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Abstract

Forthcoming manufacturing technologies hold the promise to increase multifuctional
computing systems performance and functionality thanks to a remarkable growth
of the device integration density. Despite the benefits introduced by this technology
improvements, reliability is becoming a key challenge for the semiconductor industry.
With transistor size reaching the atomic dimensions, vulnerability to unavoidable
fluctuations in the manufacturing process and environmental stress rise dramatically.
Failing to meet a reliability requirement may add excessive re-design cost to recover
and may have severe consequences on the success of a product.

One of the open challenges for future technologies is building “dependable”
systems on top of unreliable components, which will degrade and even fail during
normal lifetime of the chip. Conventional design techniques are highly inefficient.
They expend significant amount of energy to tolerate the device unpredictability by
adding safety margins to a circuit’s operating voltage, clock frequency or charge
stored per bit. Unfortunately, the additional cost introduced to compensate unre-
liability are rapidly becoming unacceptable in today’s environment where power
consumption is often the limiting factor for integrated circuit performance, and
energy efficiency is a top concern.

Attention should be payed to tailor techniques to improve the reliability of a
system on the basis of its requirements, ending up with cost-effective solutions
favoring the success of the product on the market. Cross-layer reliability is one of the
most promising approaches to achieve this goal. Cross-layer reliability techniques
take into account the interactions between the layers composing a complex system
(i.e., technology, hardware and software layers) to implement efficient cross-layer
fault mitigation mechanisms. Fault tolerance mechanism are carefully implemented
at different layers starting from the technology up to the software layer to carefully
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optimize the system by exploiting the inner capability of each layer to mask lower
level faults.

For this purpose, cross-layer reliability design techniques need to be comple-
mented with cross-layer reliability evaluation tools, able to precisely assess the
reliability level of a selected design early in the design cycle. Accurate and early
reliability estimates would enable the exploration of the system design space and the
optimization of multiple constraints such as performance, power consumption, cost
and reliability.

This Ph.D. thesis is devoted to the development of new methodologies and tools
to evaluate and optimize the reliability of complex digital systems during the early
design stages. More specifically, techniques addressing hardware accelerators (i.e.,
FPGAs and GPUs), microprocessors and full systems are discussed. All developed
methodologies are presented in conjunction with their application to real-world use
cases belonging to different computational domains.
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Chapter 1

Introduction

1.1 Motivation

Information technology is at the core of our society and it relies completely on the
design of electronic information processing systems. Today’s computing is a true
continuum that ranges from smartphones to mission-critical datacenter machines,
and from desktops to automobiles. On aggregate, these computing devices represent
a total addressable market approaching a billion processors a year, which is expected
to explode to more than two billion per year before 2020.

The computing industry move towards the computing continuum means that the
same key technologies and industrial players will act across all computing segments:
airplanes, automobile, buildings, health instruments, smartphones, tablets, desktops,
servers, datacenters, clouds, high-performance computing (HPC), etc. Therefore,
in the near future we will see embedded systems (ES) with HPC performance and
functionalities, HPC systems used in time and safety critical applications, cloud
resources used with very different business models, etc.

For more than three decades, industry has evolved by roughly doubling the device
density (and corresponding performance) every two years following Moore’s law.
However, future device integration technology is expected to dramatically reduce
the device quality, and therefore the operational reliability of circuits: as the transis-
tors and wires shrink, they show both larger differences in behavior although they
are designed to be identical (device variability, manufacturing defects, aging), and
higher susceptibility to transient and permanent faults (soft errors, wear-out). The
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great challenge for future technologies is building “dependable” systems on top of
unreliable components, which will degrade and even fail during normal lifetime of
the chip. Dependability is however not a quantitative term which is instead quantified
by reliability (i.e., continuity of correct service), availability (i.e., readiness for
correct service), safety (absence of catastrophic consequences on the user(s) and
the environment), maintainability (i.e., ability to undergo modifications and repair).
Reliability is the most often used concept in the industry and academia. Therefore,
without loss of generality, the word reliability will be employed for the rest of the
thesis when referring to all concepts related to dependability.

First studies addressing reliability with an engineering approach date back to
World War II and they were mainly devoted towards understanding the behavior of
electronic devices in presence of radiation. Alongside the military field, reliability
for digital circuits found application in the space domain as well as in medical fields
where radiation are involved. In recent years, as technology has progressed, new
reliability issues started to manifest in consumer devices. In fact, from one side there
was a reduction of cost associated to the production of digital devices benefiting
of the shrinking of circuits thanks to technological improvements; from the other
side reliability problems arose due to the manufacturing process and the dramatic
shrinking of the feature sizes.

In the industrial domain, nowadays, reliability is a fundamental aspect when a
new system is designed, as it influence its cost and success on the market. Some
techniques can be adopted to improve reliability of a digital circuit, but they come at
a price: they increase manufacturing and engineering cost. Moreover they usually
have a negative impact on performance, power consumption and area of the designed
products. Conventional design techniques expend significant amount of energy to
tolerate the device unpredictability by adding safety margins to a circuit’s operating
voltage, clock frequency or charge stored per bit. However, the rising energy cost
needed to compensate for increasing unpredictability are rapidly becoming unaccept-
able in today’s environment where power consumption is often the limiting factor
for integrated circuit performance, and energy efficiency is a top concern.
On one hand, if reliability was not taken into account, the designed system would
be very cheap despite a short lifetime. As a result, nobody would buy it, or, even
worse, the system would not be suitable to be employed as it would not meet the
reliability requirements. On the other hand, if reliability led to an over-designed
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system, a system with many reliability improvements, the lifetime of this product
would be excellent. However, the associated cost would grow exponentially along-
side the system performance degradation, making this product not competitive with
the others. In some cases, a negative return of investment would be unavoidable
because of over-design.

Much attention should be payed to tailor techniques for reliability improvements
on the basis of system needs, ending up with a cost-effective system successful on
the market. Finding the right balance among system reliability, cost and performance
is not an easy task and it usually takes some time during the different stages of the
design, thus increasing the time-to-market of the product and the possibility to have
a negative return of investment.

Implementing systems belonging to the computing continuum in this era, where
low reliability threatens to end the benefits of feature size reduction, requires a
holistic approach across different computing disciplines, across computing system
layers and across computing market segments to have a unique reliability assessment
methodology. The main goal of this thesis is to propose a framework addressing
the problem of having an early, fast, and accurate evaluation of computing systems
reliability to support design decisions for hardware and software reliability enhancing
mechanisms in the system. Such a framework will contribute to the continuation of
technology scaling benefits harnessing for several decades. Moreover, it will also
enable the implementation of the computing continuum that societal services demand.

Cross-layer reliability is one of the most promising approach to reliability, lever-
aging the many commonalities between different application domains and computing
disciplines in the next generation computing continuum. This methodology aims at
providing a reliability analysis despite differences among application domains and
computing systems by identifying their common aspects. It takes into account the
abstraction layers a system is composed of (i.e., technology, hardware and software
layers) and addresses their interaction. Consequently, resorting to a cross-layer
approach for reliability estimation enables the exploration and optimization of the
design space (performance, portability, energy efficiency, dependability, real-time
responsiveness) across different domains.

The benefits of an early and accurate methodology to estimate the reliability of a
system are many. First, a tool that yields early estimate allows designers to reduce the
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time-to-market (TTM) of all products, enabling the fast turnaround of proliferation of
computing systems tailored to customers’ needs. Nowadays, sometimes the system
must be re-designed several times in order to satisfy the target constraints because of
a worst-case approach, posing a serious threat to the success of the product. Second,
accurate reliability estimates allow developing the required cost- and energy-efficient
reliability solutions at the hardware and software layers. Such solutions can be only
developed if the expected reliability of the system can be quickly and accurately
assessed: (a) at different stages of the design flow (from design concept and early
design stages through first silicon validation and eventually during operation in the
field), (b) considering the impact of all hardware and software components, and
the different modes of operation (use cases) of the system. In detail, cross-layer
reliability allows to identify the most efficient protection mechanisms at different
system layers (technology, hardware architecture, software), thus exploiting the inner
capability of each layer to mask lower level faults. For this purpose, cross-layer
reliability design techniques need to be complemented with cross-layer reliability
evaluation tools, able to precisely assess the reliability level of a selected design early
in the design cycle. Accurate and early reliability estimates enable the exploration
of the system design space and the optimization of multiple constraints such as
performance, power consumption, cost and reliability. Finally, the development of
a reliable and dependable product that employs mechanisms to detect and handle
possible faults can reduce the overall life cycle cost.

Finally, targeting the entire emerging computing continuum is an ambitious
challenge since it requires methodologies and models to analyze reliability issues
belonging to different application fields and considering different components of
systems with different complexity. Technology, hardware components (e.g., CPUs,
GPUs, DSP, memories, peripherals, accelerators, interconnects), and software (sys-
tems and application) from different domains are to be addressed.

1.2 Goals

Traditionally, reliability estimation performed at different stages of the design cycle
can lead to “worst-case” decisions and over-designed systems. While the required
system reliability can be guaranteed, the cost of the employed reliability mechanisms
(in terms or area, energy/power, performance and money) and the design time re-
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quired for their integration and evaluation are both excessive. Moreover, standard
reliability evaluation approaches strongly rely on massive and time-consuming simu-
lations and/or fault injection campaigns, which are becoming a bottleneck with the
increasing complexity of computing systems.

The ultimate goal of my Ph.D. program is the development of new methodologies
and tools to evaluate and to optimize the reliability of complex digital systems, in the
context of a cross-layer reliability design. In this way, reliability of computing sys-
tems can be evaluated at each stage of the design cycle fast and accurately, providing
designers with a valuable support for reliability related decision-making process. As
a result, improved cost-related characteristics (area, energy/power, and performance)
and reduced TTM are also enabled.

The detailed objective of my Ph.D. are:

• To analyze the reliability of the different hardware components at different
levels of detail (depending on the design phase), emphasizing the role that
the interaction between hardware and software plays in the overall reliability
figure of the system.

• To design flexible, fast, and accurate reliability evaluation methodologies
and tools for the computing continuum. Offering a more accurate reliability
estimation allows to lead system designers to suitable decisions at intermediate
design stages, thus effectively reducing the reliability cost and the TTM,
consequently impacting the overall life-cycle cost.

• To comprehensively support the reliability decision-making process in comput-
ing systems exploiting the proposed reliability evaluation frameworks (method-
ologies and tools) that leads to meet the reliability constraints of the system
avoiding over-design.

• To validate and evaluate in detail the effectiveness of the proposed frameworks
in real-world systems belonging to the computing continuum domains.
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1.3 Structure of the thesis

An overview on reliability is presented in Chapter 2. In detail, at fist a definition
of dependability, faults, errors and failures is given. Then, this chapter introduces
the reliability metrics most commonly used when reliability is assessed. Finally,
the dependability threats are discussed alongside the related protection mechanisms,
focusing mainly on soft errors. This chapter also introduces the key concepts of
cross-layer reliability. More specifically, the main advantages enabled by this ap-
proach are discussed and analyzed. It follows a deep analysis about the impact on
reliability of all the layers a computing system is composed of and their interaction.

My Ph.D. activities covered several aspects of reliability, however they were all
developed in the context of cross-layer reliability. In detail, my contribution ranges
from reliability studies of hardware accelerators, GPUs, CPUs and digital systems.

Chapter 3 focuses on a methodology to enhance reliability leveraging reconfig-
urable computing. My contribution was the development of a new methodology to
increase fault tolerance of FPGA-based autonomous systems by means of partial
reconfiguration. The proposed methodology includes both a new FPGA-based sys-
tem architecture and a floor planning strategy. Main improvements with respect to
state-of-the-art solutions are the reduction (35x) of the required memory to store
bitstreams (configurations of the FPGA) and the reduction (4x) of the recovery time,
without any loss of performance and tolerating the same number of permanent faults.

A reliability framework for GPUs I developed to assess reliability fast and accu-
rately is introduced in Chapter 4. This framework is based on the publicly available
micro-architectural simulator Multi2Sim and it allows to analyze the reliability of
applications running on the Southern Islands AMD GPU architecture. The frame-
work allows designers to perform three different kinds of reliability analyses: fault
injection, architecturally correct execution analysis and Instruction Correlation anal-
ysis. The GPU hardware structures that can be analyzed are: the vector register
file, the scalar register file as well as the local data storage. Thanks to its flexibil-
ity, this framework can simulate different kinds of AMD GPU chips that differ on
their architectural parameters. This enables to easily explore several design spaces
and to understand their impact on the reliability, taking into account the executed
workload (software application). Moreover, the framework was employed for an
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extensive experimental campaign carried out in collaboration with the University of
Athens to compare the reliability of AMD GPUs and NVIDIA GPUs. Results of the
comparison are also reported and discussed in this chapter.

In Chapter 5, a methodology for cross-layer reliability evaluation of micropro-
cessor based systems affected by soft errors and permanent faults is presented. This
methodology takes into account the microprocessor architecture and the executed
software along with their interaction at the Instruction Set Architecture level. In
detail, it models the sequence of instructions executed by the microprocessor, and
the hardware resources used for their execution in the form of a Bayesian Network
that can be used to estimate the probability of fault propagation during the execution
of the application. This methodology introduces several advantages with respect to
current reliability evaluation approaches: a reduction of computation time (some
orders of magnitude if compared to micro-architectural fault injection) and high
accuracy (it provides results within 3% error margin with respect to results obtained
with fault injection).

A methodology to evaluate the reliability of a complex system in the presence of
soft errors, allowing the identification of the weakest components of the system is
reported in Chapter 6. This approach is based on a Bayesian model of the system
enabling a reliability analysis leveraging Bayesian reasoning. The Bayesian model
follows the cross-layer paradigm. In details, in the proposed model, network nodes
represent the system components, while arcs connecting nodes model relationships
between the different system components. This Bayesian Network can be split
into three distinct sub-networks, reflecting the main layers of the system: technol-
ogy, hardware architecture and software. This chapter aims at describing how the
model is built and which kind of reliability analysis can be performed resorting to
this methodology. In addition, a detailed description of the tools and techniques
employed to obtain numbers to populate the model at each system layer is given.
Finally, a validation campaign for this methodology is carried out by comparing the
obtained results against stat-of-the-art industrial workflows. The analysis concerns
reliability assessment of benchmark systems as well as real-life systems belonging
to the computing continuum. Chapter 7 introduces a design optimizer based on this
Bayesian model. More specifically, the optimization algorithm as well as results are
reported.
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Finally Chapter 8 concludes the dissertation summarizing the key aspects related
to reliability that have emerged and identifies the possible future works in this field.



Chapter 2

Dependability of digital systems

This section overviews basic dependability principles applied to digital systems. At
first, the concept of dependability is introduced. The concepts and the taxonomy
presented in Section 2.1 serve as the basis for the classification of reliability metrics
explained in Section 2.2. Dependability threats and dependability enhancing mecha-
nisms are analyzed in Section 2.3 and Section 2.5.
This thesis focuses mainly on reliability in presence of soft errors. For this reason,
specific subsections are added to analyzes into details these aspects.

2.1 Dependability

The term “dependability” covers different aspects of a system, it represents the
extent to which a system is expected to operate in compliance to its specifications.
Dependability involves several attributes [5]:

• Availability: readiness for correct service.

• Reliability: continuity of correct service.

• Safety: absence of catastrophic consequences on the user(s) and the environ-
ment.

• Integrity: absence of improper system alterations.

• Maintainability: ability to undergo modifications and repairs.
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Fig. 2.1 All the aspects of dependability.

Main dependability attributes, as well as dependability threats and means to
improve dependability are shown in Figure2.1. A definition of dependability threats
is the following:

Failure an event that occurs when the delivered service deviates from correct service.
A service fails either because it does not comply with functional specification,
or because this specification did not adequately describe the system function.
Correct service is delivered when the service implements the system function
[5]. Failures manifest at user domain.

Error part of the total state of the system that may lead to its subsequent service
failure. It is important to note that many errors do not reach the system’s exter-
nal state and thus do not cause a failure [5]. Errors manifest at informational
domain.

Fault adjudged or hypothesized cause of an error. A fault is active when it causes
an error; otherwise it is dormant [5]. Faults manifest at the physical domain.
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Among all the attributes of dependability introduced in Figure 2.1, this thesis
focuses on reliability. Reliability is the property of a system to behave properly for
a given period of time. In particular external agents, manufacturing processes as
well as stress can impact reliability of systems, changing their functioning. From a
theoretical point of view, reliability is defined as:

Reliability Reliability is a function expressing the probability of a system to behave
correctly, without any failure, in between a certain time interval [0, t]. There-
fore, system reliability, R(t), is the probability that the time to failure, T , is
grater than t:

R(t) = P{T > t} where R(0) = 1 lim
t→∞

R(t) = 0 (2.1)

The relation between reliability and failure is highlighted in Equation 2.2, where
F(t) is the probability of a failure to happen before time t:

F(t) = 1−R(t) = P{T < t}, f (t) =
dF(t)

dt
(2.2)

In fact, F(t) expresses the cumulative distribution function (CDF) of the failure
distribution f (t), that is the probability distribution function (PDF) of the failures.
When taking into account reliability constraints in the design of a system, fault
models alongside their failure distribution should be studied at first.

2.2 Reliability metrics of digital systems

Reliability of digital systems can be measured according to different metrics. This
section analyzes the main reliability metrics that are widely employed in state-of-
the-art studies. In details, each metric can be computed at every stage of the system
project, according to the needs of designers.
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2.2.1 Failure Rate

The failure rate is the frequency with which the system fails and it expresses the
number of failures per unit of time. If the Failure Rate is assumed as constant it can
be used to model the exponential distribution of failures and it is commonly indicated
as λ . A formal definition of exponential distribution applied in the reliability field is
discussed in Section 2.4.

2.2.2 Failures In Time

Digital systems are usually characterized by very low failure rates, consequently
another parameter derived from the failure rate is preferred: the Failures in Time
(FIT). The FIT is the number of expected failures in a billion hours of system activity.

FIT = λhours ×109 (2.3)

The most common approach employed to evaluate the reliability of a digital system,
expressed by FITS, consists of analyzing the FIT of each component of the system,
FITCi , individually and later combining them together according to:

FITS =
#components

∑
i

FITCi (2.4)

This formula can be employed when errors in each system component i are assumed
as independent.

2.2.3 Mean Time To Failure

Mean Time To Failure (MTTF) is the average time before the occurrence of a failure,
that is the expected value E(T ) of the failure distribution. It is strongly related to the
system reliability:

MT T F = E(T ) =
∫

∞

0
t f (t)dt =

∫
∞

0
R(t)dt (2.5)
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The MTTF is usually expressed in hours and it is a basic measure of reliability for
non-repairable items. For non-repairable items with constant failure rate:

MT T F =
1
λ

(2.6)

Finally, MTTF and FIT metrics are correlated as illustrated in Equation 2.7 (a
mnemonic rule of the correlation between FIT and MTTF is that an MTTF of 1000
years translates into a FIT rate of 114 FIT):

MT T F(years) =
109

FIT ×24hours×365days
(2.7)

2.2.4 Mean Time To Repair

Expresses the mean time to repair an error once it is detected. It therefore measures
the service interruption. This time is determined by the repair and recovery mecha-
nisms that a system is equipped with. It is a basic measure of the maintainability of
repairable items.

2.2.5 Mean Time Between Failures

The Mean Time Between Failure (MTBF) is the average time elapsing between two
failures of a system. MTBF is computed as the sum of two distinct contributions:
the Mean Time To Failure (MTTF) and the Mean Time To Repair (MTTR).

MT BF = MT T F +MT T R (2.8)

In particular, MTTR applies only for repairable systems, systems which include
repair mechanisms, in the other cases the MTBF is equal to MTTF.

2.2.6 Availability

Ability of a system to be in state to perform a required function at a given instant of
time or at any instant of time within a given time interval, assuming that the external
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resources, if required, are provided [6].

Availability =
MT T F

MT T F +MT T R
(2.9)

In conclusion, the smaller the MTTR the higher is the availability of the system.

2.2.7 Mean Workload To Failure

It captures the average amount of work between two errors and is useful to compare
the reliability of different workloads [7].

2.2.8 Mean Instruction To Failure

It expresses the average number of committed instructions in a microprocessor
between two errors [8].

2.3 Dependability threats

Dependability threats are necessary to understand and identify the weak points of the
system. As explained in Section 2.1 the dependability threats are generally described
by the concepts of faults, errors and failures (see Figure 2.2). Metrics introduced in
Section 2.2 related to dependability threats measure the probability of occurrence of
these events as well as the relations among these events.

2.3.1 Faults

Following the taxonomy of [5], the faults can be classified according to different
properties: the phase of creation or occurrence, the system boundaries, the phe-
nomenological cause, the dimension, the objective, the intent, the capability and the
persistence (Figure 2.3). Moreover, the concept of intermittent faults [9] has been
added to the used taxonomy in order to take into account the different nature and
impact of these faults.
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Fig. 2.2 The chain of dependability threats.

In the context of this thesis, only hardware faults are considered. Thus, the types
of faults that are covered are the following:

• Manufacturing defects: open or short circuits, parametric failures

• Physical deterioration: wear-out effects like NBTI, electromigration, TDDB,
HCI ...

• Physical interference: soft errors and electromagnetic interferences (EMI)

In literature, hardware faults are usually classified depending on their persistence,
other than their natual causes. According to Figure 2.3 there are three categories of
fault persistence:

• Transient faults: they have a limited duration and can be recovered by rewrit-
ing the affected resource or by a physical reset. There are different kinds of
transient faults, based on the affected resources:

– Single Event Upset (SEU): it is a bit-flip in a memory element. The
occurrence of SEUs depends on technology and environment, soft errors
in particular.

– Multiple Bit Upset (MBU): it is very similar to the SEU, but it affects
multiple bits. A MBU is defined as “any event or series of events that
cause more than one bit to be upset during a single measurement” [10].
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Fig. 2.3 Classification of faults.

– Single Event Transient: it is defined as a “momentary voltage excursion
(voltage spike) at a node in an integrated circuit caused by a single
energetic particle strike” [11] affecting logic gates behavior.
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– Single Event functional Interrupt: it is “a soft error that causes the
component to reset, lock-up, or otherwise malfunction in a detectable
way, but does not require power cycling of the device (off and back on)
to restore operability” [11].

– Single Event Latch-Up: it is a “abnormal high-current state in a device
caused by the passage of a single energetic particle through sensitive
regions of the device structure and resulting in the loss of device func-
tionality” [11].

• Permanent faults: they have unlimited duration and their origin is attributed
to manufacturing defects and physical deterioration. Once a resource is af-
fected by a permanent fault, it is impossible to restore operability of such a
resource.

• Intermittent faults: they are due to physical deterioration or residual defects,
not detected during manufacturing test, and activated only under some particu-
lar conditions. They are in the middle between permanent and transient faults.
“After their first appearance, they usually exhibit a relatively high occurrence
rate and, eventually, tend to become permanent” [12]. In detail, the most com-
mon intermittent faults are delay faults, these faults are provoked by wear-out
which alters the impedance of the circuits and consequently causes a delay in
the propagation of electrical signals. Even if a delay fault is present it does
not manifest all the times, since the delayed signal does not always influence
the output. Recovery from intermittent faults can be managed resorting to a
change of circuit operating parameters such as voltage and frequency.

2.3.2 Errors

When faults are activated, they result in errors. However, a large part of faults are not
activated but dropped. The possible outcomes of a single-bit fault in different states
have been classified in [13] and are represented in Figure 2.4. More specifically, as a
fault manifests it can be immediately detected and corrected by proper mechanisms.
In case neither correction nor detection are implemented the fault turns into an error
and it is classified as Silent Data Corruption (SDC). Conversely, if only detection
mechanism is present the fault is classified as Detectable Unrecoverable Error (DUE),



2.3 Dependability threats 21

this error category is divided into two types: False DUE, in case the error does not
affect the application outcome, and True DUE, in the opposite case.

The most common metrics employed for errors address both the probability of
occurrence of errors and the probability of activation of faults resulting into an error.
They are:

• SDC rate: it is the probability of occurrence of a fault to manifest as SDC.
[14]

• DUE rate: it is the probability of faults that are detected but cannot be
recovered.

• Architectural Vulnerability Factor (AVF): it measures the vulnerability of
a hardware structure to faults. AVF is defined as the probability that a fault in
particular structure will result in an error (i.e. SDC and DUE) [15].

• Program Vulnerability Factor (PVF): Captures the architecture-level fault
masking inherent in a program, allowing software designers to make quantita-
tive statements about a program’s tolerance to faults [16].

• Hardware Vulnerability Factor (HVF): Quantifies the vulnerability of hard-
ware structures to errors [16].

2.3.3 Failures

A failure of the system happens when the delivered service deviates from the correct
service. The way the service deviates from its correct execution is the failure mode
of the service. Figure 2.5 represents the set of failure modes of services proper of a
computing system, as defined in [5]. Beside its mode, a failure is characterized by:

• detectability: if the failure of the service can be detected and signaled to the
user;

• consistency: if the failure is perceived identically by all system users;

• severity: if the failure has a minor impact or catastrophic consequences. The
notion of failure severity is heavily dependent on the application domain.
There are no generic definitions of the severity of the system.
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Fig. 2.4 Classification of errors caused by faulty bits.

Fig. 2.5 Failure modes of computing systems.
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Metrics on failures for software application of digital systems

This thesis mainly focuses on microprocessor-based digital systems. For this reason,
this subsection briefly introduces their main failure metrics.

• Early timing failure rate: Probability of early timing failure.

• Late timing failure rate: Probability of late timing failure.

• Deadline miss ratio: Percentage of task deadlines missed in soft real-time
applications.

• Fatal Hardware Traps rate: Probability of Fatal Hardware Traps.

• Hang rate: Probability of failure due to a hang in the application or OS.

• Abnormal application exit rate: Probability of Abnormal Application Exit.

• High OS Activity rate: Probability of failure due to High OS activity.

2.4 Soft errors

This thesis focuses on soft errors are errors activated by Radiation Induced Faults
(RIF)[14] [17]. According to Figure 2.3, based on [5], RIF are operational faults
generated internally. These faults are accidental, non-malicious and non-deliberate.
RIF affect the hardware of the system and their effects are transitory. The causes
of RIF are natural, in detail, they can be produced due to different types of sources:
alpha particles, from packaging and neutrons, from the atmosphere. Radiation faults
are addressed with fault detection and error correction circuitry. Soft error caused by
intentional perturbations (attacks) are out of the scope of this work.

An alpha particle consists of two protons and two neutrons bound together into a
particle. Alpha particles are emitted by radioactive nuclei, such as uranium or radium,
in a process known as alpha decay. Alpha particles have kinetic energies of a few
MeV, which is lower than those of neutrons that affect CMOS chips. Nevertheless,
alpha particles can affect semiconductor devices because they deposit dense track
of charge and create electron-hole pairs as they pass through the substrate. Alpha
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particles can arise from radioactive impurities used in chip packaging such in the
solder balls or contamination of semiconductor processing materials. Alpha particles
are difficult to eliminate completely from the chip so chips need fault detection and
error correction techniques.

The neutron is one of the subatomic particles that make up an atom. Atoms
are considered the basic building blocks of matter and consists of three types of
subatomic particles: protons, neutrons and electrons. A proton is positively charged,
a neutron is neutral and an electron is negatively charged. An atom consists of an
equal number of protons and electrons and hence it is neutral itself. The neutrons
that cause soft errors arise when atoms break apart into protons, electrons and neu-
trons. Protons have a long half-life so can persist for longtime before decaying
and constitute the majority of the primary cosmic rays that bombard the earth’s
outer atmosphere. When these protons and associated particles hit atmospheric
atoms, they create a shower of secondary particles named secondary cosmic rays.
Untimely, the particles that hit the earth’s surface are known as terrestrial cosmic rays.

One key concept to explain the interaction of alpha particles with silicon is the
stopping power. Stopping power is defined as the energy lost per unit track length,
which measures the energy exchanged between an incoming particle and electrons
in a medium. Stopping power quantifies the energy released from an interaction
between radiations (alpha particles and neutrons) and silicon crystals, which in turn
can generate electron-hole pairs. About 3.6 eV of energy is required to create one
such pair. Whether the generated charge can actually cause a malfunction or a bit
flip depends on two factors named charge collection efficiency and critical charge of
the circuit that will be explained later.

Both alpha particles and neutrons can produce an electrical charge. When this
charge is sufficient to overwhelm a circuit, then it may malfunction. At the gate
or cell level, this malfunction appears as a bit flip. For storage devices, when a bit
residing in a storage cell flips, a transient fault is said to have occurred. In contrast,
for logic devices, a change in the value of the input node feeding a gate or output
node coming out of a gate does not necessarily mean a transient fault has occurred.
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In fact, a fault occurs only when this fault propagates to a forward latch or storage cell.

This minimum charge necessary to cause a circuit malfunction is termed as the
critical charge of the circuit represented as Qcrit. Typically, Qcrit is estimated in
circuit models by injecting different current pulses till the circuit malfunctions. Once
Qcrit is defined, the Soft Error Rate (SER) of a digital circuit can be computed
according to physical models. Hazucha and Svensson [18] proposed a model to
predict neutron induced SER:

Circuit SER = k×Flux×Area× e−
Qcriti
Qcoll (2.10)

Constant is a constant parameter dependent on the process technology and circuit de-
sign style, Flux is the flux of neutrons at the specific location, Area is the area of the
circuit sensitive to soft errors, and Qcoll is the charge collection efficiency, which is
the ratio of collected and generated charge per unit volume. Qcoll depends strongly
on doping and Vcc and is directly related to the stopping power, so the greater is the
stopping power, the greater is Qcoll. Qcoll can be derived empirically using either
accelerated neutron tests or device physics models, whereas Qcrit is derived using
circuit simulators. Finally, the impact of soft errors on future is reported in Appendix
A.

As anticipated in Section 2.2.1, exponential distribution is employed when a
constant failure rate, λ , is assumed. This is what happens for soft errors of digital
systems where the failure rate corresponds to the SER. In detail, the SER does not
change over the time, but it is mainly related to environmental parameters. On
the opposite, when considering wear out, the failure rate changes with time, as a
consequence, the exponential distribution cannot be used anymore.

From a theoretical point of view, the probability density function of a random
variable x and parameter λ with an exponential distribution is defined as:

f (x) = λe−λx , x ≥ 0 f (x) = 0 , x < 0 (2.11)
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The exponential cumulative distribution function can be computed as:

F(x) =
∫ x

−∞

λe−λxdx = 1− e−λx ⇒ R(t) = e−λx (2.12)

MTTF can be easily derived for exponential distribution from equation 2.5:

MT T F =
∫

∞

0
R(t)dt =

∫
∞

0
e−λ t dt =

∣∣∣∣∣−e−λ t

λ

∣∣∣∣∣
∞

0

=
1
λ

(2.13)

This result highlights the relation between the MTTF and the parameter λ , which is
the failure rate.
The most important property of the exponential distribution is the absence of memory
about what has happened in the past. In details, if the reliability function is computed
for T0 assuming the system is working properly at time T0 the reliability function is
not altered:

R(t|T0) =
P(T > t +T0)

P(T > T0)
=

e−λ (t+T0)

e−λT0
= e−λ t = R(t) (2.14)

This result underlines that the occurrence of a soft error does not influence the time
next error will appear.

2.5 Dependability enhancement techniques

This Section aims at introducing the state-of-the-art techniques employed to improve
the reliability of computing systems in presence of soft errors. A more detailed
analysis can be found in [19], here only the most relevant aspects are reported.

Modern and future systems are demanding more and more computational capa-
bilities, however, satisfying reliability of these systems represents a fundamental
requirement to achieve exascale performance [20]. Consequently, the designers
should consider reliability as one of first-order design constraints. This challenge
has attracted researchers attention in recent years and several solutions to improve
reliability of computing systems have been investigated.

Several approaches can be employed to improve dependability of a system im-
plementing different techniques to achieve error detection, diagnosis and recovery
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Fig. 2.6 The dependability enhancing mechanisms.

(Figure 2.6). The majority of current systems concentrate their reliability mecha-
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nisms at circuit and architecture level. In detail, techniques to improve reliability
of microarchitectural components target registers, functional units, cache and main
memories. These mechanisms involve one or two layers of the system stack (Figure
2.7), while the other layers of the system assume that the hardware operates reliably
and predictably since all the errors manifesting at hardware level are always corrected.
The main drawback of this approach is that worst-case scenarios are assumed when
designing protection mechanisms because of the lack of system-wide information.
As a result, convenience is emphasized over efficiency: more and more protection is
required to guarantee correct operational conditions alongside the constant increase
of failure rates due to soft errors, variation and aging of circuits as feature sizes shrink.

Fig. 2.7 The conventional approach to enhance reliability usually targets one or two layers of
the system.

2.5.1 The traditional approach

Nowadays, in scenarios such as aerospace, avionics and nuclear plants, where relia-
bility requirements are high, the typical solutions are based on resource replication.
To tolerate hardware errors, several copies of the same resource are computed in
parallel and later compared to check output consistency.
Several approaches were studied in literature targeting replication at different system
layers. Lyons et al. proposed Triple Modular Redundancy (TMR) in [21], this
technique was employed in the Fly-By-Wire mechanism of Boeing 777 [22]. TMR
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consists of three copies of the same hardware circuit sharing the input data, while
the output data is connected to a majority voter which is in charge to select the final
output. A similar approach was proposed at software level [23–26], where multiple
copies of software are executed on the same processor and later checked to detect
errors and correct it if required.
These techniques are very easy to implement and are not perceived by application
software, so that no additional efforts are required when designing new applications.
Despite these advantages, they are inefficient if adopted to modern systems. More
specifically, they are inefficient from an energy consumption perspective, since dupli-
cating computations to detect errors needs more than twice the energy, as comparing
the results of the two computations costs energy too. Having three and more copies
means increasing accordingly energy overheads due to multiple copies and more
complex voting mechanisms. Moreover, performance is also affected since resources
involved in the execution of the copies could be employed to carry out other tasks
and the voting introduces an additional time overhead.

Some other redundancy-based techniques were investigated in order to limit the
drawbacks of resource replication. Concerning protection mechanisms for L1 caches
Kim and Somani propose to employ dedicated error protection circuits for only the
most frequently accesses cache blocks [27].
Zhang et al. [28] propose to hold replicas of the active cache block in cache blocks
that are not accessed for long time period. In particular, they suggest two replication
algorithms. The first consists of replicating a block when the block must be written
and a cache miss happens. The second tries to replicate blocks every time they are
written.
Zhang [29] instroduces a small fully associative cache (R-cache) to store replica of
every block that is written in L1 data cache. For L1 chaches, thanks to high temporal
locality, only a few blocks of R-cache can accommodate data for almost all read hits.
However for L2 caches, characterized by lower temporal locality, the size of R-cache
would be very large, thus resulting in high dynamic energy overheads.
Sugihara et al. [30] propose a reliable architecture for caches based on reliable
cache ways composed of two or three cache ways holding the same data, enabling
respectively error-detection and error-correction mechanism in spite of a reduction
of cache capacity to 50% and 33 %.
A similar approach is presented in [31, 32] where unused registers are used to hold
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replicas of active registers. These techniques are usually characterized by negligible
reduction of register file capacity. However, some performance overheads are intro-
duced due to error-detection process.
Finally, Wells et al. [33] propose the possibility to limit redundancy for only high
reliable applications. More specifically, dual mode redundancy, enabling resource
duplication, is disabled for performance-oriented tasks, thus limiting performance
overheads.

Low efficiency and high costs of replication have led to the adoption of different
mechanisms for systems that can tolerate slightly higher error rates. In particular,
lower-costs solutions were studied for large memory arrays, such as error-correcting
codes [34, 35], and for datapaths, as residual arithmetic [36]. The adoption of these
solutions has grown alongside the error rates in order to guarantee constant reliability
performance. Unfortunately, for recent technologies the error rate and the number of
physical phenomena producing errors have increased so much that meeting reliability
requirements is becoming economically unsustainable.

Worst-case assumption are also employed to tolerate process variation and ag-
ing effects. Margining is the most widely-used technique consisting of testing the
maximum operating frequency at a given supply voltage of a device and then make
the device operate at lower clock frequency and higher supply voltage. In this way,
aging and adverse environment effects are mitigated. This approach wastes power
and performance and it is suitable in case intra-die device process variation and
aging are small enough to justify the margining drawbacks in favor of a simplified
design and low cost. However, this was the case of older fabrication processes. On
the opposite, as the feature size shrinks, margining is not a cost-effective solution
anymore due to the growth of intra-die variation and aging effects.

To conclude, state-of-the-art techniques to enhance reliability lead to inefficient
design, characterized by high energy consumption, poor performance and high costs.
Industry needs new approaches to cope with soft errors, variation and aging, making
technology shrinking profitable and more efficient. The keys to the solution that are
currently under investigation identified a common point: a cross-layer approach.
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2.5.2 Cross-layer reliability enhancement

Traditional solutions to improve system reliability have become too expensive to
copy with the challenges of future technologies. The main reason of their inadequacy
is that they operate at individual layers, without any information or assistance of the
other layers of the system stack, thus introducing burdensome overheads. The key
point introduced by cross-layer reliability design is to let cooperate all the layers of
the system stack in order to mitigate errors that are not managed efficiently at device
and circuit level. An accurate and deep analysis of the advantages that a cross-layer
reliability approach can enable is presented in [37]. Here the key aspects described
by this document are reported.

Fig. 2.8 Cross-layer information sharing and cooperation.

The cross-layer approach is shown in Figure 2.8 by an example. Supposing
that the application layer determines a bound on the value of a variable x, this
information is then shared among all the system layers, the opposite of what happens
for conventional systems. In the case the architecture layer detects a misbehavior, that
is x out of bounds, this information is again shared among all the system layers. More
specifically, the error is not immediately corrected by the layer that has detected it,
but it can signal the middleware and OS layers to contain and correct the error before
it becomes visible to the application. Indeed, the fundamental aspect of the cross-
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layer approach is the sharing and the cooperation of all the system stack, requiring a
radical change in the way computing systems are designed and engineered.

Some aspects related to the components of a computing system can be exploited
to move towards a cross-layer perspective:

• Hardware and software should be designed for repair. Computational organi-
zations should be prepared for error detection and a dynamic reconfiguration
to overcome error occurrence. In this context, mitigation of errors can be
managed by the cooperation across architecture and operating system.

• The capability of filtering error should be possible at different levels from
circuits through software applications. In a scenario where some circuits allow
errors to propagate to the other layers in which detection and correction mech-
anisms can take place, multilevel trade-offs between hardware and software
protections can be investigated to provide efficient solutions.

• Lightweight error checking mechanisms exploiting properties of software
applications and algorithms have the potential to increase efficiency letting
hardware operate safely on the edge of failure, avoiding energy consumption
overheads due to margining.

• Adapting system error rates to application reliability demands would increase
efficiency by tailoring circuit properties and hardware resources. This solution
requires a computing system composed of different components with the same
functionality but different implementation and features (i.e., reliability, power
consumption and performance).



Chapter 3

Fault tolerance in autonomous
FPGA-based systems

This thesis mainly focuses on reliability evaluation of systems composed of off-
the-shelf components. However, this Chapter provides a methodology to enhance
reliability of FPGA-based systems. Reliability evaluation and fault tolerant design
are difficult tasks when off-the-shelf components are employed. For this reason,
Field-Programmable Gate Arrays (FPGAs) are becoming widely employed in critical
applications, where lifetime and system dependability must be improved since they
represent a neuralgic point of the system. This chapter addresses the study of a
methodology to increase fault tolerance in autonomous FPGA-based systems. Part
of this chapter was previously published in [1]. More specifically, the presented
methodology aims at protecting the system from both permanent and transient faults
by means of Dynamic Partial Reconfiguration (DPR) of the FPGA. DPR is employed
to correct faults exploiting reconfiguration of faulty modules at run-time, without
stopping the FPGA modules which are working correctly. A design flow and a
partitioning strategy to maximize the number of permanent faults the system can
tolerate are proposed.

3.1 Introduction

FPGA are increasingly employed in many application domains, ranging from ASICs
(Application Specific Integrated Circuits) prototyping, datacenters [38] to embedded
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systems in critical scenarios (i.e., automotive [39] and aerospace [40]). Safety-critical
scenarios, in particular, require high reliability, availability and lifetime. FPGAs are
well suited to deliver the needed dependability requirements thanks to their high
flexibility, reconfigurable characteristics and limited non recurrent engineering cost.

FPGAs are reprogrammable circuits composed of different kinds of blocks
connected by reconfigurable wires. The blocks an FPGA is composed of can be:
logic blocks, where logic gates are accommodate, RAM blocks (BRAM) containing
memory arrays, and other types of block which are specific of FPGA models. In
order to work correctly, the device must be configured according to the tasks required
by the running applications. More specifically, the FPGA provides a configuration
memory which is written with the appropriate configuration file, named bitstream.
In recent years, DPR was introduced [41], enabling the possibility of reconfigure
just a portion of circuit while the reminder of the device continues to work properly.

An effective system maintenance can be carried out by means of DPR remotely,
on-site or at run-time. In the case availability is a top concern, remote maintenance is
not always possible and, in addition, it is a slow process. Autonomous Fault-Tolerant
Systems (AFTS) can overcome availability issues leveraging their autonomous
capability of self-recovery, offering longer lifetime and better availability [42].

The most popular FPGAs are SRAM-based, that is, their configuration memory
is an SRAM memory. Both transient and permanent faults can affect FPGAs. More
specifically, soft errors can provoke Single Event Upsets (SEUs) and Multiple Bit
Upsets (MBUs). As described in Section 2.4, soft errors are caused by radiations
and their effects are temporary [43, 44], while aging and wear-out induce permanent
faults. Several works addressing mechanisms to enhance reliability in presence of
soft errors were presented in the literature [45] [46], while protection mechanisms
against permanent faults have not been deeply investigated [47] [48] despite their
importance as highlighted by the International Road Map for Semiconductors [49].
In detail, as the feature sizes of digital circuits are increasingly shrunk, the rate of
permanent faults increases too. In addition, in some critical applications, the lifetime
of the systems is expected to be of several years. As a result aging and wear-out
effects become not negligible and must be considered during the design process.

The goal of this chapter is to introduce a design methodology to enhance relia-
bility for permanent and transient faults by means of an autonomous fault tolerance
mechanism leveraging FPGAs. DPR is at the basis of this protection technique,
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enabling fast recover, increased availability and longer lifetime. The related design
flow and partitioning strategy to maximize the number of tolerated permanent faults
are described later in this chapter. The main advantages introduced by this work with
respect to state-of-the-art solutions is a dramatic reduction of the recovery time and
memory space required to store recovery information.
In order to give the reader a complete view of the problem under study, at first,
solutions proposed in literature are introduced, then, the proposed methodology and
the results gathered from two case studies are presented. Finally conclusions are
discussed.

3.2 State-of-the-art

Regarding FPGAs, while detection of permanent faults was the object of several
studies in literature [50, 51], only few solutions were proposed for fault tolerance en-
hancement and fault recovery. Two approaches can be adopted to improve reliability
against permanent faults.

The first is based on redundancy and its main advantage is that the system
continues to operate correctly in presence of faults, without any interruption and
associated performance loss. However, this approach introduces a large hardware
overhead in terms of area and power consumption. Triple Modular Redundancy
(TMR) is the most popular technique based on redundancy [52]. It is characterized by
the triplication of the same hardware functionality and a majority voter, computing
the final output by comparing the results of the triplicated circuits, thus resulting in
an area overhead more than three times higher.

The second is based on DPR, leveraging the reconfiguration of faulty hardware
modules. This approach is more efficient under several aspects: it introduces an area
overhead smaller than TMR, considering the same number of tolerated permanent
faults, and it enables autonomous fault recovery, thus obtaining Autonomous Fault-
Tolerant Systems [42]. Exploiting reconfiguration to manage permanent fault in
SRAM-based FPGA systems was discussed in [53–56]. When electromigration and
wear-out effects manifest as permanent faults [57], the main idea is to identify and
delimit the corrupted area. Successively, the portion of circuitry affected by the fault
is relocated. The relocation process consists of configuring a portion of the FPGA
with a functionality identical to the one of the faulty part and preventing the usage of
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the permanently damaged area. In order to relocate a hardware module, the proper
bitstream (configuration file) must be loaded into the configuration memory of the
FPGA. In detail, when resorting to DPR, it is possible to configure just a portion of
the FPGA, instead of configuring the entire device. Moreover, the portions of FPGA
that are not involved in the configuration process continue to work without being
stopped.

Recovery methodologies targeting both transient and permanent faults are pre-
sented in [47, 58, 48]. In [47] and [58] authors propose a methodology to recover
from both permanent and transient faults. Whenever a permanent fault is detected, the
proposed recovery strategy consists of reconfiguring the FPGA with a pre-computed
bitstream which does not use the faulty FPGA resources. However, these works do
not exploit DPR because every time a new bitstream must be loaded, the FPGA is
reconfigured entirely, thus increasing the recovery time. In addition, this solution
requires a lot of memory space to store all possible bitstreams since a single bitstream
for the whole FPGA is composed of several MB of data and the number of pre-
computed bitstreams grows exponentially with respect to the number of partitions
the system is composed of.
The methodology proposed in [48], instead, exploits DPR. The paper proposes a
pipelined architecture of the circuit to be implemented. In this case, the usage of
partial reconfiguration slightly reduces recovery time and memory requirements for
bitstreams storage. However, because of the pipelined architecture, the mechanism to
recover from permanent faults suffers from a slow and inefficient recovery strategy,
as the faulty pipeline stage as well as the following stages must be reconfigured.
Moreover, the proposed methodology does not address faults affecting interconnec-
tions among adjacent pipeline stages, thus introducing a limitation in its adoption to
real use-cases.

The methodology described in this chapter aims at overcoming the limitations of
state-of-the-art solutions by exploiting DPR to relocate efficiently faulty modules
of the FPGA at run-time. More specifically, recovery time is reduced leveraging
partial reconfiguration and, consequently, reducing dramatically the memory to
store bitstreams. Moreover, spare hardware resources of the FPGA are dedicated to
recovery from permanent faults affecting interconnections among functional modules.
The methodology consists of a design flow and a partitioning strategy to maximize
the number of tolerated faults employing spare resources of the FPGA. As a result,
availability and lifetime of FPGA-based AFTS is improved.
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3.3 The proposed methodology

The proposed methodology consists of an FPGA-based system architecture, a par-
titioning strategy and a partitioning algorithm in order to offer efficient recovery.
The system architecture and the partitioning methodology exploits the advantages
introduced by DPR [41], while the partitioning algorithm is designed to find the best
partitioning in terms of tolerated permanent faults.

3.3.1 The proposed system architecture

The proposed architecture targets AFTSs implemented on SRAM-based FPGAs.
In order to autonomously detect and recover from faults, the architecture of the
designed system is divided into three blocks, carring out different tasks (Figure 3.1).
The three blocks are:

• the Application FPGA: a SRAM-based FPGA implementing the functionalities
required by the system and partitioned into tiles;

• the Fault Manager: in charge of classifying the detected faults (Fault Clas-
sifier) and managing the reconfiguration process of the Application FPGA
(Configuration Controller);

• the Bitstream memory: storing all the configuration files related to the Applica-
tion FPGA.

The main component of the architecture is the Fault Manager which monitors
faults occurring in the Application FPGA and manages the recovery process. More
specifically, the monitor process is performed by the Fault Classifier and it consists
of two task: identifying which tiles are faulty and whether the fault is transient or
permanent. This can be achieved either running periodic tests on the Application
FPGA, as described in [50, 51], or including error detection mechanisms in the tiles
of the Application FPGA. Every detected error is signaled to the Fault Classifier
[59, 60].
The recovery is managed by the Configuration Controller. It runs the proper recovery
operations on the basis of the fault classification so that the system is restored back
to work. In particular, the recovery operations from a permanent fault occurring in
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Fig. 3.1 The proposed system architecture (Source: [1]).

the Application FPGA consists of a reconfiguration of the FPGA. For this reason the
Configuration Controller is connected to the Bitstream memory, thus guaranteeing a
direct access to configurations.
Since the role of the Fault Manager is of primary importance it can be implemented
resorting to fault tolerance techniques [61, 62]. Moreover, to avoid errors in the
configuration files, the Bitstream memory can embed error detection and correction
codes [63]. However, the actual implementation of the Fault Manager and the
Bitstream memory are not addressed in this work and are assumed to be fault-free.

Finally, the Application FPGA hosts the hardware modules required to implement
the system functionalities. Its area is divided into several partitions named tiles. The
following sections presents the main features of the tiles as well as the partitioning
strategy adopted to maximize the number of permanent faults that can be tolerated.
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3.3.2 The proposed partitioning methodology

The Application FPGA is composed of three different types of tiles, characterized by
different roles in the system design, as illustrated in Figure 3.1. More specifically, the
computation and the data processing is the task of logic tiles, while communication
among logic tiles is guaranteed by interconnection tiles. Finally, the remaining part
of the FPGA is divided into recovery tiles which are used as spare resources. In fact,
every time a permanent fault occurs in a logic tile, the faulty tile is relocated into a
recovery tile.

In order to employ the proposed architecture, minimal effort is needed during
the design phase. In fact, the implementation of the hardware functionalities must
be built with a modular approach. The system is divided into basic components,
interconnected to each other. Later, basic components are organized and grouped
together into logic tiles according to the amount of required FPGA resources (i.e.,
slices, BRAMs and DSPs [64]) and the number of connections to the other basic
components (Figure 3.2). A logic tile is characterized by a certain amount of
resources and interconnections, therefore basic components can be accommodated
into logic tiles if their resources needs are satisfied.

Fig. 3.2 Circuit basic components and tiles organization (Source: [1]).

The fault recovery strategy in presence of transient faults is the same adopted
in [58]. When an error in a tile is signaled to the Fault Classifier for the first time,
the cause of the fault is attributed to a transient fault in the circuit of the faulty tile.
For this reason the application is reset and re-executed. In case the error appears
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again after the first recovery stage, the Fault Classifier assumes a transient fault in
the configuration memory, so the bitstream of the faulty tile is re-written into the
configuration memory of the Application FPGA by the Configuration Controller.
If the fault appears after a pre-specified sequence of detection-recovery operations,
then, it is classified as permanent.

The recovery mechanism in presence of permanent faults in a logic tile consists of
moving the faulty tile to a spare recovery tile. However, the recovery tile chosen for
the relocation must guarantee a sufficient number of resources to host the hardware
resources of the faulty logic tile. In the proposed partitioning strategy, all the recovery
tiles have a number of resources equal to the one of the most demanding logic tiles.
This solution allows to relocate each logic tile into each recovery tile, therefore the
number of recovery tiles is equal to the maximum number of faulty logic tiles the
system can tolerate.

When a permanent fault in a logic tile is detected, the Configuration Controller
loads the proper configuration file into the FPGA configuration memory to relocate
the faulty tile into a recovery tile (Figures 3.3a and 3.3b). However, this operation
is not sufficient as the interconnections have to be updated as well. To overcome
this problem, the active interconnection tile is also reconfigured by the Configura-
tion Controller, so a new configuration file for the interconnections tile is loaded
(Figure3.3b).

Backup interconnection tiles are added to the design to cope with permanent faults
affecting interconnections (Figure 3.3c). In detail, one and only one interconnection
tile is active at a time, while the remaining ones act as spare interconnection tiles
and are properly activated when faults occur. The number of required backup
interconnection tiles must be equal to the number of interconnection faults (i.e.,
permanent faults affecting interconnection tiles) the system must tolerate. Whenever
a permanent fault occurs in the active interconnection tile, a backup interconnection
tile is activated, while the faulty one is no longer used (Figure 3.3d), and it is
reconfigured with an empty partial bitstream (i.e., a bitstream which does not contain
any circuit information). The proposed architecture offers great flexibility as it does
not rely on a fixed interconnection architecture among system modules (i.e., it can
be applied to systems based on buses, point-to-point connections, interconnection
networks, etc.). The idea of replicating the interconnection tile introduces negligible
are overhead (as reported in Section 3.4). Despite an increment of the number of
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input/output connections required bu each logic tile, this usually does not introduce
any area overhead since each FPGA slice provides several input/output ports (this
number depends on the FPGA device family). In addition, interconnection tiles do
not require any computational element.

To implement our methodology the following number of configuration files,
n_con f _ f iles are required:

n_con f _ f iles = n_logic_tiles×n_ f aults +

+n_logic_tilesn_ f aults × (n_ f aults+1) +

+n_logic_tiles

(3.1)

where n_logic_tiles is the number of logic tiles and n_ f aults is the number of
permanent faults the system can tolerate. The first contribution is due to relocation
of functions implemented in logic tiles to recovery tiles. The second contribution is
due to interconnection tiles. In fact there are n_ f aults+1 interconnection tiles that
must provide connection for all the possible combinations of logic tiles relocated to
any of the recovery tiles. Finally, the third term of Equation 3.1 is referred to empty
configuration of logic tiles needed after a relocation to a spare reconfiguration tile.

The proposed recovery methodology provides two main improvements with
respect to [47]. The first one concerns the recovery time. In fact, it is reduced thanks
to DPR enabling reconfiguration for just the faulty tile instead of the entire FPGA.
Secondly, the memory required to store configuration files is dramatically decreased,
as in [47] for each combination of sequences of faults a full bitstream was required.

For the presented recovery strategy, the way the system is partitioned is extremely
important as it influences the maximum number of permanent faults the system can
tolerate. In fact, the largest number of recovery tiles that can be accommodated
into the application FPGA depends directly on how basic components are grouped
and distributed among logic tiles. The next subsection details a strategy for the
partitioning of basic components maximizing the number of tolerable faulty tiles.

3.3.3 The proposed partitioning algorithm

Recovery tiles contain the necessary resources to accommodate every logic tile and
their size is proportional to the number of slices, BRAM and DSP they offer. A
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(a) The system without any faulty logic tiles (b) The system recovered from a faulty logic
tile

(c) The system without any faulty intercon-
nection tiles

(d) The system recovered from a faulty inter-
connection tile

Fig. 3.3 The recovery strategies when a permanent faults occur. Fig 3.3a illustrates the
relocation of the faulty logic tile into a recovery tile and the reconfiguration of the intercon-
nection tile. Fig 3.3d shows how interconnections are reconfigured when a permanent fault
is detected inside the active interconnection tile (Source: [1]).
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fine-grained partitioning approach (e.g., assigning a basic component to each logic
tile) leads to smaller recovery tiles, while a coarse-grained partitioning (i.e., grouping
more than one component in a logic tile) requires larger tiles. In addition, changing
partitioning means changing the number of wires inside the interconnection tiles,
and so their area. Because of the relevance of the partitioning strategy, we propose
an algorithm to find a feasible partitioning offering the maximum number of faulty
tiles the system can tolerate (see Algorithm 1).

Algorithm 1 Partitioning algorithm.

Const N_components ▷ # of basic components
Const FPGA_res ▷ resources of the application FPGA
max_tolerated_ f aults = 0;
for n_logic_tiles= 1 to N_components do

for each possible partitioning composed of n_logic_tiles do
Slack_res = FPGA_res−Logic_tiles_res− Interc_tile_res
n_tolerated_ f aults = Slack_res

Rec_tiles_res+Interc_tile_res
if n_tolerated_ f aults > max_tolerated_ f aults then

max_tolerated_ f aults = n_tolerated_ f aults;
update best partitioning;

end if
end for

end for

As explained in the previous subsections, a model of the circuit is obtained
by characterizing all the logic tiles with a number of resources and connections
they require. The resources demanded by each logic tile depend on the basic
component circuits it accommodates, while the number of connections is related to
the partitioning. It is important to notice that interconnection tiles do not require any
resource since they do not perform computation, instead they just need connections.
As a consequence, the delay introduced by interconnection tile is assumed negligible
for most of the applications (as will be shown in the next section) since the critical
path is bounded by the logic circuits of basic components.

In Algorithm 1, Rec_tiles_res represents the resources needed by a single recov-
ery tile, Interc_tile_res is an amount of FPGA slices required by a single intercon-
nection tile, containing interconnections among all the logic and recovery tiles, while
Slack_res are the spare resources when only logic tiles and one interconnection tile
are taken into account.
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Starting from the resources available on the target FPGA and the resources
required by every basic component, the algorithm finds the best partitioning solution
in terms of tolerable faulty tiles. In this case, n_tolerated_ f aults is assumed in the
worst case scenario, that is when permanent faults occur always in the same type of
tile (i.e., logic/recovery tiles and interconnection tiles).

Basic components of a circuit are partitioned with different granularities. The
number of logic tiles ranges from one, a single huge partition which represents the
coarsest granularity, to the number of basic components defined in the modular de-
sign, the finest granularity. For each iteration all possible groups of basic component
combinations are analyzed, and the number of tolerated faulty tiles is computed. To
compute the number of tolerated faulty tiles for a given partitioning it is supposed
that for each recoverable permanent fault there is one recovery tile and one backup
interconnection tile.

The resulting number of tolerated faults, n_tolerated_ f aults, is the lowest
among the ones computed for every type of resource (i.e., slices, BRAM, DPSs,
. . . ). When n_tolerated_ f aults is greater than the temporary maximum number of
tolerated faults, max_tolerated_ f aults, it is saved as the best partitioning.

The proposed algorithm is complex from a computational point of view, that is, it
scales badly with the increasing number of n_logic_tiles. However, since it must be
executed just once at design-time, its execution time does not influence the overall
performance of the implemented system. Building a fast partitioning algorithm is
out of the scope of this paper. However, if a more efficient algorithm is needed, the
proposed partitioning algorithm can be used as a starting point to model a Mixed
Integer Linear Programming problem, as proposed in [47] or to design a genetic
algorithm.

3.4 Experimental results

The proposed methodology was applied to two case studies in order to analyze and
measure its performance: the first is FEMIP [65], an IP-core for images feature
extraction and matching, and the second is the H.246 video encoder. The basic
components of both the two systems were characterized by their resource require-
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ments. Then, these values were fed into the proposed partitioning algorithm. The
partitioning that maximizes the number of tolerated faulty tiles was chosen for the
final system implementation. Performance are analyzed in terms of number of tol-
erated permanent faults, system recovery time and bitstream size. For both case
studies, a Xilinx® Virtex-4 VSX55 FPGA was chosen as the target Application FPGA
since it provides a large number of slices, BRAMs and DSPs [66]. This FPGA
can be dynamically and partially reconfigured by means of the SelectMAP port at a
maximum reconfiguration throughput equal to 400MB/s [41].

As presented in Figure 3.4, FEMIP is composed of five basic components.
FEMIP is characterized by a pipelined architecture. The number of interconnections
between the pipeline stages is shown in Figure 3.4, while resources required by each
component are reported in Table 3.1.

Fig. 3.4 FEMIP basic components (Source: [1]).

Table 3.1 Resources requirements for FEMIP basic components.

Component # slices # BRAMs

Gaussian filter 2560 8

Derivative filter 1344 8

Harris filter 3456 0

NMS filter 360 4

Matcher filter 650 6

Applying the proposed partitioning algorithm, the 5 basic components of FEMIP
are organized into 4 logic tiles, as shown in Table 3.2. The Application FPGA
contains all the logic tiles, 4 recovery tiles and 5 interconnection tiles. As a result,
the implemented system is capable of tolerating up to 4 permanent faults. The
number of partial bitstreams to store in the Bitstream Memory is equal to 1300
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Table 3.2 Resources requirements for FEMIP tiles.

Tile Components # slices # BRAMs Bitstream

Logic 1 Gaussian filter 2560 8 254.5 KB

Logic 2 Derivative filter 1344 8 144.6 KB

Logic 3 Harris filter 3456 0 360.1 KB

Logic 4 NMS filter 1010 10 120.0 KB

Matcher filter

Interconnection (x5) 128 - 7.2 KB

Recovery (x4) 3456 10 360.1 KB

and it is computed according to Equation 3.1. Even if this number is quite large,
the total memory required is only 15.86MB. In detail, the amount to store the 16
bitstreams for the recovery tiles is 5.76MB. As the size of a single bitstream for
an interconnection tile is as low as 7.2KB, the the amount of memory reserved for
the bitstreams of interconnection tiles is 9.22MB, despite 1280 configuration files
are generated. Finally, 879.2KB are employed for the storage of the bitstreams of
the 4 empty logic tiles. As reconfiguration throughput is 400MB/s, the worst case
recovery time in presence of a permanent fault is equal to 1.82ms (including the
reconfiguration of the faulty logic tile with the empty bitstream, the configuration of
the recovery tile and the update of the interconnection tile).

Thanks to this case study, it is possible to measure the performance overhead
produced by interconnection tiles. The maximum operating frequency of FEMIP
remains almost equal to the one obtained without the proposed fault tolerance
technique (i.e., 60MHz). As a consequence, the introduction of the interconnection
tile to allow communications between tiles does not affect performance of the system.
This is due because of two reasons. First, the critical path is bounded inside the basic
components logic. Secondly, the delay introduced by the interconnection tiles is
0.2ns, which is negligible with respect to the minimum clock period of FEMIP and
of most of the applications usually implemented on FPGAs.

To compare the proposed methodology with respect to the one presented in [47],
which also employs the Xilinx® Virtex-4 VSX55 as Application FPGA, the H.246
video encoder was implemented. The comparison is performed in terms of number



3.4 Experimental results 47

of tolerated permanent faults, bitstreams size, and recovery time. Details about the
15 basic components of the H.246 video encoder and relative resources requirements
can be found in [47]. Information about the partitioning selected by our algorithm is
reported in Table 3.3. With the given partitioning, basic components are grouped

Table 3.3 Resources requirements for H.264 video encoder tiles.

Tile Components # slices # BRAMs # DSPs Bitstream

Logic 1 intra8x8cc 3225 6 0 349.3 KB

coretransform

intra4x4

recon

Logic 2 dctransform 2811 0 0 296.5 KB

calvc

Logic 3 buffer 3123 6 6 380.3 KB

process1

quantise

invdctransform

dequantise

invtransform

Logic 4 process2 3120 0 0 349.3 KB

Logic 5 header 1605 0 0 176.5 KB

tobyte

Interconnection (x3) 320 0 0 18.0 KB

Recovery (x2) 3225 6 6 380.3 KB

into 5 logic tiles and it is possible to recover from 2 permanent faults, as in [47]. For
this purpose 2 recovery tiles and 2 backup interconnection tiles were accommodated
in the Application FPGA, in addition to the logic tiles and an interconnection tile.
For our implementation the total amount of required Bitstream memory is 6605.2KB
(90 configuration files in total), 3803KB for the recovery tiles (10 configuration files
in total), 1350KB for the interconnection tiles (75 configuration files in total) and
1452.2KB for empty logic tiles (5 configuration files in total). In [47] 241 bitstreams
are required for this case study. Although the number of bitstream that are obtained
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applying the proposed methodology is almost 2.5x lower, the memory space required
for bitstreams is dramatically reduced by 33x, from 291MB to 6.6MB. This reduction
is enabled by DPR. In detail, the configuration of the entire FPGA is necessary to
recover from a permanent fault in [47], thus resulting in a large size of each bitstream.
Conversely, the proposed methodology adopts partial bitstreams, reducing the size
of the configuration files.

Finally, the proposed methodology allows to shorten the recovery time since just
a part of the implemented circuit reconfigured. In fact, in the worst case, 1.95ms are
required to recover from a permanent fault, leading to a 4x improvement with respect
to the 7.5ms [47] needed when a full reconfiguration of the FPGA is performed.

3.5 Conclusion

This chapter presents a novel methodology to increase availability and lifetime
of FPGA-based systems affected by permanent faults. The methodology exploits
Dynamic Partial Reconfiguration (DPR) to relocate faulty modules at run-time. A
partitioning method is also presented to provide a solution which maximizes the
number of permanent faulty modules the system can tolerate.
Experimental results highlight the negligible performance degradation introduced
by applying the proposed methodology and the improvements in terms of both fault
recovery time and memory requirements with respect to state-of-the-art solutions.
Possible future works could focus on a framework applying the proposed methodol-
ogy automatically, thus requiring minimal efforts during the design phase. Moreover,
the effectiveness of the proposed methodology with different granularity of basic
components can be explored to find the best trade-off between number of tolerated
faults and basic components size. Finally, the optimization of the partitioning algo-
rithm to reduce its complexity by means of heuristics and genetic algorithms could
be investigated.



Chapter 4

GPGPU Reliability evaluation

This chapter is the first one to be focused on reliability evaluation techniques. More
specifically, it treats reliability of GPUs in the context of General Purpose computing
on Graphics Processing Units (GPGPU). GPGPU offers a remarkable speedup for
data parallel workloads, leveraging GPUs computational power. However, differently
from graphic computing, it requires highly reliable operation in most of application
domains. Characterization of the reliability of GPGPU systems is therefore becoming
a mandatory task. This reliability analysis targets the AMD Southern Islands GPU
architecture. SIFI is the reliability framework proposed in this chapter, able to
evaluate reliability and to help systems engineers in the exploration of the design
space, thus enabling system optimization. SIFI is based on Multi2Sim [67], a
microarchitectural simulator. SIFI implements some of the most common reliability
evaluation techniques for CPUs which are discussed and adapted to GPUs: Fault
Injection (FI) and Architectural Correct Execution (ACE) analysis. SIFI evaluates
reliability in presence of soft errors in the main memory arrays of the GPU (i.e., the
vector register file, the scalar register file and the local memory). Since the main
characteristic of GPGPU is performance, in this chapter a new metric combining
reliability with performance is also presented, the Execution Per Failure (EPF). A
comparison in terms of reliability between AMD Southern Islands and other NVIDIA
GPU architectures is reported here to give an idea of the capability of this tool. This
comparison was developed in collaboration with Sotiris Teselonis from University of
Athens, who took care of the experiments about NVIDIA GPUs. The collaboration
was funded by HiPEAC Collaboration Grant. Part of this chapter was previously
published in [2, 68].
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4.1 Introduction

Recent years have witnessed an increase of computational power demand in several
application domains. GPGPU has gained a primary role in the delivery of high
computational power leveraging the inherent high parallel architecture of GPUs to
accelerate complex tasks. In this scenario, GPUs are no longer employed just for
graphics, but they have increasingly found application in areas where reliability is a
primary concern (i.e., advanced driver assistance systems, aviation, medicine, super
computing, etc.). This trend is however threatened by the technology shrinking,
which has a detrimental effect on the susceptibility to faults for new devices (espe-
cially for large storage arrays) [69]. Characterization of the reliability of GPGPU
systems is therefore becoming a mandatory task.

One of the main opened challenges in evaluating the reliability of GPGPU sys-
tems is the development of fast and accurate reliability assessment tools, able to
properly trade-off simulation time and accuracy. Some benefits would be introduced
by providing information to guide the system designers in the choice of proper
architectural parameters and error protection mechanisms to achieve the target relia-
bility and performance requirements. Recently, Tselonis and Gizopoulos proposed a
reliability analysis framework based on microarchitectural level fault injection able
to analyze the effect of soft errors in systems based on NVIDIA GPU chips [70].
This framework represents a valuable instrument for GPGPU system designers as
reported in [71] where it was exploited for the reliability analysis of heterogeneous
systems. Similar tools able to analyze systems based on AMD GPU chips that
together with NVIDIA cover almost the totality of the GPU market share are still
not mature and available. A reliability study using fault injection to analyze systems
based on the old AMD Evergreen GPU architecture was presented in [72]. However,
no results are reported in the literature for the analysis of the newer AMD Southern
Islands architecture.

This chapter presents SIFI (Southern Islands Fault Injector), a framework for the
reliability analysis of systems based on the AMD Southern Islands GPU architecture
in presence of soft errors. Using SIFI, reliability can be assessed not only by means
of fault injection but also using very fast ACE analysis [15]. In both cases, a SEU in
the main memory arrays of the GPU (i.e., the vector register file, the scalar register
file and the local memory) is the considered fault model. SIFI implements a set of
techniques to reduce simulation time of fault injection campaigns, thus allowing the
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analysis of complex systems executing realistic software applications. Moreover,
SIFI offers the possibility to perform reliability analysis just considering the portion
of the hardware resources actually used by the running software, thus decoupling
the reliability assessment from the occupancy of the target architectural hardware
components, and focusing on the analysis of the resiliency of the executed software to
the injected faults. Since SIFI is built on top of the Multi2Sim [67] microarchitectural
simulator, it can be easily extended to the architectures supported by this simulator,
including the AMD Evergreen architecture. The optimized simulation environment
makes SIFI a valuable tool to assist designers when taking decisions on specific
GPU architectural parameters. Several system configurations can be analyzed and
compared in order to identify the best configuration given the application constraints.

In order to show the potential of the proposed reliability framework, a reliability
study is performed considering 14 GPGPU applications executed on different AMD
Southern Islands GPUs.

In addition, GPUs from different vendors, architectures and programming models
are compared: AMD Southern Islands, NVIDIA G80, GT200 and Fermi. For
this purpose, while AMD GPU architecture is evaluated by SIFI, reliability of
NVIDIA GPU architectures is assessed by GUFI [70], a tool similar to SIFI, but
for NVIDIA GPUs. In this case, reliability of all devices is analyzed running the
same set of 10 benchmarks, written using the OpenCL language [15] for the AMD
GPU and the CUDA language [16] for the NVIDIA GPUs. The comparison is
performed employing both fault injection campaigns and ACE analysis. The use
of microarchitecture level simulators provides significant flexibility and leads to a
dramatic simulation time reduction compared to the RTL models, which are often
not publicly available. Such a multidimensional study delivers significant insights
on: differences in GPU vulnerability estimations between fault injection experiments
and ACE analysis; variations in the vulnerability of specific hardware components
and benchmarks among different GPU architectures; joint evaluation of reliability
and performance to support designers and programmers when evaluating different
GPUs and workloads.
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4.2 Related works

GPUs reliability literature includes publications that focus either on reliability evalu-
ation only or present and evaluate GPUs fault tolerance solutions for both soft- and
hard- errors[72–83].

Previous works on GPUs reliability evaluation usually involve the use of mi-
croarchitectural simulators for the AVF estimation of selected hardware structures.
For these estimations, either fault injection or ACE analysis is considered separately
[75, 76, 81, 70]. In the presented methodology, both methods in both AMD and
NVIDIA GPUs were used. ACE analysis has already been applied on top of the pub-
licly available GPGPU simulators GPGPU-sim [84] and Multi2sim [67]respectively.
However, ACE analysis for CPUs is known to overestimate the vulnerability of the
hardware structures [85, 86]. Using both Fault Injection and ACE analysis for the
evaluation of the vulnerability of the hardware components, as for this work, insights
into this overestimation can be shown. In the reported evaluation, this overestimation
is measured in the register file and local/shared memory; there are several cases of
benchmark and GPU chip combinations where the overestimation is large and others
where ACE reports virtually the same AVF as fault injection.

Fault Injection has been used for GPGPUs in [83] and [73] but not at the microar-
chitecture level as for this work. Both [83] and [73] inject faults only on architectural
registers that are accessed during the execution of randomly selected instructions
(fault injection at the software level) while the proposed framework enable us to
model accurately the effect of a fault which strikes on a hardware component at a
randomly selected execution cycle (fault injection at the microarchitectural level).

The works of [72, 82, 70] employ microarchitectural simulators to inject faults.
Both [72, 82] use Multi2Sim, to inject faults in the components of an AMD Ever-
green GPU running OpenCL workloads while we inject faults into the hardware
components of a newer AMD Southern Island GPU architecture. In [70], GPGPU-
Sim is used to inject faults in the hardware components of a Fermi architecture while
in the presented evaluation more NVIDIA GPU architectures are analyzed, using
both fault injection and ACE analysis on GPGPU-Sim.
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4.3 The Southern Islands AMD architecture

From the hardware standpoint, the Southern Islands AMD architecture consists of
several compute units (CUs) sharing a global memory and managed by a scheduler
(Figure 4.1). Each CU is composed of a front-end that fetches instructions and
dispatches them to the appropriate unit: a branch unit, a local data storage unit
performing operations on local memory, a scalar unit executing scalar operations
on scalar registers and several SIMD units containing a vector ALU,the integer and
floating point units operating on the vector register file in parallel. OpenCL is the
programming model used by the Southern Islands AMD architecture [87].

Fig. 4.1 Southern Islands AMD architecture.

In OpenCL, parallel portions of an application (kernels) are executed on the GPU
as work-items. Work-items are grouped into work-groups. Communication among
work-items is possible only for work-items belonging to the same work-group by
means of local memory. When a new kernel is executed a new ND-Range is created.
The programmer specifies the number of work-groups and the number of work-items
per work-group characterizing the ND-Range.

Every time the GPU can execute a new work-group, the work-group is assigned
to a CU. The number of work-groups a CU can concurrently execute (#wg) depends
on the maximum number of work-groups a CU can accommodate (#maxwg) and on
the amount of resources required by a single work-group. More specifically, each
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work-group requires a certain amount of resources (#vwg vector registers, #swg scalar
registers and #lmwg local memory cells) out of the total resources available in the
CU (#VRF vector registers, #SRF scalar registers and #LM local memory cells). The
number of concurrent work-groups, #wg, is chosen according to [88]:

#wg = min(#wgv,#wgs,#wglm,#max wg) (4.1)

where:

#wgv =

⌊
#VRF

#vwg

⌋
, #wgs =

⌊
#SRF

#swg

⌋
,

#wglm =

⌊
#LMRF

#lmwg

⌋

Finally, in order to be executed in parallel, work-items of the same work-group
are grouped into wavefronts. The number of work-items per wavefront depends on
the parallelism of the SIMD Units of the chip.

4.4 SIFI architecture and functionalities

SIFI is built on top of Multi2Sim [67] v. 4.2, a microarchitectural simulator for
heterogeneous systems modeling accurately the microarchitecture of the AMD
Southern Islands GPUs. The analysis carried out by SIFI focuses on soft errors in the
main memory arrays of the GPU (i.e., the vector register file, the scalar register file
and the local memory). These faults are relevant for large memory arrays such as the
one considered by SIFI. Analysis of multiple bit upsets is not considered, however it
can be easily implemented.

SIFI measures the reliability of a GPU based system by computing the Archi-
tectural Vulnerability Factor of its hardware structures [15]. The AVF quantifies the
probability of a soft error to manifest as a failure of the system jointly considering
the masking properties of the hardware architecture as well as of the executed soft-
ware. Moreover, since the AVF is strongly influenced by the actual occupancy of
the hardware structures, to allow a deep understanding of the contribution of the
instruction flow on the error masking, SIFI also enables to compute the AVF Util
metric introduce by Farazmand et al. in [72]. The AVF Util is the probability that a
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soft error in a used hardware structure causes a system failure. The relation between
AVF and AVF Util can be expressed as:

AV F = AV FUtil ×Occupancy (4.2)

Once the AVF is estimated for each GPU hardware structure, the Failure In Time
(FIT) rate of the system (λS) can be computed combining size and vulnerability of
every hardware structure of the GPU:

λS = ∑
i∈{vRF,sRF,LM}

AV Fi ×λ ×#biti (4.3)

where #biti is the number of memory elements of the hardware structure i and λ is
the raw error rate per bit of the target technology node.

Since the FIT rate is a pure reliability metric and does not provide any information
about the system performance, SIFI enables the computation of a new reliability met-
ric named Executions Per Failure (EPF). EPF is the number of times an application
must be executed before observing a system failure. It is computed as

EPF = EIT/λS (4.4)

where EIT (Executions in Time) is the number of executions of an application in
109 hours of device operation. The EPF enables to jointly analyze performance and
reliability into a single metric.

Another metric that can be defined to jointly evaluate reliability and performance
is the Instructions Per Failure (IPF). The IPF measures the instruction throughput of
a benchmark between failures instead of the complete program execution time like
in the EPF:

IPF = IIT/λS (4.5)

where IIT is the Instructions In Time, the number of instructions executed in a billion
of hours of computation. EPF and IPF are relateted each other as:

IPF = EPF ×#inst (4.6)

where #instr is the number of instructions executed by the application.
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SIFI can compute the presented metrics using different simulation engines de-
scribed in the following subsections.

4.4.1 Fault injection engine

The fault injection (FI) engine is the most accurate simulation engine available in
SIFI. It performs reliability analysis by simulating the occurrence of faults in the
GPU hardware structures considering a statistically significant number of program
executions (one fault per execution) [89]. The impact of a fault on the system is
evaluated by comparing the output of the computation with the one of a golden
execution. At a high level, the impact of the fault is classified as masked or non-
masked1. Since FI is a computational intensive task, SIFI is designed to speedup the
FI campaign trying to reduce the required number of simulations without loosing
accuracy. A FI campaign consists of several steps. At first the application is profiled
in order to identify the time intervals in which the GPU is active and to gather
information about the executed kernels. The faults to be injected are then randomly
generated and another simulation is performed to profile whether these faults strike a
hardware structure actually assigned to one of the work-groups. In case a fault hits
a non-assigned hardware structure, it is marked as masked without performing any
simulation. Otherwise, it is marked as Util. Eventually, all faults marked as Util are
simulated and classified. Using the results of FI simulations the AVF and AVF Util
of an hardware structure can be computed as:

AV F =
# in jnot−masked

# in j
AV FUtil =

# util in jnot−masked

# util in j
(4.7)

The speedup obtained by skipping non-Util simulations depends on the application
and mainly on the occupancy of the hardware structures and can be computed as:

S = # in j/# util in j (4.8)
1Fine grained classification of non-masked faults into Silent Data Corruption (SDC) and Detectable

Unrecoverable Error (DUE) is also possible
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4.4.2 ACE analysis engine

Unlike FI, the ACE analysis engine requires just a single simulation of the application
to perform AVF estimations. It is therefore a very fast analysis that however has
reduced accuracy with respect to FI. SIFI ACE analysis engine is based on the
techniques presented in [15] and [90] for CPU memory arrays.

Let us consider the computation of the AVF for the vector register file (a similar
procedure can be applied to the other hardware structures). The ACE analysis is
based on the principle that not all registers in this register file are continuously
involved in the computation and the AVF of the hardware structure can be estimated
by determining which registers affect the final system output (ACE registers) and
which do not (un-ACE registers).

When performing ACE analysis each kernel is analyzed separately and then
results are recombined together. For each kernel, the amount of registers assigned to
each generated work-group (#vwg) is computed (see Section 4.3). All registers not
assigned to any work-group are classified as idle and directly marked as un-ACE,
while the others are profiled during the execution of the kernel. During the time
intervals (i.e., clock cycles) between a read and a write operation (read-to-write
intervals), and between two consecutive write operations (write-to-write intervals)
the register can be safely considered un-ACE. In all other cases it is marked as ACE.

To reduce complexity and to implement a very fast reliability analysis workflow,
SIFI does not consider more sophisticated techniques, which also take into account
dead data (i.e., data not contributing to the output results) and logic masking (i.e.,
logical and arithmetic operations resulting in masked results). Their computation
significantly increases the complexity of the analysis and therefore has not been
implemented in this study where ACE analysis is mainly exploited for its fast
simulation time. It is however worth to report that, from our simulations, we noticed
that dead data in the selected benchmarks represent a negligible portion of the
application (less than 0.5%) and, therefore, neglecting them does not introduce a
significant loss of accuracy.
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The ACE factor of each work-group (i.e., the work-group average number of
ACE registers per clock cycle) can therefore be computed as:

ACEwg =
#vwg

∑
i

ACEclk−vreg−i

wgclk
(4.9)

where wgclk is the number of clock cycles required to execute the work-group and
ACEclk−vreg−i is the number of clock cycles in which the register i is classified as
ACE. The ACE factors of each work-group can be combined together to compute the
ACE factor of the compute units (ACECU ). To perform this computation, a timing
diagram representing the time window of every work-group executed by the CUs
is built. Figure 4.2 is an example of timing diagram for a single CU assigned to 4
work-groups and able to execute 2 work-groups concurrently.

Fig. 4.2 An example of ACECU timing diagram for a single CU. Considering #VRF =

32 and #kclk = 7, then AV F =
8+8+8+11+13+13+7

32
7 = 0.3. If #vwg = 12 then AV FUtil =

8
24+

8
24+

8
24+

11
24+

13
24+

13
24+

7
12

7 = 0.45

The ACE factor of the CU at clock cycle i (ACECU(i)) is computed by summing
the ACEwg of its active work-groups on that clock cycle (Figure 4.2). Finally, the
AV F of the entire vector register file is computed as:

AV F =
∑

#CU
j ∑

#kclk
i

ACECUj ( j)
#VRF

#kclk
(4.10)

where #kclk is the number of clock cycles required to execute the GPU kernel, #CU
is the number of available compute units and #VRF is the number of registers per
compute unit. The computation of the AV F takes into account the ratio between the
number of ACE registers and the total number of registers available in the vector
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register files of the GPU. Similarly to the AVF, by considering the average number
of used vector registers of the active work-groups of each CU (#util RFj in Figure
4.2) instead of the total available registers #VRF , the AVF Util can be computed as:

AV FUtil =
∑

#CU
j ∑

#kclk
i

ACECUj ( j)
#utilRFj (i)

#kclk
(4.11)

4.5 Experimental results

Results related to SIFI and a comparison between AMD and NVIDIA GPUs are
presented in this section. At first, SIFI results are reported to demonstrate the
advantages introduced by this framework. Secondly, NVIDIA and AMD GPUs are
compared under several aspects related to reliability and performance.

4.5.1 SIFI results

This subsection aims at demonstrating the capability of SIFI when analyzing the
reliability of a set of benchmark systems.

Experimental Setup

For our evaluation we consider 14 software benchmarks with SIFI configured to
resemble the architecture of the AMD HD Radeon 7970 GPU device2. A CU of this
GPU consists of 4 SIMD Units. The scalar register file is composed of 2K 32-bit
registers while the local memory size is 56KB. The scalar register file and the local
memory are shared among all the SIMD Units. Moreover, each SIMD Unit features
a vector register file of 56K 32-bit registers. Starting from this basic configuration,
to demonstrate the capability of SIFI when analyzing different GPU architectures,
experiments considering CUs with different numbers of SIMD units are performed
as well. The data workload of each benchmark is chosen to maximize and stress
the use of the CU memory arrays that are considered by the analysis. However, this
significantly increases the simulation time when considering multiple CUs. To tackle

2Any chip belonging to the AMD Southern Islands family can be modeled
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with this issue, following the approach proposed by Farazmand et al. in a similar
GPU study [72], we scaled the analysis considering a single CU.

The benchmarks considered in our experiments are selected from AMD-APP-
SDK benchmarks3: (1) Binary Search (BinS), (2) Bitonic Sort (BitS), (3) DCT,
(4) DwtHaar1D (DWT), (5) FastWalshTransform (FWT), (6) FloydWarshall (FW),
(7) Histogram (HIS), (8) MatrixMultiplication (MM), (9) MatrixTranspose (MT),
(10) QuasiRandomSequence (QRS), (11) RecursiveGaussian (RG), (12) Reduction
(RED), (13) SimpleConvolution (SC) and (14) URNG.

For each benchmark we exploited SIFI to compute the AVF and AVF Util of the
target system resorting both to the FI and ACE analysis engines described in Section
4.4. According to [89], for each fault injection campaign (i.e., for each benchmark
and for each hardware structure), we applied statistical fault sampling, injecting a
number n of faults equal to:

n =
N

1+ e2 × N−1
t2×p×(1−p))

(4.12)

where N is the population size4, p is the estimated probability of a fault to generate
a failure5, e is the accepted error margin6 and t is the cut-off point that defines
the confidence level7. Considering the simulated benchmarks and the target GPU
architecture, to characterize a hardware structure for a given benchmarks about 10K
fault injections were performed.

Results

Figure 4.3 reports the AVF of the vector register computed using both FI and ACE
analysis. Results show how different software applications can significantly influence
the AVF thus confirming the need to carefully perform this type of analysis. The
benchmark with highest vulnerability is MM (21%), while some benchmarks are
characterized by very low AVF (i.e., BinS, BitS, DWT, FW, RG, RED and URNG).

3AMD-APP-SDK v.2.7 available at: http://developer.amd.com/tools-and-sdks/opencl-zone/amd-
accelerated-parallel-processing-app-sdk/

4the size of the targeted memory array multiplied by the number of clock cycles of the application
5since it is unknown, a typical value of 0.5 is used to maximize the sample size
61% in our case
795% in our case
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As expected, ACE analysis provides a rough estimation of AVF. In most of the
cases, it overestimates more than two times the vulnerability. This difference can be
attributed to the fact that ACE analysis does not take into account dead instructions
and software logic masking. Interestingly, when considering the AVF of the local
memory results obtained using the ACE analysis are quite accurate (Figure4.4) and
in general fall within the error margin of the estimations obtained using FI with the
only exception of MT, that is 8 percentile points higher. HIS has the highest local
memory vulnerability (91%). This is due to the fact that it requires a large amount of
memory that is employed as a read-only buffer.

Fig. 4.3 Vector register file AVF computed by FI and ACE analysis.

Fig. 4.4 Local memory AVF computed by FI and ACE analysis. The AVF is reported just for
benchmarks using local memory.
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Finally, Figure 4.5 reports the AVF for the scalar register file. It ranges between
0.2% (BinS) and 16% (MM) with an average value of 6.3%. ACE analysis estimation
is close to the one obtained by FI just for DCT, while, in the other cases, the AVF is
assessed as almost the double of FI.

Fig. 4.5 Scalar register file AVF computed by FI and ACE analysis.

Fig. 4.6 The correlation between occupancy and AVF of the vector register file. The AVF
Util is computed in order to decouple vulnerability and occupancy.

According to Section 4.4, the AVF is influenced by two factors: the occupancy of
the memory arrays and the AVF Util. SIFI allows us to analyze these contributions
separately as reported in Figure 4.6 for the vector register file. The results show
clearly that occupancy is one of the most relevant contributions to the AVF. Let us
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consider results for HIS. The AVF Util of this benchmark is equal to 80.1%, showing
that this application is potentially highly vulnerable to faults striking active resources.
However, this high vulnerability is compensated by a low occupancy of the register
file that leads to a total AVF of only 6.7%. For benchmarks with higher occupancy
(e.g., MM), the difference between AVF and AVF Util is reduced. Being able to
analyze the relationship between AVF, AVF Util and Occupancy is an important
instrument to carefully plan the introduction of fault tolerance mechanisms in the
system when and where required. Results similar to the one reported in Figure 4.6
are also obtained for the local memory and for the scalar register file with similar
trends, therefore are not reported.

One of the main benefits of SIFI is the possibility to evaluate the reliability of a
system exploring different architectural parameters. To stress this capability we show
how the number of SIMD units per CU affects the AVF of the vector register file
(Figure4.7), local memory (Figure4.8) and scalar register file (Figure4.9). Changing
the number of SIMD units leads to AVF variations. More specifically, decreasing the
number of SIMD units increases the AVF of the vector register file, while it reduces
the vulnerability of the local memory and the scalar register file. This is an interesting
behavior that requires further investigation. However, some considerations can be
drawn. Concerning the local memory and the scalar register file, AVF variations
can be justified since increasing the number of SIMD units increments the required
bandwidth and consequently the latency to main memory. This results in a larger
time-window of vulnerability for a single memory element that leads to an increment
of the AVF. On the opposite, the trend for the vector register file is unexpected.

To conclude the proposed reliability analysis, Figure 4.19 reports the FIT rate,
the EIT and the EPF computed by SIFI for the analyzed systems. These metrics
allow us to introduce the contribution of the technology and performance into the
analysis. The FIT rate has been computed considering a raw failure rate per bit of λ

= 1mFIT/bit.

From the performance prospective (EIT), decreasing the number of SIMD units
always translates into longer execution time, however in some cases, as BinS, HIS
and RED, this overhead is negligible. Concerning reliability, the FIT is improved
in all the cases when the number of SIMD unit is reduced, apart from QRS which
has an opposite trend. Finally, thanks to this analysis it is possible to combine both
performance and reliability, taking into account the EPF, that is the expected value
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Fig. 4.7 Vulnerability comparison of vector register file changing the number of SIMD Units
per CU.

Fig. 4.8 Vulnerability comparison of local memory changing the number of SIMD Units per
CU.

of application executions before a failure manifests. In this case, both the EIT and
FIT decrease for smaller numbers of SIMD units. As a consequence, the parameter
that decreases faster dominates. On average, the FIT prevails leading to higher EPF
for a single SIMD unit and lower EPF in case of 4 SIMD units. However the trend is
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Fig. 4.9 Vulnerability comparison of scalar register file changing the number of SIMD Units
per CU.

not the same for all the analyzed benchmarks. In fact, BitS, DCT and MM show the
opposite behavior. This strongly suggests that EPF should be evaluated separately
for each application not to commit errors in reliability assessment and during the
design phases of a GPU-based system.

Finally, results illustrating the performance of SIFI as well as the capability of
executing complex benchmarks in reasonable time are presented in Figure 4.10. In
particular, the advantage introduced by the speedup technique of SIFI fault injector
can be appreciated. In fact, the time required by a fault injection campaign is often
reduced by almost one order of magnitude. In addition, for each benchmark, the
number of simulated GPU instructions is reported too.

4.5.2 A multi-faceted comparison of reliability between AMD
and NVIDIA GPU architectures

The results presented in this section compare AMD and NVIDIA GPU architectures
on the basis of their reliability and performance. This work was developed in
collaboration with University of Athens. In detail, they developed GUFI [70], a
tool similar to SIFI but targeting NVIDIA GPUs. GUFI can perform both fault
injection and ACE analysis for NVIDIA Quadro™FX 5600 (G80 architecture),
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Fig. 4.10 SIFI timing performance. For each benchmark the figure reports the time required
to estimate the vector register file AVF using ACE analysis, FI and non-optimized FI (10,000
injections using 8 cores) alongside the number of GPU instructions per simulation.

NVIDIA Quadro™FX5800 (GT200 architecture) and NVIDIA Geforce™GTX 480
(Fermi architecture). Moreover it is able to compute all the reliability metrics
introduced in the previous sections, so that a fair comparison can be performed. For
this experiments the AMD HD Radeon™7970 (Southern Islands architecture) was
selected among AMD GPUs. The hardware structures considered for this analysis
are the vector register file and the local memory (the general purpose register file
and shared memory, using NVIDIA terminology). For the reminder of this chapter
OpenCL/AMD terminology is employed even when referring to NVIDIA GPUs.

Experimental Setup

For our evaluation, we used 10 benchmarks: 7 available both in the CUDA SDK8 and
AMD-APP SDK9 and 3 from Rodinia benchmarks [91]. For every benchmark both
the CUDA implementation for the NVIDIA chips and the OpenCL implementation
for the AMD chip is available.

8https://developer.nvidia.com/cuda-toolkit-42-archive
9http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-

app-sdk/
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Table 4.1 summarizes the main characteristics of the CUs of the GPU chips
analyzed in this work.

Table 4.1 CU details of the target GPU architecture.

Chip name Quadro™
FX5600

Quadro™
FX5800

Geforce™
GTX 480

HD Radeon™
7970

Architecture G80 GT 200 Fermi Southern
Islands

Register file 32KB 64KB 128KB 256KB
Local memory 16KB 16KB 48KB 64KB
SIMD Units 1 1 2 4

Max
#wg 8 8 8 40
#wavefronts 24 32 48 40
#work-items 768 1024 1536 1840

For both the AMD and the NVIDIA architectures, we measured the AVF of
the vector register file and the local memory using both Fault Injection (FI) and
ACE Analysis (ACE) as described in the previous section. For the FI experiments,
we applied statistical fault sampling [89], thereby making 2,000 fault injection
experiments for each combination of GPU architecture, and hardware component
(vector register file, local memory) corresponds to 2.88% error margin with 99%
confidence level. To perform a fair comparison, every benchmark was executed with
the same input data set for all considered GPU devices. The data workload of each
benchmark was chosen to maximize and stress the use of the CU memory arrays
considered during the analysis. However, this significantly increased the simulation
time when considering multiple CUs. To tackle with this issue, following again the
approach proposed by Farazmand et al. in a similar GPU study [72], we scaled the
analysis considering a single CU.

Results

We start the analysis of the reliability of the different GPU architectures and bench-
marks by looking at the AVF summarized in Figure 4.11 for the register file and
Figure 4.12 for the local memory. The two charts report the AVF computed using
both FI and ACE analysis.

By analyzing the register file (Figure 4.11), we can observe significant changes in
the AVF depending both on the hardware platform and on the executed benchmarks.
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Fig. 4.11 AVF for Register File measured by FI and ACE analysis (Source: [2]).

Overall, the HD Radeon 7970 is the chip with lowest register file vulnerability
while the Quadro FX 5600 is the one with highest vulnerability for all benchmarks.
Looking at a single hardware platform, the difference in the AVF for the different
benchmarks is the result of the way the software stresses the resource and is able
to be resilient to the injected faults. Instead, when looking at the same benchmark
executed on the different chips we interestingly note a strong correlation of the AVF
with the register file occupancy (red bullets). Based on their average occupancy,
the architectures can be ordered as follows: HD Radeon 7970 (12.89%), GTX480
(37%), Quadro FX5800 (50%), Quadro FX 5600 (57%). This trend is respected
for all benchmarks with the exception of histogram in which the occupancy of the
GTX480 is 35% while the one of Quadro FX5800 is only 26%. The occupancy of a
resource is therefore a good indicator to predict the AVF variation trend for a single
application executed on different chips. However, it does not provide information on
the actual AVF value. In fact, benchmarks with similar occupancy have significantly
different AVFs (e.g., backprop and scan in Figure 4.11). This observation confirms
that occupancy is not the only contribution to AVF that has to be investigated.

When considering the local memory (Figure 4.12), while the correlation between
AVF and the occupancy of the resource still holds, a clear AVF variation trend
between the four chips, valid for all benchmarks, cannot be identified. This suggests
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Fig. 4.12 AVF for Local Memory measured by FI and ACE analysis (Source: [2]).

that the way this resource is used strongly depends on the executed application
code. In particular, the AVF of HD Radeon 7970 is significantly higher than the
other architectures for histogram, where occupancy is 100%. In scan and reduction
benchmarks the vulnerability is almost equal for all architectures while Quadro FX
5800 has a slightly higher AVF for backprop and dwt where its occupancy is 22%
and 53%, respectively.

To discuss vulnerability decoupled from the resources occupancy we can use the
AVF Util. Figure 4.13 reports the AVF Util of the register file while Figure 4.14 the
one of local memory. Again, both figures present AVF Util based on both FI and
ACE analysis for the considered GPU models. The AVF Util is mainly influenced by
the software logic masking and by the different ISAs of the GPU chips. Therefore, it
is hard to observe a clear trend or correlation in its value between NVIDIA and AMD
architectures. However, it is interesting to note that the three NVIDIA chips, which
implement very similar native ISAs and use the same programming model, have very
similar AVF Util for each benchmark. Apart from the different local memory and
register file size, which in turn influence the number of vulnerable resources leading
to different vulnerabilities (we provide more details in Figure 4.16), the NVIDIA
GPUs present different wavefront scheduling mechanisms (warps in NVIDIA/CUDA
terminology). Each SIMD unit can accommodate a different number of wavefronts.
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Changing the number of resident wavefronts changes the scheduling process. This
leads to a variation of the vulnerability timing windows for both the registers and
the memory words. An increment of the time a wavefront has to wait before being
scheduled leads to a longer exposure of a critical resource to a fault. Moreover, the
number of wavefronts that a single CU can concurrently execute is another factor
that influences the wavefront scheduling. The CUs of NVIDIA Quadro FX 5600 and
NVIDIA Quadro FX 5800 can schedule a single wavefront at a time while the CUs
of NVIDIA GeForce GTX 480 process two wavefronts in parallel. This difference
is highlighted by ACE analysis results for AVF Util of register file (Figure 4.13),
which measure reliability on the basis of the vulnerable timing windows of the used
memory elements. This does not apply to local memory since it is shared among all
the wavefronts of the same compute unit. In details, for some benchmarks, the two
NVIDIA Quadro chips report very close values while the NVIDIA GeForce chip
shows a different value in benchmarks gaussian, histogram, kmeans and transpose.

Fig. 4.13 AVF Util for Register File measured by FI and ACE analysis.

Figure 4.11, Figure 4.12, Figure 4.13 and Figure 4.14 also allow us to compare
AVF estimations obtained with different techniques, i.e., FI and ACE analysis. Such
a comparison, must consider two main aspects: the measurement accuracy and the
time required to perform the analysis. Regarding the accuracy, it is well-known from
the literature that the error margin and the confidence interval of statistical fault
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Fig. 4.14 AVF Util for Local Memory measured by FI and ACE analysis.

injection are determined according to the number of injected fault. Differently form
FI, the accuracy of the ACE analysis cannot be quantified even if it is well known
that it delivers pessimistic evaluations. This trend is confirmed for the register file,
where FI estimates lower AVF compared to ACE analysis (Figure 4.11 and Figure
4.13). The error is strongly benchmark dependent. In particular, in our ACE analysis,
we do not consider the program logical masking of faults. Figure 4.11 shows that
ACE analysis AVF overestimation is lower for the local memory than for the register
file. This can be explained since the register file and local memory are used in a
different way by the work-items of an application. The only exceptions to this trend
are histogram and backprop. For these two benchmarks, the ACE analysis introduces
a higher error. This can be explained looking at the AVF Util (Figure 4.14). Their
AVF Util significantly changes depending on the evaluation method (FI or ACE
analysis). Although, the error between AVF Util based on FI and AVF Util based
on ACE analysis is higher for backprop than histogram, histogram occupies more
intensely the local memory compared to backprop. Thus, even if histogram features
the second highest difference in local memory AVF Util (for different methods of
evaluation), its high local memory occupancy leads to the highest difference in AVF
depending on the evaluation method. Among the different benchmarks, backprop, is
the one presenting the highest AVF overestimation between FI and ACE analysis for
both register file and local memory, respectively 3.3 and 1.1 times higher (Figure
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4.11, Figure 4.12). On average, the overestimation of the AVF and AVF Util made
by ACE analysis with respect to FI is respectively 95% and 80% for the register
file, while 15.9% and 17.4% for the local memory. It is also interesting to remark
that, for some combinations of benchmarks and architectures, we observe that ACE
analysis slightly underestimates AVF. This applies to HD Radeon for dwtHaar1D
(0.35 p.u), histogram (0.38 p.u) and reduction (0.93 p.u) and to Quadro FX 5800 for
reduction (0.31 p.u). Finally, in case of scan we observe a singularity: ACE analysis
underestimates vulnerability barely. However, this difference is very close to the
2.88% error margin of fault injection, which estimates AVF Util equal to 88.9%
against 85.2% of ACE analysis.

In terms of simulation time, the single-run ACE analysis offers significantly
better performance compared to FI. Table 4.2 quantifies this benefit comparing the
simulation time of ACE analysis with the number of fault Injections Per Hour (IPH)
that we were able to simulate for each benchmark employing both GUFI and SIFI.
However, it is important to remember that this benefit must be traded-off with the
reduced accuracy delivered by ACE analysis and with the capability of FI to precisely
quantify the error margin of the computed metrics. Nevertheless, looking at the
results provided Figure 4.11, Figure 4.12, Figure 4.13 and Figure 4.14, we can
conclude that, despite its lower accuracy, ACE analysis is still a useful method for
having an idea about the vulnerability of a hardware component or the differences
between benchmarks in a shorter time than fault injection. Given this consideration,
in the remaining of this section discussions will focus on results obtained resorting
to fault injection experiments.

Figure 4.15 combines the AVF of the different hardware structures with the raw
bit soft-error rate of the technology considering an intrinsic λ of 1mFIT per bit.
The result is the global FIT of the GPU (λS) defined in Equation 4.3. The figure
breaks down the contribution of the register file and local memory to the global λS.
Interestingly, the contribution of the local memory is significantly lower than the
one of the register file for most benchmarks and in some cases, it is null: gaussian,
kmeans and vectoradd. This is expected since the kernels of these three workloads do
not use local memory to exchange data among work-items of the same work-group.
Although, both size and vulnerability of a structure affect the FIT rate, it is the
size that seems to be the predominant factor. In our experimental setup, the size
of the register file is bigger than the one of the local memory and we observe a
higher number of failures caused by faults in the register file for all benchmarks
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Table 4.2 Simulation time required to perform the reliability analysis.

Benchmark Multi2Sim GPGPU-Sim
ACE time (s) IPH ACE time (s) IPH

backprop 3 1200 13 277
dwt 9 400 1 3600
gaussian 29 124 37 97
histogram 173 21 44 82
kmeans 24 150 90 40
matrixMul 21 171 20 180
reduction 4 900 4 900
scan 5 720 2 1800
transpose 2 1800 6 600
vectoradd 39 92 5 720

and architectures except for histogram. In this case, the local memory AVF is much
higher than the one of the register file and represents the main contribution to the FIT.
The GPU chips can be ordered based on their local memory size as follows: Quadro
FX 5600 and Quadro FX5800 (both 16 KB), GTX480 (48 KB) and HD Radeon
7970 (64KB). This order reflects on the trend we observe in the fraction λS due to
faults in the local memory (Figure 4.15). Only backprop does not follow this trend
because the local memory AVF for HD Radeon 7970 is negligible (0.10%).

The GPU architectures whose hardware component sizes are larger show higher
values of FIT, as reported in the average case. In fact, HD Radeon 7970, which has
twice the memory elements of GeForce GTX 480, has the highest value of FIT, while
the smaller Quadro GPUs feature low FIT. This trend can be explained by the fact
that larger GPUs usually require a larger amount of memory elements in order to
exploit better their intrinsic parallelism. Executing more work-items concurrently
increases the number of potentially vulnerable resources10. Figure 4.16 visualizes
this trend: it shows for each benchmark and architecture the number of memory
elements (bits) used in the context of the computation (vulnerable resources).

The bigger size of a GPU hardware component naturally makes it more vulnerable
to soft errors. However, it increases the execution parallelism and thus improve
performance. Therefore, as discussed in Section 4.4, to combine the reliability
evaluation with the performance profile of each benchmark and GPU chip we analyze
the EPF (Figure 4.17) and the IPF (Figure 4.18) metrics because FIT alone (Figure

10vulnerable resources: total number of memory elements (bits) used during the entire execution
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Fig. 4.15 Breakdown of Failures in Time rate using the AVF measurements from Fault
Injection.

Fig. 4.16 Vulnerable resources in bits.

4.15) does not take into account the amount of work carried out by the GPUs before a
failure arises. EPF incorporates the execution time and FIT for a program, while IPF
also includes information about the instruction throughput of GPUs when executing
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an application. Table 4.311 summarizes for each benchmark (rows) and architecture
(cols) the execution time (cycles) as well as the number of executed instruction
required to compute EPF and IPF.

Fig. 4.17 Executions per Failure (EPF) (Source: [2]).

As reported in Equation 4.6, the IPF for a particular benchmark is proportional
to the EPF and to the instruction throughput. Since this throughput strongly depends
on the target execution device, to fairly compare different GPU architectures we
must look at the EPF instead of IPF while the IPF is useful for evaluating the
reliability of different programs on the same GPU chip. In one hand, the EPF metric
is useful to the architects who can quantify the effectiveness of a hardware based
error protection technique which can be applied to their designs (if needed) along
with a performance cost at the early design stages. Larger EPF numbers show a
larger number of executions before a failure and different protection mechanisms can
deliver different improvements in the FIT rates and can also have different impact
on performance. Combining performance and reliability measurements in the EPF
metric delivers a broader view for decision-making. This could be for instance

11About NVIDIA GPU frequency, GPGPU-Sim the width of the pipeline is equal to the warp
(wavefront) size. To compensate for this, the SIMT Core Cluster clock domains are adjusted. For
example the super pipelined stages in NVIDIA’s Quadro FX 5800 (GT200) SM running at the fast
clock rate (1GHz+) are modeled with a single slower pipeline stage running at 1/4 the frequency. Thus,
a 1.3GHz shader clock rate of FX 5800 corresponds to a 325MHz SIMT core clock in GPGPU-Sim
[84]
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Table 4.3 Execution time and instructions of each benchmark.

Benchmark HD Radeon
7970

Quadro
FX5600

Quadro
FX5800

GeForce
GTX480

freq 925 MHz 337.5 Hz 325 Hz 700 MHz
backprop cycles 94376 423594 369855 206834

inst. 2108160 10312032
dwt cycles 41072 44998 39412 25859

inst. 1839075 1180042
gaussian cycles 5862543 561060 555732 541687

inst. 7308189 5488224
histogram cycles 3198537 1031394 1029746 885491

inst. 20029440 21784328
kmeans cycles 913526 1278216 1267144 1397604

inst. 31930960 35984844
matrixMul cycles 269591 439591 400594 299346

inst. 10924032 15007744
reduction cycles 27836 47377 47086 27231

inst. 312736 854719
scan cycles 123763 18707 16572 19721

inst. 3025801 468720
transpose cycles 50862 98911 82821 49942

inst. 733184 2818048
vectoradd cycles 31687 29219 21603 30225

inst. 1523712 638976

important when evaluating real-time applications that are not continuously executed,
but they are scheduled once every time period. On the other hand, IPF is useful to
the programmers who want to quantify the effectiveness of software redundancy
based protection techniques which can be applied to their programs running on the
same architecture, thereby enchaining the error resilience of their applications at
a performance cost. IPF summarizes both the performance cost and the resilience
improvement. In Figure 4.17, the HD Radeon has the highest EPF for benchmarks
backprop, dwtHaar1d, gaussian, kmeans, reduction, scan, transpose and vectoradd
while histogram has almost the same EPF for Quadro FX 5600 and GTX480. This
applies also to matrixMul. In Figure 4.18, HD Radeon, backprop and gaussian have
higher IPF than the other benchmarks while Quadro FX5600, Quadro FX 5800 and
GTX 480 have the highest IPF in the case of gaussian.
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Fig. 4.18 Instructions per Failure (IPF).

In summary, our reliability and performance analysis has identified the value
of many different measurements for reliability evaluation of GPUs. The AVF Util
metric, for example, nicely describes the capability of a workload to mask soft-
errors, while IPC and the number of vulnerable resources impact reliability in space
and temporal dimensions. When software-based fault tolerance techniques are
considered, the ratio between IPC and the vulnerable resources is a relevant aspect.
This ratio is particularly important since it can be controlled to some extend by
compiler optimizations as well as by the software designers.

4.6 Conclusions

This chapter addresses reliability evaluation in the context of GPGPU. Two of the
most popular techniques for reliability estimation of CPUs were adapted to GPUs:
fault injection and ACE analysis. A reliability framework for the AMD Southern
Islands GPU architecture is introduced: SIFI. Experimental results demonstrated
the capability of SIFI to evaluate reliability and to help systems engineers in the
exploration of the design space, thus enabling system optimization. More specifically
SIFI allows to explore the design space by analyzing different microarchitectural
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configurations. The evaluation can be computed according to several reliability
metrics such as AVF, AVF Util, FIT, EPF and IPF.

SIFI was also employed to compare AMD and NVIDIA GPU architectures. This
analysis highlighted the most relevant relationships concerning the GPU microarchi-
tectures, reliability and performance. In this context, EPF and IPF, two new metrics,
are proposed enabling to jointly evaluate reliability and performance.

SIFI can analyze the vector register file, the scalar register file and the local
memory of the AMD Southern Islands GPU architecture. Further investigations
can focus on the extension of SIFI benefits to other hardware structures and GPU
architectures as well.

Finally automated design space exploration could be addressed in order to de-
liver a tool capable of finding autonomously the best trade-off among the system
requirements.
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Chapter 5

A Bayesian model for reliability
evaluation of CPU-based systems

The previous chapter introduced reliability evaluation. Two of the most employed
methodologies were presented, fault injection and ACE analysis. They aim at
estimating reliability by means of simulations. This approach can be very slow,
in the case of fault injection, or slightly inaccurate, in the case of ACE analysis.
This chapter introduces a novel methodology based on a statistical approach, trying
to deliver a fast and accurate analysis. In contrast to Chapter 4, the reliability
analysis proposed here targets CPUs, however this approach can be easily extended
to GPUs by introducing some changes. This statistical reliability analysis is able to
estimate system reliability considering both the hardware characteristics of the CPU
and the executed software, in presence of hardware transient and permanent faults.
The hardware resources of the processor and the instructions of program traces are
employed to build a Bayesian Network. Finally, the probability of input errors to alter
both the correct behavior of the system and the output of the program is computed.
To prove the effectiveness of the proposed methodologies reliability was analyzed
for a set of benchmarks chosen from the MiBench suite[92] executed on an x86-64
CPU model. Experimental results obtained by fault injection were compared with
the ones obtained by the proposed Bayesian. University of Athens carried out the
fault injection experiments and the extraction of the software traces. The proposed
Bayesian Network model is able to provide accurate reliability estimations in a very
short period of time. As a consequence it can be a valid alternative to fault injection.
Part of this chapter was previously published in [3].
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5.1 Introduction

Reliability is an important design aspect for computer systems due to the aggres-
sive technology miniaturization [93, 94, 15], as previously discussed in this thesis.
Unreliable hardware components affect computing systems at several levels. Raw
errors can manifest due to several causes such as physical fabrication defects, aging
or degradation (e.g., NBTI), process variations, environmental stress (e.g., radia-
tions). Raw hardware errors can propagate through other layers of the system (e.g.,
architecture, software) up to the output. During the propagation process, raw errors
can be masked by each of the affected layers.

A significant effort in the research community has been spent to analyze masking
properties at technological and architectural level [95], [96]. Moreover, understand-
ing the effect of software on the reliability of a complex system in which unreliable
hardware is present is also gaining increasing importance. The software has intrinsic
masking capabilities that can be enhanced by the implementation of software level
fault tolerance mechanisms [97], [98] and [99]. However, these mechanisms often
incur in a significant performance overhead. Therefore, the role of the software stack
coupled with the target hardware architecture must be carefully considered when
system reliability is analyzed.

Several studies focus on understanding and modeling how hardware faults can
propagate and manifest through a software application, without considering how
these faults can actually propagate and be masked within the software [100–103].
A very important contribution that examines the impact of software on the archi-
tectural vulnerability factor (AVF) of a system is provided in [104]. The paper
defines a so called Program Vulnerability Factor (PVF), isolating the software-
dependent (architecture-level masking) portion of the AVF from the hardware-
dependent (microarchitecture-level masking) portion. This metric captures the
architecture-level fault masking inherent in a program, allowing software designers
to make quantitative statements about programs resilience to soft errors. PVF can
be measured using an architectural simulator, a dynamic binary translator such as
Pin [105] or resorting to ACE-like analysis [106]. Moreover, a comprehensive PVF
calculation is affected by the software workload that may increase the simulation
effort. Another interesting contribution has been proposed in [107] where a statisti-
cal model is proposed to estimate the capability of a software application to mask
hardware errors. The main contribution of this chapter is to introduce a statistical
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model that simply requires a preliminary characterization of the hardware masking
probability and then it is able to analyze software applications executed on this
hardware. However, this work does not take into account execution time so that
it may lead to inaccurate estimations especially for big programs. Overall, one of
the main limitations of the publications presented so far is that they are limited to
the analysis of the effect of soft errors: permanent and intermittent faults are not
considered at all.

The proposed methodology introduces a new statistical approach for the esti-
mation of the reliability of a microprocessor-based system considering both the
hardware and the software layer. The software execution on the microprocessor is
modeled in the form of a Bayesian Network that describes relations among resources
(e.g., registers, memory elements, functional units) involved in the execution of the
instructions composing a program. The Bayesian model is then exploited to compute
a probability of correct (error-free) execution of the software in the presence of a
hardware fault, used to estimate the overall reliability of the system. To construct the
model, a preliminary characterization of the Instruction Set Architecture (ISA) of the
microprocessor is required. This characterization aims at evaluating the probability
of successful execution of each instruction of the target ISA in presence of faults in
the microprocessor hardware blocks. Transient, intermittent and permanent faults
can be considered in this phase without affecting the way the high-level model is
constructed.

Bayesian Networks represent a successful model employed for reliability es-
timates in different fields [108]. In the software engineering domain, they were
employed to model software reliability in the distributed domain (Kishore at al.
[109], etc.). A few publications consider the application of Bayesian Networks to
model system reliability in hardware devices as well [110], [111]. However, they
do not consider the interaction of hardware and software in an instruction-based
environment. In addition, full system reliability, considering technology, hardware
and software layers, is modeled by Bayesian Networks in [4] and it is discussed in
the next chapter of this thesis.

To validate the proposed statistical model we analyzed 4 different MiBench
benchmarks [92] executed targeting permanent and transient faults on top of a
x86-64 microprocessor. Experimental results highlight that reliability estimations
are accurate when compared to those obtained by time-consuming fault-injection



5.2 Reliability analysis 83

experiments performed using a microarchitectural fault injector [112]. At the same
time, the proposed approach enables a significant reduction of the time required to
perform the reliability analysis, enabling fast and accurate reliability evaluations.

5.2 Reliability analysis

Bayesian Networks (BNs) are an efficient statistical model to represent multivariate
statistical distribution functions. They can model relationships among random
variables and their respective probability density functions by means of conditional
probability functions. In particular, conditional dependencies are expressed by a
Direct Acyclic Graph (DAG). Nodes of the DAG represent conditional probability
functions of the random variables, while edges represent conditional dependencies
among random variables. If two nodes are connected, it means that the random
variables they represent are conditionally dependent.

The proposed statistical reliability analysis methodology focuses on the estima-
tion of the probability of failure of a program running on a specific microprocessor.
Bayesian networks are employed to model program traces, i.e., sequences of instruc-
tions issued by the microprocessor when the program is executed with a specific
workload. In particular, the information required to build the BN is the execution
time and the involved hardware resources of instructions. Several traces can be
obtained from a single program by profiling its execution with different workloads
using a dedicated profiler. This work employs [107], but other profilers can be used
as well without affecting the estimation model. The collection of the analyzed traces
represents different program behaviors that may generate different error masking ef-
fects during the program execution. Program traces are sequential lists of instructions
that can therefore be efficiently modeled in the form of a Bayesian Network whose
main constraint is the absence of loops in the network. As traces are evaluated, the
system failure probability can be estimated by averaging the trace analysis results.

To assess the system reliability, both the hardware and the software layers must
be taken into account. In the proposed model the microprocessor ISA represents the
direct link between the two layers. In particular, each instruction is considered with
regard to the hardware resources required for its execution. To build a BN model of
a program trace running in a system, it is essential to take into account the hardware
resources, error sources and the instructions of the analyzed trace.
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Hardware resources, Res, are divided into two subsets: the storage resources
subset (Sres), which includes registers and memories, and the computational resources
subset (Cres), which includes functional units required for computation. Resources
can be affected by errors during program execution. Consequently, when dealing
with reliability analysis, it is fundamental to define an error model. For soft errors
the exponential distribution is assumed (See Section 2.4). The reliability function of
a resource (Rres(t)), i.e., the probability of an error-free resource in a period of time
t, is given by the following equations:

λres = λcomp
Ares

Acomp
(5.1)

Rres(t) = e−λrest (5.2)

where λcomp is the SER of the electronic component dependent on the target tech-
nology, while λres is the resource SER assuming equal spatial distribution of error
occurrence in the component. Equation 5.1 can be useful when the failure rate
is defined for the entire hardware resource and the failure rate of just a portion is
needed (i.e., an entire ALU and a single multiplier or the entire resister file and a
register). Since a single resource is part of a bigger electronic component, it can be
assumed that its reliability is related to the one already defined for the component.
More specifically, λres is a portion of λcomp and it is proportional to the fraction of its
silicon area Ares over the total area of the component Acomp. It is worth mentioning
that Equation 5.1 is consistent with Equation 2.4 presented previously. For perma-
nent errors, the stuck-at-fault model is addressed. If a permanent fault occurs in a
resource, it means that an internal signal or the output signal of the affected resource
has a fixed value.

The occurrence of both transient and permanent errors in hardware resources
can be masked at the hardware level due to several masking effects. We therefore
consider a masking probability for each instruction of the ISA, representing the
probability that an instruction prevents an error occurrence to propagate. In this
work, each instruction I is characterized by a set of input storage and computational
resources, RIin ∈ Sres ∪Cres, required for the computation, and a set of output storage
resources, RIout ∈ Sres, that are updated by I. All resources in RIin can mask errors
during the execution of an instruction and are therefore characterized by a given
masking probability. Masking of hardware resources can be obtained by error
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protection mechanism implemented in the design (e.g., ECC for memories, Triple
Module Redundancy for registers, etc) or by data transformations they perform (e.g.,
an AND functional block can mask a bit flip of an operand if the not-faulted operand
is a 0).

Computing the masking probability can be performed according to two strategies:
operand analysis or fault injection. The former consists of analyzing the mathemati-
cal operations in which resources are involved. In most of the cases this operation
is simple and it is not time consuming. On the contrary, the latter method requires
a bigger effort. In fact, a fault injection campaign is required to analyze the error
resiliency of the system resources. Errors can be injected at RTL level as well as
at gate level. However this operation must be done just once, since when masking
probability of a resource is known, it can be employed in all the system the resources
it is part of.
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Fig. 5.1 Example of a bayesian network model for a simple sequence of two instructions
(Source: [3]).

To understand how to build a BN model, let us consider the simple program trace
composed of two instructions that is reported in Fig.5.1. The first step is to identify
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those resources belonging to RIin and RIout of each instruction of the trace. In fact,
they represent the nodes of the BN. Each node N can assume two possible states:
error-free (denoted as N) or faulty (denoted as N).

In the example of Fig.5.1, I1 has RIin = {R1,R2,AND} and RIout = {R3}, while
I2 has RIin = {R3,R2,ADD} and RIout = {R1}. We therefore introduce 8 nodes in
the network: ANDI1, R1I1, R2I1, R3I1, ADDI2, R3I2, R2I2, R1I2. Once resource
nodes are defined, resource dependencies are modeled by means of network edges.
Resources belonging to RIin are connected to resources belonging to RIout of the
instruction. Moreover, output resources of an instruction may be connected to input
resources of a following instruction to model instruction dependency. At this point
the BN topology is ready and error nodes, representing the input of the network can
be therefore included. Error nodes, when faulty, express the raw probability that
an error occurs in a resource. According to our model, input errors can only affect
resources belonging to RIin .

Each node is then associated to a set of conditional probabilities that quantify
the probability of correctness of the node depending on the correctness of the input
nodes. Four cases must be considered.

Input nodes Input nodes of the network can be either error nodes or nodes associ-
ated to storage resources for which the initial error probability is known. A single
probability of correctness is associated to these nodes. In case of soft errors, compu-
tational resources can be affected by errors while they are employed. Consequently,
the probability of a error-free error node connected to a computational resource is
computed according to (5.2) with a proper λres and t equal to the execution time
of the instruction. On the other hand, storage resources can be affected by external
errors during the period of time elapsed between a write and a read operation. There-
fore, for error nodes connected to storage resources, the probability of an error-free
node is calculated by means of (5.2) considering a proper λres and t equal to the
period of time between the read and the write of the resource. On the opposite, in
case of hard errors, the probability of an error-free error node can be one or zero,
depending on the presence of the permanent error regardless the kind of resource the
node is connected to.
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Nodes identifying computational resources in RIin of an instruction (e.g., ANDI1

in Fig.5.1) These nodes have a single incoming edge connected to an error node.
Two conditional probabilities must be defined as reported in Fig.5.1 for these nodes
where P(MAND) identifies the masking probability of the hardware resource by
means of protection mechanisms implemented in the design (i.e., ECC for memories,
TMR, etc.). Since the masking probability of protection mechanisms is decided
during the design phases and it is decided according to the system requirements,
RTL implementation of the circuit and fault injection are not necessary.

Nodes identifying storage resources in RIin of an instruction (e.g., R2I2 in Fig.5.1)
For these nodes there are two possible causes of faults: (1) the resource was already
corrupted in a previous instruction or (2) an error corrupts the resource in the time
interval between the execution of two instructions. In this case, four conditional prob-
abilities must be defined as reported in Fig.5.1 where P(MR2) identifies the masking
probability of the hardware resource. It is worth to highlight that, in our example,
we always consider that, when more than one input node is faulty, the probability of
correctness of the current node is zero. This is a worst case assumption that however
reduces the complexity of the characterization of the masking probability of each
resource.

Nodes identifying storage resources in RIout of an instruction (e.g., R1I2 in Fig.5.1)
These nodes may have several inputs. Therefore, the number of conditional prob-
abilities to set is equal to the number of possible combinations of states the input
nodes may assume. Similar to the previous case, we consider that errors can be
masked only when computational resources in RIin are error-free and at maximum a
single storage resource in RIin is faulty. In the example, we denote with P(MOPADD)

the masking probability that the ADD operation performed by the computational
resource will mask errors in a input storage resource. This probability is commonly
known as logic masking and it can be computed by simulating the behavior of each
instruction with different combinations of operands in input [107]. The masking
probability is obtained by injecting faults into input operands and comparing the
obtained output with the one without faults. This operation only targets operands
and it does not involve the gate and the RTL implementation of the circuit.
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Once conditional probabilities are set up properly for every node, the BN can be
solved and the probability of correct execution of a trace can be estimated. However,
only a subset of the instructions of a trace directly affect resources that identify the
final outcome of the computation. We denote this subset of instructions as active
state instructions (AI). To compute the probability that a program trace is correct,
error probability is taken into account only for output resources of the active state
instructions. We define such resources as active resources (Ares) and we denote with
Ares

i the subset of active resources modified by instruction Ii . Given these definitions,
the probability for the active instruction Ii to be correct (P(Ii)) can be computed as
the probability that all its active resources are correct:

P(Ii) = ∏
R∈Ares

i

P(R) (5.3)

since the probabilities of correctness of output resources of an instruction are statisti-
cally independent.

A program trace T is correct (error-free) if all active state instructions are correct.
The probability of correctness of a trace (P(T )) can therefore be computed as:

P(T ) = P(
⋂

I∈AI

I) = ∏
I∈AI

P(I|J,∀J < I) (5.4)

When computing P(T ), we need to consider that the event that all active instructions
are correct is not statistical independent. We therefore need to multiply the probability
of correctness of every active instruction given that all its previous active instructions
are correct, P(I|J,∀J < I). This is possible by setting the evidence in the Bayesian
Network that all its previous active instructions are correct. The network is then
solved and P(T ) can be computed.

Once the probability of correctness of a trace is computed, for permanent faults,
this value is equal to the final masking probability of the system, P(MSystem). Instead,
for transient faults some additional computation is required. In fact, the error rate
of the system while executing the trace can be computed by inverting Equation 5.2,
thus obtaining:

λ
T
estimated =− ln(P(T ))

tT
(5.5)

where tT is the execution time of the analyzed program trace. To obtain more
accurate estimates of the system failure rate, λBN , a simple or a weighted average
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can be applied to all λestimated of the analyzed traces. Weights of the traces can be
set according to the probability that a trace is executed by the analyzed system:

λBN = ∑
T∈analyzed traces

λ
T
estimated ×wi (5.6)

where ∑wi = 1. Finally, to compute the masking probability of the system:

P(MSystem) = 1− λBN

λcomp
(5.7)

5.3 Experimental results

This section presents the results obtained by implementing the presented Bayesian
network model in a reliability analysis tool, and by applying it to a test program
executed on a given microprocessor architecture.

5.3.1 Framework implementation

We implemented a complete automatic framework able to perform the reliability
analysis described in Section 5.2. The framework is composed of two main modules:
(i) the trace generator, and (ii) the Bayesian network analyzer.

The trace generator (developed by University of Athens) is built on top of the
MARSSx86 [113] full system, cycle-accurate architectural simulator. It simulates
the execution of the target program on the x86-64 architecture. During the execution,
a detailed trace of the list of executed instructions, and for each instruction the list of
resources (e.g., physical register or memory virtual addresses) that are involved in
the execution is generated.

Generated traces are analyzed by the Bayesian Network analyzer in order to build
the Bayesian model of the trace and to estimate the related failure rate. The Bayesian
Network analyzer is built on top of SMILE [114], a free C++ framework for the
analysis of Bayesian models. It is important to highlight here that, when analyzing
the network of a real application composed of hundreds of thousands of instructions,
the size of the related network may increase up to a level that saturates the available
computational resources. To overcome this limitation, thanks to the conditional
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probability offered by BNs, the network of the trace is split into several sequential
subnetworks each depending on the probabilities computed by the previous network.
By applying this iterative approach, scalability of the reliability analysis on complex
applications can be achieved with very limited computation time.

5.3.2 Experiment setup

To validate the proposed reliability estimation methodology we set up four case stud-
ies. They consist of software applications, chosen among the MiBench benchmarks
[92], running on the x86-64 architecture. They are qsort (32 traces), aes (32 traces)
and sha (16 traces) for transient errors, and sha (16 traces) for permanent errors. For
each experiment, several traces are analyzed. For a preliminary analysis, hardware
faults are just injected into microprocessor physical registers belonging to the Integer
Register File.

Traces are extracted resorting to the MARSSx86 simulator [113] employed in
the Fault Injector tool described in Subsection 5.3.2. The tool has the ability to trace
various microarchitectural events (such as committed instruction sequence, memory
access pattern) which can be reassembled to build the actual execution trace of a
program.

To validate the proposed Bayesian Network analyzer, the same benchmarks with
the related workloads are analyzed resorting to the proposed Bayesian model and
resorting to an extensive architectural fault injection campaign. Computed results
are then compared to evaluate the accuracy and the performance of the proposed
model. In detail, the reliability is expressed in terms of masking probability of the
system (Equation 5.7).

Bayesian model

In order to set conditional probabilities for BN nodes some preliminary operations
must be performed. First of all, instructions of the x86-64 architecture must be
analyzed. Masking probabilities are evaluated according to the operands analysis
explained in Section 5.2. Secondly, since the proposed Bayesian model addresses
the ISA and faults are injected at microarchitectural level, some precaution must be
adopted. This operation requires an analysis of the physical system to be evaluated.
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In our experiments faults are only injected into the physical register file instead of
ISA registers. To overcome this issue we decided to adopt a strategy to tune input
error probabilities for ISA registers. In the x86-64 architecture a register rename
table keeps the data regarding the renaming process of each physical register into an
ISA register. When permanent faults are addressed, the input error probability of
the faulted resource is set to the probability that the register is mapped to the faulted
physical register instead of being set to one.

P(Error)
1

#_o f _PHY S_REGs
(5.8)

For transient errors, as register renaming is dynamic, we assume that the number of
physical registers that are involved in the computation at the same time is equal to
the number of architectural registers. In other words, we assume that the area of the
architectural register file, AARCH_RF , can be evaluated as:

AISA_RF = APHY S_RF × #_o f _ISA_REGs
#_o f _PHY S_REGs

(5.9)

where APHY S_RF is multiplied by the number of ISA registers over the number of
physical registers. Moreover, we assume that all registers have the same size. As a
consequence the area of an architectural register, Aisa_reg, is the ratio between the
number of ISA registers and AISA_RF .

Finally, for each program trace, we considered as active state instructions those
instructions storing in a memory element the result of the computation for the last
time, based on the results of the trace generator.

Fault Injection

Fault injection experiments have been performed using the MaFIN [112] fault injector
built on top of MARSSx86 [113] full system, cycle-accurate architectural simulator.
MaFIN is capable of injecting single and multiple transient (bit-flip), intermittent
(stuck-at-0, stuck-at-1), permanent (stuck-at-0, stuck-at-1) faults, or a mixture of
them to the microarchitectural structures of the x86-64 microprocessor. Furthermore,
MARSSx86 allows to monitor the propagation of a hardware fault to the upper level
of system stack: the application output. The extracted output files can be analyzed to
classify the injected faults: when no mismatch at the application output is detected,
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the application execution is labeled as correct. As already mentioned, University
of Athens took care of performing fault injection experiments and of generating
program traces.

We performed a statistical fault injection campaign, on MaFIN (see Table 5.1).
Using [89] (see Equation 4.12), we compute a fault population for 99% confidence
level and 3% error margin. The calculation leads to a total of 1843 different injections
on the integer physical register file. For transient faults the bit-flip is placed in a
randomly selected position (i.e., a bit in a physical register) at randomly selected
clock cycles. Instead, for permanent faults the choice of the faulty bit and the logic
value of the stuck-at is random.

Finally, results of fault injection are usually expressed in terms of AVF, however
for this comparison they are converted to masking probability: P(MSystem) = 1−
AV F .

Table 5.1 Marssx86-64 microprocessor model configuration.

Parameter Setting
Fetch/Issue/Commit 4/4/4 instructions per cycle
Combined Predic-
tor

16KB (64K entries, 2
bits/entry, 16 bits BHR)meta
pred.: 64K entries

Physical Register
File

256 INT; 256 FP; 16 Store; 24
Branch

Reorder Buffer 128 entries
Functional Units 4 clusters (ALUs: 2 INT, 2

FPU; 4 AGUs)
Cache Memories L1-D (32KB, 4-way, WB)

L1-I (32KB, 4-way, WB) L2
(1MB, 16-way, WB)

5.3.3 Results

Reliability estimate of the analyzed program traces are compared for the fault
injection and the Bayesian model. Figure 5.2 compares accuracy of the two methods.
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We can state results show that Bayesian model estimations are very close to the FI
ones. In particular, they belong to the uncertainty range of 3% according to [89].

(a) Transient faults (b) Permanent faults

Fig. 5.2 Estimations of masking probability for both the Bayesian Network and the Fault
Injection approaches (Source: [3]).

Finally, Figure 5.3 compares simulation time for each experiment. The figure
clearly shows that, resorting to the statistical model, estimation time is reduced by
several orders of magnitude thus enabling very fast estimations.

5.4 Conclusion

The methodology presented in this chapter proposes a new statistical approach
for the estimation of the reliability of a microprocessor-based system, taking into
account the interaction between the hardware and the software layer. Preliminary
experimental results performed on the MiBench benchmarks clearly show that the
proposed approach is able to provide accurate and fast estimations when compared
to a similar analysis performed using micro-architectural level fault injection. The
ability of providing fast reliability evaluations, considering both the hardware and the
software layer, is a key feature to enable optimized designs, leading to a progressive
avoidance of common practices employed to reach high reliability levels, such as
worst case design.
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(a) Transient errors (b) Permanent faults

Fig. 5.3 Timing performance comparison of simulation time of a single trace for both the
Bayesian Network and the Fault Injection approaches. Time is expressed in seconds (Source:
[3]).

The proposed Bayesian model can be easily adapted to other instruction set
architectures as the only requirement is a profiler able to track the sequence and the
execution time of every instruction performed by the target system. In order to reach
a comprehensive reliability statistical analysis, further investigations can address the
modeling of microarchitectural resources other than the register file, as the ROB, the
LSQ and the BTB.



Chapter 6

Reliability estimation of complex
digital systems

System reliability estimation during early design phases facilitates informed deci-
sions for the integration of effective protection mechanisms against different classes
of hardware faults. When not all system abstraction layers (technology, circuit,
microarchitecture, software) are factored in such an estimation model, the deliv-
ered reliability reports must be excessively pessimistic thus leading to unacceptably
expensive, over-designed systems. To overcome this lack, we present a system relia-
bility framework adopting a cross-layer approach built on top of a Bayesian model.
The methodology proposed in Chapter 5 introduced Bayesian Networks, however it
was a preliminary study to show the potential of Bayesian models in the context of
reliability assessment for digital systems. The previous chapter targeted just the CPU
and considered only faults appearing in the register file, while this chapter extends
the reliability analysis to the system as a whole. Moreover, the model presented
by this chapter introduces the possibility of identifying the weakest components of
the system in terms of reliability, thus enabling system optimization by means of
Bayesian reasoning (more details about the optimization process are presented in
the next chapter). We propose a scalable, cross-layer methodology and supporting
suite of tools for accurate but fast estimations of computing systems reliability. The
backbone of the methodology is a component-based Bayesian model, which effec-
tively calculates system reliability driven by the masking probabilities of individual
hardware and software components considering their complex interactions.
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To evaluate the usability, applicability and scalability of the developed model,
methodology and tools, both a set of benchmarks and real life applications were
analyzed.

Part of the work presented in this Chapter was previously published in [4, 115].
This methodology was developed in the context of the 7th Framework Program
of the European Union through the CLERECO Project, under Grant Agreement
15 611404. The suit of tools addressing the technology, hardware and software
layers were developed respectively by “Universitat Politecnica de Catalunya” (UPC),
“University of Athens” (UoA) and “Laboratoire d’Informatique, de Robotique et
de Microélectronique de Montpellier” (LIRMM) and integrated in the system level
framework described in this thesis.

6.1 Introduction

When looking at system-level reliability, failing to meet a reliability requirement
may add excessive re-design costs to recover and may have severe consequences on
the success of a product [116]. Worst-case design with large margins to guarantee
reliable operation has been employed for long time. However, it is reaching a limit
that makes it economically unsustainable due to its performance, area, and power
costs [117].

Hardware faults may propagate through the hardware (HW) and software (SW)
layers of the system stack, reaching the system output, or be masked during this
propagation process. Different protection mechanisms can be employed at different
layers implementing what is nowadays called cross-layer reliability enhancement
[37, 118, 115]. Accurately measuring the impact on system reliability of any change
in the technology, circuit, microarchitecture and software is a complex design task,
involving design teams from all abstraction layers. The task has multiple objectives
because reliability must be traded-off against other crucial design attributes such as
performance, power, and cost [119]. Unfortunately, tools and models for cross-layer
reliability analysis are still at their early stages compared to other very mature design
tools (e.g., performance and power optimization tools). The current practice of
industrial standards is to rely either on time-consuming gate-level fault injection
campaigns or on simplified models that guarantee smaller computation time but
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deliver very coarse-grain and conservative (i.e., pessimistic) reports of the system
reliability [85, 86].

This Chapter proposes a novel system-level cross-layer reliability assessment
framework built on top of a component-based Bayesian model of the target system.
In component-based system reliability modeling, the system is more than the sum
of its parts. Each component affects globally perceivable properties of the entire
system. By carefully integrating parameters from all layers of the system stack we
are capable of accurately evaluating the failure rate of the full system. The proposed
system-level reliability model and supporting tools deliver several key contributions
with respect to current approaches. The target system can be described in terms of
components and the model can efficiently describe how faults and errors propagate
through components, accounting for complex interactions among them that are
not modeled with simpler combinatorial models (e.g., reliability block diagrams
or fault trees [120]). Components can be unplugged from the system during their
characterization and the effect of their interaction can be recombined later, thus
enabling reuse of information. Moreover, the model is highly parameterized and
scalable. It enables including any factor that can potentially affect the reliability of
the system (e.g., environmental factors such as location and temperature) by simply
adding new variables to the model. The model scales efficiently to complex systems
with an analysis time that is significantly shorter than traditional fault injection while
maintaining adequate levels of accuracy. Other system-level approaches provide
similar execution time [85, 86] but their accuracy is significantly lower and can thus
lead to more costly design decisions for reliability. A statistical model itself would be
useless for reliability assessment in real applications without supporting instruments
to populate the model for a specific system and workload. Along with the model, we
therefore present a complete framework comprising a tool-chain able to compute the
FIT of the final system, based on the proposed system-level reliability model. In this
chapter, we address transient faults (soft errors), but if tools and models to estimate
conditional failure probabilities for different classes of faults (i.e., intermittent and
permanent faults) are developed, the proposed model can be used to study their effect
as well.

The remainder of this Chapter is organized as follows: Section 6.2 discusses the
state-of-the-art solutions adopted for architectural and software reliability evaluation
as well as the most popular Bayesian models adopted to assess reliability. The
proposed reliability framework is introduced by Section 6.3 and the developed tools



98 Reliability estimation of complex digital systems

by Section 6.4. Then, results are presented and analyzed in Section 6.5. Finally
Section 6.6 concludes this chapter.

6.2 Related works

6.2.1 Architectural level reliability analysis

The Architectural Vulnerability Factor (AVF) of a microprocessor and its estima-
tion has attracted significant attention by the research community. As discussed
previously, the AVF of a hardware structure is the fraction of faults in it that affect
the correct program operation [15]. Most AVF estimation methods are based on
offline analysis with architecture or RTL level simulators [15, 121, 86]. Offline AVF
estimation is a complex process, requiring major modifications to the simulators and
many resources to track values and instructions as they travel through microprocessor
components. Only a limited number of instructions (short programs) can be analyzed
in a reasonable amount of time because of the excessive memory requirements of
ACE (Architectural Correct Execution) analysis. Online or real-time AVF estimation
has been also presented [122–126], but it still requires heavy offline simulation and
calibration for different workloads. It is not clear to what extent the parameters
calibrated for one set of workloads will give accurate estimation for another set. A
general drawback shared by all these methods is their AVF over-estimation due to
worst-case assumptions. A 7x AVF over-estimation is reported in [85], whereas
[86] reports that even a refined ACE-based analysis (which requires even more
elaborate modifications of the microprocessor simulator model) leads to up to 3x
over-estimation. This leads to over-designed systems. The model and method we
propose in this work aim to contribute to the design of computing systems without
excessive costs for reliability.

6.2.2 Accounting for software effects in reliability analysis

In [127] the authors discussed a first attempt to perform static analysis of a computer
system including its software. However, the approach is limited to errors affecting
the instruction opcodes before they enter the microprocessor pipeline. Three seminal
papers by Sridharan and Kaeli first considered the software layer in the reliability
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assessment of a system [104, 128, 16]. They propose to compute a Program Vul-
nerability Factor (PVF) to quantify the portion of AVF that is attributed to a user
program. This concept has been further extended in [22] with the introduction of
the concept of the System Vulnerability Stack. The System Vulnerability Stack is a
significant advance towards the definition of a system reliability model accounting
for all layers of the system stack. However, it is over-simplified and it considers that
layers are statistically independent from each other, to allow computing the global
AVF as a simple product of the vulnerability factors of each layer. This is obviously
not the case in a real system in which there is a very intricate interaction among the
different layers and among components of each layer, and this approximation leads
to pessimistic predictions.

Another interesting solution that considers the impact of the application software
running on embedded microprocessors was discussed in [107]. Despite the fact
that it provides promising results, the method is still limited to transient faults in
embedded microprocessors. Moreover, being based on static analysis of code traces,
it does not capture important masking effects introduced during dynamic execution.

6.2.3 Bayesian models for reliability estimation

Bayesian Networks models are very useful statistical models employed in many
disciplines. Weber et al. in a comprehensive review report more than 200 papers pub-
lished between 1998 and 2008 in international journals on applications of Bayesian
Networks in different fields, i.e., dependability, risk analysis and maintenance [129].
Differently from state-space based models such as Markov models [130] Bayesian
models are better suited when component-based modeling is required.

Among the different application fields, Bayesian models have been largely used
to create software reliability models, i.e., to predict the probability of failure-free
software operation for a specified period of time in a specified environment [131–
134]. Software reliability differs from system reliability considered in this thesis
since it reflects the software design perfection, rather than hardware manufacturing
perfection and tolerance of the system to design variability and environmental stresses
[135].

Finally, a large set of publications present high-level theoretical Bayesian models
to predict system reliability in different fields ([136–138] and their references). The
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main drawback of these approaches is that they focus on models optimizations to
improve the capability of the analysis but do not provide solutions to collect all
parameters required to build the model in a specific application domain.

Our model and reliability assessment method is a major step forward. We
explicitly consider a Bayesian model in the field of cross-layer reliability focus-
ing on system level effects of hardware faults. Our methodology comprises both
the theoretical framework required to properly describe the target system using a
Bayesian Network and a complete integrated framework of tools able to compute all
parameters required to feed the model for virtually all realistic cases of hardware
and software components. Moreover, it introduces the possibility to identify the
weakest components in terms of reliability, thus enabling reliability optimization of
the system under design.

6.3 The proposed system level reliability framework

In this work, we focus on system reliability assessment against soft errors. Errors
resulting from low-level faults may manifest, be masked or be propagated through
the HW and SW layers of the system stack, possibly resulting in partial or total
failure of the system activities (Figure 6.1). Other reliability issues such as HW/SW
design bugs are out of the scope of this work.
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…

Hardware architecture (HW)
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System
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Fig. 6.1 The system stack: faults originate at the lower layer of the system stack and are
either masked or propagated to the upper layer possibly resulting in a failure at system level
(Source: [4]).
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We propose a reliability assessment model allowing designers to obtain reliability
estimations early in the system design cycle. This supports architectural decisions
and gives indications about those portions of the system that are critical and deserve
customized development effort to improve reliability. Among different modeling
styles [130], following the component-based system design approach we propose a
component-based reliability model [139]. In component-based reliability modeling,
system reliability is estimated using reliability information and other properties (e.g.,
size, complexity, etc.) of individual system components and their interconnections
(the system architecture). Our model exploits Bayesian Networks as a statistical
foundation for full-system reliability analysis. BNs offer several interesting features
for system reliability modeling: (i) efficient calculation scheme, (ii) capability of
fitting on field and simulation data, (iii) intuitive and compact representation, (iv)
decision support. A BN is a compact representation of a multivariate statistical
distribution function encoding the Probability Density Function (PDF) governing a
set of random variables by specifying a set of conditional independent statements
together with a set of conditional probability functions.

The proposed system reliability model is composed of a qualitative model rep-
resenting the architecture of the system and a quantitative model, representing the
reliability of each component and their relations.

6.3.1 Qualitative model of the system

The system architecture is defined through a directed acyclic graph G (Figure 6.2):

G = (V = (C∪P),E = (RR∪PR)) (6.1)

The set of vertices V is split into two subsets: components (C) and parameters (P).
Components are blocks composing the system. Depending on the architectural layer
(technology, HW, SW) the component definition changes as discussed later in this
section. Components, ci ∈C, are associated to Bayesian nodes, i.e., their reliability
is associated to a set of random variables. Parameters, pi ∈ P, are special vertices
that are not direct part of the system Bayesian model. They represent implementation
details of a component (e.g., operating temperature, workload, etc.) exploited by
our framework to build the quantitative model of the system described later in this
section. The RR = (ci,c j) ∈C×C (reliability relations) are the set Bayesian arcs
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that define temporal or physical reliability relations among components, e.g., a
failure state of a component may influence the state of another component. Finally,
the PR = (pi,c j) ∈ P×C (parameters relations) are the set of relations between a
component and its implementation parameters. Based on the system stack shown in
Figure 6.1, components of a system are split into four subsets or domains (Figure
6.2) each requiring different techniques to be characterized for reliability.

Fig. 6.2 System reliability estimation model. System components are modeled by component
nodes. The topology of the network provides the qualitative description of the system.
Conditional probability tables (CPT) associated to each component node of the network
provide the quantitative description of the reliability of the system. Parameter nodes model
information required to compute the CPTs of the component nodes (Source: [4]).
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The technology domain (TD) models the physical layer of the system. Com-
ponents in this domain list all fabrication processes used to build the hardware
structures of the system (e.g., 16nm Bulk CMOS for a microprocessor component,
14nm FinFET CMOS for external DRAM, 14nm NAND Flash for external storage,
etc.). These components set the raw fault probabilities of the system. Implementa-
tion parameters in this domain model physical quantities influencing the raw fault
probability of a technology (e.g., temperature, voltage, location, radiation effects,
etc.).

The hardware domain (HwD) models the hardware architecture. Components in
this domain list the hardware blocks such as CPUs, GPUs, memories, accelerators,
custom IP cores, used to build the system. Granularity at which hardware blocks
are modeled in this domain depends on the level of detail the designer needs for
the reliability analysis, and the degree of freedom the designer has with the design
of the selected components. A complex component such as a microprocessor can
either be considered as a whole or split into its subcomponents (e.g., register files,
ALUs, buffers, queues, speculation units, etc.) to allow a fine-grained analysis and
optimization. Each hardware component is associated to a set of implementation
parameters such as size (e.g., number of bits of a memory), speed, workload, etc.

The software domain (SwD) models the software architecture. To decouple the
analysis of the SwD from the one of the HwD, special attention is required to define
the interface between the two layers. Components of this domain are further split
in two sub-domains: (1) software fault models (SFMs), and (2) software modules
(SMs).

SFMs are the approach introduced by our model to translate hardware failures
into the software domain and therefore decouple the two domains so that the corre-
sponding supporting tools for the hardware and the software domains can operate
independently. SFMs model program alterations that can be linked to alterations of
the Instruction Set Architecture (ISA) of the hardware block executing the software.
Table 6.1 lists the set of SFMs currently supported by our framework for selected
microprocessor architectures. The table is not intended to be exhaustive. Additional
SFMs can be plugged in the model given that proper tools for the evaluation of their
occurrence and effect are designed.

On the other hand, SMs model the software architecture. The granularity of the
description in this domain depends on the specific application. A node may represent
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Table 6.1 Example of SFMs taxonomy.

Software Fault Model Description

Wrong Data in a Operand (WDO)
An operand of the instruction
changes its value

Source Operand Forced Switch (SOFS)
An operand is used in place
of another

Instruction Replacement (IR)
An instruction is used in place
of another

Faulty Instruction (FI)
The instruction is executed
incorrectly

Control Flow Error (CFE) The control flow is not respected

a high-level library or framework, a single function, a portion of a function or even a
specific data structure (e.g., an array), thus allowing for a fine-grained customization
of the model. Implementation parameters in this domain mainly include the workload
of each module.

Performing system level reliability analysis requires the definition of a set of
observation points where the behavior of the system is evaluated and properly
classified. In most applications, observation points are a set of software components
whose outputs define the outcome of the system. Nevertheless, associating the
concept of observation points to the software domain is limiting. To model this
concept, the system domain (SD) has been split from the other domains and placed
at the higher-level of our model to separately identify those components where the
entire system’s reliability is observed.

6.3.2 Quantitative model of the system

The quantitative model of the system defines the probability of occurrence of an
error/fault in a component depending on the condition of its direct interacting com-
ponents and on its implementation parameters. In a Bayesian model such as the one
proposed in this chapter, the quantitative model is a set of Conditional Probability
Tables (CPTs): there is one CPT, Θc|U, for node c ∈ C whose size depends on its
parent nodes U (Figure 6.3).

Each node c is associated to a set of states, which identify possible error or
error-free conditions of the node (e.g., a memory can be error free, or it can be
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Fig. 6.3 Example of CPT for node c3 (Source: [4]).

affected by a single bit-flip, or by a double bit-flip). The set of states of the nodes
depends on the node domain and the specific characteristics of the node. For each
state of a node, we need to look at all combinations of states of its parent nodes. Each
such combination is called an instantiation u of the parent set U. The CPT Θc|U maps
each instantiation c | u to a probability θc|u such that ∑i θc|ui . Nodes without parents,
called root nodes, are described according to their marginal probability distributions.

Computing CPTs can be both difficult and time consuming. It is typically an
assignment given to a group of specialists that need to collect information and
organize them according to the model. In this chapter, we perform a significant step
forward by proposing a framework of integrated tools, each designed to operate in
one of the four node domains and able to compute conditional probabilities for major
classes of software and hardware modules of modern electronic systems. The tools
enable to consider each instantiation of a node and to setup a set of simulations to
compute the corresponding conditional probabilities in a fast and optimized way.

In details, each node is characterized by the following output states according to
its domain:

• Technology domain: faulty or not-faulty

• Hardware domain: one output state for each error classification of the hardware
component

• SFMs: refer to Table 6.1

• Software domain: one output state for each Software Faulty Behavior (SFB).
In the proposed model Error-free, SDC and Unresponsive are the considered
SFBs (Table 6.2), however the model can integrate other SFBs.

• System domain: one output state for each system failure mode.



106 Reliability estimation of complex digital systems

Table 6.2 Software Faulty Behavior Classifications.

Fault Classification Description

Masked
The application execution terminates normally.
All the application outputs are correct.

Silent Data Corruption (SDC)
The application execution terminates normally.
However, the application outputs are different
from the fault free outputs.

Unresponsive
The application execution does not terminate
normally: it stops working or it never stops.

It is important to note that, if a node has many parents or if the parents can take a
large number of states, the CPT becomes very large. This issue is particularly severe
at the SwD, where the size of the CPTs of software nodes (expressed in terms of
number of columns) is equal to:

#CPT columsdirect = #s f b#parent nodes (6.2)

This equation reports that the CPT size grows exponentially with respect to the fan-in
of the nodes. As a consequence the size of the CPTs explodes even if a node has a
relatively small number of parents. In our model, we consider 3 SFBs. Considering
the contribution of the parent nodes, the size of the CPT is in the order of billions
of columns in case of 20 parents (320 conditional probabilities). Consequently, this
approach can be just applied to analyze simple programs.

To cope with the exponential number of probabilities in the CPTs two solutions
can be adopted. The first consists of resorting to the Noisy-MAX approach [140].
The Noisy-Max is a generalization of the interaction of a child node and its direct
ancestors that allows reducing the size of the computed CPT thus reducing the
number of required simulations.

Fig. 6.4 The error propagation policy from parents to child.

The other, instead, consists of merging parent nodes in a k-ary tree. This approach
does not lead to any loss of accuracy since it reproduces the policy for the propagation
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of errors from parent to child nodes (Figure 6.4), therefore it was the adopted solution.
In details the policy is described for the following cases:

• wherever there is no error in the parent nodes, no error is propagated to the
child node;

• wherever there is an unresponsive error in at least one of the parent nodes, an
unresponsive error is propagated to the child node;

• wherever there is an SDC error in one and only one of the parent nodes, an
SDC error is propagated to the child node;

• wherever there is an SDC error in more than one of the parent nodes, an
unresponsive error is propagated to the child node;

We define nodes of the k-ary tree as dummy nodes. A dummy node is connected
to k nodes. Therefore, the CPT size of dummy nodes is equal to #s f bk. The
maximum depth of the k-ary tree with respect to the number of parents of the node is
computed as logk(#parent nodes). Assuming that there are at most ki dummy nodes
at depth i the total number of CPT columns of the whole k-ary tree is reduced to:

#CPT columsk−arytree = #s f bk
logk(#parent nodes)

∑
i=0

ki

= #s f bk 1− klogk(#parent nodes)

1− k

= #s f bk 1−#parent nodes
1− k

(6.3)

To compute the best k to minimize the size of the CPTs we compute where the
1st order derivative of Equation 6.3 is equal to 0, in order to find the minimum:

∂ (#CPT columsk−arytree)

∂k
=

=
(1−#parent nodes)#s f bk(k ln(#s f b)−1− ln(#s f b))

1− k2 = 0
(6.4)

It is interesting to notice that this result does not depend on the #parent nodes
since we consider it to be equal or greater than 2. Moreover since #s f bk > 0∀k its
contribution can be not considered. Consequently, to find the best k the equation can
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be rearranged as:

∂ (#CPT columsk−arytree)

∂k
= k ln(#s f b)−1− ln(#s f b) = 0

⇒ k = 1+
1

ln(#s f b)

(6.5)

From this equation we derive that the best k is a value between 1 and 2. As a result
we decide to adopt k = 2, so that we model the tree of dummy nodes as a binary tree.

Next step is to define a rule to establish whether to create or not the dummy
binary tree solving the following equation with respect to #parent nodes:

#CPT columsk−arytree < #CPT columsdirect

#s f bk 1−#parent nodes
1− k

< #s f b#parent nodes

where k = 2

(6.6)

In case we have #s f m = 3 we obtain than #parent nodes > 2. However to keep the
number of nodes low we choose #parent nodes > 4.

6.3.3 Reasoning on the model of the system

Once the system is described, the proposed reliability model can be used to reason
about the its reliability properties.

Bayesian reasoning is a well-known approach and the reader may refer to [141]
for further details. Two main types of reasoning are supported. In the predictive
reasoning, starting from information about fault causes (i.e., raw technology failure
rates) the designer is able to obtain new beliefs about their effect on the system
failures, following the forward directions of the network arcs. This enables early
reliability analysis of the complete system (FIT evaluation). In the diagnostic
reasoning the designer reasons from symptoms to cause (backward direction of
the network arcs), i.e., the observation of a system failure updates the belief about
the contribution of components to the failure. This allows us to identify weak
components that most likely contributed to the failure, in order to drive the reliability
design effort toward the most critical components thus optimizing the overall system
at the lower cost. Moreover, the model can be used to calculate new beliefs when
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new information (evidence) is available. For example, by setting the evidence that a
given component is in a given state (e.g., a hardware component is faulty), the model
enables to update the belief of the system failure given this new information, as well
as to update the belief of the root causes that lead to this component failure.

6.4 Integrated tools framework

This section describes the tools required to populate the quantitative information in
the proposed system reliability model. Tools addressing the Technology Domain,
the Hardware Domain and the Software Domain were developed respectively by
“Universitat Politecnica de Catalunya”, “University of Athens” and “Laboratoire
d’Informatique, de Robotique et de Microélectronique de Montpellier” and they are
employed for this work. On the contrary, we developed the tool targeting the System
Domain implementing the proposed methodology. A brief description of the tools
employed here is reported in the following subsections to give a complete overview
of the proposed framework.

6.4.1 Technology Domain

In the technology domain, for different technologies, a tool chain developed by
“Universitat Politecnica de Catalunya” was employed to populate the CPTs of the
technology nodes. This tool chain is able to characterize the main building blocks
composing a logic circuit in order to compute their marginal fault probability with
respect to a given failure model1. The current implementation focuses on soft errors
caused by particle strikes. Figure 6.5 summarizes the technologies and blocks
analyzed so far for soft errors. Further technologies and blocks can be analyzed
given the availability of a proper technology and circuit model. Each block and each
technology is analyzed for different combinations of run-time parameters. Supported
parameters currently include combinations of voltage, temperature and geographical
location. The geographical location is considered to accurately predict the error rates
caused by particle strikes as detailed in Appendix A.

1The marginal distribution of a random variable is the probability distribution of the variable
without reference to the values of the other variables (i.e., opposite to conditional probabilities). Since
technology nodes are root nodes they are described by marginal probabilities rather than conditional
probabilities.
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Fig. 6.5 Building blocks and technologies analyzed (Source: [4]).

Figure 6.6 summarizes the simulation workflow. A Python simulation engine
drives an exhaustive design space characterization for a given component imple-
mented in a given technology. The analysis is organized into a set of nested loops to
simulate an element subject to different operating temperatures, voltage, locations
and technology models. To study the impact of particle strikes, in the inner loop, the
current injected in the sensitive nodes of an element is iteratively increased until a
flip or glitch is detected measuring the stored value (SRAM) or the output (Logic
Gates). Each electrical simulation is performed in HSPICE. The minimum charge
generated from a pulse that causes a malfunction is stored and defined as the Qcrit
of that element (see Subsection 2.4). Finally, for each Qcrit, a raw soft error rate
(SER) is computed using the model in [18].

Through the use of this framework, a technology library of SERs for different
blocks under different technologies, geographical locations, and voltage/temperature
was built. Data from this library can be fed to our system model any time a new
system must be analyzed, without repeating the underlying simulations. The reader
may refer to [142] for additional implementation details.

SPICE 
circuit

Configuration Parameters
(Pulse, Temperature, Voltage, 

Input/Stored Value, Sensitive Node

SPICE 
simulator

Critical 
Charge (Qcrit)

Post 
process SER

Compact model
(Current and predictive technologies)

SER 
Model Location

Python script per component
Note: Qcrit and SER are provided for 
multiple configurations.

Fig. 6.6 Technology Domain characterization workflow (Source: [4]).
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6.4.2 Hardware Domain

At the hardware domain, GeFIN [143], a tool developed by “Univesity of Athens”,
was employed to characterize the CPTs of the hardware nodes. This tool chain
characterizes the different micro-architectural blocks of a microprocessor. Micropro-
cessors are the main target since they are one of the most complex and important
blocks of a system. The analysis performed by GeFIN starts from the assumption
that a fault (e.g., a SEU) affects one of the blocks of the microprocessor. Whether
this fault transforms into an error for other blocks depends on several parameters
that are analyzed at this level and in particular on the microprocessor workload (i.e.,
the executed software).

GeFIN is a microarchitecture-level fault injector built on top of Gem5 [144],
a cycle-accurate full-system simulator. GeFIN delivers very accurate results for
array-based structures and it gives the opportunity to run experiments for two of
the major ISAs (ARM and x86). GeFIN has two different operation mode: the IRS
(Injection Runs up to the Software level) mode and the IRE (Injection Runs up to the
End) mode. Concerning IRS mode, fault injection simulations end at the first visible
fault effect at software layer (i.e., the moment that the first instruction affected by
the fault commits to the architectural state), when faults in the hardware structures
manifest as errors at the output of the CPU. These errors are then translated into
the proper SFMs according to Table 6.1. For IRE, instead, injection experiments
are executed up to the end of the benchmark and they are classified on the basis of
the application output (i.e., masked, SDC and DUE). While IRS mode is very fast,
IRE requires a lot of time but it delivers accurate results. For this reason, IRE mode
is just employed to compare the reliability estimations computed by the proposed
Bayesian model.

Figure 6.7 summarizes the behavior of the two GeFIN fault injector modes. The
pre-fault period represents the interval from the start of the benchmark until the fault
injection. This period consumes an average of about 50% of the simulation lifetime.
GeFIN can skip the pre-fault period in both IRE and IRS modes, resulting in a further
speedup.
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Fig. 6.7 IRE and IRS modes of GeFIN operation (Source: [4]).

6.4.3 Software Domain

The SwD models the software architecture by considering SFMs and SMs. SFMs
are the error sources for this domain and their CPTs are computed as the final
outcome of the HwD analysis using GeFIN. LIFILL [145], a tool developed by
“Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier”,
was employed to characterize the CPTs of the software nodes. LIFILL is a software-
level fault injector based on a virtual ISA, LLVM. In detail, software injections are
performed by mutating the LLVM code according to the injected SFM. Resorting to
LLVM allows to decouple the architectural level, characterized by its own ISA, from
the software execution platform, thus introducing flexibility.

6.4.4 System Domain

All tools described in the previous sections were integrated into a system level
reliability analyzer that implements the high-level BN model. The tool whose
GUI is shown in Figure 6.8 is written in C++ and QT and provides the following
functionalities to the user:

• System architecture design: the graph based system architecture can be
easily designed. The architecture of complex hardware components (e.g.,
complex microprocessors) can be selected from a library of components and
customized in terms of parameters, whereas the software architecture can be
automatically derived from the function call graph provided by the LIFILL
tool.
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• Quantitative model: the output of the different supporting tools can be di-
rectly imported in the system analyzer to automatically compile the quantitative
model of the system.

• Reliability analysis: once a system is described, Bayesian analysis can be
performed on the resulting network. Both predictive and diagnostic reasoning
is implemented and available to the user.

Fig. 6.8 System level reliability analyzer interface (Source: [4]).

6.5 Results

6.5.1 The experimental setup

The experimental campaign was organized into experiments on a set of carefully
selected use cases. Hereinafter, each use case is referred to as System Under Evalua-
tion (SUE). The reliability analysis targets several system configuration, taking into
account different hardware architectures and application software:

• Hardware architectures: microprocessor based systems are one of the major
classes of contemporary digital systems. We focus our experiments on this
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class of products. Three relevant single core microprocessor architectures are
considered (for details see Table 6.3):

– ARM Cortex®-A9

– ARM Cortex®-A15

– Intel®-like i7-skylake

• Application software: we consider both benchmark applications and real
industrial use-cases. For the benchmark applications, the software is selected
from the MiBench benchmark suite [92] that has been extensively used in
reliability-related literature. The selected benchmarks are:

– String search algorithm (stringsearch)

– Susan image smoothing algorithm (susan_s)

– Susan image edge detection algorithm (susan_e)

– Susan image corner detection algorithm (susan_c)

– Rrijndael encoding algorithm performing AES encryption (aes_enc)

– Qsort array sorting algorithm (qsort_full)

– Fast Fourier Transform algorithm (fft)

– Secure Hash Algorithm (sha)

For the industrial use cases we have selected three applications from different
domains:

– FMS: it is a representative example of an avionic embedded application.
This application runs on the ARM Cortex®-A15 microprocessor.

– Motor controller (MC): it is a representative example of an industrial
automation embedded application. This application runs on the ARM
Cortex®-A9 microprocessor.

– Sierpinski framework for tsunami predictor (Sierpinski): it is an open
source software providing a representative example of an HPC applica-
tion. This application runs on the Intel®-like i7-skylake microprocessor.

• Operating systems: we use both bare-metal and OS applications. For the OS
applications, the Linux operating system is considered.
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Table 6.3 Microprocessor architectures details.

ARM Cortex®-A9 ARM Cortex®-A15 Intel®-like i7-skylake

Type Out-of-Order
Superscalar

Out-of-Order
Superscalar

Out-of-Order
Superscalar

Frequency 800 MHz - 2 GHz 1 GHz - 2 GHz 4 GHz
Technology 65/45 nm 32/28 nm 14 nm FinFET
Register
File

56
32-bit registers

128
32-bit registers

168
64-bit registers

L1 I/D
Caches 32 KB 32 KB 32 KB

L2
Cache 512 KB 1 MB 1 MB

6.5.2 The validation framework

The reliability analysis obtained by the proposed methodology is compared against
2 different workflows based on state-of-the-art techniques and commercial tools
(Figure 6.9): the Register Transfer Reliability Analysis (RTRA) and the Microarchi-
tectural Level Reliability Analysis (MLRA). Hereinafter, the proposed methodology
is also referred to as Bayesian Reliability Analysis (BRA).

Register Transfer Reliability Analysis

Register Transfer Reliability Analysis is based on Register Transfer Level (RTL)
fault injection. It is a traditional reliability analysis workflow based on a set of
commercial tools. This workflow serves as a benchmark to compare our results
with those that can currently be obtained using state-of-the-art commercial tools.
In particular, we are interested in comparing the accuracy of our methodology in
relation to the computational complexity required to perform the analysis. Faults are
artificially injected into a very detailed RTL model of the hardware architecture that
strictly resembles the actual implementation. This provides very accurate simulations
that however need to take into account a set of drawbacks and restrictions.

RTL models of complex circuits (e.g., microprocessors, GPUs, etc.) are rarely
available to system designers, especially in the early phases of the design process.
This is a big obstacle that prevents the application of this reliability analysis tech-
nique in several application domains. To implement the RTRA workflow, the ARM
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Fig. 6.9 Overview of the simulation and validation campaign.

Cortex®-A9 with the related RTL fault-injection framework were selected for the
experiments since no accurate RTL models of neither an Intel®-like i7 architecture
nor ARM Cortex®-A15 were available. Therefore, comparison for RTRA exper-
iments are limited to the ARM Cortex®-A9 architecture. Even if the RTL model
of the ARM Cortex®-A9 is available, other limitations must be considered. Given
the complexity of the RTL model of a real microprocessor, not all internal memory
arrays are fully modeled and supported by the RTL fault injection process since it
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would have created serious simulation time issues (as reported later in this Chapter).
The memory arrays targeted by RTRA are the L1 Data Cache and the Register
File. Finally, RTRA workflow does not allow to consider applications on top of an
operating system because of a huge increment of time required by the simulation.
For this reason, all the applications are executed bare-metal.

Concerning the commercial tools used for the fault injection campaigns, two
reliability analysis workflows are devised. They are named (1) RT Level Reliability
Analysis with CPU Observation Points (RTRA-COP) and (2) RT Level Reliability
Analysis with Software Observation Points (RTRA-SOP). The key difference be-
tween these two approaches is related to the fault observation points, i.e., the way
the golden simulation and the faulty simulations are compared to each other.

The RTRA-COP is the standard industrial methodology used to perform safety
analysis of custom embedded systems. It can be considered as the state of the art of
the RTL fault injection simulations. According to this methodology, the observation
points used to classify the effect of a fault are the CPU I/O pins. This means that,
in order to classify the fault as dangerous or masked, the comparison between the
golden simulation and the faulty simulation is performed by observing the values
generated at the CPU pins (at run-time, during the simulations). The injection flow
is reported in Figure 6.10 and can be summarized as follows:

• Start a new RTL simulation for each fault

• Inject the fault (bit-flip)

• The simulation runs at most for T1 clock cycles starting from the injection
time. If no differences are detected between the golden simulation and the
faulty simulation within T1 clock cycles (compared on a cycle-by-cycle basis),
then the simulation is dropped and the fault is classified as masked. On the
contrary, if there are differences between the golden simulation and the faulty
simulation within T1 clock cycles, then the simulation is dropped and the fault
is classified as dangerous.

The parameter T1 is estimated according to the Safety Engineer expertise, the
device constrains, the test bench features, the fault list, etc. Some estimation tests can
be performed in order to better estimate this parameter. However, the T1 estimation
follows a very conservative approach.
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Fig. 6.10 RTRA-COP Injection timeline.

While RTRA-COP is effective to characterize how a circuit reacts to a fault, it fails
to capture the masking contribution that the software executed on the architecture
provides. The RTRA-SOP analysis allows for a fair comparison with the proposed
methodology. In the RTRA-SOP the effect of a fault is classified looking at the
result of the computation (software output) and not looking at the CPU output pins.
Simulating the full software execution in a RTL simulation is a very challenging
process with several performance issues that will be better discussed when presenting
the experimental results.

The RTRA-SOP injection workflow is reported in Figure 6.10 and can be sum-
marized as follows:

• Start a new RTL simulation for each fault

• Inject the fault (bit-flip)

• After the injection, if no differences are detected on the CPU pins within T1
clock cycles, then the simulation is dropped and the fault is classified as safe,
otherwise the simulation is run until the end

• For each fault simulation the output is compared with the golden output. If
the outcomes differ, then the fault is considered dangerous. If not, the fault is
considered masked.

Similar to RTRA-COP also the RTRA-SOP resorts to the T1 parameter to avoid
the full simulation of all injected faults. This is a very critical parameter that decides
how many injections must be executed until the end of the software execution. Lower
values enable faster injection but loose accuracy. Higher values increase the accuracy
by worsen the injection throughput. The set of faults injected with this methodology
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Fig. 6.11 RTRA-SOP Injection timeline.

is exactly the same injected with the RTRA-COP methodology in order to have fully
comparable results.

Microarchitectural Level Reliability Analysis

Microarchitectural Level Reliability Analysis (MLRA) is based on fault injection
at microarchitectural level. MLRA is chosen to overcome the limitations imposed
by RTRA. MLRA allows to include complex hardware blocks (e.g., CPUs, GPUs,
etc.) in the reliability analysis. Microarchitectural models are in general available
for main families of components and enable fast simulations while keeping enough
details to perform a precise analysis. Microarchitectural models are also easier to
develop than RTL models, they can be developed by third parties and they are often
released under different types of open-source licenses. For our experiments GeFIN
[143] is employed. As already mentioned before, GeFIN was developed by UoA
and it is built on top of Gem5 simulator. GeFIN can be configured to precisely
model the microarchitecture of both ARM Cortex®-A9 and Intel®-like i7-skylake
used in our experiments. It can model the behavior of several types of fault models
including the soft errors considered here. Using the MLRA workflow, the AVF of all
the considered memory arrays can be computed both for the ARM Cortex®-A9 and
Intel®-like i7-skylake architecture. Finally combining the AVF of each component,
the FIT rate can be also computed (Equation 2.4).

6.5.3 Experimental Results

The first experiments we performed aim at understanding the accuracy of the different
workflows. To give the reader a deep understanding and a complete view of the issues
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related to reliability evaluation, we start comparing MLRA estimations with RTRA
estimations that represent the state-of-the-art commercial reference. Later in this
Section MLRA results are compared with BRA. As previously described this first
comparison is limited to the observation of the effect of faults into the ARM Cortex®-
A9 Register File (RF) and L1 data cache (L1D) because of the limits imposed by
the RTRA. For each component of each SUE we performed 680 injections, leading
to 5% error margin and 99% confidence level (see Equation 4.12). The comparison
between MRLA and RTRA accuracy is performed using the AVF metric. Since
MLRA takes into account the Operating System (OS), while RTRA does not, to
perform a fair comparison, the AVF computed using MLRA is split into its OS and
software application portion in order to focus the comparison on the application
portion. This was possible by identifying for each injected fault in MLRA whether
the microprocessor was in kernel or user mode.

Figure 6.12 compares the AVF using the RTRA-COP workflow with the one
computed using the MLRA workflow. We consider the 8 miBench applications plus
FMS and MC that are designed to work with the ARM microprocessor architecture
for which we can apply the RTRA-COP workflow. The execution time of Tsunami
application is excessively long to run it at the RTL level.

It is important to report that in this comparison we used the ARM Cortex®-A9 as
an execution platform also for the FMS application. The execution platform for FMS
is therefore different from the one of the real implementation that is based on the
ARM Cortex®-A15. This allows us to easily perform comparisons among different
applications. Reliability of FMS on the ARM Cortex®-A15 architecture is discussed
later in the section.

Interestingly, the results show a significant deviation between MLRA and RTRA-
COP, with RTRA-COP providing optimistic results especially in the case L1D.
However, this is not surprising. RTRA-COP monitors the behavior of the system
looking at the CPU pins. While this approach is very effective when analyzing the
effect on faults in the control logic of a circuit that usually manifest within a few
clock cycles at the output of the CPU, it is not able to capture the logic masking effect
provided by the software execution. Moreover, CPU pins (aka core pins) considered
by the RTRA are positioned between the CPU the L1 caches, meaning that any
deviation that does not go outside L1 in the hierarchy (i.e., L2 cache memory) is
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(a) Comparison of MLRA vs. RTRA-COP AVF for L1D

(b) Comparison of MLRA vs. RTRA-COP AVF for RF

Fig. 6.12 Comparison of MLRA vs. RTRA-COP AVF estimation with 5% error margin and
99% confidence level. All benchmarks are executed on ARM Cortex®-A9 microprocessor
models at the microarchitecture level (MLRA) and the RTL level (RTRA-COP).

not properly captured. To worsen the situation, the T1 timer limits the amount of
time we spend to observe the effect of the fault. In our case T1 is set to 20,000
clock cycles to keep the simulation time under control. This is a reasonable value
set according to good practices for the implementation of RTRA-COP. However, the
duration of the full software application is some orders of magnitude higher than
T1 timer. Therefore, several latent faults escape the analysis. This is particularly
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evident for L1D. Data in L1D live much longer than data in RF, and therefore, the
probability of a latent fault escape is higher. Differently, data in RF have a short
life and the probability of latent fault escape is significantly lower than the L1D. We
can therefore conclude that while RTRA-COP is a valuable instrument for a low
level analysis of the circuit behavior, but it fails to take into account the effect of the
software execution at the system level, thus highlighting the relevance of the need of
new valuable instrument to perform this type of analysis.

MLRA and RTRA-SOP are compared to better understand the accuracy of
MLRA. In facts, RTRA-SOP mimics the way MLRA performs the reliability analysis.
However, a serious performance issue arises when implementing RTRA-SOP. Figure
6.13 shows the days of simulation that would be required to perform the RTRA-SOP
analysis injecting 680 faults for RF and 680 faults for L1D. Performance is reported
with a setup composed of a single workstation (Intel® Xeon based with 64GB of
RAM) performing injection sequentially (for a single thread injector).

Fig. 6.13 CPU time in days of simulation to perform 680 injections for L1D and 680
injections for RF using RTRA-SOP with T1 timer equal to the duration of the program.
Simulation time is provided in Days of simulation using a logarithmic scale.

It is clear that, even with the use of multiple threads on the same machine and
multiple workstations to parallelize the simulations, not all applications can be
analyzed with this technique in a reasonable time. We therefore limited this analysis
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to stringsearch, susan_s, aes_enc, susan_e, susan_c and MC whose simulation time
was reasonable to handle with the available resources.

Figure 6.14 compares the AVF using the RTRA-SOP workflow with the one
computed using the MLRA workflow for the selected SUEs. For RTRA-SOP we
performed two simulation campaigns. The first uses the time T1 set to 20,000 clock
cycles exactly as for the RTRA-COP workflow. The second simulates all injected
faults until the end. As it is evident looking at Figure 6.14, the timer T1 is a critical
parameter also for RTRA-SOP. Choosing a low T1 leads to very significant devia-
tions in the estimated AVF, especially considering faults in the L1D. The motivations
for these deviations are exactly the same that apply for RTRA-COP. Data in L1D
tend to have a lifetime longer than T1 and therefore several escapes appear. On the
other hand, if T1 is set to the duration of the full application, deviations are strongly
reduced and we can appreciate how MLRA is able to provide very accurate results
(comparison of the orange bars that exclude the contribution of the OS). Looking
at Figure 6.14, it is also very important to highlight how the OS may represent a
significant influencing factor for the AVF of a system. The impossibility of RTRA of
fully taking into account the influence of the OS is a main limitation of this reliability
estimation.

Some considerations are required before comparing the accuracy of AVF esti-
mations performed using MLRA and BRA. First, both MLRA and BRA are not
limited to injection in the register file and in the L1 Data Cache. Therefore all major
memory arrays of the microprocessor that include also the L1 Instruction cache
(L1I), the L2 Cache (L2), and the Store Queue (SQ) are considered. Secondly, the
ARM Cortex®-A9 is not any more the only microprocessor architecture that can be
analyzed. The Intel®-like i7-skylake architecture used by the Sierpinski application
is considered by this comparison too. Finally, BRA is mainly devoted to perform very
early and fast design exploration rather than providing accurate reliability estimation.
Table 6.4 reports the hardware configuration of the three microprocessors considered
in this analysis and in particular the size of the considered memory arrays expressed
in bits. In the comparison between MLRA and BRA the effects of the OS are also
considered.

Figure 6.15 compares the full system AVF computed using MLRA and BRA
for the 8 considered miBench benchmarks and for the three considered industrial
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(a) Comparison of MLRA vs. RTRA-SOP AVF for L1D

(b) Comparison of MLRA vs. RTRA-SOP AVF for RF

Fig. 6.14 Comparison of MLRA vs RTRA-SOP AVF esitmation. All benchmarks are
executed on the ARM Cortex®-A9 microprocessor RTRA-SOP and RTRA-SOP sh-T1. In
RTRA-SOP the T1 time is set to the duration of the application, therefore all faults are
simulated until the end of the program execution. In RTRA-SOP sh-T1 only faults that
create differences at the CPU outputs in T1 clock cycles are simulated until the end of the
application.

use cases. All benchmarks except Sierpinski are analyzed on the ARM Cortex®-A9
architecture while Sierpinski is analyzed on the Intel®-like i7-skylake architecture
only.
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Table 6.4 Hardware configuration for the three considered microprocessor architectures. It
reports the size (#bits) of the main arrays considered in the analysis.

ARM Cortex®-A9 ARM Cortex®-A15 Intel®-like i7-skylake
L1D 262144 262144 262144
L1I 262144 262144 262144
L2 4194304 8388608 2097152
RF 1792 4096 10752
SQ 256 512 4608

Fig. 6.15 AVF estimation comparison between MLRA and BRA. This is a full system AVF
including contribution of RF, L1D, L1I, L2 and SQ.

It is very interesting to discuss the differences between the two estimations that
actually set the accuracy of BRA vs. MLRA. Even if BRA is not designed for very
high accuracy, deviations in the AVF estimations are very limited even for the most
complex use cases. The only outlier in these experiments is the AES benchmark,
which is a peculiar software architecture storing several constant data structures in
memory that require special attention when performing the software characterization.
However, if we look at the absolute error, it is limited to about 7 percentile units.
While this deviation may be considered significant in the late stages of the design,
when very accurate reliability assessment is required to qualify the safety of the
developed system, it is more than acceptable in the early phases of the design when
reliability assessment is required as a reference metric to understand how to optimize
the system to reach the desired reliability level without incurring in worst-case design.

To prove the flexibility of the proposed methodology, we also performed the
reliability evaluation for FMS for ARM Cortex®-A15. Figure 6.16 shows the
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comparison of the two architectures (ARM Cortex®-A9 and ARM Cortex®-A15)
reporting AVF for each component of the system. The last column shows the
system AVF. BRA allows to capture the difference in terms of AVF when the same
application is executed on the two different architectures, thus highlighting that it can
be employed to explore the system design effectively. In this case, we observe about
4% difference. The system AVF provides a global picture of the system weighting
the contribution of each block according to its size. The other bars, instead, allow
to have a deepest look at the AVF of the single blocks. The deviation of the system
AVF between the two architectures can be attributed to two aspects. The former is
the AVF deviation of the L2 cache, the latter is the different size of this block.

Fig. 6.16 Comparison of the AVF for two different ARM architectures running FMS: ARM
Cortex®-A9 and ARM Cortex®-A15.

The time required to perform the simulations and to compute the reliability
metrics is an important aspect to evaluate the scalability of the analysis with respect
to the complexity of the target systems. Figure 6.13 shows that a lot of time is spent
when resorting to RTRA-SOP, so much time that for some of the considered target
systems this analysis is not feasible. On average, MLRA is more than one order of
magnitude faster than RTRA-SOP.

Figure 6.17 introduces a comparison between MLRA and BRA in terms of time
required by the reliability analysis considering all the hardware blocks of the systems.
Results are reported in terms of hours of computation. In most of the cases BRA
computation time is significantly reduced with respect to MLRA. This means that
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the reduced accuracy of this technique is compensated by a fast computation time,
that is a valuable aspect in the design phase to reduce time-to-market.

Fig. 6.17 Simulation time comparison between MLRA and BRA. Simulation time is provided
in hours of simulation using a logarithmic scale.

How the total simulation time for BRA is distributed among the characterization
of the three system levels (hardware architecture, software and system) is shown in
Figure 6.18. The main complexity of this analysis is the hardware characterization.
Moreover, once the Bayesian model of a system has been constructed, the time
required for its analysis and the time required to perform statistical reasoning on
the model is negligible, thus demonstrating that it has the potential to be a valuable
instrument for the system designer.

To conclude the discussion regarding the complexity of the proposed method-
ology, it is important to have a look at the complexity of the Bayesian model that
is the base for this analysis. Table 6.5 gives a clear indication of this complexity.
It reports the number of nodes of the model (both real components of the system
or meta-nodes required to properly model the information propagation through the
network) and information on the In-degree of each node. Looking at the table it is
important to highlight that regardless of the complexity of the model that ranges from
a few tens of nodes to more than a thousand of nodes the simulation time is constant,
because the size of the CPTs remains small. This result highlights the effectiveness
of the solution introduced in Subsection 6.3.2, which limits the in- degree of software
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Fig. 6.18 Complexity distribution between the different layer.

nodes. While this technique slightly increases the number of nodes of the network,
it allows to take the complexity of the analysis under control since the size of the
CPTs depends on the number of incoming edges of each node.

Table 6.5 Complexity of the Bayesian Model required for BRA.

Node Count Average in-degree Max in-degree
Stringsearch 180 1.744 8
susan_s 336 1.78 8
susan_e 376 1.782 8
susan_c 337 1.777 8
aes_enc 256 1.773 8
qsort_full 142 1.718 8
fft 297 1.774 8
sha 333 1.805 8
FMS 1560 1.927 8
MC 55 1.655 8
Sierpinski 1031 1.99 8

To give a complete insight into the reliability of the analyzed systems we com-
puted other reliability metrics: the FIT (see Chapter 2) and the EPF (see Chapter
4).

In order to compute the FIT rate, λS, (the FIT is computed similarly to to Equation
4.3), we need to identify the FIT rate of the target technology, λ . This task is managed
by the tool presented in Subsection 6.4.1. Figure 6.19 reports the FIT rate per bit
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of 6T SRAMS for the technology nodes used in the fabrication of the considered
microprocessor architectures:

• 14 nm Bulk FinFET used by the Intel®-like i7-skylake

• 65/40 nm Bulk Planar used by the ARM Cortex®-A9

• 32/28 nm Bulk Planar used by the ARM Cortex®-A15

The figure shows that the target technology has a significant impact on the FIT rate
of a system. However, it is also one of the aspects of a design that has very reduced
degree of freedom for the system designer. The provided FIT rates are for a single
6T SRAM cells operating in typical conditions (1V, 50C).

Fig. 6.19 6T SRAM FIT/bit for the five fabrication technologies used in the considered
microprocessor architectures.

Figure 6.20 illustrates the FIT rate computed using MLRA and BRA for all sys-
tems running on the ARM Cortex®-A9. In this figure we investigated the difference
between the two technology nodes commercially available for this microprocessor.
The figure shows that the technology node is actually not really influential on the
definition of the FIT of the system, and this is somehow expected given that the raw
error rate per bit of the two technologies is very similar. On the other hand, there
is a significant variance of the FIT at the system level depending on the executed
application. In detail, aes_enc features the highest FIT, while the FIT reported for
MC is very low, suggesting that this application is already highly resilient to soft
errors and the introduction of invasive fault tolerance mechanisms might not be
required.
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Fig. 6.20 FIT rate for the applications executed on the ARM®Cortex®-A9 under two
different technology nodes.

Figure 6.21 reports the FIT rate for the Sierpinski application, executed on
the Intel®-like i7-skylake featuring a 14nm Bulk FinFET technology node. By
comparing the FIT rate of this system with the one of the applications executed
on the ARM Cortex®-A9, the FIT rate is very low. More specifically, the FinFET
technology is playing a major role reducing the effect of soft errors on this system.

Fig. 6.21 FIT rate for the Sierpinski application executed on the Intel®-like i7-skylake 14nm
Bulk FinFET technology node.

Finally, it is interesting to compare the FIT rate of the FMS application when
executed on two different microprocessors architectures featuring different tech-
nologies (Figure 6.22). The difference in terms of FIT is decreased with respect to
the difference of AVF for the two architectures (Figure 6.16), nevertheless that the
technology nodes have quite similar raw FIT. The reduction is due to the bigger size
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of the memory arrays of the ARM Cortex®-A15 (#bit of Equation 4.3). This is an
interesting example highlighting how, from the one hand changing the architecture
gives benefits in terms of AVF but on the other hand increases the number of vul-
nerable resources. Thanks to the proposed methodology the best trade-off can be
investigated to take the most appropriate design decisions.

Fig. 6.22 Comparison of the FIT rate for FMS considering different microprocessor architec-
tures fabricated using different technology nodes.

EPF results are plotted in Figure 6.23 with logarithmic scale. The comparison
is performed considering the FMS application and the MC application under two
implementations: (1) ARM Cortex®-A9 65nm Bulk Planar CMOS clocked at 800-
MHz and (2) ARM Cortex®-A15 28nm Bulk Planar CMOS clocked at 2.5GHz.
While MC benefits of a very significant increase of the EPF (one order of magnitude),
the EPF of FMS is almost constant. To explain this behavior, we need to analyze
the behavior of the two applications. FMS is a real-time application. Therefore,
the number of times it is executed during a given time period is independent on the
target architecture. As a consequence, even in case of a faster processor, it remains
constant. This means that the EPF is not influenced by the performance of the
microprocessor and the only benefit obtained moving from the ARM Cortex®-A9
to the ARM Cortex®-A15 is the lower FIT of the system as reported in Figure 6.20.
Differently, MC benefits from the higher performance of the ARM Cortex®-A15
and therefore moving from one pplication to the other has a significant impact on the
EPF.
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Fig. 6.23 EPF computed for FMS and MC on two different ARM architectures: ARM
Cortex®-A9 implemented with 65nm Bulk Planar CMOS clocked at 800-MHz and ARM
Cortex®-A15 implemented with 28nm Bulk Planar CMOS clocked at 2.5GHz. Results are
plotted in a logarithmic scale.

Presented results show the great accuracy and flexibility of the proposed Bayesian
Reliability Analysis when reliability must be evaluated. As anticipated, the most
valuable advantage introduced by the Bayesian model is the component sensitivity
analysis driven by Bayesian diagnostic reasoning, allowing the identification of the
most reliability-critical components of the system. The analysis starts by inserting
in the statistical model the evidence that the system is in a faulty state. Setting a
Bayesian evidence means performing a hypothesis of the state of the system. Based
on this hypothesis the Bayesian model allows us to update our beliefs on the state of
each hardware or software component of the system. In simple terms, we can answer
the following question: “if we know that the system is faulty which is the state of
each component of the system?”. This somehow allows us to identify where the faults
resulting as errors manifest. Scores of every system components are normalized to
give an indication of their sensitivity to faults. Figure 6.24 shows the result of the
sensitivity analysis performed for FMS.

Results of the sensitivity analysis must be carefully analyzed to avoid wrong
conclusions. First of all, since the Bayesian model decouples the different layers of
the system, sensitivity scores must be analyzed layer by layer. More specifically, the
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(a) Sensitivity analysis for hardware

(b) Sensitivity analysis for software

Fig. 6.24 Sensitivity analysis performed for FMS running on the ARM Cortex®-A15.

sensitivity score is a normalized score and its absolute value is not significant but it
is useful to compare different components.

Concerning the hardware domain in Figure 6.24, the result is somehow expected
for this type of system. In detail, the hardware domain is a low level layer and
therefore its sensitivity is highly influenced by the raw technological error rate.
If a fault strikes the system, it is very likely to manifest in the L2 cache since it
exhibits the largest number of bits. However, sensitivity scores must not be analyzed
alone. Their power arises when they are analyzed together with the knowledge of
the architecture of the system. In particular, Figure 6.25 provides a snapshot of the
Bayesian model for the hardware architecture of the ARM Cortex®-A15. L2 cache
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is hierarchically connected to L1I and L1D that have a significant lower sensitivity
score. This means that when moving from one block to another block in the hierarchy
faults may disappear. This type of analysis is very valuable. The designer can exploit
it to take proper decisions on where to insert fault tolerance mechanisms.

Fig. 6.25 Snapshot of Bayesian model of the hardware portion of the ARM Cortex®-A15.

However, a problem arises when the complexity of the architecture increases.
This is for example the case when we consider the software domain. Figure 6.26
shows a snapshot of the full FMS Bayesian reliability model including all nodes
modeling the software layer. It is clear that the complexity of this model is too high
and a global visual inspection of the hierarchy is not feasible unless the designer
focuses on some specific portions of the system. However, while human inspection
of the sensitivity score coupled with the hierarchy of the system is hard, automatic
algorithms can perform this analysis and suggest optimizations for the system.

An automatic system optimizer built on top of the proposed Bayesian model is
described later in Chapter 7. The main goal of the results presented in this chapter
is to highlight that the proposed methodology is well suited to be further employed
for system optimization, thus introducing a valuable improvement with respect to
state-of-the-art techniques.
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Fig. 6.26 Snapshot of the full FMS Bayesian model.

6.6 Conclusions

In this chapter we proposed a scalable, cross-layer methodology and supporting tools
ecosystem for accurate and fast estimations of computing systems reliability based
on a component-based Bayesian network model. The model and related tools address
all layers of a complex system from the technology up to the application software.
The proposed methodology is compared with state-of-the-art and industrial reliability
analysis workflows. We showed that it provides accurate reliability estimations (in
the worst case AVF absolute error with respect to MLRA is equal to 7 percentile
units). Thanks to its flexibility many complex systems can be analyzed even at
early stages of the design, varying technology, hardware microarchitecture, software
application, and OS configuration. Time required to perform the proposed reliability
analysis is significantly reduced with respect to MLRA (several orders of magnitude
with respect to RTRA). Besides the results concerning reliability assessments, one
of the key capabilities of the proposed framework is the possibility to perform early
diagnostic analysis to identify reliability-critical components of the system, thus
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enabling quick design exploration by evaluating the effects that different cross-layer
protection mechanisms at the technology, hardware and software layers. The design
exploration and the related system optimization are discussed in the next chapter.



Chapter 7

Reliability optimization of complex
digital systems

Designing reliable systems is a complex engineering task that nowadays follows
a cross-layer approach, requiring a careful planning for different fault-tolerance
mechanisms and design solutions to be applied at different system’s layers, starting
from the technology up to the software domain. While these design decisions have
a positive effect on the reliability of the system, they usually have a detrimental
effect on its size, power consumption, performance and cost. The optimization of a
system for cross-layer reliability is therefore a multi-objective optimization problem
in which reliability must be traded-off with other design dimensions. Tools to
support the automatic optimization of reliable systems fully exploiting the potential
of cross-layer reliability solutions and able to trade-off reliability with other design
dimensions are still not mature.

Chapter 6 introduced a Bayesian model able to identify the weak components of
the system in terms of reliability. This chapter proposes a cross-layer multi-objective
optimization algorithm for complex electronic systems based on that system-level
Bayesian reliability model. The full system stack, starting from the fabrication
technology, up to the software layer, is modeled and is taken into account when
analyzing the reliability of the system and when making design decisions to select
the best protection mechanisms to apply. A new heuristic based on the extremal
optimization theory is used to efficiently explore the design space. An extended
set of simulations shows the capability of this framework when applied both to
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the benchmark applications and realistic systems employed in the experiments of
Chapter 6 (Section 6.5).

7.1 Introduction

The optimization of a system for cross-layer reliability is a multi-objective opti-
mization problem in which reliability must be traded-off with other design dimen-
sions [146]. The number of constraints to consider when performing this task is
rapidly growing to a level that cannot be handled any more by system designers
without the support of proper automatic optimization tools.

In the reliability domain, very few publications propose automatic system level
design optimization algorithms. Coit at al. [146] and Xing et al. [147] review a
set of optimization techniques for the redundancy allocation problem. Most of the
analyzed solutions are based on genetic algorithms and all start from the assumption
that data redundancy is the only available fault-tolerance mechanism. The intrinsic
resiliency of the system to selected hardware faults is not taken into account during
the optimization process that only focuses on optimizing the amount of redundancy
with respect to area constraints. One of the few attempts to optimize fault-tolerance
mechanisms considering both the hardware and the software layer is proposed by
Wattanapongsakorn and Levitan in [148]. They use simulated annealing to evaluate
random configurations of all available components selecting at each iteration the best
identified combination. The considered cost function is simply the sum of the cost of
each component and the optimization ends when the best solution does not improve
for a pre-defined number of iterations. Although the technique is interesting, the
exploited reliability model is very simple (i.e., a single failure probability for each
component). It therefore does not take into account the effect of the interaction of
the different components on the reliability of the full system. Moreover, the trade-off
between reliability and other design dimensions is not considered.

Differently from other works, Shafique et al. propose a reliability optimization
framework where the sole software layer is modified during the optimization [149].
The proposed approach introduces step-by-step protection mechanisms to certain
instructions until a desired level of protection is achieved or, at worst, all unprotected
instructions are protected. The hardware is only considered as a source of errors that
propagate to the software, and is therefore not optimized.
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To the best of our knowledge, optimization strategies for the design of reliable
systems fully exploiting the potential of cross-layer reliability solutions and able to
trade-off reliability with other design dimensions are still missing.

This work makes a step forward to cover this gap. The proposed optimization
framework is based on an extended version of the Bayesian reliability model pro-
posed in Chapter 6. The full system stack starting from the fabrication technology,
up to the software layer is modeled and is taken into account when analyzing the
reliability of the system and when making design decisions to select the best pro-
tection mechanisms to apply. A new heuristic based on the extremal optimization
theory [150] is used to efficiently explore the design space. Apart for being specifi-
cally designed for cross-layer reliability, the proposed heuristic is also designed for
multi-objective optimization. Therefore, reliability can be efficiently traded-off with
other design constraints (e.g., size, performance and power consumption).

A large campaign of experiments is reported to demonstrate the capability of the
proposed framework. Experiments aim at the optimization of a set of systems based
on realistic microprocessor models running a set of benchmark and real applications
(analyzed systems were selected from the ones presented in Section 6.5). A large
library of protection mechanisms at different layers taken from the literature is used
to generate a large set of design options.

The remaining of this chapter is organized as follows: Section 7.2 presents
the formalism used to model the target system while Section 7.3 overviews the
optimization strategy. Section 7.4 reports and discusses the results of the performed
experimental campaign and Section 7.5 summarize the main contributions and
concludes the chapter.

7.2 System level modeling

In this work, systems are modeled using an extended version of the Bayesian model
introduced in Chapter 6. Here the Bayesian model is briefly summarized in order to
introduce the formalism adopted in the remainder of this chapter.

Figure 7.1-A shows an example of system modeling. The system denoted with
S is modeled using an extended Bayesian network, i.e., a directed acyclic graph
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defined as:
S = (N,E,Θ,P) (7.1)

where:

• N = {n1,n2, · · · ,nm} is the set of network nodes, each node identifying a
software/hardware component of the system as will be better described later
in this section. Each node is associated to a set states that in our case identify
error or error-free conditions for the node (e.g., the L1 cache can be error free,
it can be affected by a single bit-flip or by a double bit-flip).

• E = {(ni,n j) ∈ N ×N} is the set of arcs that define temporal or physical
relations among components, e.g., a failure state of a component may influence
the state of other components.

• Θ = {θ1,θ2, · · · ,θm} is a set of Conditional Probability Tables (CPT), each
table associated to a node. The CPT θi of node ni defines the probability of ni

to be in a given state, conditioned on the state of its parent nodes.

• P= {p1, p2, · · · , pm} is a set of optional parameter tables that can be associated
to each node of the network. Parameters contained in this table are used
to characterize the component (e.g., area, power consumption, etc.). Any
parameter that can influence the design decisions can be included in this table
as far as it can be measured for each component.

As described in Chapter 6, the Bayesian model is organized in four domains: the
technology domain (TD), the hardware domain (HwD), the software domain (Swd)
and the system domain (SD).

When performing design optimization, the basic assumption is the availability of
different implementations of the system components to form a Component Library
(CL) as reported in Figure 7.1-B. Each implementation of a component in this library
must be fully characterized with its CPT and parameters.

To support the optimization process, components of the system (i.e., nodes) are
organized into a k-levels hierarchy of clusters following the hierarchical architecture
of the real system.

As an example, Figure 7.1-A defines a 2-level hierarchy that includes at the first
level two clusters: the first labeled as uPC Cluster grouping all nodes modeling
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Fig. 7.1 System modeling. (A) Bayesian model of the systems: nodes are organized into
domains and each node is characterized by a Conditional Probability Table (CP) plus a
set of optional parameters (e.g., are, size, power, performance) that can be used during
the optimization process, (B) design alternatives: for each component (node) or cluster
of components different implementations are defined, thus forming a library of design
alternatives, (C) component replacement showing how a component can be replaced with a
different implementation in the model.

the components of the microprocessor, the second named OS Cluster grouping all
nodes modeling the operating system functions and modules used by the application
software. Different implementations of each cluster are available to the designer
as reported in Figure 7.1-B and must be evaluated during the optimization process.
Using the concept of clusters, multiple levels of hierarchy can be defined. At the
end of this hierarchy, different implementations of single components are defined
in the library. For example, Figure 7.1-B defines three implementations of the
L1 instruction cache in the x86 cluster: the basic implementation not supporting
any fault tolerance mechanism and two implementations supporting different fault
tolerance mechanisms.

Using the proposed system model and the related library of components, the
optimization of a system becomes an exploration task in which different implementa-
tions of the system are created from a reference implementation by replacing single
components or clusters of components with alternative implementations available
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in the CL. The process to replace a cluster or a component with an alternative
implementation is graphically depicted in Figure 7.1-C.

7.3 System optimization methodology

The proposed optimization strategy is based on an extension of the extremal opti-
mization theory [150].

7.3.1 Extremal optimization theory

The Extremal Optimization (EO) theory is a local search algorithm inspired by
nature’s self-organizing processes designed for combinatorial optimization problems.
It explores a solution space trying to avoid sub-optimal solutions, thus driving the
optimization towards real optimum.

Unlike genetic algorithms [151], which work with a population of candidate
solutions, EO evolves a single solution and makes local modifications to the worst
components. This is an important characteristic when considering the complexity
of the Bayesian model presented in Chapter 6. The reliability model of a real
system may easily include hundreds of nodes with their related CPTs. Working
on big populations of such models can rapidly become computationally expensive.
Another interesting feature is that the EO optimization process highly resembles the
approach expert designers would use in manual optimization. Improvements to the
system are searched by selectively removing critical components and replacing them
with randomly selected alternatives. This is very different from other evolutionary
techniques that look at combining “good" solutions in the attempt of improving
the quality of the population. Moreover, EO is well suited for the optimization
of multi-objective cost functions [152–154]. This is important in our case since
the optimization process must take into account several design parameters such as
reliability, area, power, performance, etc.

Finally, the EO is particularly effective in solving optimization problems, where
near-optimum solutions are widely dispersed and separated by barriers in the search
space [155]. This is a typical case in the particular optimization problem we are fac-
ing. Macro changes in the design (i.e., replacements of full clusters of components)
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introduce high diversity in the generated systems that translate into a very sparse
search space.

The main limitation of the basic formulation of the EO theory is that it is not
intended to deal with a hierarchical organization of the components as the one
introduced in Section 7.2. Therefore, the system optimization algorithm proposed in
this chapter takes advantage of the basic principles of this theory but extends them to
allow its application to complex hierarchical models.

7.3.2 Definitions and notation

This section introduces some basic definitions and notations required to describe the
optimization strategy.

The design space Ω = {S0,S1, · · · ,Sh} is the set of all possible system’s implemen-
tations of the target design. Every implementation is a system description
defined according to (7.1).

S0 represents the reference implementation, i.e., the initial design of the system
that must be optimized (usually it does not include any fault tolerance mechanism).
Starting from this implementation, the optimization strategy generates new im-
plementations by selectively replacing worst components (nodes) or clusters of
components based on the alternatives available in the CL.

The hierarchical organization of the CL allows us to introduce a hierarchical
concept of distance between system implementations.

The k-level neighborhood of a system implementation S ∈ Ω, denoted as Nk(S), is
the set of implementations that can be created from S by replacing a single
cluster of the system placed at the kth hierarchical level of the CL.

The k-level neighborhood hierarchically partitions the design space and therefore
the optimization process. Informally, in a 2-level CL as the one reported in Fig-
ure 7.1-B we can identify two optimization levels. At a high level we have different
implementations that differ for macro changes of the system due to replacements
of clusters of components (e.g., changing the full microprocessor architecture, or
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the full operating system architecture). At a fine grained level, selected nodes inside
the clusters can be replaced based on the available alternatives to fine tuning the
optimization. Managing hierarchical optimization is one of the main contributions
of the optimization algorithm described in the next section. Every time a low level
optimization reaches a local optimum, the optimization process must be able to go
back to the higher hierarchical level and restart with a new macro change in the
system.

Two different types of cost functions must be defined to implement the proposed
optimization strategy.

The global cost function C(S) with S ∈ Ω is any generic function defined on any
variable of S (i.e., N, E, Θ, P in (7.1)) that allows to compare two different
implementations of the same system.

This function is used to monitor the progress of the optimization process. In
general the proposed algorithm supports any generic cost function defined over any
variable in S. The simplest cost function that can be used when reliability is the
only optimization goal is the AVF of the system. A description of the cost functions
implemented for this work is reported in the next section together with a detailed
description of the optimization algorithm.

The fitness of a component or a cluster of components (cls) of a system S, denoted
as λ (cls,S), (with cls ⊂ N) is any generic function that permits individual
components or clusters of components of the system to be assigned a quality
measure with respect to their contribution to the global cost function.

The fitness of a component is the criterion used during the optimization to select
the components or the clusters of components to replace.

7.3.3 Optimization algorithm

Algorithm 2 describes the proposed optimization algorithm. The algorithm receives
as an input the reference implementation of the system (S0 ) and the available
component library (CL) and returns an optimized implementation Sbest and its related
cost C(Sbest).
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Algorithm 2 System optimization algorithm.
Input: S0, CL
Output: Sbest , C(Sbest)

1: lev = k.
2: iter_no = 0
3: S = S0
4: Sbest = S0
5: repeat
6: λw=1;
7: clsw = /0
8: for each cluster cls at level lev do
9: if λ (cls)< λw then

10: λw = λ (cls,S)
11: clsw = cls
12: end if
13: end for
14: Generate S′ ∈ Nk(S) by selecting an alternative implementation of cls ∈CL
15: if C(S′)<C(Sbest) then
16: Sbest = S′;
17: end if
18: lev = nextLevel(lev,S′,Sbest)
19: S = S′

20: iter1_no = iter1_no + 1;
21: until iter_no < MAX_ITER and stop(Sbest) not true
22: return Sbest and Ck(Sbest)
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The optimization process is an iterative process (lines 5-21). At a high level of
abstraction, at each iteration a new implementation of the system is generated by
replacing one of the components (or a cluster of components) of the current system
S with an alternative implementation from CL. The cost of this new implementation
is evaluated to understand whether the introduced change leads toward a better
implementation of the system or not. This iterative optimization process stops based
on two different conditions (line 21):

1. the number of iterations (iter_no) reaches a maximum limit (MAX_ITER),

2. a contract on the identified implementation of the system is satisfied.

The contract is represented in Algorithm 2 by a generic stop(·) function. In our
implementation we have defined a stop function that terminates the simulation when
the estimated AVF of the system is lower than a user defined threshold (i.e., the
system has reached the target reliability constraint), but other conditions can be easily
defined. The first stop condition allows us to bound the duration of the optimization
process, whereas the second allows us to define the goal of the optimization .

Lines 6-13 describe the process used by the algorithm to identify the component
to replace at each iteration. To understand how this process works, it is important to
recall that the system is organized into a k-level hierarchy of clusters (see Figure 7.1).
At a given iteration the optimization process works at one of these k hierarchical
levels. The hierarchical level sets the granularity of the replacement process. Let us
consider the example of Figure 7.1. If the algorithm works at level 1, replacements
of clusters take place at this level of the CL. If the algorithm works at level 2,
components composing the level-1 clusters can be replaced. Algorithm 2 sets the
initial level to k (line 1). This means that the algorithm initially privileges fine
grained optimizations that do not introduce macro changes in the system and than
moves toward more invasive optimizations. However, any level can be set to start the
optimization process.

In lines 6-13 the fitness of every cluster belonging to the selected hierarchical
level is evaluated for the current system implementation S in order to identify the
cluster with worst fitness. A new implementation of the system S′ is then generated
by replacing the cluster with worst fitness with a random alternative implementation
from CL (line 14). If the cost of this new implementation (C(S′)) is lower than the
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one of the best implementation (C(Sbest)), then the new version of the system is
selected as local optimum.

At the end of each iteration, the algorithm evaluates whether the optimization
has to continue at the current hierarchical level or it has to move up or down. This
decision is taken at line 18 by the nextLevel function whose implementation is
reported in Algorithm 3.

The function computes the next level by analyzing for each hierarchical level
the number of iterations that have not produced improvements to the system using a
set of counters (count_worst[k]). In case the new generated system implementation
S′ has introduced an improvement (δ ≤ 0 - line 1), the hierarchical level remains
the same and the counter for the level is reset (line 13). Otherwise, the algorithm
analyzes the counter of the layer (lines 3-11). If it is higher than a user defined
threshold T (lines 4-5), it means we are not able to improve the system at the current
level and therefore the algorithm moves up to a higher level. Otherwise (lines 7-10),
the counter of the level is increased and then the algorithm tries to move down in the
hierarchy to search if local changes can further improve the current solution. This
overall idea behind this strategy is to privilege the lower levels of the hierarchy that
correspond to small changes in the system moving up only when really required.

Algorithm 3 nextLevel function.

Input: k, S′, Sbest
Output: next k

1: δ =C(S′)−C(Sbest)
2: if δ > 0 then
3: if count_worst[k] > T then
4: count_worst[k]=0
5: k = k - 1
6: else
7: count_worst[k]++
8: if k < CL_LEVELS then
9: k = k +1

10: end if
11: end if
12: else
13: count_worst[k]=0
14: end if
15: return k
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The current implementation of Algorithm 2 supports two different exploration
strategies that translate into the definition of different cost and fitness functions
described in the following subsections.

Optimization for best reliability

The system is optimized in order to maximize its reliability without taking into
account other design parameters such as hardware area, software size, execution
time, power consumption, etc. In this case the cost function is defined as the AVF of
the system, i.e., the probability of a system failure given a hardware fault.

Resorting to the Bayesian model defined in Chapter 6, the AVF can be easily
computed using Bayesian inference [156]. The hypothesis that a fault enters the
system is emulated by setting a Bayesian evidence on the nodes of TD, and the
posterior probability that at least one of the nodes of SD is in a failure state is
computed using the Bayesian inference theory [156].

In a similar way, the fitness of a component can be computed by conditioning
the Bayesian model with the hypothesis that the component is in a failure state and
computing the posterior probability that the system fails given this event (i.e., at
least one of the nodes of SD is in a failure state). When working with a cluster this
probability is computed separately for each component of the cluster and the fitness
is computed as the average probability over all components of the cluster.

Optimization for multiple objectives

The system is optimized in order to minimize four design dimensions:

• AVF

• hardware area,

• software size,

• execution time,

• power consumption
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To compute the cost function, together with the AVF of the system that is com-
puted using the same approach described in Section 7.3.3 the percentage increment of
the remaining four parameters with respect to S0 is computed. The five contributions
are then combined with a simple weighted sum. The designer is free to assign the
weights of each contribution depending on the optimization goals.

Similarly to the global cost function, the fitness function performs the same
weighted sum but considering percentage increments of the nodes of the considered
cluster.

7.4 Experimental Results

This section reports results obtained by the application of a C++ implementation of
the proposed optimization algorithm to a set of realistic electronic systems.

7.4.1 Experimental setup

Experiments were performed by optimizing a set of microprocessor based systems
running software applications on top of the Linux operating system. The optimization
focused on the hardware and software architecture of the system, i.e., hardened tech-
nologies were not available to the designer. We considered two real microprocessor
architectures:

1. ARM Cortex®-A151: a high-performance ARMv7-A processor used in a
variety of premium mobile and infrastructure applications.

2. Intel®-like i7-skylake2: a 64-bit microarchitecture that brings high perfor-
mance and reduced power consumption.

Based on this hardware architecture we analyzed 10 different systems each
running a different application software taken from the MiBench suite [92]. The
following applications were selected: (1) Susan Smooth (susan_s), (2) Susan Edges
(susan_e), (3) Susan Corners (susan_c), (4) Quick sort (QSort), (5) String search

132KByte L1 Instruction/Data caches, 1MByte L2 cache, 128 32-bit physical registers
232KByte L1 Instruction/Data caches, 1MByte L2 cache per core, 168 64-bit physical registers
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(ssearch), (6) Secure Hash Algorithm (SHA), (7) JPEG decode (DJPEG), (8) JPEG
encode (CJPEG), (9) AES decode (AES), (10) Fast Fourier Transformation (FFT).

Every system was modeled as described in Chapter 6 considering the occurrence
of soft errors in 5 of the main memory arrays of the microprocessors (i.e., L2 cache,
L1 Instruction/Data cache, Register File and Load/Store Queue). In order to build the
model and to compute the CPTs of the different nodes we resorted to the tool-suite
described in Chapter 6. The CL was organized in two hierarchical levels. The first
level consists of the two microprocessor clusters, each comprising the 5 memory
arrays considered in the study. At the second hierarchical level, we considered
various state-of-the-art fault tolerance mechanisms that can be applied to hardware
or software components. We selected protection mechanisms for which a clear
estimation of the impact on the following design dimension is available in literature:
(1) AVF, (2) hardware area, (3) software size, (4) software execution time, (5) power
consumption.

Table 7.1 summarizes the fault-tolerance techniques that can be applied to hard-
ware components. Overall, they improve tolerance to soft errors by: (i) modifying
the circuit (LEAP, DICE and LEAP-DICE) [157], (ii) monitoring (SA-RDC) the
data [158], or (iii) adding error correction codes (all ECC and Self-Immunity) [159].
A total of 8 techniques were selected. In a similar way, Table 7.2 reports the iden-
tified software implemented fault tolerance techniques. We selected 16 different
techniques. Most of them (VARx techniques) are different combinations of variable
duplication and cross checking validation techniques [160]. We also included a fault
tolerance technique based on control and data flow assertions [161].

As reference implementation we considered systems based on the Intel®-like
i7-skylake microprocessor not implementing any fault tolerance mechanisms. Both
optimization strategies described in Section 7.3.3 were tested.

For each considered system the optimization algorithm was executed with a
limit of 500 iterations without setting any stop condition based on the AVF of the
system. This long simulation allowed us to clearly understand the dynamics of the
optimization and to stress the limits of the optimization process. To deal with the
randomness of the optimization process, every experiment was repeated 30 times
and results were compared and averaged.
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Table 7.1 Hardware fault tolerance techniques.

Technique Description Reliability Extra Extra Power Extra
Improvement Time Consumption Hardware

(%) (%) (%) Area (%)
4 ECC ECC applied to 4 registers over 32 +40% +6% +1% +15%
16 ECC ECC applied to 16 registers over 32 +91% +8% +2% +22%
FULL ECC ECC applied to all registers +100% +9% +3% +28%
Self-Immunity Parity code for portion of registers +91% +4% +0.20% +11%
SA-RDC Self-Adaptive caches using monitoring features +99.98% +7.40% +43% +0.39%
LEAP Flip-Flop layout technique 30% 10% 10% 10%
DICE Flip-Flop layout technique 90% 0% 60% 100%
LEAP-DICE Flip-Flop layout technique 100% 2% 63% 100%

Table 7.2 Software implemented fault tolerance techniques.

Technique Description Reliability Extra Extra Power Extra
Improvement Time Consumption Software

(%) (%) (%) Size (%)
VAR1 Variable Duplication and Cross-check mechanisms +95% +70% +66% +66%
VAR1+ Variable Duplication and Cross-check mechanisms +95% +66% +64% +64%
VAR1++ Variable Duplication and Cross-check mechanisms +94% +70% +60% +60%
VAR2 Variable Duplication and Cross-check mechanisms +95% +77% +74% +74%
VAR2+ Variable Duplication and Cross-check mechanisms +95% +73% +70% +70%
VAR2++ Variable Duplication and Cross-check mechanisms +94% +68% +65% +65%
VAR3 Variable Duplication and Cross-check mechanisms +94% +42% +45% +45%
VAR3+ Variable Duplication and Cross-check mechanisms +94% +37% +41% +41%
VAR3++ Variable Duplication and Cross-check mechanisms +93% +32% +36% +35%
VAR4 Variable Duplication and Cross-check mechanisms +91% +32% +36% +36%
VAR4+ Variable Duplication and Cross-check mechanisms +91% +27% +33% +33%
VAR4++ Variable Duplication and Cross-check mechanisms +90% +21% +27% +27%
VAR5 Variable Duplication and Cross-check mechanisms +87% +27% +28% +28%
VAR5+ Variable Duplication and Cross-check mechanisms +84% +24% +25% +25%
VAR5++ Variable Duplication and Cross-check mechanisms +78% +17% +20% +20%
SIFT Fault Tolerance via control and data flow assertions +95% +40% +20% +20%

7.4.2 Results and discussion

Figure 7.2 shows how the optimization algorithm is able to optimize the selected
systems for best reliability. The difference between the AVF of the reference imple-
mentation (blue bars) and the one of the optimized implementation (orange bars)
is of several orders of magnitude, demonstrating the capability of the optimization
algorithm to search the design space to find alternative implementations of the sys-
tem with increased reliability. It is also interesting to report that, in 7 out of the
10 benchmarks (DJPEG, FFT, QSORT, SHA, SUSAN_E, SUSAN_C, SUSAN_S),
the optimized reliability was achieved by moving from the Intel®-like i7-skylake
microprocessor architecture to the ARM Cortex®-A15 architecture.

Figure 7.3 provides a deeper analysis of the optimization process reporting the
absolute percentage improvement of the considered design parameters. This includes:
AVF reduction, execution time overhead, power consumption overhead, hardware
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Fig. 7.2 AVF improvement (log scale) when optimizing for best reliability.

area overhead and software size overhead. The figure reports the average for each
parameter over the 30 repetitions of each experiment. It is interesting to note that in
all cases the reliability improvements have a significant impact on the other design
dimension. This is a confirmation that, optimizing the system looking at a single
objective is feasible but is probably not the best option. Figure 7.3 also gives an
indication of how the optimization was achieved. The yellow and black bars indicate
that in all cases the best reliability was achieved by a combination of hardware and
software-implemented fault tolerance mechanisms.

Similar results can be computed changing the optimization strategy and optimiz-
ing the system for multiple objectives. As described in Section 7.3.3, this strategy
tries to properly weight the reliability improvement with the overhead introduced by
the use of different fault tolerance mechanisms. The multi-objective cost function
used in this experiment (see Section 7.3.3) weighted the reliability as the 10% of the
total value of the cost of an implementation with the remaining 90% equally shared
between the other four design dimensions.

Figure 7.4 quantifies the benefit of the optimization process on the global AVF
of the system. Improvements are still significant but obviously reduced with respect
to the ones obtained when optimizing only for best reliability.
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Fig. 7.4 AVF improvement (log scale) when optimizing for multiple objectives.

What is particularly interesting is to look at the effect of this optimization strategy
on the different design parameters reported in Figure 7.5. The overhead of the
execution time, power consumption, hardware area and software size is significantly
reduced this time. In none of the cases it exceeds 15% with respect to the reference
implementation with the exception of the hardware area overhead that in some cases
increases up to 25%. This shows that, with a careful analysis, systems can reach
high reliability levels without significantly penalizing the other aspects of the design.
Moreover by playing with the weights of the cost function specific optimization
goals (e.g., low area or low power) can be achieved.
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Fig. 7.5 Percentage improvement for all design dimensions when when optimizing for
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Fig. 7.6 Number of iterations before best solutions (500 iterations were simulated): opti-
mization for best reliability (yellow bars) vs. optimization for multiple objectives (dark blue
bars).

In order to provide a comprehensive analysis of the algorithm, we reported in
Figure 7.6 the average number of iterations required by both optimization strategies
to reach the optimum. The figure shows that, when optimizing for best reliability, a
higher number of iterations is required before reaching the optimum compared to
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the multi-objective optimization strategy. This can be ascribed to the fact that, when
optimizing for multi-objectives, the multiple constraints introduced in the design
reduce the degree of freedom in finding an optimal solution, while optimizing for a
single parameters relaxes this constraint.

7.4.3 From benchmarks to real applications

The analysis conducted so far considers a realistic hardware architecture but is limited
to simple benchmark software applications. To show the optimization algorithm at
work on a real case we performed an additional experiment on a system running
a real HPC application. We selected the Sierpinski framework3, an open-source
HPC application for the solution of hyperbolic partial differential equations used
in several fluido dynamics simulators. The software application is very complex
and its Bayesian model accounts for more than 800 nodes, thus representing a good
candidate to stress the capability of the algorithm. The application is not designed for
low-end microprocessors such as the ARM Cortex®-A15, therefore the optimization
has was performed considering a single microprocessor architecture (Intel®-like
i7-skylake).

Figure 7.7 and 7.8 show how the AVF of the system improves during the different
iterations of the optimization process using the two considered optimization strategies.
In this experiment, given the complexity of the system, the optimization has was
limited to 250 iterations. The red line shows the trajectory of the best implementation
while blue dots represent the AVF of all evaluated systems. Looking at the figure,
it is interesting to report that, in this case, the reference implementation started
from a significantly high AVF and thanks to the optimization process we were able
to significantly increase the final reliability of the system. This is evident when
looking at Figure 7.9 that shows the percentage increment for the 5 considered
design parameters considering the two optimization strategies.

Interestingly, in this complex application, the system optimized for multiple-
objectives is able to obtain very high reliability by working only on a few selected
critical functions of the software layer suggesting that depending on the design
the way the system can be optimized significantly changes. This further confirms

3https://www5.in.tum.de/sierpinski/

https://www5.in.tum.de/sierpinski/
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and motivates the benefit of an automatic optimization framework such as the one
presented in this work.

Finally, when looking at the simulation time, we have to distinguish between
the time required to build the components library and the one required to perform
the actual optimization. For a complex application like the Sierpinski framework,
the construction of the full library of components required a few days of simulation
using the tool-suite presented in Chapter 6. This represents the most computational
intensive task. Once the library is built, the optimization process required a few
hours of simulation. All simulations were performed on a workstation equipped with
a Intel i7 processor and 64MB of RAM.
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Fig. 7.7 AVF trajectory when optimizing the Sierpinski framework for best reliability.

7.5 Conclusion

This work presented a cross-layer multi-objective optimization algorithm for complex
electronic systems based on a Bayesian reliability model of the system.
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Fig. 7.9 Percentage improvement for all design dimensions when optimizing the Sierpinski
framework using the two optimization strategies.

This work extends the extremal optimization technique to hierarchical organi-
zation of components. By applying the proposed algorithm in conjunction with a
model for computing system reliability, it is possible to evaluate the effects that
different HW/SW architectures and different protection mechanisms have on the
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system design constraints such as reliability, execution time, power, hardware area
and software size. The optimization can be executed based on a generic cost function
in order to give the final user freedom to setup its specific optimization goals. Two
optimization strategies, one for best reliability and one for multiple objectives were
presented in this study.

The algorithm was tested on a set of systems based on realistic hardware running
benchmark software and on a very complex system executing an open-source HPC
application. In all cases the algorithm demonstrated its capability of optimizing the
system.



Chapter 8

Conclusions

This Ph.D. thesis deeply analyzed reliability aspects related to digital systems. More
specifically it contributes to the advance of the cross-layer reliability field introducing
valuable methodologies addressing reliability estimation and reliability optimization
during early design stages. Reliability is tackled for both single components of
the system (i.e., FPGAs, GPUs, CPUs) and the system as a whole. In this thesis,
the proposed methodologies were applied to use cases belonging to different com-
putational domains: Autonomous Fault-Tolerant Systems built on top of FPGAs,
General Purpose computing on Graphics Processing Units, Embedded Systems
based on low-power microprocessors and HPC applications executed by high-end
microprocessors.

The experimental results presented in this thesis have demonstrated that the
proposed work constitutes a valuable alternatives to state-of-the-art solutions. In
detail the proposed methodologies are characterized by high scalability, thus allowing
to keep the pace with the increasing complexity of the systems. Moreover, the
benefits introduced by the proposed methodologies hold the promise to face up the
technological scaling, that, from the one hand, enhances computational power, while,
on the other hand, contributes to unpredictable behaviors of the systems.
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Appendix A

The SER of future devices

Riera et al. carried out a study on trend of future technologies SER [142]. This
work was carried out by Universitat Politecnica de Catalunya in the context of the
CLERECO project in which I was personally involved. Even if I did not contribute
to this study, I think their work is very interesting and gives more relevance to the
research topics presented in this thesis.

In [142] a comparison of SER is reported for different technologies, components
and environmental conditions. More specifically, the technologies under study are:
22nm Bulk Planar, 22nm SOI Planar, 20nm Bulk FinFET, 16nm Bulk Planar and
14nm Bulk FinFET; the components are: SRAM cells implemented using 6 and
8 transistors (6T Cell and 8T Cell respectively), latches and logic gates NAND2
(NAND with 2 inputs) and NOT.

Figure A.1 shows results of SER for different technologies and components.
SERs are in logarithmic scale and when looking at the bars of a component, such
as the 6T cell, the higher SERs are for bulk planar and the lower ones are for bulk
FinFET with SOI planar in the middle. Therefore, the most vulnerable technology is
the bulk planar while bulk FinFET and SOI planar can reduce SERs up to 100x or
even more in their lower technology nodes. This is due to the bigger sensitive area
and the bigger collected charge of bulk planar.

Between components, both memory cells have similar results, the latch is a bit
more reliable as it is vulnerable only 50% of the time (transparent mode) and the
NAND2 has the lower SERs. Typical logic gates (NAND, NOR and NOT) usually
have less sensitive nodes to strikes for each input combination, resulting in a total
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Fig. A.1 Technology comparison.

SER lower than other components. In addition, in bulk technology, lower technology

Fig. A.2 SERArea for a 6T SRAM cell.

nodes have lower SERs which may seem contradictory as in lower nodes Qcrit
is usually reduced. However, the reduction in area has a stronger effect when the
critical charge is already very low. Therefore, if we look at the SER/Area in Figure
A.2, both nodes of bulk planar are quite similar, being slightly higher the node of
16nm. As an example, if we consider an SRAM chip with constant die area of 1.5
cm 2, the approximately SER of the 16nm chip would be 128694 FIT and 127549
FIT for the 22nm chip. In the case of FinFETs, our results show that the critical
charge of the 14nm node is lower than the 20nm one. Therefore, adding the lower
critical charge, the reduction in the sensitive area and the reduction in the collection
efficiency, results in much lower SER values.
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Fig. A.3 SER changing the voltage of a 6T SRAM cell.

Figure A.3 shows the SER of a 6T Cell varying technology and supply voltage.
Results in logarithmic scale where lower values are better. SER increases with lower
voltages since the critical charge becomes smaller. Therefore, it is easier to flip the
value and the variation may be as high as 70x as can be seen with the red lines of the
plot.

Fig. A.4 SER changing the temperature of a 6T SRAM cell.

SER increases with higher temperatures since the critical charge becomes smaller
(Figure A.4). Even if seems that the variation is low it can be greater than 20% as
can be seen with the red lines of the plot, but still has a low effect compared with
the voltage variation. In the case of FinFET technology, the models used do not
model the temperature accurately [162] so the variations are very low and slightly
oscillating. Therefore, only the results from the nominal temperature (250C) should
be used for FinFET technology.
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Fig. A.5 SER changing the fanout of a NOT logic gate.

Figure A.5 compares the soft error rates of the logic gate NOT build in 22nm
bulk planar technology with different fanouts. SER is slightly reduced with higher
fanout as there is more capacity in the output and the critical charge increases, with a
variation that can be up to 1.5x. In this case, a linear model is suitable to fit of these
values, with a squared R of 98%.

Fig. A.6 Relative neutron fluxes of different locations.

Finally, the location and the altitude also influence the SER since the Flux
changes (Figure A.6). The higher neutron fluxes are located in Västerås as is closer
to the pole while the lower is in Athens which is nearer the equator. These relative
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fluxes have been computed using the online calculator [163], which uses the JEDEC
standard, with a medium solar activity (50%). The relative fluxes can be multiplied
directly by the SER obtained with the reference flux to obtain the SER of the desired
location. SER for a 6T cell at different locations and altitudes is shown in Figure A.7.
The difference between cities is due the influence of the magnetic field of the earth,
where cities near the equator have lower SERs. Moreover, there is an exponential
increase of the SER when varying the altitude that can be as high as 650x.

Fig. A.7 SERs depending on the Location and Altitude of a 6T SRAM Cell in 22nm Bulk
Planar.
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