Noise characterization of analog to digital converters for amplitude and phase noise measurements

Original

Availability:
This version is available at: 11583/2674507 since: 2017-06-12T20:47:05Z

Publisher:
American Institute of Physics

Published
DOI:10.1063/1.4984948

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Improvements on electronic technology in recent years have allowed the application of digital techniques in phase noise metrology where low noise and high accuracy are required, yielding flexibility in systems implementation and setup. This results in measurement systems with extended capabilities, additional functionalities and ease of use. In most digital schemes the Analog to Digital Converters (ADCs) set the ultimate performance of the system, therefore the proper selection of this component is a critical issue. Currently, the information available in literature describes in depth the ADC features only at frequency offsets far from the carrier. However, the performance close to the carrier is a more important concern. As a consequence, the ADC noise is in general analyzed on the implemented phase measurement setup. We propose a noise model for ADCs and a method to estimate its parameters. The method retrieves the Phase Modulation and Amplitude Modulation noise by sampling around zero and maximum amplitude, a test sine-wave synchronous with the ADC clock. The model allows discriminating the ADC noise sources and obtaining the phase noise and amplitude noise power spectral densities from 10 Hz to one half of the sampling frequency. This approach reduces data processing, allowing an efficient ADC evaluation in terms of hardware complexity and computational cost.

I. INTRODUCTION

New methods for the phase and amplitude noise measurement of oscillators have been proposed in the past years, based on digital systems\(^1\)--\(^8\). Some reasons are just obvious: reconfiguration flexibility and compactness of digital hardware. Others are more subtle. The traditional method based on two mixers and cross spectrum\(^9\)--\(^12\) requires two oscillators at the same frequency of the oscillator under test, while in a fully digital implementation arbitrary frequencies are synthesized numerically with a resolution exceeding any practical use (\(\sim 6 \times 10^{-18}\) with 64 bit numerically controlled oscillator). Another reason is that the traditional scheme suffers from artifacts and errors\(^13\),\(^14\). Similar artifacts and errors, if any, have still not been made clear in the case of digital systems.

The increasing technological advances on Analog to Digital Converters (ADCs), in terms of resolution and sample rate, has allowed the implementation of phase/amplitude noise metrology as ideal Software Defined Radio (SDR) states\(^15\), sampling the signal of interest through a high-speed ADC and processing the data digitally, reducing at minimum the analog components. However, the progress in digital measurement of amplitude and phase noise has been rather slow for a number of reasons. First, the availability of converters with sufficient resolution and speed, i.e., converters with features such as 14 - 16 bits and sampling rates higher than 100 Mega Samples per second (MSps), is rather recent. Second, the skill for digital hardware design and for Radio Frequency (RF) engineering, oscillators, spectral purity, etc., are seldom found in the same team. Third, the measurement of amplitude and phase spectra rely on some generally undocumented features of the converters.

This article focuses on a model of the ADC, specific for the measurement of oscillators, and on a method to extract the parameters. We work on a Red Pitaya board because this platform is suitable to our tests with an acceptable experimental complexity. Resolution and speed (14 bit, 125 MSps) are reasonably close to the state of the art of ADCs (16 bit, 350 MSps or 14 bit, 1 GSp), and it is potentially sufficient for the implementation of a complete instrument. Of course, similar test with cutting edge converters will follow.

Different techniques have been developed for characterizing ADC. While the histogram approach has been widely used for measuring static errors\(^16\),\(^17\), one group\(^18\) proposed a method for estimating the voltage error generated by the aperture jitter plus the internal additive noise through the locked histogram technique, performing synchronous sampling. The distribution function of the noise, assumed normal, was obtained by modifying the mean of the input sine-wave by adjusting an offset as finely as one least significant bit (LSB) of the ADC under test, being a suitable approach for ADCs of low/medium resolution (maximum 10 bits). Other work\(^19\) proposed a model for the jitter of ADCs and a method based on SNR analysis in order to evaluate and discriminate the effects of the jitter components on the ADC performance, thereby giving a guideline to compensate for such effects in future high-speed ADC designs. A characterization technique based on the use of a Graychip and down-conversion was performed\(^1\) for evaluating the viability and strategies of the direct-digital technique implemen-
II. ADC NOISE MODEL

The model proposed in this work aims to discriminate the different noise contributions of an analog to digital conversion in the basis of two random noise classes: additive and parametric. Additive noise refers to a noise process that can be represented as a voltage or a current added to the signal, caused by the thermal noise on resistive elements and by shot and avalanche noise present in the junctions of semiconductors. This noise is generated in the signal bandwidth and it is always present, even without carrier information. Instead, parametric noise refers to a non-linear near-DC process caused by non-linearities present in electronic circuits due to contamination in semiconductors materials. It is translated by action of a carrier, generating amplitude and/or phase modulation on the signal.

Our ADC noise modeling focuses on four main noise sources, as it is depicted in FIG. 1(a): input stage, aperture jitter, voltage reference and quantization. The aperture jitter, \(\Delta \), defined as the variation of the sampling instant \(kT_s \), is caused by time fluctuations in the sample and hold processes. These time fluctuations generate a parametric noise whose effects over the sampled signal are described by \(v_k'' = v'(kT_s + x_k) \), where \(x_k = x(kT_s) \).

At this point, the sample \(v_k'' \) is converted into a digital value, as described in (1), where \(m \) is the resolution of the ADC, \(V_r \) is the voltage reference and \(n_q \) is the quantization noise.

\[
v_k = v_k'' \frac{2^m}{V_r} + n_q \quad (1)
\]

The voltage reference is considered as a non-ideal source, \(V_r = V_{r0}(1 + r(t)) \), represented by the nominal value \(V_{r0} \) and the relative noise \(r(t) \). This noise source is presented as a parametric noise whose features depend on the voltage reference typology.

The quantization noise \(n_q \), well described currently in literature, generates white phase noise spread along the Nyquist bandwidth \(\frac{1}{2T_s} \). For high resolution ADCs, like the one studied here, the effective number of bits (ENOB) is significantly lower than the nominal value, therefore the effect of this noise source can be neglected, at first order, with respect to the other noise contributions and for this reason it is not included in the model proposed.

Considering \(m \) and \(V_{r0} \) constant values and in analogy with operational amplifiers, it is convenient to refer the noise at the input by dividing the output by \(\frac{2^m}{V_{r0}} \). Then, the ADC output referred at the input can be expressed as \(\hat{v}_k = \hat{v}_k \frac{2^m}{V_{r0}} \).

Under the assumption of \(r \ll 1 \), the ADC output is described by (2), where \(n_k = n(kT_s) \), \(x_k = x(kT_s) \) and \(r_k = r(kT_s) \) are discrete-time random processes obtained from sampling the corresponding continuous-time random process at \(t = kT_s \).

\[
\hat{v}_k = (n_k + v(kT_s + x_k))(1 - r_k) \quad (2)
\]

Now that the ADC output is stated in terms of the noise sources we can analyze their effects using a proper input for discriminating their contributions. Following (2), the contribution of \(x_k \) propagates to the ADC noise.
output depending on the slew rate of the input signal, while the impact of r_k depends on the input signal level. In fact, in the case of $v(t) = 0$, the contribution of the aperture jitter and the voltage reference noise are negligible, therefore the ADC output corresponds to the additive noise of the input stage.

Then, assuming $v(t) = V_0 \cos(2\pi f_0 t)$ as input signal of the ADC, case of interest for time and frequency applications, we can rewrite (2) as

$$\tilde{v}_k = (n_k + V_0 \cos(2\pi f_0(kT_s + x_k)))(1 - r_k)$$

(3)

Considering n_k, x_k and r_k independent processes, the total amplitude and phase noise generated by the ADC can be expressed as the sum of the different amplitude and phase fluctuations induced by each noise source, respectively. The additive noise of the input stage n_k generates amplitude and phase noise on the signal converted. In order to better discriminate its effects, this noise source is decomposed in its in-phase and quadrature components, α and ϕ, respectively. Under low noise conditions, $|n_\alpha|/V_0 \ll 1$ and $|n_\phi|/V_0 \ll 1$, the normalized amplitude noise generated by n_k is expressed as $\alpha_n = (1/V_0)n_\alpha$ while the induced phase noise is given by $\phi_n = (1/V_0)n_\phi$.

The aperture jitter x_k results in pure phase modulation on the analog to digital conversion given by $\varphi_k = 2\pi f_0 x_k$. The maximum voltage variations induced by this noise source occur at the samples of highest slew rate (SR), i.e., close to the zero-crossings and are described by $V_0/2\pi f_0 x_k$. Moreover, it is worth to remark that the samples of maximum amplitude are not influenced by this noise contribution at the first order. Instead, they are directly related to the voltage reference noise presented as amplitude modulation on the signal converted. It generates a maximum voltage error $V_0 r_k$ that occurs at the maximum amplitude samples of the input signal.

Hence, the total ADC phase noise φ_k and the total ADC amplitude noise α_k are described in (4), where φ_k is in radians and α_k is non-dimensional, being the normalized amplitude fluctuations.

$$\varphi_k = \varphi_n + \varphi_x = \frac{1}{V_0} n_\varphi + 2\pi f_0 x_k$$

$$\alpha_k = \alpha_n + r_k = \frac{1}{V_0} n_\alpha + r_k$$

(4)

Since power spectral density (PSD) and polynomial law are considered meaningful tools for noise description and analysis due to the straightforward identification of the different noise processes, they are used for representing the ADC noise contributions. Hence, the PSD of the ADC phase noise in rad2/Hz and the PSD of the ADC amplitude noise in V2/Hz are described in (5), where the integer $N < 0$ depends on the device.

$$S_{\varphi,s}(f) = \sum_{j=N}^{0} b_{\varphi} f^j$$

$$S_{\alpha,s}(f) = \sum_{j=N}^{0} b_{\alpha} f^j$$

(5)

The difference between the analog bandwidth B and the sampling frequency f_s in a digital circuit generates aliasing on the white noise region of the sampled signal spectrum. Hence, the voltage noise spectrum of the sampled signal can be represented as $S_v(f) = \frac{2B}{f_s} h_0 + \sum_{j=1}^{N} h_j f^j$ [V2/Hz]. For the case of the aperture jitter, aliasing is generated in the white noise region of the spectrum, caused by the fact that these fluctuations are sampled at the sampling clock (f_s). Thus, the spectrum of x_k can be expressed as $S_{x,s}(f) = \frac{2}{f_s} f^2 + \sum_{j=2}^{N} x_{f} f^j$ [V2/Hz], where J is the root mean square (rms) time fluctuation of the aperture jitter and $k_0 = \frac{2}{f_s} f^2$. The spectrums of n_φ, $n_\alpha [V^2$/Hz] and $r_k [1$/Hz] represented through the polynomial law are described in (6). Since r_k represents a relative amplitude noise, the coefficients n_r are non-dimensional.

$$S_{\varphi,s}(f) = \frac{1}{V_0^2} S_{x,s}(f) + 4n^2 f_0^2 S_{x,s}(f)$$

$$S_{\alpha,s}(f) = \frac{1}{V_0^2} S_{x,s}(f) + S_{r,s}(f)$$

(6)

Hence, from (4), the spectrums of the phase and amplitude noise of the ADC are

In this manner, from (7) the contribution of each noise source for each different noise process could be identified having a complete description of the device limitations.

III. METHOD FOR ADC NOISE CHARACTERIZATION

As second part of this work, we propose a method for determining the ADC noise components stated in the model. The method is based on data acquisitions under three different measurement conditions that allow characterizing the three main noise process of the model: input stage, aperture jitter and voltage reference. In the first condition, the input of the ADC is connected to ground through a 50 Ω resistor. In this case, the contribution of $x(t)$ and $r(t)$ are negligible, since the slew rate and the level of the signal are zero. Therefore, the voltage noise on the data acquired is totally related to the additive noise of input stage. The other two measurements are made by sampling synchronously two points of the cosine wave at the input: the zero-crossings and the peak values.

Considering that the voltage noise of the zero-crossings is directly related to phase fluctuations (PM), the measurement of these variations will result in the estimation of the phase noise generated by $n_\varphi(t)$ and $x(t)$. On the
respectively. Signal sampled at zero-crossings and at the peak values, \(S_{v,\varphi} \) and \(S_{v,\alpha} \) are the PSD of the voltage noise of the signal sampled at zero-crossings and at the peak values, respectively.

\[
S_{\varphi,s}(f) = \frac{1}{V_0^2} S_{v,\varphi} \\
S_{\alpha,s}(f) = \frac{1}{V_0^2} S_{v,\alpha}
\]

It is important to notice that with a single channel configuration, the noise obtained is also influenced by the noise contributions of the sampling clock and the input signal generator. Since the objective of this work is to characterize the ADC for phase noise metrology which, in general, is based on differential techniques, we propose a configuration with two independent channels as depicted in FIG. 1(b). The common noise contributions such as the one coming from the input signal generator, the sampling clock and the voltage reference are canceled by subtracting the data obtained from the two channels. In consequence, the noise estimated is the contribution of the two ADC channels. Since the channels are assumed to be uncorrelated, the noise of a single channel is half the total noise.

The scheme of the synchronous sampling system, that is in charge of acquiring the zeros-crossings and the peaks of the cosine-wave, is shown in FIG. 2. The principle of operation consists in aligning the input signal to the sampling clock by means of a Phase Locked Loop (PLL): the input signal is sampled and sent to a Proportional-Integral controller (PI) which drives the frequency of the signal generator through a DAC, providing the proper phase information. The input signal generator works as a Voltage Controlled Oscillator (VCO) correcting the signal generated to acquire the selected point, either for AM or PM characterization. When the loop is closed and the controller forces the acquisition of the zero-crossings (PM characterization), it is possible to sample input signals multiple of the sampling clock by means of sub-sampling. To extend the measurements at lower frequencies (\(\nu_0 \) sub-multiple of \(f_{clk} \)) the data rate is down-sampled. Therefore, the sampling frequency \(f_s \) becomes equal to the input frequency \(\nu_0 \) \(f_s = \frac{f_{clk}}{M} = \nu_0 \). For AM characterization, we provide an input frequency not higher than quarter the sampling clock in order to guarantee the peak acquisition. In this case, the system is still synchronized through the zero-crossings but only the peak values are acquired.

The PSD of the ADC noise is estimated in a bandwidth equal to the Nyquist frequency. The corresponding information at low frequencies is obtained through six stages of decimation in order to acquire data down to 10 Hz or less according to the sampling frequency. Blocks of 16384 data per channel are post-processed offline using MATLAB.

FIG. 3 depicts a simplified block diagram of the method implemented in the Red Pitaya platform\(^9\). The later is an open source embedded system, that includes a dual-channel 14 bit ADC at 125 MSPs LTC2145 from Linear Technology, a dual-channel 14 bit DAC at 125 MSPs DAC1401D125 from NXP Semiconductors and a Zynq 7010 System On Chip (SoC) from Xilinx. The input stage of Red Pitaya was modified by bypassing the amplifier and the low pass filter with a 1:1 RF transformer, allowing the acquisition of sine-wave signals up to 500 MHz in order to increase the input bandwidth and to expose the jitter effect. In this regard, the sampling and hold has a bandwidth of 750 MHz.

IV. RESULTS

All the results presented in common mode are already scaled by -3 dB in order to analyze the noise of one ADC channel.

A. Additive Noise Input Stage

FIG. 4 shows the power spectral density of the voltage noise obtained by connecting the two ADC inputs to ground through a 50 \(\Omega \) resistor, \((v(t) = 0 \text{ V}, f_{s} = 125 \text{ MHz}) \). As described in section II, this noise corresponds to the voltage error induced by the input stage. It presents an additive white noise of -154 dBV\(^2\)/Hz and an additive flicker of -107 dBV\(^2\)/Hz at 1 Hz. The quantization noise floor for the ADC under these conditions (14 bits and 2 V full scale) is -167 dBV\(^2\)/Hz\(^2\). The difference between this value and the
estimated white noise floor is 13 dB, in agreement with the effective number of bits (ENOB) stated in the ADC datasheet (11.8).

FIG. 4. Power spectral density of ADC LTC2145 input stage noise. The measurement was performed connecting the input to ground through a 50 Ω resistor.

B. PM Measurements

The measurements analyzed in this section were performed acquiring the zero-crossings of the input signal. The voltage noise generated in these samples is induced by the additive noise of the input stage and by the aperture jitter multiplied by the slew rate, as described in (7). These two contributions can be discriminated by varying the amplitude and the frequency (i.e. the slew rate) of the input signal: for low slew rate, the additive noise dominates, while at high slew rate, the measure is representative of the aperture jitter.

FIG. 5(a) shows the ADC phase noise \(\bar{S}_{\phi} \) estimated at different input frequencies and 0.9 V of peak amplitude. It can be observed that under these conditions the phase noise is independent of the carrier frequency; the white noise floor differences between each curve are due to aliasing caused by the down sampling performed in order to take only one sample per period. They correspond to aliased \(\phi \)-type, phase noise caused by random fluctuations in the input stage circuit\(^{28} \), where the variations are proportional to the ratio between the analog bandwidth \(B \) (for the case of the ADC LTC2145 is 750 MHz) and the phase noise bandwidth (actual Nyquist frequency, \(f_{\text{clk}}/2 \), according to the input frequency). On the other hand, the flicker phase noise is constant for all the input frequencies being the signature of pure \(\phi \)-type noise, because it is not affected by aliasing. FIG. 5(b) shows the comparison between the additive noise of the input stage (measured with no signal at the input) and the zero-crossings noise induced by acquiring a sine-wave input with a frequency of 125 MHz and an amplitude of 0.9 V. These two noise spectrums are approximately equal. It suggests that the phase noise is dominated by the additive noise of the input stage and that this noise source is independent of the operation point. This is verified later on with the AM measurements. Furthermore, it confirms the assumption that, in this case, the parametric noise of the input stage is negligible with respect to the additive noise.

In order to expose the aperture jitter, the frequency input was increased, augmenting the slew rate. FIG. 6 shows the comparison between the PSD of the phase noise estimated at three different carrier frequencies: 125 MHz, 250 MHz and 500 MHz. The contribution of the aperture jitter can be appreciated from 250 MHz, especially in the flicker region, and it is more evident at 500 MHz. For frequencies higher than the sampling clock, the phase noise bandwidth remains at the maximum value (\(M \) equal 1 for these cases), therefore the white phase noise floor reaches the minimum value. From these results we notice that the voltage noise induced by the aperture jitter starts to emerge at \(\nu_0 = 250 \) MHz. The contribution of the aperture jitter can be estimated by subtracting the additive noise from the measures done at \(\nu_0 = 250 \) MHz and at \(\nu_0 = 500 \) MHz (FIG. 7). The ADC aperture jitter presents a white phase-time noise of \(-350 \) dBs\(^2\)/Hz for \(\nu_0 = 500 \) MHz, decreasing proportionally.
FIG. 6. Power spectral density of voltage noise induced in ADC conversion by phase and time fluctuations. The acquisitions were performed with \(f_0 \) from 125 MHz to 500 MHz. The contribution of aperture jitter emerges at \(f_0 = 250 \) MHz.

FIG. 7. Power spectral density of ADC aperture jitter. The aperture jitter is revealed from \(f_0 = 250 \) MHz. This result was obtained by subtracting the input stage noise from the ADC phase noise measured at zero-crossings. The obtained aperture jitter is differential and not absolute because of the common noise cancellation. The time jitter rms (\(J \)) is around 25 fs\(_{\text{rms}}\) related to the silicon, consistent with the datasheet information providing the absolute value of 100 fs\(_{\text{rms}}\). The discrepancy could be due to the common noise rejection, estimating the residual aperture jitter for a single ADC channel. Additionally, the aperture jitter exhibits a flicker phase-time noise of -298 dBs\(^2\)/Hz at 1 Hz (\(\sqrt{k-1} = 1.3 \) fs), constant with respect to the frequency, signature of pure \(x \)-type noise.

The previous results were obtained from the analysis of a series of spectra changing the input frequency, which confirm the presence of the two noise contributions. A similar analysis is performed in FIG. 8, but changing the input amplitude instead of the input frequency. FIG. 8 shows the total ADC phase noise (\(S_{\phi,\psi} \)) at \(f_0 = 500 \) MHz when the aperture jitter is starting to emerge. It is seen that the total ADC phase noise is strongly dominated by the additive noise of the input stage, even if the aperture jitter is revealed. Moreover, it increases proportionally to \(1/V_0^2 \), as expected according to the model (7).

From the results, reported in the precedent figures, the ADC LTC2145 has an ultimate phase noise floor of -153 dBs\(^2\)/Hz (white) and -106 dBs\(^2\)/Hz @ 1 Hz given by the additive noise of the input stage under maximum sampling frequency and full input voltage range. This noise floor agrees with the results presented in\(^{21}\).

C. AM measurements

According to the model, the amplitude noise of the ADC is the superposition of the amplitude noise generated by the input stage and the voltage reference noise. Since the maximum voltage error induced by these noise contributions is generated at the points of maximum amplitude, they can be detected by sampling the peaks of the sine-wave. In order to guarantee the acquisition of these points, an input sine-wave of 31.25 MHz was used, i.e., quarter of the sampling clock (\(M=4 \)).

FIG. 9 shows the comparison between the PSD of the voltage error estimated under the three measurement conditions: with no signal at the input (\(S_{v,\psi} \)), at zero-crossings (\(S_{v,\phi} \)) and at peak values (\(S_{v,\alpha} \)). The results in common mode, depicted in FIG. 9(a), suggest that the AM and PM measurements were done at the proper operation point. FIG. 9(b) shows the PSD of the voltage noise before the common noise rejection, i.e., in single channel. It can be noticed that the contributions of the PI and the feedback loop bandwidth (39 kHz) are evidenced in zero-crossings (PM), while at the peak values (AM) and with no input signal they are negligible. Instead of that, harmonic contributions at 4.6 kHz are observed which might be caused by the signal generator and that are also rejected in common mode. These results confirm the capability of the method for discriminating the operation point (zero-crossings or peak values).

FIG. 10 depicts the comparison between the amplitude noise estimated using two different synthesizers for generating the 31.25 MHz input sine-wave, the Agilent E8257D and the Hewlett Packard 8640B. From the differential mode results (FIG. 10(b)), it is seen that the harmonic contributions around 4.6 kHz were caused by...
FIG. 9. a) The AM and PM noise are similar, it suggests that the input stage noise is equally distributed between the phase and amplitude noise. b) The zero-crossings and the maximum amplitude samples were well discriminated. While in zero-crossings is evidenced the feedback loop bandwidth (39 kHz) in maximum amplitude measurements this contribution is not observed.

FIG. 10. ADC AM noise comparison using two signal generators. The amplitude noise generated by the ADC was estimated at the maximum amplitude points of the sine-wave input signal where the effects of this noise is higher.

FIG. 11. Voltage Reference noise and its effect in single channel. It is seen that the amplitude noise generated by the input stage circuit is higher than this noise contribution and its effect is rejected in common mode.
phase noise around -140 dBc/Hz.

D. Interpretation of the ADC noise spectra

TABLE I reports the set of polynomial law coefficients that describe the ADC LTC2145 noise according to the model stated in (7) and based on the characterization results. These features can be compared with the performance of a generic analog mixer which has a flicker phase noise around -140 dBc/Hz at 1 Hz.

The main noise sources of a high resolution, two-channel ADC are exposed through a low computational cost method by acquiring synchronously two operation points of a sine-wave input signal: zero-crossings and peak values. From the measurements in single channel and in common mode, we have verified the proper discrimination of each operation point and the lack of correlation of the two ADC channels. According to their analysis, we conclude that the phase and amplitude noise are limited by the additive noise generated in the input stage which impacts similarly in these two ADC noise components (phase and amplitude). The voltage reference does not degrade the ADC acquisition even at maximum input voltage range. Albeit the aperture jitter does not have a high impact on the ADC phase noise in common mode, we could verify its properties and behavior. From these results we can claim that the ADC phase noise effects are lower at high sampling frequency and high input amplitude.

The technique for ADC noise characterization proposed here provides estimated amplitude and phase noise floors at frequency offsets close (down to 10 Hz) and far to the carrier (up to Nyquist frequency) which allows direct analysis for phase and amplitude noise metrology. It can be replicated for characterizing any high resolution ADC. The requirements are two-channel ADC, one DAC and a digital PI. For the nature of the digital processing the computational resources needed are not high: RAM blocks of 16 kB per channel and digital clock system at the maximum of the ADC sampling clock were used in the setup presented.

This work presents a differential ADC noise model, rejecting the common noise contributions. Alternatively,
Comte intended to support the PIA. Work, and by grants from the Region Bourgogne Franche under the Oscillator IMP project and the First-TF network. The EMRP is jointly funded by the ANR Programme d’Investissement d’Avenir (PIA) and collapse of the cross-spectral function. arXiv:1307.6605v1.

ACKNOWLEDGMENTS

This work has been funded by the EMRP program (IND55 Mclocks). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. This work was partly supported by the ANR Programme d’Investissement d’Avenir (PIA) under the Oscillator IMP project and the First-TF network, and by grants from the Region Bourgogne Franche Comté intended to support the PIA.

REFERENCES

10

The diagram illustrates a circuit with the following components:

- **Input Signal** ($v(t)$)
- **FM Input** (f_{clk})
- **ADC Dual Channel**
- **Down-Sampling** (M)
- **DAC Channel 1**
- **PI Controller**
- **FFT**

The frequency relation is given by:

$$f_s = \frac{f_{clk}}{M}$$
\[V_0 = \frac{125 \text{MHz}}{M} \]

\[V_0 = 0.9 \text{V} \]

![Diagram of an electronic system](image)

- ADC LTC2145 Dual Channel 14 Bits
- M Down-Sampling
- DEC+LPF x1, 10, 100...
- RAM 16384 data per channel
- Data averaging FFT Spectrum Analysis

\(\text{Clk (fs) 125 MHz} \)

DAC NXP 1401D125 Channel 1

ZYNQ

Red Pitaya
ADC LTC2145 Noise Characterization

\[h_{-1} = -107 \text{ dBV}^2 \]

-154 dBV^2/Hz

\[S_{vq} = -167 \text{ dBV}^2/\text{Hz} \]
ADC LTC2145 - PM Measurements

$h_1 = -107 \text{ dBV}^2$

Power Spectral Density [dBV2/Hz]

Frequency [Hz]
ADC LTC2145 Noise Characterization

\[h_1 = -107 \text{ dBV}^2 \]

-154 dBV^2/Hz
ADC LTC2145 Noise Characterization

Power Spectral Density [dBV²/Hz]

-100
-105
-110
-115
-120
-125
-130
-135
-140
-145
-150
-155

Frequency [Hz]

10^0
10^2
10^4
10^6
10^8

Input Stage Noise, 0Hz
PM, 125MHz
PM, 250MHz
PM, 500MHz

h_1 = -105 dBV²
h_1 = -106.5 dBV²
h_1 = -107 dBV²

-154 dBV²/Hz
ADC LTC2145 Noise Characterization - Fs=31.25 MHz

h_{-1} = -107 dBV^2

Power Spectral Density [dBV^2/Hz]

Frequency [Hz]

-105
-110
-115
-120
-125
-130
-135
-140
-145
-150
-155

2.3 kHz
38 kHz

-148 dBV^2/Hz
ADC LTC2145 Noise Characterization - Fs=31.25 MHz

$h_{-1} = -107 \text{ dBV}^2$

-148 dBV2/Hz

Input Stage Noise, 0Hz
- AM, 31.25MHz Agilent E8257D
- AM, 31.25MHz HP 8640B
ADC LTC2145 - CH1

- -100
- -110
- -120
- -130
- -140
- -150
- -160

Power Spectral Density [dBV²/Hz]

-139 dBV²/Hz
-148 dBV²/Hz

Frequency [Hz]

Input Stage Noise, 0 Hz
AM, 31.25 MHz Agilent E8257D
ADC Voltage Reference
ADC LTC2145 - Amplitude Noise

\(h_{s_{-1}} = -106 \text{ dB} \)

\(h_{s_0} = -144 \text{ dB/Hz} \)

\(h_{s_0} = -147 \text{ dB/Hz} \)