average geodesic distances), but with a
modifiable clustering coefficient. Indeed, the transitivity of the resulting graphs can
be tuned by a control parameter. In the generation rules, together with the preferential
attachment, a principle of triad formation is considered as follows. Starting from
a completely disconnected set of m0 nodes, at each step a new node u is added
with m links. The first link is connected to another existing vertex according to the
preferential attachment principle (PA), as in BA model, say v. Then, for each of the
m−1 edge to be attached, with probability Pt a triad formation step is performed,
i.e., a neighbor of the last node connected (v here) is chosen to receive the edge, thus
creating a triad, if possible. Otherwise, with probability 1−Pt a novel node is chosen
with a PA step. The probability parameter Pt allows to tune the final clustering
coefficient of the network.

Uncorrelated configuration model

In order to explore the behaviour of scale-free networks with different power-law
distribution exponents, the Uncorrelated Configuration Model (UCM) proposed by
Catanzaro et al. [28] has been considered. Through this model, which is based on the
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more general Configuration Model (CM) [79, 80], scale-free networks are generated
with no degree-degree correlations.

As in the CM, each node n in a set of N is assigned with a random degree
degn extracted from a known distribution P(deg), where m0 ≤ degn ≤ N and the
sum ∑n degn must be even. The nodes are then randomly linked respecting their
preassigned degrees. If the distribution is no bounded, and the fluctuations ⟨deg2⟩
diverge in the infinite network order limit, as in the case of a scale-free distribu-
tion P(deg)∼ deg−γ with γ ≤ 3, the network resulting by applying the procedure
described is uncorrelated. But, if another constraint is made, i.e. if self-loops and
multiple connections are forbidden [20], the resulting network presents a disassorta-
tive mixing for high-degree nodes. In order to avoid these correlations, in UCM, a
structural cut-off on the maximum degree is imposed which scales with the network
order as N1/2. With this new constraint on the assignable degrees m0 ≤ degn ≤ N1/2,
uncorrelated scale-free networks with neither self-loops nor multiple connections
are generated.
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