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Abstract

Performance of a Latent Heat Thermal Energy Storage depends strongly on the
spatial layout of high conductive material and phase change material. Previous
design studies have explored a limited design space and have rarely taken ad-
vantage of any formal optimization approach. This paper presents a topology
optimization framework of a Thermal Energy Storage system involving phase
change. We solve the Stefan problem for solidification with a fixed grid finite
element method based on the apparent heat capacity technique, while the topol-
ogy optimization problem is formulated using a density-based method. This
approach allows to identify design trends that have been rarely investigated in
the past. Firstly, we explore the inherent trade-off between discharged energy
and required time for complete discharge. We obtain very different designs and
highly varying performances at selected Pareto points. Secondly, by comparing
results obtained in two and three dimensions we observe that 3D designs al-
low superior performances by presenting features that are not apparent in 2D.
Thirdly, we propose a formulation of the design problem that yields a nearly
constant thermal power output during the entire discharge process. If the max-
imum discharge time is sufficiently large, the optimized design presents fins that
are disconnected from the internal tube.

Keywords: Heat Transfer Enhancement, Phase Change Material, Thermal
Energy Storage, Topology Optimization
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Nomenclature

H(0) Initial total enthalpy
Ns Number of design variables
T Temperature
Th Approximated temperature field
Z Storage unit height
J Jacobian matrix
R Residual vector
s̃ Filtered design variable
cp Specific heat
f Liquid fraction
f∗ Liquid fraction defined with dimensionless temperature
h Specific enthalpy
k Thermal conductivity
l Characteristic length
p Material interpolation exponent
qv Volumetric heat generation
r1 Internal tube radius
r2 External shell radius
rf Filter radius
s Design variable
t Time
vh Admissible test function
z Objective function

Dimensionless groups

Fo Fourier number
Ste Stefan number

Greek symbols

α Thermal diffusivity
β Projection steepness parameter
λ Adjoint vector
η Projection threshold
Γ Boundary
Ω Domain
ω Filter weight
Φ Desired volume fraction
Ψ Desired fraction of initial energy
ρ Density
ρs Projected design variable
ξ Logistic function constant

Superscripts

∗ Dimensionless
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Subscripts

d Dirichlet
I Initial
id Ideal
m Melting
max Maximum
min Minimum
N Neumann

1. Introduction

Thermal Energy Storage (TES) plays a crucial role in modern energy sys-
tems. It allows reducing the temporal mismatch between energy supply and
demand, resulting in a more rational use of resources. Among the available
options, Latent Heat Thermal Energy Storage (LHTES) systems comprised of
phase change materials (PCMs) show two of the most desirable properties for
heat storage systems: high energy density, which allows the construction of com-
pact designs well-suited for distributed applications [1], and minimal operating
temperature variation, which yields a nearly constant efficiency of the heat trans-
fer device during the entire charge/discharge process. These properties make
PCM ideal also for other applications, e.g. space heating and cooling [2–4], solar
energy technology [5], thermal management in Li-Ion batteries [6] and electron-
ics cooling [7, 8]. For further information on thermal energy storage with phase
change materials the reader is referred to state-of-the-art reviews such as those
by Zalba et al. [9], Sharma et al. [10] and Kalnaes et al. [11].

Despite the aforementioned advantages, the use of LHTES is still hampered
by its poor heat transfer properties. Most of the PCMs suffer from very low
thermal conductivity, which limits the achievable heat transfer rate and reduces
the spectrum of feasible applications [12]. To resolve this issue, the engineering
community has followed different approaches, for instance addition of carbon ad-
ditives [13], dispersion of high conductivity nanoparticles [14, 15], utilization of
steel lessing rings [16] or high-porosity metal matrices [17], microencapsulation
in partially melting/solidifying slurries [18], adoption of multi-tubes configura-
tions [19–21], and increase of heat transfer surface area with highly conductive
fins. The latter approach is the most widely adopted because of its simplicity,
low construction cost, and ease of fabrication and maintenance [22].

One of the first numerical studies concerning heat transfer surfaces embed-
ded in PCM was conducted by Smith et al [23], who used the finite difference
method to solve the solidification problem adjacent to a cold fin and analyzed
the effect of fin dimensions. Lacroix [24] developed a more accurate model based
on the enthalpy formulation that also accounts for convective heat transfer from
the Heat Transfer Fluid (HTF) and conducted a parametric analysis to inves-
tigate the effect of design and control variables such as the external envelope
size and the HTF mass flow rate. The increasing availability of computational
resources allowed researchers to progressively explore the influence of a greater
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number of parameters. For instance, Ismail et al.[25] studied the influence of
the number of fins, their length and thickness on the time of complete phase
change. In [26] the authors proposed the utilization of Artificial Neural Network
(ANN) trained with experimental data to quickly conduct heat transfer analysis
for different heat transfer areas and HTF operative conditions. More recently,
Tay et al.[27] compared heat transfer enhancement in solidification through ra-
dial fins and pins in multiple configurations. They found that the complete
solidification time is roughly 25 % lower in the case of radial fins. Hosseini et
al.[28] conducted a numerical and experimental investigation on longitudinally
finned shell-and-tube LHTES, studying the relative effect of fin height and Ste-
fan number. Their results showed that increasing the fin height leads to higher
rate of heat absorption especially at the beginning of the charging process and
for low Stefan numbers.

From the great amount of literature devoted to the analysis of finned surfaces
for phase change materials it is hard to extract fundamental design guidelines.
Most of the reviewed works are characterized by high physics complexity and
low design freedom. The literature lacks a thorough and computationally af-
fordable design optimization procedure for LHTES systems. A first study in
this direction was conducted by Sciacovelli et al.[29] through a combination of
a 2D transient finite volume physical model and response surface optimization
method[30]. It was found that the discharge efficiency can be increased by 24 %
if optimal fins with two bifurcations are chosen. In a more recent development,
a heuristic pseudo-optimization procedure based on the analysis of the entropy
generation maps was used [31]. With this approach they were able to obtain an
optimized fin tilt angle along the longitudinal direction which allows to halve
the solidification time. Despite the importance of these studies for the develop-
ment of optimization procedures for LHTES systems, they are still restricted to
a low-dimensional design space [29]. This paper aims towards filling this gap in
the literature.

Topology optimization allows for dramatic design changes during the opti-
mization process and does not require a close to optimal design to start with.
The method originated in the structural community with the pioneering work of
Bendsoe [32], Zhou and Rozvany [33] who suggested the SIMP (Solid Isotropic
Material with Penalization) or power-law approach. They introduced a ficti-
tious porous material with normalized density ρ to define a continuous tran-
sition between two or more phases. This normalized density interpolates the
material properties and is used as an optimization variable. The interpola-
tion is formulated to penalize intermediate densities and converge to designs
with well-distinct phases. Besides this ”density” approach, topology optimiza-
tion developed in alternative directions, e.g. level set [34, 35], evolutionary
approaches [36, 37] and several others [38]. The method gained maturity in the
structural community and quickly extended to many other fields such as fluid-
dynamics [39–41], acoustics [42], bending waves propagation [43], aero-elasticity
[44], electromagnetics [45] and meta-materials design [46]. Early interests in the
field of heat transfer come from the fact that the problem of optimal design of
heat dissipators undergoing steady-state conduction is a trivial extension of the
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Figure 1. Representative visualization of optimization of finning material distribution in
LHTES. The Heat Transfer Fluid flows in the tube while the PCM occupies the external
envelope

typical compliance minimization problem for structural design [47]. Later on,
more complicated heat transfer mechanisms were studied e.g. forced convection
[48, 49], natural convection [50, 51] and radiation [52].

Although steady-state heat conduction problems has been tackled exten-
sively, few studies [53, 54] have considered transient effects. To date, only one
work [55] has exploited topology optimization to enhance heat transfer during
phase change. The authors presented novel and nonintuitive designs of PCM-
based fin heat sinks. The objective of the optimization problem was to minimize
the difference between the final and initial temperatures over a selected portion
of the domain. Their approach requires defining an a-priori fixed final time
for the calculation of the final temperature. The definition of this final time
is not trivial since the characteristic melting/solidification time is inherently
design-dependent. Furthermore their work suffers from poor resolution due to
the limited computational performance achievable at the time.

In this paper we present the first study of topology optimization to the de-
sign of highly conductive fins in shell-and-tube LHTES. We propose a novel
optimization problem formulation that does not require an a-priori definition
of the final time. We focus on solidification because the average heat transfer
rate is significantly lower than in melting [29]. The inherent flexibility of this
approach allows us to explore the dependency of the optimized design on im-
portant parameters such as the choice of the desired discharge time, the choice
of the desired discharged energy and the steadiness of the thermal power out-
put. A schematic of the density-based topology optimization procedure for the
problems considered is given in Figure 1. A vertical tube filled with a cold HTF
stream is surrounded by both a low conductive PCM and a Highly Conductive
Material (HCM). The spatial distribution of the latter in the external shell is
initialized as homogeneous. As the optimization process evolves, HCM is locally
added and removed until the optimized finned geometry is obtained.

The remainder of this paper is organized as follows: Section 2 presents the
governing equations along with the temporal and spatial discretization schemes.
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Figure 2. Representative configuration of the optimization problem considered

Section 3 presents the numerical optimization problem solved including the
sensitivity analysis and other details concerning the adopted optimization ap-
proach. Section 4 presents numerical examples to validate and analyze the
proposed approach. Finally, a summary and concluding remarks are presented
in Section 5.

2. Physical model

In this section we provide a description of the physical problem solved includ-
ing the governing equations, followed by the spatial and temporal discretization
approaches adopted.

2.1. Governing equations

In this paper, we optimize the discharge process of a domain consisting of
two materials, the HCM and the PCM, in both 2D and 3D. Figure 2 shows
a representative configuration of the problem considered: the design domain
ΩD consists of a quarter of the TES cross-section (Figure 1), which is sub-
divided into two non-overlapping sub-domains ΩHCM and ΩPCM such that
ΩD = ΩHCM ∪ΩPCM . The temperature Td is prescribed at the internal bound-
ary Γd to represent contact with the tube containing a cold HTF while a ho-
mogeneous Neumann boundary condition is prescribed on ΓN1

to describe an
adiabatic boundary (external envelope) and on ΓN2

to account for symmetry.
The solidification process is dominated by heat conduction. Natural convection
can be neglected except for the very initial part of the process [56]. Hence we
consider the solidification of PCM as modeled by pure thermal diffusion using
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the enthalpy form of the energy equation:

∂(ρ(x)h(x))

∂t
=

∂

∂xi

(
kij(x)

∂T

∂xj

)
+ qv in ΩHCM ∪ ΩPCM (1)

where h is the specific enthalpy, ρ is the density, kij is the (i, j) component of
the conductivity tensor and qv is the volumetric heat generation. The material
properties correspond to HCM when x ∈ ΩHCM and to PCM when x ∈ ΩPCM .
The time-independent Dirichlet and Neumann boundary conditions are given
by:

T = Td on Γd, ∀t (2)

(
− kij

∂T

∂xj

)
· n = qN on ΓN1

∪ ΓN2
, ∀t (3)

where qN is the applied heat flux and n is the inward pointing normal on ΩD.
The space-independent initial conditions are:

T = TI in ΩHCM ∪ ΩPCM , at t = 0 (4)

The term on the left-hand side of Eq. 1 accounts for the energy accumulation
in the form of both sensible and latent heat. The enthalpy of a solid can be
written as:

h(T ) =

∫ T

Tref

cp(T )dT + f(T )L (5)

where Tref is a reference temperature, cp is the specific heat and f is a temperature-
dependent phase function that keeps track of the amount of material that is in
the liquid phase. In the present work we use the logistic distribution to represent
f as:

f(T ) =
1

1 + exp(−ξ(T − Tm))
(6)

where Tm is the mean melting temperature and ξ = 30 is a constant that controls
the steepness of the logistic curve and is dependent on the width of the mushy
zone.

2.2. Dimensionless form

We consider temperature-independent thermo-physical properties, isotropic
thermal conductivity and ignore internal heat generation. With these assump-
tions, by substituting Eq. (5) into Eq. (1) and applying the chain rule of
differentiation to the latent heat portion of enthalpy we obtain:(

ρcp + ρL
∂f

∂T

)
∂T

∂t
=

∂

∂xi

(
kδij

∂T

∂xj

)
(7)

where δij is the Kronecker delta. Eq. (7) is cast in dimensionless settings using
the following dimensionless variables:
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• Dimensionless time (Fourier number):

t∗ =
αPCM t

l2
= Fo (8)

• Dimensionless coordinate:
x∗i =

xi
l

(9)

• Dimensionless temperature:

T ∗ =
T − Tmin

Tmax − Tmin
(10)

• Dimensionless latent heat (phase transition number):

L∗ =
L

cpPCM (Tmax − Tmin)
=

1

Ste
(11)

where l is the characteristic length, αPCM is the thermal diffusivity of the
PCM, Fo is the Fourier number, Ste is the Stefan number, Tmax and Tmin
are the maximum and minimum temperature of the entire discharging process.
Substituting Eqs. (8) through (11) into Eq. (7) we obtain:(

C + γL∗ ∂f
∗

∂T ∗

)
∂T ∗

∂t∗
=

∂

∂x∗i

(
Kij

∂T ∗

∂x∗j

)
(12)

where:

C =

{
(ρcp)HCM

(ρcp)PCM
in ΩHCM

1 in ΩPCM
(13)

Kij =

{
kHCM

kPCM
δij in ΩHCM

δij in ΩPCM
(14)

γ =

{
0 in ΩHCM

1 in ΩPCM
(15)

and f∗ = f(T ∗).

2.3. Spatial and temporal discretization

The residual of the weak form of the dimensionless nonlinear diffusion equa-
tion (Eq. (12)), R, is written as:

R =

∫
ΩD

vh
(
C+γL∗ ∂f

∗

∂T ∗

)
∂Th

∂t∗
dV −

∫
ΩD

∂vh

∂x∗i
Kij

∂Th

∂x∗i
dV −

∫
ΓN

vhqndA = 0 (16)

where vh denotes an admissible test function, Th is the approximated temper-
ature field and ΓN is a generic Neumann boundary. We adopt the standard
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Galerkin approach in defining the solution space U and the weighting space V
such that:

U = {Th ∈ H1(ΩD); Th = T ∗
d on Γd},

V = {vh ∈ H1(ΩD); vh = 0 on Γd}
(17)

where U and V are Hilbert spaces consisting of scalar functions with square
integrable first derivatives. Equation (16) is then discretized in space to yield
the semi-discrete form:

R
(
T∗, Ṫ∗

)
= 0 (18)

where the vector T∗ represents the discrete dimensionless temperature field and
Ṫ∗ is its time-derivative. Eq. (18) is discretized in time with the backward
Euler scheme. The time-derivative of the discrete dimensionless temperature
field is written as:

Ṫ∗(n)
=

(
∂T∗

∂t∗

)(n)

=
T∗(n) −T∗(n−1)

∆t∗
, n = 1, ..., Nt (19)

where n is the time step index, Nt total number of time steps and ∆t∗ the
time-step size. At time step n = 0 the discrete residual equations reduce to
satisfy the initial conditions:

R(0) = T∗(0) −T∗ (20)

For every subsequent time-step when n > 0, we solve the nonlinear problem
R(n) = 0 through Newton’s method. The Jacobian J(n) is obtained considering
a static and a dynamic contribution:

J(n) =
∂R

∂T∗(n)

∣∣∣∣
T (n)

+
∂R

∂Ṫ∗(n)

∣∣∣∣
T (n)

1

∆t∗
(21)

where the second term has been obtained considering the integration scheme
adopted (Eq. (19)).

3. Optimization problem

This section discusses the optimization problem formulation along with the
material interpolation and the corresponding sensitivity analysis. In addition
we summarize the regularization approaches adopted.

3.1. Objective and constraints

The topology optimization problem for heat transfer enhancement in TES
tanks can be written in three alternative forms that consider three different
design requirements:
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(i) What is the optimal topology of HCM that allows discharging the maximum
amount of energy from a given amount of PCM in a given time period?
The Energy Minimization approach aims at minimizing the residual energy
(or enthalpy) H(t∗f ) in the tank at an a-priori specified discharge time t∗f .
The optimization problem is formulated as:

minimize
s

z(T∗(s), s) =

∫
ΩD

h∗ dV at t∗ = t∗f

subject to R
(
T∗(s), s

)
= 0∫

ΩD

ρs(s) dV − Φ

∫
ΩD

dV ≤ 0

s ∈ S =
{
RNs | smin < si < smax, i = 1, ..., Ns

}
(22)

where h∗ = T ∗ + f∗L∗ is the specific dimensionless enthalpy, ρs is the
normalized density of HCM, s is the vector of design variables, Φ the
maximum volume fraction of HCM and Ns the number of design variables
with upper and lower bounds denoted by smax and smin respectively. The
design variable field s is discretized at the node level. The normalized
HCM density ρs is obtained from a regularization of the s field as detailed
in a later section. The inequality constraint, i.e. the volume constraint,
aims at preventing the trivial solution of having the entire design domain
filled with HCM. It should be noted that for isobaric-isochoric processes
with no kinetic energy and gravitational forces involved we have dh =
de, i.e. specific enthalpy changes correspond to specific internal energy
changes.

(ii) What is the optimal topology of HCM that allows discharging a given
amount of energy from a given amount of PCM in the least time? The
Time Minimization approach aims at minimizing the time t∗f needed to
reach a specified residual energy fraction Ψ. The optimization problem is
formulated as:

minimize
s

z(T∗(s), s) = t∗f

subject to

∫
ΩD

h∗dV −ΨH(0) = 0 at t∗ = t∗f

R
(
T∗(s), s

)
= 0∫

ΩD

ρs(s) dV − Φ

∫
ΩD

dV ≤ 0

s ∈ S =
{
RNs | smin < si < smax, i = 1, ..., Ns

}
(23)

where H(0) is the initial total dimensionless enthalpy in the tank defined
as:

H(0) =

∫
ΩD

h∗ dV at t∗ = 0 (24)
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Problem (23) can be solved with marginal algorithmic modifications with
respect to Problem (22). It is easy to demonstrate that the design sensitiv-
ities of the two approaches only differ by a positive multiplication factor.
Linearizing the enthalpy history around the final time t∗f , we have

H(t∗) = H(t∗f ) +
dH

dt∗

∣∣∣∣
t∗=t∗f

(
t∗ − t∗f

)
+O

(
(t∗ − t∗f )2

)
(25)

Neglecting higher order terms we solve (25) for t∗f and differentiate to
obtain:

dt∗f
ds

=

(
− dH

dt∗

∣∣∣∣
t∗=t∗f

)−1
dH(t∗)

ds
(26)

Note that Eq. (26) is obtained considering that dH(t∗f )/ds = 0 because
H(t∗f ) is a constant in the Time Minimization procedure. Since we con-
sider a discharge process the evolution of the enthalpy is a monotonically
decreasing process thus making the denominator positive.
Figure 3(a) shows an intuitive representation of the above-mentioned con-
cepts on two consecutive discharge histories along the optimization rou-
tine. Here dH(t∗f ) represents a final energy gain in the Energy Mini-
mization procedure while dt∗f represents a final time gain in the Time
Minimization procedure.

(iii) What is the optimal topology of HCM fins that maximizes the steadiness
of the TES discharge? The Steadiness Maximization approach aims at
minimizing the deviation of a real discharge curve H(t∗) from an ideal
one Hid(t

∗). In this case, the problem is formulated as:

minimize
s

z(T∗(s), s) =

∫ t∗f

0

(
H(t∗)−Hid(t

∗)

)2

dt∗

subject to R
(
T∗(s), s

)
= 0∫

ΩD

ρs(s) dV − Φ

∫
ΩD

dV ≤ 0

t∗f − t∗fid ≤ 0

s ∈ S =
{
RNs | smin < si < smax, i = 1, ..., Ns

}
(27)

where t∗fid is the ideal discharge time. The ideal discharge curve Hid(t
∗)

is defined as:

Hid(t
∗) =

H(0) − H(0)(1−Ψ)
t∗fid

t∗ if t∗ ≤ t∗fid
H(0)Ψ if t∗ > t∗fid

(28)

The choice of a linear ideal enthalpy history Hid(t
∗) implies that the ideal

thermal power output, i.e. dHid/dt
∗, is constant during the entire dis-

charge. The second inequality constraint imposes a maximum limit on



A. Pizzolato et al. / International Journal of Heat and Mass Transfer 113
(2017) 875888

Figure 3. (a): Energy Minimization vs Time Minimization approach. (b): Steadiness Maxi-
mization approach

the discharge time and has the aim of providing control over this im-
portant design criterion to avoid undesirably lengthy discharge processes.
Please note that the second case of (28), i.e. when t∗ > t∗fid , is required
for the correct objective function calculation in the non-feasible region, as
shown in Fig. 3.(b).

3.2. Material interpolation

Density-based topology optimization requires an interpolation of the mate-
rial properties such that the design process converges to binary designs. This
is achieved by making intermediate values of the fictitious density ρs somewhat
unattractive to the optimization routine via a penalty method.
In the present paper we use the conventional SIMP interpolation strategy to
interpolate the conductivity term K :

K(s) = 1 +

(
kHCM
kPCM

− 1

)
ρps (29)

where the exponent p of the power-law interpolation has been set to 2. The
nonlinearity of Eq. (29) combined with the linear volume constraint causes the
penalization effect. We use a simple linear interpolation for the capacitance
term C and the latent heat term L:

C(s) = 1 +

(
(ρcp)HCM
(ρcp)PCM

− 1

)
ρs (30)

L∗(s) = L∗
PCM

(
1− ρs

)
(31)

With this set-up good convergence to binary designs was observed in preliminary
numerical tests performed.
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3.3. Adjoint sensitivity analysis

The derivatives of the objective and constraints with respect to the design
variables are needed for a gradient-based optimization method. Topology op-
timization is characterized by a high number of design variables and few con-
straints. Hence, the adjoint method is particularly convenient as it requires
solving one additional linear problem per objective and constraint [57].

The discrete sensitivity field for the objective using the adjoint approach is
calculated as:

dz

ds
=
∂z

∂s
+

Nt∑
n=0

λ(n)T ∂R
(n)

∂s
(32)

where λ(n) is the discrete adjoint field at time n, which is calculated by inte-
grating the adjoint equation backward in time:

(
J(n)

)T
λ(n) = −

(
∂z

∂T∗

)(n)

+
1

∆t∗(n+1)

(
∂R(n+1)

∂Ṫ∗(n+1)

∣∣∣∣
T (n+1)

)T
λ(n+1) (33)

for n = Nt, ..., 0 and λ(Nt+1) = 0. As discussed in Section 3.1, the sensitivi-
ties for the Time Minimization problem are calculated by post-multiplying the
sensitivities obtained for the Energy Minimization problem using (26). Hence,
in Equation (33), z =

∫
ΩD

h∗(t∗f ) dV for both the Energy Minimization and the

Time Minimization procedures. The adjoint method needs the forward solution
for the computation of the adjoint states. For this reason, the forward solutions
are stored for every time-step of the analysis. The adjoint solutions are calcu-
lated using the same time-steps adopted for the forward analysis. In this work
the partial derivatives appearing in Eq. (32) are calculated through a central
finite difference scheme. The partial derivatives of Eq. (33) are obtained by an-
alytical differentiation of the discrete problem. A similar procedure is followed
for the computation of constraint sensitivities.

3.4. Regularization

Filtering is a popular regularization approach in topology optimization that
ensures both mesh-independence and checkerboard-free results [58]. We use a
normalized linear density filter like the one originally proposed by [59]. The
filtered nodal density field at node i is calculated as:

s̃i =

( Ns∑
j=1

ωij

)−1 Ns∑
j=1

ωijsj (34)

where Ns is the number of nodes in the complete mesh and ωij is the filter
weight calculated as:

ωij = max

(
0, rf − |xi − xj |

)
(35)
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where rf is the prescribed filter radius. The filter introduces some additional
fuzziness in the design, i.e. it smooths the normalized density gradients and
smears the two-material interface. Several projection schemes have been pro-
posed to solve this issue and obtain crisp boundaries. Here we use the one
proposed by Wang et al.[60]:

ρsi =
tanh

(
βη
)

+ tanh
(
β(s̃i − η)

)
tanh

(
βη
)

+ tanh
(
β(1− η)

) (36)

where η = 0.5 represents the projection threshold while β = 1 is a parameter
that controls the steepness of the projection. Note that this choice of parameters
results in a mild projection that does not provide any feature size control. The
projected density field ρs represents now the physical design variable set which
is used in (30), (31) and (29) to interpolate the thermo-physical problems. We
account for the filtering scheme in the sensitivity analysis by applying the chain
rule as following:

∂z

∂si
=

Ns∑
j=1

Ns∑
k=1

∂z

∂ρsk

∂ρsk
∂s̃j

∂s̃j
∂si

(37)

4. Results and discussion

This section presents and discusses the results obtained for three different
numerical studies. The first study focuses on the energy-time trade-off that
arises during the optimization of LHTES systems. The second study is a 3D
extension of the first example. The third study investigates the possibility of
tuning the discharge process to obtain a constant thermal power output. The set
of nonlinear equations arising from the spatial and temporal discretization are
solved via the under-relaxed Newton method. The optimal value of the under-
relaxation parameter depends on the degree of non-linearity of the problem,
hence on the L/cp ratio. Numerical experiments have shown that 0.95 is a good
trade-off between reliable convergence and computational cost. Convergence is
considered satisfactory when the relative residuals L2 norm drops below 1e-7.

At each Newton iteration, the system of linearized equations is solved via
the Unsymmetric-pattern MultiFrontal method (UMFPACK [61]) for the 2D
problems described in this paper. For the 3D problems, we use the more ef-
ficient Generalized Minimal RESidual (GMRES) iterative method [62], with
an Incomplete LU factorization and dual Threshold (ILUT) preconditioner [63].
Time integration is performed through an adaptive scheme. If Newton’s method
does not convergence within the first 15 iterations, the time step is iteratively
halved until convergence is reached. The original time-step is restored after
5 successful time iterations at the reduced time-step. The optimization prob-
lems are solved using the Globally Convergent Method of Moving Asymptotes
(GCMMA) of Svanberg et al. [64]. The general idea behind the GCMMA is to
solve a series of convex and separable subproblems obtained from the original
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Table 1. GCMMA parameters utilized

Parameter Value
Step-size 0.03

Minimum asymptote adaptivity 0.5
Initial asymptote adaptivity 0.7

Maximum adaptivity 1.43
Constraint penalty 1000

Table 2. Thermo-physical properties of materials in dimensionless settings

Description Parameter

Conductivity ratio kHCM

kPCM
= 600

Capacitance ratio
(ρcp)HCM

(ρcp)PCM
= 1.6

Dimensionless Latent heat L∗ = 20
Dimensionless melting temperature T ∗

m = 0.5

problem. To ensure feasibility, some elastic (design) variables are introduced in
the problem. In the present framework, the GCMMA subproblems are solved
with a primal-dual method. The relevant GCMMA parameters are provided in
Table 1. Convergence is considered satisfactory when the relative change in the
objective drops below 1e-6 and all constraints are satisfied.

For the 2D problems, the computational domain consists of a quarter of the
TES cross section (Fig. 2) with r1 = 0.1 and r2 = 1. We use a computational
mesh with 11970 quadrilateral bilinear elements with angular size ∆θ = 1◦

and radial size ∆r = r∆θ. The 3D mesh is a lateral extension of the 2D
mesh with ∆z = 0.071 in the thickness direction and has a total of 507000
hexahedral trilinear elements. The height Z of the quarter hollow cylinder is
set to 3. By considering a quarter of the cross section, we restrict the design
domain and enforce θ-periodic optimized designs with period Θ = 90◦. However,
in analogous optimization runs performed with Θ = {120◦; 180◦; 360◦}, the
optimized objective revealed to be only insignificantly sensitive to the Θ choice.
In the cases considered, the optimized objective increase with respect to the
Θ = 90◦ case ranged from a minimum of -0.1 % to a maximum of 1.2 %.

The accuracy of the presented framework is verified using a benchmark prob-
lem against the results obtained with the finite element commercial package
COMSOL Multiphysics [65]. We simulate the discharge of a storage unit with
the geometry shown in Figure 4(a). We use the same HCM and PCM used in
a previous design optimization study of a medium-scale latent energy storage
unit for district heating applications [29]. The relevant thermo-physical prop-
erties rewritten in non-dimensional form are presented in Table 2 while all the
relevant analysis parameters are summarized in Table 3. Figure 4(b) shows
the temperature profile along the red line highlighted in Figure 4(a) at differ-
ent time instants, i.e. t∗ = [0.01, 0.05, 0.09, 0.13, 0.17]. We observe that
the thermal response predicted by the current framework agrees well with the
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ΩHCM

ΩPCM

0.3

Figure 4. Verification test against COMSOL Multiphysics. (a): Schematics of the geometry
considered. (b): Comparison of the temperature profiles at t∗ = [0.01, 0.05, 0.09, 0.13, 0.17]

Table 3. Relevant analysis parameters

Description Parameter
Boundary heat flux qn = 0

Imposed temperature Td = 0
Initial temperature TI = 1



A. Pizzolato et al. / International Journal of Heat and Mass Transfer 113
(2017) 875888

-7 -6 -5 -4 -3 -2

Perturbation size (log10 scale) [-]

-8

-7

-6

-5

-4

-3

-2

-1

R
e
la

ti
v
e
 e

rr
o
r 

n
o
rm

 (
lo

g
1
0
 s

c
a
le

) 
[-

]

Initial design

Final design

Figure 5. Comparison of design sensitivities computed by the adjoint method and by finite
differencing

results obtained with COMSOL. The relative error L2 norm is calculated to be
4.01 · 10−4 with a standard deviation of 1.66 · 10−4.

To verify the accuracy of the adjoint sensitivities, we performed (central)
finite difference checks on 100 design variables in both the initial design (i.e. s =
0.5) and the optimized design for Ψ = 5 %, which will be described in Section
4.1. Figure 5 reports the L2 norm of the relative error for different perturbation
sizes used to calculate the finite difference sensitivities. The relative error is
computed with respect to the value of the finite difference sensitivity. The
minimum error is achieved for perturbation sizes of ∆s = 10−3 and ∆s = 10−4

for the initial and final design. Overall, we observe good agreement between
analytical and finite difference sensitivities. This suggests the correctness of our
analytical derivations and implementation.

4.1. Energy vs time trade-off

In this section we explore the inherent trade-off between the discharge time
t∗f and the target energy fraction Ψ. The thermo-physical properties and the
analysis parameters are the same introduced for the verification study presented
in the previous section (see Table 2 and 3). The maximum allowable volume
fraction of HCM Φ is set to 10 %.

We solve the optimization problem using both the Time Minimization and
Energy Minimization approach. To obtain the characteristic performance curves,
we systematically relax the energy and time constraint for the first and second
case respectively. First, we run the Time Minimization problem (23) setting the
target energy fraction Ψ as 2.5 %, 5%, 10 %, 25 %, 50 % and 80 %. The final
objective value, i.e. the optimized time required for the complete discharge, is
then set as a constraint for the subsequent Energy Minimization procedure (22).
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Figure 6. Objective history during the design optimization at Ψ = 5%. The design evolution
is shown at selected design iterations. The design snapshots are obtained exploiting the
symmetry condition

The objective history during the Time Minimization optimization process
for the case in which the target energy fraction Ψ is equal to 5 %, along with
snapshots of the design at selected iterations is depicted in Figure 6. All designs
presented in this paper correspond to density contour plots where only regions
with s ≥ 0.1 are shown. Also note that the same colorbar shown in Figure 6
is used for all the results presented in the following sections. The initial design
(iteration 1) corresponds to a homogeneous material distribution s = 0.1 on the
design domain ΩD. The HCM quickly (i.e. in 5/6 design iterations) concentrates
in a region close to the internal tube. Then the convergence rate slows down
until some conductive branches break the problem symmetry (iteration 30),
which is when we observe the second quick objective drop.

The designs obtained for the remaining cases are shown in Figure 7. As the
target energy fraction Ψ increases, the characteristic length of fins decreases to
occupy a smaller region close to the internal tube leaving a hot external shell.
A closer examination of the designs at 80 %, 50 % and 25 % of initial energy
reveals that the maximum length branch scales as lmax ∼

√
1−Ψ. Once the

fins achieve the length corresponding to the radius of the external envelope,
energy extraction is increased by accumulating HCM towards the external en-
velope: in the optimized designs for Ψ = 10 % and Ψ = 2.5%, the internal tube
is connected to fewer and thicker branches, which ramify with a wider angle.
The initial and final design performance curves in the objective space are shown
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Figure 7. Final designs at selected Pareto points

Figure 8. (a): Energy Minimization vs Time Minimization approach. (b): Converged Pareto
curve

in Fig. 8.(a): the Time Minimization performance curve moves along the time
axis (i.e. from right to left). On the other hand, the Energy Minimization per-
formance curve moves along the energy axis (i.e. from top to bottom). Both the
approaches converge to nearly the same Pareto front, with a maximum relative
deviation of 2.6 %. The optimized performance curve is presented in Figure
8(b).
We now cross-check the performances of the Time Minimization designs with

different residual energy targets Ψ. Each design optimized for a certain Ψ is ex-
pected to perform better than the other designs for that particular Ψ condition.
If this is not the case, this test indicates convergence to poor local minima. For
each optimized design, Figure 9(a) plots the discharge time increase compared
to the optimized design for that particular Ψ. It can be seen that the optimized
designs perform as expected. Moreover, we note that either a badly designed or
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Figure 9. (a): Performance cross-check of optimized designs on other points on the Pareto
front. The discharge time increase is calculated with respect to the design optimized for that
particular Ψ. (b): zoom-in of the low-energy region

a badly utilized TES system can result in substantial performance reductions,
highlighting the importance of an accurate prediction of the discharge dynamics
during the design optimization process. For instance, if the design optimized for
Ψ = 80 % is used to discharge the tank up to Ψ = 10 %, a 600 % time increase is
needed with respect to the discharge of the design optimized for that situation.
Taking a closer look at the low energy region (depicted in Fig. 9.(b)), which is
meaningful from a TES application perspective, we observe a much more robust
performance, i.e. the designs look slightly sensitive to changes in Ψ.

The results obtained in this numerical study demonstrate the equivalence
of the first two optimization problem formulations proposed in Sec. 3, i.e. the
Energy Minimization and the Time Minimization approach. Furthermore, we
highlight the importance of an accurate modeling of the transient behavior for
the design optimization of LHTES systems by outlining a well-defined Pareto
curve in the space discharged energy/discharge time.

4.2. 3D designs

In this section, we extend the analysis performed in Sec. 4.1 to 3D design
optimization using the Time Minimization approach. The 2D design domain in
Figure 2 is linearly extruded along the z axis to obtain a quarter cylinder with
height Z = 3. Adiabatic boundary conditions are applied at both ends.
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Figure 10. 2D extruded design (a) versus full 3D design visualization (b). Only a quarter
of the cross-section is shown for clarity purposes. The design shown has been thresholded at
s = 0.1

Figure 10 visualizes the main qualitative differences between the 2D and the
3D design for Ψ = 5 %. Please note that the design shown has again been
thresholded at s = 0.1. Due to the good convergence to a binary design, the
threshold value choice has a negligible effect. The 3D design is an interesting
mixture of the different fins design discussed in the introductory section of this
paper: longitudinal fins, radial fins, and pin fins. Similar to the radial fins
designs, our optimized 3D design alternates high HCM density cross-sections to
low density ones, leaving some PCM interstices along the z axis. Furthermore,
the cross sections of our 3D design (Figure 11(b)) show a pattern similar to
the 2D design. Finally, our HCM branch tips closely resemble the disordered
geometries of the pin fins designs elongating freely in the three directions. The
front and top views visible in Figure 11 display some additional features. As
visible from the front view, the distribution of HCM concentrates more at the
center than at the top and bottom boundary. This agrees with the intuition
that less HCM should be placed on the boundary since less energy has to be
extracted.

Finally, we revisit the energy versus time trade-off for 3D designs with 3
different values of energy fraction Ψ, i.e. 25 %, 10 % and 5 %. Figure 12(a)
shows a comparison between the Pareto fronts for the 3D and the 2D case.
Figure 12(b) presents a bar chart plotting both the absolute and percentage
improvements achieved. We observe an average discharge time reduction of
20.3 %, with the minimum and maximum being 18.0 % and 22.6 % respectively.

This section highlights the need for full 3D optimization strategies for the
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Figure 11. (a): Front view of 3D design. (b): Top view of 3D design

Figure 12. (a): 3D Pareto vs 2D Pareto obtained through the Time Minimization approach.
(b): Absolute and percentage performance improvements of 3D designs in the three Pareto
points considered
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Figure 13. The time vs steadiness trade-off. The objective trend closely resembles the one of
the heat transfer drop during the complete discharge

design of TES with phase change. The optimized design not only shows some
unexpected features but it also outperforms the 2D one by roughly 20 % due to
the increased design freedom.

4.3. Steadiness maximization

With this example we aim at showing how topology optimization can address
more complicated and interesting objectives for the design of TES systems.
Beside a low discharge time, which we discussed in the previous sections, one
of the most desirable properties is to deliver a constant thermal power output
during the whole discharge process. Hence, we adopt the optimization problem
formulation presented in (27).

The optimized performance curves, obtained for a total discharge time of 1,
1.4, 1.8 and 2.2 are shown in Figure 13. In the range of values considered, we
observe an interesting trade-off between allowable discharge time and steadiness
of discharge. The objective drops from the initial value of 6.1 when t∗fid = 1.0
to the final value of 2.6 when when t∗fid = 2.2. On the right y-axis of Fig. 13 we
plot the optimized heat transfer drop during the discharge history in the four
cases considered. This figure of merit is intended to measure the steadiness in
an alternative way; it is calculated as the difference between the initial and the
final heat transfer rate.

The optimized distribution of highly conductive finning material for the four
cases considered is shown in Figure 14. The ”quick” design (i.e. t∗fid = 1.0)
looks very close to the optimized designs of the previous section for the low
Ψ region. As the discharge time increases, more and more highly conductive
material is moved towards the external tank envelope through wide angle ram-
ifications coupled to a higher number of secondary branches. Furthermore, it
is possible to observe in the ”slow” designs (e.g. t∗fid = 1.8 and t∗fid = 2.2)
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Figure 14. Steadiness optimized designs with different values of ideal discharge time t∗fid

Figure 15. Detail of the fin base disconnect

that the fin base is not anymore in contact with the internal tube, leaving a
small PCM gap. The authors believe that this is effective in limiting the ini-
tial heat transfer rate. The gap certainly complicates the fabrication of the
fin. However, manufacturability is not considered in the optimization problem
formulation and the practical realization of the device is beyond the scope of
this paper. Topology optimization with manufacturability constraints has been
investigated elsewhere, see e.g. [66]. For better visualization of the fin base dis-
connect, Figure 15 shows a zoomed-in view into the region close to the internal
tube.

The discharge histories of the 4 optimized designs is pictured in Figure 16.
Here, to enhance the readability and cross-comparison of data, we plot on the
x-axis the discharge time normalized with respect to the ideal discharge time
t∗fid . As the final time constraint is relaxed, the real energy history becomes
closer and closer to the ideal linear one. However, even the optimized design for
t∗fid = 2.6 does not perfectly match the desired discharge history. The reader
may note the big performance improvement achievable if the allowable discharge
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Figure 16. Normalized energy history during the discharge for the 4 optimized designs

Table 4. Comparison of the connected and disconnected design

Connected design Disconnected design
Discharge time 1.77 2.20

Objective 14.63 2.68

time is increased from 1.0 to 1.4.
To show that the fin disconnect increases the performance, we manually

altered the design optimized for t∗fid = 2.2 (hereafter referred as disconnected
design) and filled the PCM gap with HCM to obtain the connected design shown
in Figure 17(a). The energy history for the two designs considered along with the
ideal one are represented in Figure(b). The connected design yields a reduction
of the total time needed for the discharge. However, the disconnected design
approximates better the ideal discharge curve. The area enclosed between the
ideal discharge curve and the one of the disconnected design, i.e. A1, is smaller
than the area enclosed between the ideal discharge curve and the one of the
connected design, i.e. A1 +A2. This suggests that a superior objective value is
obtained with the disconnected design. The objective value and the discharge
time registered in the two cases are reported in Table 4.

Through this example we have shown that it is possible to tune the discharge
history of the LHTES towards a constant thermal power output. It is also found
that the steadiness measure increases if less stringent requirements are set on
the discharge time.

5. Conclusions

We demonstrated the use of topology optimization for heat transfer enhance-
ment in Latent Heat Thermal Energy Storage tanks. We optimized the layout of



A. Pizzolato et al. / International Journal of Heat and Mass Transfer 113
(2017) 875888

  

Figure 17. (a): Connected version of the disconnected optimized design obtained for t∗fid
=

2.2. (b): Comparison of the energy history during the discharge

a highly conductive material embedded in a phase change material to maximize
the performance of the heat exchanger.

We first proposed two alternative problem formulations to fasten the dis-
charge process: the Energy Minimization approach minimizes the residual en-
ergy in the tank at a fixed time while the Time Minimization approach minimizes
the time required to discharge the tank down to a specified energy fraction. The
2D example showed that both approaches converge to the same Pareto front in
the residual energy/discharge time space. The inherent trade-off between these
two objectives manifests itself with very different designs and highly varying per-
formances in different points of the non-dominated set. Furthermore, we found
that the optimized designs in 3D presents features not visible in 2D which yield
a discharge time reduction of roughly 20 % with respect to the 2D designs.

Finally, we focused on the HCM fins design that maximizes the steadiness of
the thermal power output. We observed that relaxing the requirements on the
maximum discharge time allows for better tuning of the tank discharge history:
with a 40 % increase of the discharge time we obtain a 44 % improvement of
our steadiness measure. A small PCM gap close to the internal tube is effective
in lowering the initial heat transfer peak but complicates the manufacturing
process.

The results demonstrate the convenience of topology optimization for the
practical design of LHTES systems. The method yields design features and
trends that could hardly be revealed with alternative design routes.
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