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Abstract—This paper focuses on the application of the theory
of periodically switched circuits and systems to the steady-
state and transient analysis of switching power converters. The
proposed methodology is based on the derivation of an augmented
companion network from topological inspection only. The above
interpretation turns out to be time-invariant, thus allowing the
frequency-domain analysis of the circuit by means of standard
tools for the circuit analysis. Two alternative methods are used
to compute the transient and the steady-state waveforms, namely
the inverse discrete Fourier transform (IDFT) and the numerical
inverse Laplace transform (NILT). The strength and the accuracy
of the proposed approach is demonstrated on a buck converter
via the prediction of its noisy absorbed current.

Index Terms—Frequency-domain analysis, transient analy-
sis,numerical inverse Laplace transforms, linear time-varying
circuits, switching converters.

I. INTRODUCTION

Nowadays, switching power converters are massively used
to supply energy to electrical and electronic equipments in dif-
ferent domains (e.g., integrated circuits, motherboard, satellite
communications, automotive applications) [1]. In spite of a
number of key advantages, switching converters are considered
as one of the main source of conducted emissions (CE) in a
power distribution network. Due to the commutations of the
internal switches, the converters are characterized by noisy
absorbed currents which exhibit a complex dynamical behavior
with a rich spectrum content. Within the electromagnetic com-
patibility (EMC) scenario, the spectral level of the absorbed
currents must be kept under control during the design phase,
to comply with the stringent EMC regulations [2].

During the last decades a number of different techniques
and strategies for the frequency-domain analysis of switching
circuits have been proposed with the aim of providing a
robust and accurate simulation framework [3]–[7]. Operating
in frequency-domain has a number of important advantages
with respect to the standard time-domain analysis: (i) it
directly provides the steady-state responses of the circuit
without waiting for the evolution of a possible long initial
transient; (ii) it avoids any issue related to the proper choice
of the integration time step and waveform windowing; (iii)
it allows to include frequency dependent elements such as
lossy transmission line in the frequency-domain simulation
framework without additional efforts.

The main differences among the available methodologies
reside in the definition of the kernels needed to analyze the

circuit in frequency-domain. Recently, an effective frequency-
domain alternative has been proposed, where a switching
circuit is interpreted in terms of an augmented linear time-
invariant (LTI) network built from the information of the
circuit topology only [8]–[11]. This solution allows to com-
pute the steady-state response of the circuit by means of a
frequency-domain analysis carried out using standard tools for
circuit analysis, as SPICE [11]. It is important to remark that
the above interpretation can be considered as a linear version
of the harmonic balance technique widely adopted for the
steady-state analysis of a non-linear network [12].

The aim of this work is to extend the aforementioned
augmented frequency-domain modeling framework to include
the transient behavior of the network variables. This can
be accomplished via a pure frequency-domain approach as
the superposition of the circuit responses to a series of
harmonic excitations via either the inverse discrete Fourier
transform (IDFT) or the numerical inverse Laplace transform
(NILT) [13]. The strength and the accuracy of the proposed
approach is demonstrated on a open-loop buck converter.

II. ILLUSTRATIVE EXAMPLE: BUCK CONVERTER

The switching buck converter of Fig. 1 is used hereafter
in this paper as an illustrative example for the proposed for-
mulation. The converter operates in continuous mode and the
MOS is driven by a periodical square-wave with a switching
frequency fc = 250 kHz and duty cycle D = 50 %.
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Fig. 1. Buck converter with its relevant electrical parameters and variables.
The circuit elements take the following values: E = 5 V, L = 50µH, C =
44.1µF, R = 5 Ω [15].

According to the classification in [14], when the two non-
linear elements of the network are replaced by two switches
with a well-defined periodic behavior, the converter can be
considered as a periodical linear time-varying system.



III. STEADY-STATE ANALYSIS OF SWITCHING
CONVERTERS VIA THE AUGMENTED REPRESENTATION

This Section briefly introduces the main concepts behind the
frequency-domain steady-state analysis of a switching circuit
based on an augmented time-invariant representation [8]–
[11]. The proposed formulation is derived from the Fourier
expansion of the steady-state response of a generic variable of
a switching circuit to a monochromatic excitation at angular
frequency ω0 [16]. As an example the absorbed steady-state
current is(t) of the converter in Fig. 1 writes,

is(t) ≈
+N∑

n=−N
Is,n exp(j(nωc + ω0)t), (1)

where ωc = 2πfc is the switching angular frequency related to
the periodic behavior of the switches, Is,n are the coefficients
of the Fourier series and N is the number of the positive
harmonics considered in the truncated expansion.

Following the procedure in [8]–[11], the Fourier expansion
in (1) suggests an augmented representation of the variables
of the switching converter, where all the node voltages and the
branch currents of the original circuit are replaced by (2N+1)
new nodes and branches representing the harmonic coefficients
of the augmented representation.
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Fig. 2. Generic switch with a periodic time-domain behavior.

A. Augmented circuit interpretation

According to [11], the v-i characteristic of a generic switch
with periodic commutations as the one shown in Fig. 2
involves a fully coupled relation between the spectra of the
voltage V (ω) and current I(ω), via following admittance
operator:
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where Vn and In represent the coefficients of the staedy-state
representation in (1) of the voltage and current of the switch.

The entries Yn,k of the above (2N+1)×(2N+1) augmented
admittance matrix Yk of a generic k-th switch are known
terms, which are univocally defined by the coefficients of the
Fourier expansion of the time-domain behavior of the switch.

Similarly, the corresponding augmented representations of
the time-invariant elements of the circuit turn out to be diag-
onal impedance or admittance matrices, e.g., In = j(nωc +
ω0)CVn for a capacitor.

Based on the above interpretation, all the elements of a
switching converter like the one of Fig. 1 can be suitably re-
placed by their augmented replica, leading to above mentioned
linear time-invariant circuit which becomes (2N + 1) times
larger then the original one.

B. Frequency-domain steady-state solution

The above augmented circuit can be solved directly in the
frequency-domain via standard tools for circuit analysis (e.g.,
the modified nodal analysis (MNA) [17] or SPICE), leading to
the solution of the augmented nodal quantities that correspond
to the harmonics of the corresponding steady-state voltage and
current responses of the switching circuit.

The proposed approach has been applied to the converter
of Fig. 1. Figure 3 compares the steady-state behavior of the
current is estimated via the proposed augmented formulation
and an expansion order N = 120, with the result of a time-
domain Simulink simulation within the Matlab environment.
The augmented time-invariant approximation allows to accu-
rately predict the steady-state behavior of the absorbed current
of the converter via a single frequency simulation with a
remarkable simulation time (less than 1 s).
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Fig. 3. Steady-state behavior of the input current is(t) of the buck converter
of Fig. 1. The results of the proposed augmented frequency-domain approach
(dashed red curve) are compered with the results of a standard time-domain
simulation (blue curve).

It is important to remark that the augmented replica of
the circuit provides the steady-state behavior of the circuit
variables by neglecting the transient portion of their responses.
This idea represents an accurate, robust and fast tool for the
CE analysis.

IV. TRANSIENT ANALYSIS OF SWITCHING CONVERTERS
VIA THE AUGMENTED REPRESENTATION

This Section focuses on the transient analysis of the open
loop buck converter of Fig. 1 via the augmented formula-
tion discussed in the previous Section and two different ap-
proaches: the IDFT and NILT, respectively. In this preliminary
work, the main limitation is that the proposed approach does



not allow to account for the effect of a control system on the
transient behavior of the converter.

A. IDFT

For the sake of simplicity, the discussion starts by recalling
the well-known relation between the transient response of
a variable of a LTI network and its corresponding transfer
function and excitation in frequency-domain. As an example
the absorbed current is(t) of the circuit in Fig. 1 for a fixed
position of the switches writes:

is,LTI(t) =

∫ +∞

-∞
H(jω)E(jω) exp(jωt)dω (3)

where E(jω) is the Fourier transform of the circuit excitation
e(t) and H(jω) = Is(jω)/E(jω) is a standard transfer
function of an LTI network.

In general, the above integral does not guarantee an analyti-
cal closed-form solution, and therefore it has to be discretized
and implemented in a numerical code by means of the IDFT
which writes,

ĩs,LTI(t) =

+M∑
m=-M

H(jmωs)E(jmωs) exp(jmωst) (4)

where (2M+1) is the number of frequency samples E(jmωs)
accounted in the expansion and ωs = 2πfs is the angular
sampling frequency.

Equations (3) and (4) can be generalized for the case of a
switching circuit. As an example, the time-domain response of
the current is(t) of the buck converter during its working con-
dition can be directly and univocally calculated by means of
the mixed-domain transfer function H(t; jΩ) defined in [14],
via the following relation:

is(t) =

+∞∑
n=-∞

∫ +∞

-∞
Hn(jΩ) exp(j(Ω+nωc)t)E(jΩ)dΩ, (5)

where the terms Hn(jΩ) are estimated from the responses of
the augmented circuit to a single tone excitation at angular
frequency Ω.

Similar to (4), the above integral is replaced by a sum
collecting (2M + 1) discrete samples of the spectrum of the
excitation E(jΩ), leading to the following sum of IDFT,

ĩs(t) =

+M∑
m=-M

+N∑
n=-N

Hn(jmωs) exp(j(mωs+nωc)t)E(jmωs).

(6)
Due to the discrete approximation of the spectrum E(jω),

the current ĩs(t) in (6) turns out to be a periodic representation
of the real current behavior is(t),

ĩs(t) =

+∞∑
n=−∞

is(t− nTs), (7)

where the period Ts = 1/fs depends on the sampling angular
frequency ωs = 2πfs.

The time-domain periodization in (7) unavoidably leads to
aliasing errors and demands for suitable counter-actions for
improving the accuracy of the predicted responses. As an
example, the Heaviside unit-step function u(t), that is possibly
used to represent the activation of dc excitation E in the
schematic of Fig. 1 (i.e., e(t) = 5u(t)), has to be approximated
by a periodic square-wave signal ũ(t) ≈

∑
n ΠT (t − nTs)

which can be represented via its Fourier series with a discrete
spectrum. The two parameters T and Ts can be defined by
the empirical rule Tw ≤ T ≤ Ts, where Tw is the observation
time of the transient simulation (maximum time considered in
the simulation).

In circuits with low-frequency dominant poles, such as the
buck converter in Fig. 1, the aliasing error can compromise
the accuracy of the transient results, as highlighted in Fig. 4.
However, this issue can be easily overcome by increasing the
period Ts of the signal ũ(t), with a possible detrimental impact
on the simulation time.
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Fig. 4. Comparison between the results of a transient simulation of the
absorbed current is(t) at the input port of the buck converter in Fig. 1 provided
by the IDFT approach with Tw = 0.205 ms, T = 0.22 ms and Ts = 0.28
(dashed red curve) and the results of a standard time-domain simulation (blue
curve).

B. NILT
In order to partially overcome the aliasing effect, an al-

ternative approach for the transient analysis based on the
NILT has been applied to the transient analysis of the buck
converter, along with the augmented representation in the
Laplace domain. The key idea is to consider the product of
the circuit variables with a dumped exponential term exp(−ct)
with c ≥ 0 to ensure their convergence to zero when time goes
to infinity.

As an example, the absorbed current is(t) can be written
as is,c(t) = is(t) exp(−ct)u(t). The above interpretation
corresponds to calculate the unilateral Laplace transform of
the current is(t), since:

Is(s) = L {is(t)}(s) =

∫ +∞

0

is(t) exp(−st)

= F{is(t) exp(−ct)}(c+ jω) (8)



where s = c+ jω is the complex frequency.
In order to minimize the aliasing, the damping term c

defining the region of convergence of the Laplace transform
can be obtained from the following empirical expression:

c =
2 ln(M)

Tw
(9)

where M is the number of the positive frequency samples and
Tw is the observation time.

The transient analysis can be obtained from the transfer
function H(t; jΩ) by replacing the frequency-domain variable
jΩ with complex frequency s = c + jΩ, leading to its
corresponding representation in the Laplace domain H(t; s).
According to [13] and the previous definitions, the inverse
Laplace transform and therefore the transient responses of the
switching circuit variables can be obtained numerically from
the DIFT via the following simple relation,

is(t) = exp(ct)F−1{Is,c(c+ jω)}. (10)

The proposed approach based on the NILT has been applied
to compute the transient behavior of the absorbed current
is(t) of the buck converter in Fig. 1, again by considering
a voltage excitation e(t) = 5u(t). Figure 5 compares the
simulation results obtained via a standard time-domain sim-
ulation in Simulink and the predicted response obtained via
the augmented formulation and the NILT with N = 120 and
M = 120. The above comparison highlights the excellent ac-
curacy of the predictions obtained via the proposed simulation
strategy, with a reasonable simulation time on the order of 10 s,
which is even less than the time required to compute the time-
domain response of the same switching circuit via a classical
SPICE or Simulink simulations.
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Fig. 5. Transient simulation of the absorbed current is(t) at the input port of
the buck converter in Fig. 1. The results of the proposed augmented s-domain
approach (dashed red curve) are compared with the results of a standard time-
domain simulation (blue curve).

It is important to remark that the above Laplace framework
also allows to compute the steady-state circuit responses
directly by setting c = 0.

V. CONCLUSIONS

This paper collected some preliminary and stimulating re-
sults on the application of a frequency-domain technique to

the steady-state and transient analysis of a switching converter.
The propose approach is based on an augmented representation
of the switching circuit, suitably derived from the topology of
the network in which all the switching elements are replaced
by their linear time-invariant approximation. The circuit re-
sponse is computed using either the inverse discrete Fourier
transform or the numerical inverse Laplace transform, being
the latter a better solution for this class of circuits, leading
to a remarkable accuracy and efficiency. The strength and
the accuracy of the method has been demonstrated through
the prediction of the absorbed current of a switching buck
converter.
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