POLITECNICO DI TORINO
Repository ISTITUZIONALE

Leveraging SDN To Improve Security in Industrial Networks

Original

Leveraging SDN To Improve Security in Industrial Networks / Cheminod, Manuel; Durante, Luca; Seno, Lucia; Valenza,
Fulvio; Valenzano, Adriano; Zunino, Claudio. - ELETTRONICO. - (2017). (Intervento presentato al convegno 13th IEEE
International Workshop on Factory Communication Systems tenutosi a Trondheim (NO) nel May 31 - June 2)
[10.1109/WFCS.2017.7991960].

Availability:
This version is available at: 11583/2673926 since: 2021-01-28T18:24:08Z

Publisher:
IEEE

Published
DOI:10.1109/WFCS.2017.7991960

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

07 May 2024

Leveraging SDN To Improve
Security in Industrial Networks

Manuel Cheminod, Luca Durante, Lucia Seno, Fulvio Valenza, Adriano Valenzano, Claudio Zunino
National Research Council of Italy (CNR-IEIIT), Corso Duca degli Abruzzi 24, 1-10129 Torino, Italy
Emails: {manuel.cheminod, luca.durante, lucia.seno, fulvio.valenza, adriano.valenzano, claudio.zunino} @ieiit.cnr.it

Abstract—In recent years, several important initiatives have
appeared worldwide, aimed at bringing significant innovation
in industrial networked systems (INSs). As an example, the
Industry 4.0 and Factory of the Future frameworks are paving
the way to modern intelligent factories, where issues such
as the communication complexity between smart devices and
system on-the-fly reconfiguration are dealt with in efficient and
cost-effective manner. However, global connectivity also implies
constant increase of cyber threats targeting industrial systems,
so security must be considered since the very beginning when
new appealing solutions need to be conceived.

In this paper, we exploit the innovative Software Defined
Networking (SDN) paradigm to introduce improvements in
managing the network infrastructure of INSs, as this can help
in reducing the management costs and complexity. In par-
ticular, enhanced SDN functionalities are adopted, which are
able to provide security support in additions to their native
switching/routing functionalities. The paper also shows how this
approach can overcome some limitations of many current INS
security architectures. The feasibility of the proposed solution is
confirmed by the development of a simple laboratory prototype
based on commodity hardware, and used to obtain some prelim-
inary evaluation of the achievable functionality and performance
benefits.

I. INTRODUCTION

Since some years academy and industry have been focusing
researches and investments on setting the stage for a new
generation of advanced industrial networked systems (INSs).
Factory of the Future [1] and Industry 4.0 [2] are two clear
examples of initiatives that share ambitious technical goals
such as the ability, in future factory automation systems, to
manage more and more complex communications between
smart devices or the capability to orchestrate modular sys-
tems connected in heterogeneous and distributed architectures.
Other significant investigations are oriented at satisfying the
demand for exceptional (real-time) flexibility of both produc-
tion and plants.

As a matter of facts, however, all evolutionary scenarios
consider the INS communication infrastructure and its security
as critical issues, since the exposure to cyber-threats, which
already affects many INSs today, is expected to increase
dramatically in the near future.

As the size and complexity of INSs increase, the correct
configuration of traffic control and security devices becomes
a harder and harder task. Moreover, too frequently this burden
relies on special proprietary software applications, which are
difficult or even impossible to integrate in a general manage-
ment framework. A mandatory requirement is then introducing

flexibility directly in the network infrastructure and devices, so
that new communication needs, that can appear dynamically
in the system, can be satisfied in a timely and efficient manner.

One viable solution is moving the management of both
the network traffic and its security to a more abstract and
global level not based on the device-by-device configuration
approach, thus decoupling the control and (low-level) data
planes. High-level strategies and policies can then be enforced
in the devices if they support a way for software-programming.
These concepts are the core of the Software Defined Net-
working (SDN) and Network Function Virtualization (NFV)
paradigms. SDN, in particular, separated the control and data
planes and provides an open and standard interface to enable
the programmability of the network, while NFV offers a
virtual execution environment to run network and security
functions independently of the underlying physical equipment.
As a consequence, any security application, such as a firewall,
can be run on commodity hardware as an instance of plain
software.

To exploit the power of SDN and NFV, this paper proposes
the adoption of active SDN switches (called A-switches in the
following), which are able to host security applications besides
their native switching/routing functionalities. A-switches in-
clude native support for global management because of their
SDN nature, and also allow the dynamic deployment and
reconfiguration of security mechanisms in an efficient and
distributed fashion.

The paper is structured as follows. Section II summarizes
some limitations of current approaches to INS security that are
relevant to this paper. Section III deals with the introduction
of SDN and NFV in industrial networked systems. Section IV
presents the proposed approach, while Section V describes a
small laboratory prototype implementation and discusses the
obtained preliminary results. Section VI recalls some relevant
works appeared in the literature and, finally, Section VII
concludes the paper.

II. INS SECURITY ISSUES

INS security is a manyfold and very complex process
[3], [4] involving aspects such as identification of assets,
risk analysis and management, protection strategy definition,
countermeasures design, deployment and maintenance just to
mention a few.

Actually, the security of most INS infrastructures is ad-
dressed directly by means of dedicated devices. In particular,

office

Enterprise

Supervisory control

Shopfloor

Fig. 1. Typical INS architecture and (sub)network hierarchy.

defense against external threats is obtained by deploying
countermeasures (often referred to as security controls) at the
perimetral border of the whole system. Of course, malicious
entities attacking the system from its inside cannot be ne-
glected and must dealt with carefully.

For the purpose of this paper we take into account INSs
whose logical architecture resembles that shown in Fig. 1. In
practice, the system consists of a hierarchy of (sub)networks
interconnecting devices belonging to different subsystems.
Typical areas in this architecture are the following:

« shopfloor (e.g., automation cells) including intelligent
sensors/actuators and control/automation devices, such as
PLCs (Programmable Logic Controllers), HMIs (Human
Machine Interfaces) and robots;

« supervisory control including engineering workstations,
data servers, HMIs, SCADAs (Supervisory Control And
Data Acquisitions) and so on;

o enterprise including management and office-related
servers, workstations (e.g., Enterprise Resource Planning
servers, web servers, database servers) and the demilita-
rized zone (DMZ).

Fig. 1 also shows conventional placements for protection
devices, where the meaning of labels in the picture is the
following:

e (1) protection from unwanted accesses from/to the Inter-
net and separation of some (critical) services from the
plant;

e (2), (3) protection between different plant areas;

e (4), (5) protection between different subsystems in the
same area;

e (6) protection inside a (production/automation) cell at the
shopfloor level.

Indeed, for technical and financial reasons security devices
cannot be deployed everywhere and, consequently, the evalua-
tion of priorities plays a main role in finding suitable trade-offs
between protection coverage on the one hand and costs and
complexity of management on the other hand.

The most popular scheme adopted for securing INSs is
based on different levels of countermeasures that an attacker

has to face when moving from left to right in Fig. 1 (defense
in depth) [5]. Although this solution has several advantages,
it is not very flexible and efficient if implemented with
conventional technologies, in particular when communication
and security requirements change dynamically to adapt to
new fast-evolving functional needs, as it is likely to occur
in future automated production plants/machines. A typical
example of stiffness, from this point of view, is represented
by some widespread industrial protocols (e.g. Modbus/TCP,
Ethernet/IP) used to move commands and data at the shopfloor
level. Ad-hoc security mechanisms (i.e. deep packet inspec-
tion) are often needed in this case, that are embedded in
special devices to make protection effective. Unfortunately,
this also significantly decreases the ability to (re)configure
the network seamlessly when needs to do so arise during the
system operation.

In this paper we focus on firewalls as they are devices
widely used for INS protection. However, our proposal has a
broader scope and can be easily adapted also to other kinds of
security functions and countermeasures. In particular, we are
interested in those firewalls that are able to recognize and deal
with typical industrial protocols such as Modbus, OPC (Open
Platform Communications) or Ethernet/IP (e.g. [6], [7]). In
such a context, our approach aims at dealing with INS security
efficiently and flexibly, by equipping traffic control devices
(switches) with modular virtual functions able to implement
the required mechanisms in an optimized way. Classic aspects,
which are taken into account in this solution, are the following:

« needed number of firewalls, assuming an operating envi-
ronment where resources are limited (e.g., some current
solutions foresee the deployment of an industrial firewall
for every device to be protected, so leading to difficult
trade-offs in balancing costs and level of protection);

e impact on communication performance (e.g., delays in-
troduced by firewalls can become unacceptable in certain
operating conditions).

For example, in the remaining part of this paper we show
how the problem of delays introduced by firewalls (for both
general purpose and industrial protocols) can be tackled and
lessened at least, by distributing the set of filtering rules among
the available resources.

III. SDN AND INDUSTRIAL NETWORKS

Software Defined Networking is perhaps the most promising
paradigm for network management that has rapidly gained
consensus in many information technology communities [8].
SDN splits the management of network devices into two
disjoint layers, concerning, respectively, the control functions
(configuration and behavior commands) and data forwarding
(implementation of commands through low-level configura-
tion instructions). A central logical controller connecting all
devices is defined and deployed in the system, which is
responsible for sending commands to the devices themselves
through well defined protocols, so as to supervise the be-
havior of the whole network. Evident advantages of this are
augmented flexibility and management transparency, moreover

high level applications can be better integrated in the overall
system workflow and leverage physical resources in optimized
ways [9].

SDN also contributes to virtualize the network infrastruc-
ture, providing foundation for dynamic abstraction and sharing
of resources [10]. Indeed, management of virtual devices
is easier because of their software nature which exposes a
uniform interface through standard abstractions.

For this reasons SDN is receiving increasing attention for
industrial applications too, even though main instances of this
technology are at present found in general-purpose hardware,
supporting, in particular, the OpenFlow standard [11]. It is
worth remembering that Openflow forwarding devices (Open-
Flow switches) include flow tables and an abstraction layer
for secure communications with the centralized controller via
the OpenFlow protocol. In turn, flow tables consist of entries,
each one specifying how packets belonging to a specific flow
have to be processed and forwarded.

The introduction of SDN in industrial scenarios is quite
recent, but some promising results have started to appear [12],
[13]. Actually, these works confirm that SDN can offer clear
advantages also in industrial applications, though security
aspects of our interest, such as protection-in-depth and deep
inspection capabilities of industrial protocols, are not consid-
ered at all. A limitation of most solutions proposed so far is the
adoption of hybrid architectures including both SDN-enabled
devices and legacy industrial middleboxes. Actually, any de-
vice, which is not managed by the central controller, decreases
the system flexibility and, mostly important, may overrule the
coherency of deployed configurations. By contrast, approaches
that host network and security applications directly in the cen-
tral controller are not viable in many practical situations, since
the controller itself may either became a sort of performance
bottleneck or even an appealing target for DoS attacks (Denial
of Service attacks).

The proposal presented in the following takes full advan-
tage of SDN by adopting active SDN switches (A-switches)
equipped with a custom application layer to implement the
required network and security functionalities locally (that is
by hosting them on the switch which is well integrated with
the SDN controller). Main benefits obtained in this way are:

1) distribution of security applications over the network,
lessening problems such as bottlenecks and DoS attacks;

2) flexible, dynamic and optimal configuration/update of the
network, as A-switch functioalities can be moved through
the network according to different strategies and at a
different time;

3) reduction of both costs and complexity in deploying,
operating and managing the overall system, as A-switches
can be run on conventional hardware supervised by the
SDN controller.

IV. ACTIVE SDN SWITCHES

The basic structure of A-switches is shown in Fig. 2. From
a logical point of view, each device includes two functional

A-switch
o) SRR
> Ghoacooes
©
= o
< VF ~ control
L n [Out messages
.. A :
\ v
A
o)
>
I
%) \ SDN
. message
4 Traffic Flow ssages

Fig. 2. Active SDN switch architecture.

layers hosted on the same hardware and referred to as S-
layer and A-layer respectively. Basic S-layer functionalities
are provided by conventional SDN (Openflow-based) switches
and usually implemented by software applications. S-layer
manages the flow of network packets reaching and exiting
the device through its physical ports. The configuration of the
underlying flow tables establishes the actual behavior for the
switch.

The A-layer consists of a general-purpose software envi-
ronment where virtual functions (VFs) can be installed and
activated in a modular way. Any VF is implemented as a
software module connected to two logical network interfaces
labeled In and Out in Fig. 2. In provides the module with
packets to be analysed and processed, then resulting packets
are sent back through Out.

Connections between S-layer and VFs adopt couples of
virtual interfaces that enable packet transfers between the SDN
switch and the In/Out pair of each VF module. Flow-tables
are used by S-layer to route packets to/from the relevant VF
module.

This kind of architecture is quite flexible, as functions can be
developed and added to the base SDN switch as needed, that is
without requiring custom modifications of the existing switch
implementation. It is also worth noting that several VFs can
be concurrently active on the same hardware, and packets can
be forced to “traverse” ordered sequences of VFs by suitably
crafting flow rules to connect the In and Out pairs of different
VF modules. In this way complex per-packet analysis and
processing can be obtained in a modular way.

Configuration of A-switches occurs through the conven-
tional SDN support (i.e. the standard OpenFlow protocol in our
laboratory prototype) which enables the reception and interpre-
tation of commands sent by the SDN controller. Configuration
of VF modules, instead, is performed through a VF “module

manager” application which is hosted on each A-switch to
receive and process special messages from the controller.

A-switches can help with the implementation of many kinds
of network functions. For instance, services designed to change
the contents of specific packet fields such as the NAT (Network
Address Translation) can be easily obtained by configuring the
S-layer flow rules so as to forward packets to the NAT module
and return results back to the switch layer. Similarly, support
for anomaly detection can be added to A-switches as well: S-
layer flow rules can be configured to forward packets as usual,
while sending copies to a VF module performing anomaly
detection at the same time. In general, flexibility of flow rules
allows to treat different packet streams flowing through the
same A-switch with different VFs or even chains of VFs.

In our prototype implementation we leveraged rule selectors
of Openflow to implement basic and fast packet filtering and
then added more complex filtering operations (e.g., Deep
Packet Inspection) through another VF module (DPI) de-
veloped ad-hoc. Indeed, when Modbus/TCP messages are
considered, S-layer can be configured to recognize that a
deeper analysis is needed for packets addressing TCP port 502
so that they are routed to the DPI module. DPI, according to
configuration set by the VF module manager, processes the
incoming packets and, if specific criteria are met, forwards
them to the S-layer again through its Out port. More details
about the advantages achievable with this architecture are
also given in the following section together with a brief
comparison to traditional solutions in the light of drawbacks
of conventional firewall deployment discussed in Sec. II.

The ability to distribute filtering rules all over the system,
optimizing the use of resources, must be stressed once again
here. In fact, one main problem of firewalls implemented with
conventional technologies is the need to include the whole
set of filtering rules in their configuration. This might turn the
device into a real bottleneck, depending on the number of rules
to be checked, and also introduce excessive delays for packets
subject to real-time requirements. A-switches, instead, allow
to scatter the filtering activities in different network nodes and
also contribute to fully support the defence in depth strategy
with any kind of system topology.

V. LABORATORY TESTBED

To assess the validity of our approach we developed a
simple A-switch prototype to be configured with basic filtering
functions for both the S- and A- layers.

The switch has been implemented using common off-the-
shelf (COTS) hardware, as our main goal was evaluating the
approach feasibility and flexibility rather than optimizing its
performance. For this reason, low-cost Raspberry Pi 3 (RPi3)!
embedded devices were selected for their wide spread and
openness of the software environment. S-layer was based on
the Open vSwitch (OVS) [14] open source project running on
the RPi3 Linux (Raspbian) distribution. Each A-switch was
also equipped with two additional physical network interfaces

Thttp://www.raspberrypi.org/ (23 March 2017).

Y /
MB V/ MB
M1 SW1 -!'! sw3 P
o~ [" o~
Client -|’1 Server
C1 St
4
policies
MB MB
M2 SL2
Client Server
co Sw2 Sw4 s2
Fig. 3. Case study, with industrial firewall
mMB MB
M ASWA1 ASW3 SL1
Client Server
C1 St
MB MB
M2 SL2
Client Server
c2 S2

Fig. 4. Case study, with A-switches.

obtained by means of USB-to-Ethernet adapters, to reach
the total number of 3 Ethernet ports per device running at
100Mbit/s.

A custom VF module, implementing DPI for Modbus/TCP
messages was developed in C language and activated in the
A-layer of RPi3 nodes. This VF is able to analyze each
received packet and to look for matches with a set of filtering
rules involving Modbus/TCP specific commands parameters.
As pointed out in the previous section, a pair of /n and Out
ports connects the VF module to the S-layer (OVS). The
configuration of OVS flow rules defines which packets flowing
through S-layer have to be redirected to the DPI module.
Modbus/TCP packets are detected by checking the destination
TCP port number (port 502 for this kind of traffic). IP-level
filtering for other packets is also carried out through OVS and
flow rule configurations, that were suitably set to recognize IP
and TCP/UDP headers for acceptable flows.

The testbed structure shown in Fig. 3 can mimic a very
simple industrial subnetwork including two kinds of devices:
nodes appearing on the right side of the picture represent
equipment belonging to the shopfloor (e.g.: PLCs, intelligent
sensors/actuators) while devices on the left side host client
applications that are placed in the supervisory area. Shopfloor
devices, in particular, are Modbus slaves (SL1, SL2) and
http servers (S1, S2). In this scenario, Modbus slaves accept
requests and provide response data to masters M1 and M2.
Communications are established through the Modbus/TCP

TABLE I
DESCRIPTION OF FLOWS IN THE CASE STUDY.

source destination protocol frequency
M1 SL1 Modbus/TCP 100 ms
Mi SL2 Modbus/TCP 200 ms
M2 SL1 Modbus/TCP 200 ms
M2 SL2 Modbus/TCP 100 ms
Cl1 S1 ICMPHTTPHTTPS Is
Cl S2 ICMPHTTPHTTPS S
Cc2 S1 ICMPHTTPHTTPS Is
C2 S2 ICMPHTTPHTTPS Is
TABLE II
SET OF FILTERING RULES CONFIGURED ON FW FIREWALL.

n. source dest. protocol Modbus FC action
1 Cl S1 ICMP - allow
2 C1 S1 HTTP - allow
3 Cl1 S1 HTTPS - allow
4 C1 S2 ICMP - allow
5 Cl1 S2 HTTP - allow
6 C1 S2 HTTPS - allow
7 C2 S1 ICMP - allow
8 Cc2 S1 HTTP - allow
9 Cc2 S1 HTTPS - allow

10 Cc2 S2 ICMP - allow

11 Cc2 S2 HTTP - allow

12 Cc2 S2 HTTPS - allow

13 Ml SL1 Modbus/TCP 3,16 allow

14 M1 SL2 Modbus/TCP 3, 16 allow

15 M2 SL1 Modbus/TCP 3, 16 allow

16 M2 SL2 Modbus/TCP 3,16 allow
* ANY ANY ANY ANY deny

protocol. Servers S1 and S2, instead, expose diagnostic web
pages to clients C1 and C2. Communication flows involved in
the testbed are summarized in Tab. I. To keep the prototype
manageable, instances of the same role have been implemented
as independent tasks and suitably grouped on few physical
nodes. This is shown by surrounding boxes in Figs. 3 and 4,
so that tasks playing the M1 and CI roles run of the same
device and so on.

When conventional technologies are considered, FW in
Fig. 3 is an industrial firewall available on the market [7],
which offers Deep Packet Inspection capabilities for Mod-
bus/TCP packets. In practice, FW is a protection device such
as the one labeled (3), which separates different plant areas in
Fig.1. Because of the position of FW in the network, the set of
filtering rules shown in Tab. II was adopted in our preliminary
experiments.

The scenario was then modified by replacing switches and
FW in Fig. 3 with A-switches as shown in Fig. 4. Of course,
no firewall is present in this SDN-based system architecture.
Because of the absence of the (quite expensive) FW device, the
new architecture is more flexible, robust and also symmetrical,
thanks to the addition of a direct link connecting ASW2
and ASW4 in Fig. 4. In this condition each A-switch was
loaded with a subset of the filtering rules listed in Tab. II.

TABLE III
SET OF FILTERING RULES CONFIGURED ON A-switches.
ASW1
n. source dest. protocol Modbus FC action
1 C1 S1 ICMP - allow
2 Cl S1 HTTP - allow
3 C1 S1 HTTPS - allow
4 Cl S2 ICMP - allow
5 C1 S2 HTTP - allow
6 Cl S2 HTTPS - allow
13 Ml SL1 Modbus/TCP 3, 16 allow
14 Ml SL2 Modbus/TCP 3, 16 allow
* ANY ANY ANY ANY deny
ASW2
n. source dest. protocol Modbus FC action
7 C2 S1 ICMP - allow
8 C2 S1 HTTP - allow
9 C2 N HTTPS - allow
10 C2 S2 ICMP - allow
11 C2 S2 HTTP - allow
12 C2 S2 HTTPS - allow
15 M2 SL1 Modbus/TCP 3,16 allow
16 M2 SL2 Modbus/TCP 3, 16 allow
* ANY ANY ANY ANY deny
ASW3
n. source dest. protocol Modbus FC action
(responses)
* ANY ANY ANY ANY deny
ASW4
n. source dest. protocol Modbus FC action
(responses)
* ANY ANY ANY ANY deny

Rules were distributed by taking into account that each switch
should check only packets received from directly connected
hosts (packets forwarded by other ASWs have already been
validated). For instance, ASW1 have to check only packets
coming from M1 and C1, while it may forward other packets
without any inspection.

The resulting rule distribution is shown in Tab. III. With this
assignment, ASW3 and ASW4 simply accept “response” mes-
sages without the need to perform any deep packet inspection.
This is coherent with the behavior of FW in Fig. 3.

A. Preliminary performance evaluation

Some preliminary performance tests were carried out with
our testbed. In particular, we focused on the RTT (Round
Trip Time) for request/reply pairs, involved in Modbus master-
slave communications, as the index of interest. Indeed, this
is a critical parameter in several industrial systems as high
RTT wvalues can violate timing constraints and affect the

40 1

20 .
ol ~

times [ms]

M1-SL1 M1-SL2 M2-SL1 M2-SL2
NE 12.045 20.800 21.447 30.168
FC 20.368 29.430 29.700 38.900
AR 12.447 21.303 22.050 13.700

Fig. 5. Average RTTs for each configuration and master-slave pair.

control action negatively. RTTs values were then measured
and compared for scenarios in Fig. 3 and Fig. 4.

For sake of clarity the reader must be warned that, in
doing this, we are neither investigating absolute performance
achievable with A-switches, nor comparing their filtering
capabilities to FW, but rather trying to have some indication
of the performance drops introduced by the two approaches
with respect to a reference situation where no filtering policy
is adopted. Detailed FW performance figures can be found
in [15], where also the methodology we plan to follow to
characterize the A-switches as a future work is described. Here
we consider the three following configurations:

N : all A-switches work as pure Ethernet devices, e.g., no
filtering is enabled (e.g., the network in Fig. 3 without
the FW device);

F : switches are configured as in the previous case, but FW
is deployed between SW1 and SW2 and configured with
the filtering rules in Tab. II;

A : the network in Fig. 4, where SDN features are activated in
all A-switches and filtering rules (as defined in Tab. III)
are applied for both generic IP packets and Modbus/TCP
specific messages.

For all configurations, four Modbus masters (two located
on M1 and two on M2) request and get data from slaves SL1
and SL2. A sequence of 7 Modbus requests was generated by
each master every 100ms. RTT was computed as the difference
between the last received response and the first issued request.
Average values were collected over 20 second time intervals
(that is, 200 request/reply exchanges). Results obtained for the
three configurations listed above are shown in Fig. 5. In the
figure M1-SL1 means exchanges between master M1 and slave
SL1 and so on.

Despite obtained results are very preliminary, they show
that:

« delays introduced by FW in filtering a sequence of seven
Modbus requests/replies exceed 8 ms on average. This
confirms that currently available industrial devices can
cause performance degradation.

o The SDN-based prototype implementation behaves even
better than expected, as it limits delay values to less than
1 ms, on average.

¢ Good communication performance on the M2-SL2 path
in the A configuration are due to the direct connection
between ASW2 and ASW4 (unavailable in the reference
architecture), that enables the flow of packets through a
shorter network path.

VI. RELATED WORKS

SDN-based virtualization and management of middleboxes
are recent issues in INSs. [16] and [17] pointed out the
policy enforcement problem in presence of middleboxes able
to alter packet flows. Also [18], [19] faced with middleboxes
to validate the correct policy enforcement by exploiting formal
methods and mathematical reasoning. [16] proposed a complex
technique to force packets to flow through a proper sequence
of middleboxes implementing policies correctly, where no
special middlebox deployment was required. The solution
described in [17], instead, is based on suitably tagging network
packets. In this case changes to middleboxes are needed
to manage tags correctly. Moreover, the SDN controller is
responsible for tracking semantics and instructing network
devices in both approaches. Our solution is not constrained by
the deployment of middleboxes. In fact, applications can be
properly combined and hosted on most convenient A-switches.

Deep packet inspection (DPI), which is needed by most
middleboxes dealing with layer 7 protocols, was investigated
in [20] and [21]. To limit computing costs, authors of [21]
proposed the design of DPI as a service running once for
each packet and able to forward relevant results to registered
middleboxes. Our approach, instead, addresses the middlebox
complexity by distributing their functionalities over the net-
work, whose topology is no longer constrained by physical
devices. In particular, network operations are performed by A-
switches as close as possible to packet sources, so minimizing
the number of hops and bandwidth usage.

Work in [12] tackled the deployment of DPI in SDN net-
works and authors concluded that the most efficient solution is
the inclusion of DPI software modules in OpenFlow switches.
Our work is similar to their approach from the point of view
of performance, but it is not limited to DPI as more general
issues are taken into account.

In [13] a suitable architecture is presented to include general
middlebox functionalities in Open vSwitch and focused, in
particular, on pure performance. As described in the previous
sections, Open vSwitch can be a good building block to
develop systems based on A-switches.

VII. CONCLUSIONS

This paper presented a novel approach to improve the IT
infrastructure management of industrial networked systems,

by leveraging the Software Defined Networking and Network
Function Virtualization paradigms. The adoption of active
SDN switches has been described, that are able to provide
network and security services in addition to their native
switching functionalities. To assess the validity of the proposal,
a laboratory testbed has been developed, which includes A-
switches implemented by means of COTS hardware and
open-source software. A preliminary evaluation confirms the
feasibility of the solution and a clear improvement in flexibility
and configurability. Of course, deeper investigations about
performance are still needed to better assess the achievable
benefits.

Future activities are then planned to extend the capabilities
of the SDN-based architecture in several directions. In partic-
ular they include more detailed analyses of filtering functions
and their distribution in a correct and optimized way. The
prototype will also be improved with a better version of the
VF manager, to deal with the dynamic scaling of resource
allocation to virtual functions. At the SDN controller level an
orchestrator will be developed, which is able to map high level
policies and requirements to low-level configurations of traffic
control devices deployed in the network.

REFERENCES

[11 A.-W. Colombo, S. Karnouskos, and J.-M. Mendes, Factory of the
Future: A Service-oriented System of Modular, Dynamic Reconfigurable
and Collaborative Systems. Springer London, 2010, pp. 459—481.

[2] H. Kagermann, J. Helbig, and W. Wabhlster, Recommendations for
Implementing the strategic initiative INDUSTRIE 4.0: securing the
future of German manufacturing industry; final report of the Industrie
4.0 working group. Forschungsunion, 2013.

[3] M. Cheminod, L. Durante, and A. Valenzano, “Review of Security Issues
in Industrial Networks,” vol. 9, no. 1, pp. 277-293, 2013.

[4] A. Ray, J. Akerberg, M. Bjorkman, and M. Gidlund, “Future research
challenges of secure heterogeneous industrial communication networks,”
in Proc. of the 21st IEEE Int. Conf. on Emerging Technologies and
Factory Automation (ETFA). IEEE, sep 2016, pp. 1-6.

[5] D. Dzung, M. Naedele, T. P. V. Hoff, and M. Crevatin, “Security for
industrial communication systems,” Proceedings of the IEEE, vol. 93,
no. 6, pp. 1152-1177, 2005.

[6] Moxa, EDR-810 Whitepaper, Mar. 2017. [Online]. Available:
www.moxa.com/product/EDR-810.htm
[7] Hirschmann Automation and Control GmbH, Tofino Xenon

security appliance, Mar. 2017. [Online]. Available: https://www.e-
catalog.beldensolutions.com/link/57078-24455-49853-411807/en/conf/0

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

(21]

B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Communications Surveys
Tutorials, vol. 16, no. 3, pp. 1617-1634, Third 2014.

H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 114-119, February 2013.

N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Computer Networks, vol. 54, no. 5, pp. 862 — 876, 2010.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

C. Cho, J. Lee, E. D. Kim, and J. d. Ryoo, “A sophisticated packet
forwarding scheme with deep packet inspection in an OpenFlow switch,”
in Proc. of the IEEE International Conference on Software Networking
(ICSN 2016). IEEE, may 2016, pp. 1-5.

E. J. Jackson, M. Walls, A. Panda, J. Pettit, B. Pfaff, J. Rajahalme,
T. Koponen, and S. Shenker, “SoftFlow: A Middlebox Architecture for
Open vSwitch,” in Proc. of the USENIX Annual Technical Conference

(USENIX ATC 16). USENIX Association, Jul. 2016, pp. 15-28.
B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,

J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vswitch,” in Proceedings
of the 12th USENIX Conference on Networked Systems Design and
Implementation. USENIX Association, Mar. 2015, pp. 117-130.

M. Cheminod, L. Durante, M. Maggiora, A. Valenzano, and C. Zunino,
“Performance of firewalls for industrial applications,” in Proceedings
of the 4th International Symposium for ICS & SCADA Cyber Security
Research. BCS Learning & Development, Aug. 2016, pp. 1-11.

Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” in Proceedings of the
ACM SIGCOMM conference on SIGCOMM (SIGCOMM ’13). ACM,
Aug. 2013, pp. 27-38.

S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags,” in Proc. of the 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14). USENIX
Association, Apr. 2014, pp. 543-546.

C. Basile, D. Canavese, A. Lioy, C. Pitscheider, and F. Valenza, “Inter-
function anomaly analysis for correct sdn/nfv deployment,” International
Journal of Network Management, vol. 26, no. 1, pp. 25-43, 2016.

F. Valenza, T. Su, S. Spinoso, A. Lioy, R. Sisto, and M. Vallini, “A formal
approach for network security policy validation,” Journal of Wireless
Mobile Networks, Ubiquitous Computing, and Dependable Applications
(JoWUA), vol. 8, no. 1, pp. 79-100, 2017.

M. Bouet, J. Leguay, and V. Conan, “Cost-based placement of virtualized
deep packet inspection functions in sdn,” in Proceedings of the IEEE
Military Communications Conference (MILCOM 2013). 1EEE, Nov
2013, pp. 992-997.

A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral, “Deep packet
inspection as a service,” in Proc. of the 10th ACM Int. Conf. on Emerging
Networking Experiments and Technologies. ACM, Dec. 2014, pp. 271—
282.

