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ABSTRACT
Encryption at the application layer is often promoted to protect
privacy, i.e., to prevent someone in the network from observing
users’ communications. In this work we explore how to build a
pro�le for a target user by observing only the names of the ser-
vices contacted during browsing, names that are still not encrypted
and easily accessible from passive probes. Would it be possible to
uniquely identify a target user from a large population that accesses
the same network?

Aiming at verifying if and how this is possible, we propose
and compare three methodologies to compute similarities between
users’ pro�les. We use real data collected in networks, evaluate
and discuss performance and the impact of quality of data being
used. To this end, we propose a machine learning methodology to
extract the services intentionally requested by users, which turn
out to be important for the pro�ling purpose. Results show that
the classi�cation problem can be solved with good accuracy (up to
94%), provided some ingenuity is used to build the model.

CCS CONCEPTS
• Networks → Network privacy and anonymity; Network mea-
surement; • Security and privacy → Privacy protections;

KEYWORDS
Passive Measurements, Machine Learning, Privacy, User Finger-
print, User Pro�ling.

1 INTRODUCTION
Privacy and user tracking are hot topics that impact everyone who
uses the Web. When online, we o�er information about our interests,
habits, system con�guration, etc., and someone able to eavesdrop
the tra�c that our devices exchange with the network could invade
our privacy. End-to-end encryption – HTTPS – limits access to
exchanged information, thus mitigating the problem. Yet, some
tra�c is transmitted without encryption, such as network and
transport layer data.
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In this work we explore di�erent techniques for pro�ling and
�ngerprinting users leveraging the set of domains1. contacted dur-
ing web navigation. Indeed, domain names are typically exchanged
in clear text, i.e., when resolving a domain via DNS queries because
DNS tra�c is not encrypted (even DNSSEC does not guarantee
con�dentiality). Would it be possible to then build a user pro�le by
simply considering the set of domains she visits during her brows-
ing session? And would it be possible to re-identify her in a future
time, e.g., when she is connected in a di�erent network? Real-case
scenarios include applications for tracking users in di�erent net-
works, e.g., tracking users from both mobile and house tra�c from
a certain area, in which we may want to associate the two datasets.
Or, when users change their IPs due to dynamical assignment.

Armed with two large datasets containing tra�c summaries
of ≈7 500 anonymized users during 4 weeks in 2017, we answer
the previous questions. A big data approach must be considered
when creating meaningful �ngerprints. We investigate the use
of three metrics, considering simple Jaccard index, an informa-
tion theory Maximum Likelihood approach [9], and a text mining
methodology based on TFIDF (Term Frequency - Inverse Document
Frequency [8]). We evaluate their performance, highlighting their
strengths, weaknesses and trade-o�s. Results unveil that TFIDF
o�ers overall the best performance, identifying a given user in dif-
ferent scenarios with up to 94% of accuracy. The rationale of this
surprising result is the fact that among the hundreds of domains
visited during few days, many are persistent in time and create a
peculiar and unique mix of tra�c.

The creation of �ngerprints to pro�le users is a problem widely
studied in literature under di�erent perspectives. Here we brie�y
list those works where a limited set of features are considered. Au-
thors in [6] collected volunteers’ web browsing histories (i.e., full
URLs), discovering that for 97% of the users, as little as 4 web pages
uniquely distinguish them. Authors in [4] used the DNS tra�c to
build user �ngerprints, reaching accuracy up to 74% in recognition
of users in real world traces. Authors in [5] tackle the user tracking
and recognition problem exploiting HTTP, HTTPS and SSH pro-
tocols, achieving a 50% accuracy. Di�erently from previous works,
we rely on large �ow level datasets in which we only consider
the name of the contacted server as feature, comparing di�erent
methodologies. This work extends our previous work [3] where we
evaluated the usage of the DNS requests to create a �ngerprint and
track the users over time, discovering that with the simple Jaccard

1We use the term domain informally throughout the paper, meaning Fully Quali�ed
Domain Name (FQDN)
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similarity method and one day of tra�c only 60% of users can be
correctly identi�ed in the future.

To get more insights, we investigate which domains are more use-
ful for such purpose, in particular considering those intentionally
visited by the users, that we call Core domains, or those contacted
by the browser to fetch objects that compose a web page or by other
background applications, that we call Support domains. To automat-
ically identify them, we propose a methodology based on machine
learning, and, more speci�cally, on decision trees. Results show
that the intentionally visited web-services prove to better charac-
terize the user than Support domains; however users are better
re-identi�ed when all the tra�c is taken into account, suggesting
that even Support domains help in characterizing users.

Our study, although preliminary, shows on the one hand how
complicated is to protect our privacy when online; on the other
hand, the potentiality of good similarity metrics and machine learn-
ing applications linked to, e.g., forensic. To foster new studies and
permit results reproducibility, we contribute our dataset to the
community.2

2 METRICS FOR SIMILARITY
In this section we provide a description of the three di�erent
methodologies upon which we base our pro�ling and identi�cation
techniques. Consider a user u ∈ U in our collection of users U . In
a time period ∆T1 she visits a set of domains Du,∆T1 . Let us call
D̂ the set of all the domains seen by the population at time ∆T1,
i.e., D̂ := ∪u ∈UDu,∆T1 . Given the pro�les Du,∆T1 for all u ∈ U in
a certain ∆T1, we suppose to have the set Dv,∆T2 in a future ∆T2
only for user v , but without knowing the identity of user v in ∆T2.
Our goal is to correctly identify the user v among the pro�les of
users inU built in the past. The underlying hypothesis is that there
is a positive-correlation among the domains retrieved by a user in
di�erent time windows.

2.1 Jaccard Index
The Jaccard index measures similarity between two �nite sets. It
is de�ned as the size of the intersection divided by the size of the
union of the two sample sets:

Jac (Du,∆T1 ,Dv,∆T2 ) :=
|Du,∆T1 ∩ Dv,∆T2 |

|Du,∆T1 ∪ Dv,∆T2 |
(1)

Jaccard index is in [0, 1], and it is equal to 0 when there is no
common element between the two sets, while if the two sets contain
same elements, the index equals 1.

2.2 Maximum Likelihood Estimation
For this method, we assume a simple behavioral model for the
visited domains in which a user’s likelihood of visiting a certain
domain is governed by the domain overall popularity and whether
this domain already appeared in her previous domains set. Then,
for each user u ∈ U , we compute her likelihood of generating the
domain set Dv,∆T2 under the imposed model. This method, with
few modi�cations, has been already proposed in [9], where the
proof can be found.
2Anonymized sets of domains are available to the public at http://bigdata.polito.it/
content/domains-web-users

Let us suppose that each domain d ∈ D̂ has a certain likelihood
p (d ) of being picked in ∆T2, independently from the user, given its
popularity in ∆T1:

p (d ) :=
|u : d ∈ Du,∆T1 |

|U |

We suppose a user is more likely to visit a domain she already
visited in the past. For any u ∈ U and parameter r ≥ 0 we de�ne a
random variable H (u, r ) s.t.:

Pr (H (u, r ) = d ) :=



r · p (d )/z if d ∈ Du,∆T1
p (d )/z otherwise

(2)

where z is a normalizing factor. Then, given a number equal to
|Dv,∆T2 | of i.i.d. draws of H (u, r ), the Maximum Likelihood Esti-
mation (û, r̂ ) of the underlying parameters for producing the set
Dv,∆T2 are:

û = argmax
u ∈U

{
qu log

qu
su
+ (1 − qu ) log

1 − qu
1 − su

}
r̂ =

( qû
1 − qû

) / ( sû
1 − sû

)
where qu = |Du,∆T1 ∩ Dv,∆T2 |/|Dv,∆T2 ∩ D̂ | and su =∑
d ∈Du,∆T1

p (d ). qu is the fraction of domains of Dv,∆T2 that are in
a previous set Du,∆T1 . su is the generalized size of Du,∆T1 , where it
accounts both for the total number of domains in Du,∆T1 and the
popularity of those items. Intuitively, û is a user for which qu is
large and su is small; that is, Dû,∆T1 is not too big, but contains
many of the domains in the observed history Dv,∆T2 . The model
allows for r < 1, in which case Dû,∆T1 is an anti-recommendation
set. However, in our case we consider here only the cases where
r > 1. If such r does not exists, we consider û for which r is bigger.

2.3 Cosine similarity based on TFIDF
TFIDF is the product of two statistics, Term Frequency and Inverse
Document Frequency, and it is widely used in information retrieval.
TFIDF re�ects how important a domain d is for a user u ∈ U , with
respect to the set of all users U .

Term Frequency (TF) measures the importance of domains for
useru. Di�erently from the classic version of TF, since we are using
just sets of domains it will be independent of a particular domain:

TF (u) :=
1

|Du,∆T ∩ D̂ |

IDF measures how important a domain is in the whole collection
of users, in ∆T1. While computing TF, all domains are considered
equally important. However certain domains may be very popular
and therefore have little importance. Thus, we weight less the
frequent domains while scale up the rare ones.

Notice that for a user in ∆T2, we are removing the domains never
seen by the population at time ∆T1, because such new domains will
not have an Inverse Document Frequency (IDF) – remind that D̂ is
built at ∆T1.

IDF is de�ned as:

IDF (d ) := log
|U |

|u : d ∈ Du,∆T1 |

http://bigdata.polito.it/content/domains-web-users
http://bigdata.polito.it/content/domains-web-users
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Hence IDF (d ) is the logarithm of the total number of users
divided by the number of users having seen domaind in ∆T1. Finally,
TFIDF is the product of the two, i.e.,TFIDF (d,u) := TF (u) · IDF (d ).
Then we compare how similar two domain sets Du,∆T1 and Dv,∆T2 ,
computing the cosine distance of the two multi-dimensional arrays:

Cos (Du,∆T1 ,Dv,∆T2 ) :=
∑
d ∈D̂ TFIDF (d,u) ·TFIDF (d,v )

| |TFIDF (d,u) | | · | |TFIDF (d,v ) | |

with | | · | | indicating the usual Euclidean norm. The resulting
similarity ranges from 0, meaning no elements in common, to 1,
meaning all the entries being exactly the same.

2.4 Complexity
Assuming to compute a similarity between a single user and other
M users, each with ≈ N domains, Jaccard index computation costs
at most O (M · N 2). If P is the total number of domains seen by all
the M users, with N ≤ P ≤ M · N , TFIDF and MLE methodologies
cost at most O (M · N · P ). This is due to the fact that TFIDF and
MLE make comparisons in the larger set of all domains.

Hashing methodology such as MinHash could be used on top of
our computation to speed-up the process. With a smart implemen-
tation using hash functions, the computation cost could decrease
to O (M · N ) for Jaccard and O (M · P ) for MLE and TFIDF.

In the user tracking problem, N should be relatively small (up
to few thousands), while M and, by consequence, P , could range
from few users to millions of them, depending on the application.
In case of very large M , it is therefore much faster to use the simpler
Jaccard similarity.

3 IDENTIFICATION OF CORE DOMAINS
When a browser visits a Web page, it �rst downloads the main
HTML document and then fetches all the objects of the page
(images, scripts, advertisements, etc.). These are often hosted on
external servers (e.g., CDNs) having di�erent domains. We call
Core domain a domain originally contacted to download the main
HTML document of a page. Core domains are important since
they are visited intentionally by users, like www.facebook.com
and en.wikipedia.org. Instead, we call Support domains all
the remaining ones, i.e., the ones automatically triggered by a
visit to a website, or contacted by background applications, like
static.xx.fbcdn.net and dl-client.dropbox.com. Support do-
mains do not contain useful information about user intention. When
analyzing network tra�c, having a list of all possible Core domains
is important to make user behavior emerge. Are Core domains
important also for user tracking and identi�cation?

In the literature, previous works tackled the problem of identify-
ing intentionally visited domains, also called user actions. Authors
of [12] exploit the referer �eld in HTTP requests to reconstruct web
page structures from HTTP traces, while machine learning tech-
niques are used by authors of [11] to automatically build rules for
such purpose. However, an important fraction of tra�c is becoming
encrypted, making the above approaches ine�ective and leaving
passive probes with no visibility on HTTP �elds. Few e�orts have
been put in identifying user actions from encrypted tra�c; authors
of [2] exploit machine learning techniques to identify user actions
in Android devices, where most of the tra�c is TLS, while those

of [7] build tra�c �ngerprints for mobile applications. All these
works aim at identifying user actions from �ow level measurements
examining tra�c at runtime. Here, on the contrary, all we need is
to build a pre-computed list of domains that typically contain user
actions since they host actual Web services.

Given a domain, deciding if it is a Core or Support domain is
a classi�cation problem. Instead of building a custom heuristic to
solve the problem, we opt for a machine learning approach by
means of a decision tree classi�er. First, we need to de�ne the set
of features to use: we consider an extensive list guided by domain
knowledge, and let the classi�er choose the ones that better allow us
to separate Core and Support domains. Features include the length
and the content type of the main HTML document (if present);
the number of objects of the page and domains contacted by the
browser to fetch all objects; HTTP response code (e.g., 2xx, 3xx and
4xx); and whether the browser has been redirected to an external
domain. To get the set of features, we use active crawling, and visit
the home page of each domain by means of Selenium automatic
browser to extract page features.3

To train the classi�er, we build a labeled dataset that we use
for training and testing. For this experiment, we consider a list of
500 Core and 500 Support domains. More in detail, we picked the
list of domains found in the Campus trace (see next Section for
details), sorted by number of visits. Then, we manually visited each
home page (if existing) corresponding to the domain name. We
label such domain as a Core or a Support domain by looking at the
rendered web page. We stop the labeling process when we reach
500 items for each class. We obtain a balanced labeled dataset that
we make publicly available.4 For the decision tree, we opt for the
J48 implementation of the C4.5 algorithm o�ered by Weka.5

Interestingly, the �nal decision tree results in a very simple, ef-
�cient, and descriptive model which reads as: a) the main HTML
document size must be bigger than 3357B and b) the browser
must not be redirected to an external domain. Intuitively, support
domains typically lack of real home page, and reply with a raw
and simple text message. In some cases, Support domains redirect
visitors to the service’s home page (e.g., fbcdn.net redirects on
www.facebook.com).

Despite its simplicity, overall accuracy is higher than 96% when
tested against 1000 labeled domains, using 10–fold cross validations.

4 DATASETS FOR EXPERIMENTS
For our analysis we mainly rely on a dataset collected in our Univer-
sity Campus, where we consider the tra�c of approximately 2 500
users. Users are faculty members whose terminals are directly con-
nected to the Internet via wired Ethernet, using �xed IP addresses
that we use as identi�er of the terminal itself. Hence we assume
each IP address is associated with one and only one user.

We rely on Tstat [10] to perform passive measurements. Tstat
monitors each TCP connection, exposing information about more
than 100 metrics, from IP addresses and port numbers, to �elds
coming from the DPI module. Here, we are interested in retrieving
the domain of the server being contacted. Tstat implements three

3http://www.seleniumhq.org/
4http://bigdata.polito.it/content/domains-web-users
5http://www.cs.waikato.ac.nz/ml/weka/

http://www.seleniumhq.org/
http://bigdata.polito.it/content/domains-web-users
http://www.cs.waikato.ac.nz/ml/weka/
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Table 1: Overview of our datasets.

Trace Log Size Volume Client IPs Domains 2nd-lvl
Campus 229 GB 113 TB ≈2 500 404 k 136 k
ISP 440 GB 232 TB ≈5 000 611 k 204 k

techniques to get it. For plain HTTP �ows, the Host header is
extracted from HTTP request. In case of TLS, the DPI module
provides the Server Name Indication (SNI) �eld in Client Hello
message.6 At last, it reports the domain name clients resolved via
DNS queries prior to �ows [1]. We combine these three sources to
label each �ow with a domain indication, giving higher priority to
Host/SNI �elds where more than one is present.

First row of Tab. 1 summarizes the characteristics of Campus
dataset. In total, we observed about 404 k unique domains, corre-
sponding to more than 136 k unique second level domains. In total,
691 millions �ows have been observed during 4 weeks between
January and February 2017; no holidays or festivities occurred dur-
ing this period. We load and process the logs using Apache Spark
in a 20-machine Hadoop cluster, capable of reading from disk and
processing the Campus dataset in about 20 minutes. With the same
machine, it took about 1 hour for classifying 404 k domains as Core
or Support domains. The Internet access speed (1Gbps in our case)
was the main bottleneck.

Fig. 1 shows the number of unique domains (Core and Support
domains) seen in the whole dataset. New domains are continuously
discovered, reaching ≈ 404 k after 4 weeks, of which Core domains
are ≈115 k (left y-axis). Next, we observe the number of active users
creating some tra�c for each hour; they vary from 400 at night to
almost 1 400 at midday. We plot the median over the users of unique
domains discovered over time (right y-axis). Ratio between Support
and Core domains increases, with a median of 662 Support and 70
Core domains after 4 weeks. Domain popularity is unbalanced: a
very small portion of domains are popular and just 634 domains
out of the 400 000 are contacted by 10% or more of the users. Core
domains are about 32% of the total; however, only 4% of the top
1 000 most popular domains are Core domains.

Finally, in the experiment in Sec. 5.5 we use a second trace. We
deployed Tstat during the same period in a PoP of an European ISP
where the tra�c of≈5 000 ADSL and Fiber households is aggregated.
All households have a �xed IP address which identi�es a home
gateway acting as NAT router, behind which multiple user devices
may be connected to the Internet. Therefore a single identi�er (i.e.,
the client IP address) can actually hold more than one user. Second
row of Tab.1 reports the dataset statistics.

4.1 Ethical and privacy implications
Both the data collection process and the collected data have been
discussed, reviewed and approved by the ethical board of our Uni-
versity. We took all possible actions to protect leakages of private
information from users. In particular, we anonymized the IP ad-
dresses of clients using a technique based on irreversible hash
functions, only retaining the data that is strictly needed for our
study. More in detail, we limit the data to i) the anonymized client
6SNI is a TLS extension by which the client indicates the domain of the server that is
trying to contact.
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Figure 1: Discovery of domains over time (Campus trace).

IP address, ii) the name of the contacted server, iii) the timestamp
of the TCP connection. We further anonymized the server name in
the datasets that we contribute to the community which contains
data collected from our campus.

Considering the data collection process in the ISP, the same
precautions have been implemented, and the data collection process
has been reviewed and approved by the ISP security board. In
this second scenario, we have no information at all about the ISP
customers.

5 USER FINGERPRINT AND
IDENTIFICATION

In this section, we show di�erent case studies for de�ning a user
�ngerprint. Our main task is to identify a user, by tracking her
visited domains. In the �rst phase, we pro�le the users creating
�ngerprints, while in a second phase, we try to identify a given
user in a later trace. All clients are provided with a public and �xed
IP address that we use as identi�er to build the ground truth. We
consider 1 205 users that were active during the period of time of
data collection. The constraints used for choosing the 1 205 users
are written in each experiment. When otherwise stated, the 1 205
users are chosen randomly. Performance of each similarity metric
is measured by the percentage of users correctly identi�ed. The
results can be meaningfully compared since they are always related
to 1 205 possible cases.

5.1 Role of number of domains
The �rst set of results aims at assessing the importance of the num-
ber of Core and Support domains for the pro�ling and identi�cation
tasks. We collect the domains visited by users and generate a pro�le
Du,∆T1 for each u ∈ U . In the next step, we associate user v with
pro�le Dv,∆T2 to the most likely user u ∈ U . If u = v we have a
positive match. Fig. 2 shows the percentage of users that were cor-
rectly identi�ed, versus the number of Core and Support domains
used in the pro�le generation phase. For equal user number, the
larger is the data, the better is the identi�cation. For low number
of both Core and Support domains, it is hard to identify users; in
fact, just up to 23.8% were correctly identi�ed with 10 domains.

Core domains are clearly better characterizing and more impor-
tant for user identi�cation than Support domains, for all the three
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Figure 2: Identi�cation of users considering di�erent num-
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metrics. With only 70 Core domains, the range of correctly iden-
ti�ed users is equal to 72-79%. This percentage is higher than the
range of correctly identi�ed users when 500 Support domains are
used (68-73%). Regarding to the performance of the three similarity
metrics, Jaccard performs worst in all the cases; TFIDF has the best
results in most of the experiments with Support domains, while
MLE performs a slightly better with Core domains.

5.2 Role of observation time
We now focus our attention to study how observation time impacts
on pro�ling and identifying users. The rate for discovering new
domains di�ers from user to user, and we expect that the same
number of domains is collected after a di�erent amount of time. For
instance, for discovering 50 Support domains it takes, in median,
only 11 hours. For Core domains, instead, it takes about 3.5 days.
5 days are needed to obtain 70 Core domains, but only 3 days for
500 Support domains. This is mainly due to the large number of
Support domains (see Sec. 4).

Here, we maintain constant the time of observations∆T1 and∆T2.
We consider two consecutive weeks of tra�c, taking into account
only users that visited at least 20 Core domains per week, avoiding
those that either disappeared or generated little tra�c. We use the
�rst week for pro�ling, and the second one for identi�cation. Tab. 2
details results for the three similarity metrics considering Core,
Support and All domains. The median number of domains per week
per user is reported for completeness. Best results are in bold. We
repeat the same experiment considering 2 consecutive days, with
results in Tab. 3, where the median number of discovered domains
decreases to about the half, and performance also drops. In both
cases the large quantity of Support domains, about ten times the
number of Core domains, helps in user identi�cation.

As expected, performance decreases when scarce information is
available, in particular moving from the two weeks experiment to
the two days one. However, still 70% of users can be identi�ed when
observing them during one day only. Results of the three metrics
are consistent to the ones showed in Fig. 2: Jaccard has always the
worst performance, MLE seems less a�ected by the limited size of
Core domains and TFIDF o�ers the overall best performance except
when few Core domains are considered.

To give an intuition about the discriminative power of the pro-
�les, we report in Fig. 3 the Cumulative Distribution Function (CDF)
of TFIDF metric between the same user (called self-similarity) and
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Figure 3: CDF of similarity in two consecutive weeks be-
tween the same user, or two di�erent users.

Table 2: Identi�ed users in two consecutive weeks.

Median |Du,∆T | Jac MLE TFIDF
All 710 76.9% 79.6% 82.3%

Core only 69 67.2% 70.9% 70.8%
Support only 641 75.4% 78.3% 80.7%

Table 3: Identi�ed users in two consecutive days.

Median |Du,∆T | Jac MLE TFIDF
All 325 63.2% 67.6% 71.2%

Core only 26 45.8% 55.1% 50.1%
Support only 294 61.2% 65.6% 70.3%

between two di�erent users, considering all the domains from the
same two consecutive weeks of Table 2. Self-similarity is almost al-
ways higher than the similarity with a di�erent user, thus allowing
to correctly identify the target user.

5.3 Longer pro�ling or identi�cation?
Di�erently from the previous results, here we consider all users in
our dataset, allowing real cases in which users may disappear and
generate little tra�c. We consider two cases. First, we assume to
have i-a) �xed and long pro�ling time, i.e., 2 weeks for each user,
and ii-a) variable observation windows for identify them. Second,
we assume to have i-b) a �xed amount of 2 weeks for identi�cation,
but ii-b) variable time pro�ling all the users. Figs. 4a and 4b depict
the results for both aforementioned cases. Jaccard considers the
two sets independently from the rest of the population; therefore
such metric is symmetric with respect to the two sets and depends
just on their sizes. This implies that Jaccard performs equally in a)
and b) cases, reaching good performance only when the training
and testing sets of domains are both large. TFIDF and MLE metrics
account for the whole population when pro�ling, hence having
large pro�ling sets for the population is much more important than
having a single large identi�cation set. This is why with a 2 weeks
pro�ling time TFIDF and MLE show good performance even with
just few hours of identi�cation time. On the contrary, building
pro�les with few hours of tra�c makes the large amount of data
for identi�cation much less useful.

In a nutshell, building better pro�les for the whole population is
much more important that having a lot of data for identi�cation.
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Figure 4: Accuracy varying the period of identi�cation and
pro�ling on traces.

5.4 Pro�ling aggregate tra�c
Here we consider to build a pro�le from di�erent groups of users,
and then see if it would be possible to associate a user to her group.
For this analysis, we consider the aggregate tra�c produced by all
people in the same University Department during one week, and
build a pro�le for the active department. Medianly, each department
pro�le contains ≈24 k domains, two orders of magnitude more than
single user case. Next, we consider each user (from the following
week of tra�c) with the goal of assigning her to the correct de-
partment. Having our Campus 10 departments, a random unbiased
method assigns correctly 10% of users.

Results show that Jaccard performs poorly, correctly associating
only 8.7% of users: without weighting the popularity of domains,
the tra�c of the single user it is almost indistinguishable within the
departments. TFIDF instead reaches a surprising 73.9% accuracy.
Intuitively, TFIDF is able to identify the peculiar, per-department,
domains, i.e., those with high IDF among the huge quantity of
domains. MLE reaches 23.4%; its performance are biased from the
fact that we assume a user will contact websites according to the
model of Eq. 2, based more on the persistence of the tra�c than on
the peculiarity of domains for each user.

This experiment suggests also that users in the pool are quite
similar, and thus harder to identify, e.g., it is easy to distinguish a
electrical engineering department user from an architecture depart-
ment professor, but harder to distinguish two electrical engineering
department users.

5.5 ISP Case
We now repeat the experiments of Tab. 2 and 3 using the ISP trace,
where users are possibly more heterogeneous. To compute results
against the Campus Dataset, we randomly select 1 205 users, among
the active ones. We pro�le them for one day (week), and identify
using data from the second day (week). Results are in Tab. 4. Recall
that here we have residential access, with possibly multiple devices
multiplexed on the same public IP address that we use as identi�er.
This factor contributes to explain the high median number of do-
mains. Identi�cation accuracy tops to more than 86% (94%) with
TFIDF, quite a surprising result. This, other than the bigger amount
of data, is also due to the more heterogeneous navigation habits
of residential users with respect to campus ones. In fact, 1 day of
pro�les in the ISP dataset has less median number of domains than
1 week of pro�les in the Campus dataset (see Tab. 2), but reaches
better performance.

Table 4: Users correctly identi�ed in residential dataset.

Median |Du,∆T | Jac MLE TFIDF
1 day 556 80.4% 84.1% 86.6%

1 week 1 785 93.6% 93.7% 94.9%

6 CONCLUSIONS
We explored techniques for users’ �ngerprinting and identi�cation
using only the domains of visited web-services. Results show that
a simple approach like the TFIDF can be used to solve the identi�-
cation problem in di�erent scenarios, provided users are pro�led
for enough time. Web-services intentionally requested have proved
to better characterize users.

We expect the probability of identi�cation to decrease with re-
spect to the user population size. Our conclusions could be over-
optimistic with larger user-base, and we are planning to repeat the
same experiments with larger datasets. We are also focusing on ex-
tending this approach to include more features e.g., the information
coming from timing, or volume of data.
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