
28 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Classification and analysis of communication protection policy anomalies / Valenza, Fulvio; Basile, Cataldo; Canavese,
Daniele; Lioy, Antonio. - In: IEEE-ACM TRANSACTIONS ON NETWORKING. - ISSN 1063-6692. - STAMPA. -
25:5(2017), pp. 2601-2614. [10.1109/TNET.2017.2708096]

Original

Classification and analysis of communication protection policy anomalies

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNET.2017.2708096

Terms of use:

Publisher copyright

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2673838 since: 2021-01-28T13:16:46Z

IEEE

1

Classification and Analysis of Communication
Protection Policy Anomalies

Fulvio Valenza, Cataldo Basile, Daniele Canavese and Antonio Lioy

Abstract—This paper presents a classification of the anomalies
that can appear when designing or implementing communication
protection policies. Together with the already known intra- and
inter-policy anomaly types, we introduce a novel category, the
inter-technology anomalies, related to security controls imple-
menting different technologies, both within the same network
node and among different network nodes. Through an empirical
assessment, we prove the practical significance of detecting this
new anomaly class. Furthermore, this paper introduces a formal
model, based on first-order logic rules that analyses the network
topology and the security controls at each node to identify the
detected anomalies and suggest the strategies to resolve them.
This formal model has manageable computational complexity
and its implementation has shown excellent performance and
good scalability.

Index Terms—protection policy, policy anomalies, policy con-
flicts, network security.

I. INTRODUCTION

Enforcing network and communication security in a com-
puter system is a very complex and sensitive task. Security
administrators have a hard job to accomplish since it requires
very specific skills and a high level of competence. On one
hand, several studies confirm the administrators’ responsibili-
ties in many security breaches and breakdowns. Wool showed
that most of the analysed firewalls contain several problematic
policies, such as very lax rules [1]. The 2015 Data Breach
Investigations Report states that about 60% of the security
breaches are due to internal staff errors [2]. On other hand,
administrators often have basic or no tool support to debug
the security controls’ configurations and check if the enforced
policy is compliant with the high-level security requirements.

Configuration analysis methods, often addressed in litera-
ture, have seldom been incorporated into industrial tools for
various reasons. For instance, some analysis methods may
be challenging to use because their computational complexity
make them inapplicable or some others make assumptions that
are far from reality. The only notable exception is the detection
of packet filter anomalies classified by Al-Shaer [3], which is
available in some Cisco routers [4].

The main contribution of this paper is a formal model to
assist security administrators in configuring and validating se-
curity policies. We focus on communication protection policies

This work has been partly supported by the SECURED and SHIELD
project (grant agreements no. 611458 and 700199), co-funded by the European
Commission. The authors gratefully thank Dr. Marco Torchiano and Dr.
Gabriella Dardanoni for their feedback on the empirical study.

F. Valenza, C. Basile, D. Canavese, and A. Lioy are with the Po-
litecnico di Torino, Dip. Automatica e Informatica, Torino (Italy). Email:
{first.last}@polito.it, F. Valenza is also with the CNR-IEIIT, Torino (Italy);
e-mail: fulvio.valenza@ieiit.cnr.it.

(CPPs), which determine how to protect assets (such as private
user data and corporate intellectual properties) when they are
transferred over computer networks. CPPs are very sensitive,
as incorrect implementations can result in information disclo-
sure that can cause violations of the users’ privacy, intellectual
properties and, often, huge monetary losses. Moreover, CPP
are particularly difficult to manage and enforce since the
probability of introducing them increases with the number of
entities involved in the implementation, as well as with the size
and complexity of the network to configure [5], [1]. Therefore,
there is a non-negligible risk of mistakes, such as introducing
contradicting configurations and redundant channels.

CPPs originate from legal (e.g. the EU privacy law [6])
and business security requirements. They are often expressed
with high-level directives specifying the security properties
that the communication must guarantee (e.g. confidentiality
and integrity). In some cases, such as companies that host
services or provide cloud-based resources, CPPs may be very
elaborated and complex. IT managers generally interact with
business units to determine what to protect. However, CPPs
are enforced by a plethora of security controls implementing
different protocols (e.g. IPsec, TLS, WS-Security) that operate
at different layers of the OSI stack. Service administrators have
to enable channel protection protocols on the services they
manage. Finally, network and security administrators have to
decide the resources accessible through secure protocols and
the data that need protection. Consequently, they have to map
the selected resources and data to network entities and traffic
to protect, decide the OSI layer where to apply the protection,
select whether to create end-to-end channels or tunnels, when
to enable wireless protection, and so on.

The approach we follow in this paper is to detect and show
to the administrators the anomalies, which are the presence of
redundant or conflicting configuration rules. Anomalies often
reveal human errors and thus deserve the explicit attention of
the administrators. Detecting anomalies helps in daily CPPs’
management activities. On one hand, when designing a CPP
implementation, debugging the policy before implementing it
can speed-up the deployment time and avoid critical problems
(CPP design validation). With our approach, the administrator
has to provide in input the communications he wants to protect,
the security properties to be enforced and the technology he
wants to use. The model we developed will output the de-
tected anomalies, such as redundant, insecure, non-enforceable
and filtered communications, and propose resolutions that
significantly help in reducing human errors. On the other
hand, our approach can help in assuring that the current
CPP implementation respects its intended semantic. In the

2

CPP implementation analysis, the administrator provides the
network topology and the configuration of all the protection
controls to get as output the anomalies, explanations, and
suggested remediation actions.

This paper is structured as follows. Section II lists our
contributions to the current state-of-the art. Sections III and IV
informally introduce our approach by presenting some back-
ground and a motivating example. Sections V and VI are the
core of this paper and describe the formal structures and the
formulas of our model. Section VII presents the graphical
notations for reporting the anomalies. Section VIII contains
the complexity and performance analysis of the presented
approach, together with an empirical study. Finally, Sec-
tions IX and X contain the related works and the conclusions.

II. CONTRIBUTIONS

Our work pushes forward the state-of-the-art in several di-
rections. The main contribution is the identification of nineteen
types of anomalies that may happen when implementing a
CPP. Six anomaly types are already known [5], but all the
others are our original contribution1.

The anomalies we identify arise in the configuration of
a single security control (intra-policy), between controls of
the same type displaced at different network nodes (inter-
policy), and, our novel contribution, among security controls
implementing different technologies, within a single network
node or among different network nodes (inter-technology). We
focus on communication protection controls that work at four
network layers: data link, network, session2, and application.
As an example, inter-policy anomalies may appear between the
configurations of two IPsec gateways, while inter-technology
anomalies may arise between the IPsec and TLS configurations
implemented at the same network node. Moreover, we also
identify communications that are intrinsically insecure or non-
enforceable by the target security controls.

Anomalies are detected by means of a formal model that
takes as input the network description, nodes information and
the security controls’ configurations and the communications
to secure, during a CPP design validation, or the communica-
tions actually secured, during a CPP implementation analysis.
Information in input become part of a knowledge base ex-
plored with a set of first-order logic (FOL) formulas to identify
and report the detected anomalies to the administrators.

Anomalies have been categorized according to two different
classifications: an effect-based taxonomy and a information-
centric one. The first classification divides the anomalies into
five macro-categories describing the effects that they have
on the network: 1) insecure communications; 2) unfeasible
communications; 3) potential errors; 4) suboptimal communi-
cations; 5) suboptimal walks. The second one is based on the

1We presented an embryonic and incomplete set of anomalies in a previous
work [7]. Note that the “superfluous” keyword was already used in another
work about firewall conflicts to denote redundant and shadowed rules. It is a
completely different meaning, as it will be evident from this treatment [8].

2Protections at transport layer, such as TLS, are sometimes associated to
the session layer as they work on top of the TCP/UDP protocols. We do not
want to enter a philosophical diatribe as, for our purposes, the important thing
is the order of encapsulation of the different protections.

information needed to be analysed for detecting the anomalies.
It divides the anomalies into three classes: 1) anomalies in a
single communication channel; 2) anomalies between secure
channels that start at or end on the same node; 3) anomalies
that are only evident if the full network information (nodes and
topology) and high-level security requirements are considered.

Having introduced several new kinds of anomaly, we posed
ourselves several questions regarding the impact of our work:

1) is detecting these anomalies important and helpful to
improve the security of the current IT infrastructures?

2) are these anomalies actually introduced by the adminis-
trators when they implement their policies?

3) is it computationally feasible to identify these anomalies
in large networks?

In order to answer the first question, for each anomaly
we present the possible consequences on the network and
some ways to resolve it for reducing the security impacts on
the short and long period (see Section VI). To answer the
second question, we prepared an empirical experiment where
three categories of administrators (experts, intermediate and
beginners) were asked to configure a set of CPPs in a sample
network. We noticed that several of the newly introduced
anomalies appeared (see Section VIII-A). And finally, to
answer the last question, we implemented, and tested in several
different scenarios, a tool making use of DL (description
logic) ontologies and custom Java-based reasoning rules (see
Section VIII-C).

III. BACKGROUND

A communication is any directional data exchange between
two network entities. A secure communication is a com-
munication ‘adequately’ protected, that is it fully satisfies a
set of security requirements. In this context, the security re-
quirements concern three security properties: header integrity,
payload integrity and (payload) confidentiality.

A channel is a directional data exchange between two nodes
protected with some security properties (a secure channel) or
none (an insecure channel). Logically, a secure channel is an
association between a source, where the security properties
are applied, and a destination, where the security properties
are removed or verified. A communication can be thought
as a stack of several (secure and/or insecure) channels. For
example, an end-to-end TLS communication consists of a
single secure channel. However, more complex scenarios exist.
For instance, a communication between two hosts in separate
networks connected via an IPsec site-to-site VPN is modelled
with two channels: an insecure one between the end-points
and an IPsec secure channel between the VPN terminators.

In the real world, the secure communications are defined by
using a set of configuration settings containing several low-
level details. For instance, the configuration of a TLS server
contains detailed information about the supported cipher-
suites. However, during the design and policy analysis phases,
this level of granularity is usually not needed. For our pur-
poses, a secure channel can be represented by specifying:
1) the source and destination entities (they can be network
nodes or direct references to an entity lying at a particular OSI

3

Internet

ga1ca2

ca1

ca3

gb1

cb1

cb2

gc1

gc3

gc2

sc1

sc2

db

web1

cc2

web2

cc1

cc3

A

B

C

Fig. 1: A simplified network scenario.

layer such IP addresses and URIs); 2) the security protocol
to use (our model can be easily extended to new protocols
and can support a wide array of technologies at different
OSI layers); 3) the required security properties; 4) the crossed
gateways and the traffic to protect (meaningful only in case of
tunnels). We name policy implementation (or PI for short) this
formal representation of a channel. Note that since a channel
is directional, a PI is directional too. This means that, to create
a complete request-reply connection, we need at least two PIs.
More information on this subject is provided in Section V.

We call a PI set a group of policy implementations that
belongs to the same node and use the same technology. For
instance, a particular server supporting IPsec and SSH will
have two PI sets, one for each protocol. We will assume
without loss of generality that the policy implementations in
the same PI set are ordered according to their priority3. Note
that our analysis uses other additional sources of information:
• network reachability data, as the configurations of fil-

tering controls and NAT devices must be available to
determine if the channels can be actually established (e.g.
to check if a channel is not dropped by a firewall);

• supported security protocols (at various OSI levels), for
guaranteeing that it is possible to establish the secure
channels;

• supported cryptographic algorithms, as some cipher-
suites might not be available when actually deploying a
PI on the installed security controls.

Finally, we will refer to the network topology as a graph
where its nodes are potential channel end-points (both sources
and destinations) and its edges are physical or virtual connec-
tions between them.

IV. MOTIVATING EXAMPLE

Before formally tackling the analysis of the PI anomalies,
we begin our discussion by considering the simplified network
scenario in Fig. 1. The diagram shows a main corporate

3The work [9] proved that any policy represented as a set of rules can be
expressed as an equivalent policy where rules are ordered by their priority.

network (C) and two branch networks (A and B). The three
networks are connected via the Internet and consist of a
number of security gateways (denoted by g) that mediate the
communications between the servers (sc1 and sc2) and the
clients (indicated by c). The server sc1 hosts two services
(web1 and db), while sc2 hosts only one web service (web2).

We will use the informal notation s t−−→
pi,c

d to indicate a PI

that establishes a channel from the source s to the destination
d using the technology t to enforce some security properties.
In this simplified example we will only take into account
two security properties, (payload) confidentiality and payload
integrity, denoted by the symbols c and pi, respectively. For
instance, the PI a IPsec−−−→

pi
b indicates an IPsec connection with

integrity (but not confidentiality), from a to b.
For the sake of clarity, we grouped the anomalies into five

macro-categories, as shown in Fig. 2. These macro categories
will be briefly described in the next paragraphs.

inadequacy

monitorability

skewed channel

asymmetric channel

non-enforceability

out of place

filtered

L2

shadowing

exception

correlation

affinity

contradiction

redundancy

inclusion

superfluous

internal loop

alternative path

cyclic path

insecure
communications

unfeasible
communications

suboptimal
implementations

potential errors

suboptimal walks

anomalies

Fig. 2: Effect-based taxonomy.

A. Insecure communications

We have an insecure communication when its security
level is less than the expected one. For instance, a channel
that does not satisfy the minimum security level specified in
the corporate policy generates an inadequacy anomaly. We
have this anomaly if the IT managers require that ‘all the
data crossing the Internet must be encrypted’ and a security
administrator creates the policy implementation ca1

TLS−−−→
pi

sc1.

Another case of insecure communication arises when the
security requirements are respected but we have a communica-
tion consisting of more than one channel (e.g. remote-access).
In this case, the nodes at the channel junctions can ‘see’ the
exchanged data, thus lowering the security of the connection

4

and creating a monitorability anomaly. For instance, the PIs
sc1

IPsec−−−→
c,pi

gc1 and gc1
IPsec−−−→
c,pi

ca1 create a form of logical

communication between sc1 and ca1 composed of a sequence
of two channels interconnected through gc1. This means that,
even if everything is encrypted, gc1 reads the payload because
it decrypts and encrypts the exchanged data (note that this may
be the intended behaviour).

Another kind of insecure communication, more subtle but
potentially catastrophic, can occur with a wrong tunnel over-
lapping that removes the confidentiality in a part of the
communication and produces a skewed channel anomaly (a
super-set of the Hamed et al.’s overlapping anomalies [5]).
For example, a security administrator can create a tunnel
gc3

IPsec−−−→
c

ga1 and another one with gc3
IPsec−−−→

c
gc1 (note

that the latter tunnel is ‘included’ in the first one). The trellis
diagram in Fig. 3 helps to graphically visualize the problem.

gc3 gc1 ga1

double tunnel
single tunnel

no tunnel

Fig. 3: Diagram of the skewed channel between gc3, gc1, ga1.

When gc3 sends some data, it encapsulates the information
in two tunnels. Hence when ga1 receives the data, it removes
the external tunnel encapsulation, but cannot remove the
internal one, so ga1 sends the data back to gc1 which, in turn,
removes the last tunnel. Finally, gc1 sends the data to ga1 with
no protection, thus exposing the communication content to a
sniffing attacker.

In the real world, most of the connections are bidirectional,
since a request usually requires a reply. It may be the case
that the request channel has a different security level from the
reply one, generating an asymmetric channel anomaly. This is
not necessarily an issue, but it could be useful to report this
inconsistency, so that administrators can check if the security
control configurations reflect the intended network behaviour.

B. Unfeasible communications

An unfeasible communication is a communication that
cannot be established due to a hard misconfiguration. These
anomalies are very severe since they completely prevent
any data exchange. The simplest example of an unfeasible
communication is when the security administrators design a
PI with a technology not supported by an end-point or a
security level too high to be enforced by the available cipher-
suites. We call this situation a non-enforceability anomaly. For
instance, the policy implementation web2

TLS−−−→
c

db becomes
non-enforceable if the service administrators did not install
a TLS module on sc2 (where web2 resides). This PI must
obviously be deployed on the source endpoint sc2, however,
if the node containing this PI is not sc2, we have generated
another problem, an out of place anomaly.

We have also a hindered connection if the packets of a
channel are dropped by a firewall that lies on the path between

the source and destination, thus producing a filtered channel
anomaly.

Firewalls and bad server configurations are not the only
causes of an unfeasible communication. There are also techno-
logical incompatibilities between wired and wireless protocols
when performing security at level 2 (data link) of the OSI
stack. For example, if we choose to create a secure channel
using the WPA2 technology, we must be sure that the network
frames only cross wireless-enabled nodes. If one or more
crossed devices are wired-only, then we have an L2 anomaly.

C. Potential errors

Potential errors are a class of anomalies where the original
intent of the administrators is unclear. Hence their resolution
requires a full human inspection. When working with a large
group of PIs, an administrator can create a PI that meddles all
the traffic of another one that has different security properties.
For instance, the PI ca1

TLS−−−→
pi

web1 hides ca1
TLS−−−→
c

web1, if

the first one has a higher priority. Since the first one shadows
the second one we call this anomaly a shadowing anomaly.
If the second PI instead has a higher priority, we have an
exception anomaly. Exceptions are useful and are typically
exploited by administrators to express an ‘all but one’ rule,
but we report them for verification.

Another kind of potential error is when we have two PIs
with the same technology and with the source and destination
on the same node. This situation can lead to an ambiguity,
since sometimes a piece of data can match multiple PIs, hence
making the intended protection level unclear. For example,
web2

TLS−−−→
c

sc1 and sc2
TLS−−−→
c,pi

db are ambiguous since a packet

from web2 to db can match both PIs. We call this problem
a correlation anomaly. Analogously, we will have an affinity
anomaly between two PIs that use different technologies but
have the source and destination on the same nodes.

Finally, we have a contradiction anomaly when two PIs
respectively express that the same communication should be
protected and not protected. For instance, let suppose that
an IT manager defines a policy where ‘all the traffic for the
Internet must be inspected’ and a security manager enforces
the encryption of the traffic exchanged between ca1 and sc1
via the PI ca1

IPsec−−−→
c,pi

sc1. This leads to a contradiction, since

the policy requires that the data for the Internet should be
monitorable, but the PI encrypts them.

D. Suboptimal implementations

Suboptimal implementations arise when one or more PIs can
decrease the network throughput by producing some overhead
in the nodes. Their existence is usually not problematic,
but their resolution can be beneficial since it improves the
network performance and makes the PIs less vulnerable to
DoS attacks. The simplest kind of suboptimal implementation
occurs when an administrator deploys a PI that makes another
one useless, as the first one can secure the communication
at the same or a higher level of the second, with a more
effective protection (e.g. stronger encryption). For example,

5

two different security administrators may have independently
defined the PIs ca1

TLS−−−→
c

web1 and ca1
IPsec−−−→
c,pi

sc1. The former

is included in the latter, so that it can be safely removed. In
these cases we have a redundancy anomaly (if both the PIs
use the same technology) or an inclusion anomaly (if they use
two different protocols).

Another type of suboptimality arises when a tunnel encap-
sulates other tunnels with a higher security level. This is a
superfluous anomaly and can be resolved by simply deleting
the external, redundant tunnel.

We can also have some channels that can be safely removed
without altering the network semantic. This happens in the
so called internal loop anomalies, where a PI source and
destination belong to the same node.

E. Suboptimal walks

A group of PIs can produce a suboptimal walk when the
path taken by the data is unnecessarily long.

In large networks, a communication between two end-
points can take multiple paths, thus generating an alternative
path anomaly. This is not necessarily a misconfiguration, but
nonetheless we detect and report it to the administrators to
stay on the safe side. For example, gc2

IPsec−−−→
c

gc3 forms an

alternative path w.r.t. gc2
IPsec−−−→
(c

gc1 and gc1
IPsec−−−→

c
gc3.

Another cause of suboptimality occurs when some data
cross a node multiple times during their travel. This cyclic
path anomaly can be removed by deleting the cycles, thus
shortening the network path.

V. PI HIERARCHICAL STRUCTURE

In this section, we formally define what is a policy im-
plementation, its structure, and the relationships between the
various network fields that compose it. In addition, we describe
the notion of path used to detect several kinds of network
anomalies. In our model, a PI i is a tuple:

i = (s, d, t, C, S,G)

where:
• s and d respectively represent the channel source and

destination (Section V-A);
• t is the adopted security technology (Section V-B);
• C is an ordered set of coefficients that indicate the

required security levels (Section V-C);
• S is a selector, i.e. a tuple of network fields, used to iden-

tify the traffic that need to be protected (Section V-D);
• G is the list of the gateways involved in the communica-

tion (Section V-E).

A. Sources (s) and destinations (d)

To perform an accurate detection of anomalies, we need
to identify the OSI layer where a communication starts and
terminates. To this purpose, we use a hierarchical structure that
represents the points where the secure communication end-
points can be established. This structure has a very simple
tree-like graphical representation as shown in Fig. 4.

sc1

2

3

5 5′

7′

(a) Representation of sc1.

ga1

2

3

2′

3′

(b) Representation of ga1.

Fig. 4: Graphical representation of a server and a gateway.

The root represents the network node itself, while all the
tree nodes model the available connection end-points, named
network entities, ordered according to the OSI stack layer (see
Fig. 4a). We only focus our attention on the data link, network,
session and application layers. The tree levels may also be
associated to layer 2 addresses, IP addresses, port numbers
and URIs. To avoid ambiguity we will use the notation sc1.l5′

to specify the node labelled 5′ in the sc1 tree and so on.
Note that the gateways expose multiple interfaces, one for

each network where they are connected to. For instance, in
Fig. 4b, the two layer 3 vertices represent the ‘internal’ inter-
face (network A) and an ‘external’ interface (the Internet). If a
gateway also supports VPNs via TLS tunnels (e.g. OpenVPN),
two additional vertices are present at the session level.

Given any two network entities e1 and e2, we define the
following relationships:
• e1 is equivalent to e2 (e1 = e2) if they are exactly the

same entity;
• e1 dominates e2 (e1 � e2) if all the traffic starting from

(or arriving to) e2 passes through e1. On the graph, e1 is
an ancestor of e2 in the tree representation. This concept
is particularly useful when dealing with security protocols
working at different OSI layers. For instance in Fig. 4a,
sc1.l3 dominates sc1.l7′;

• e1 is a kin of e2 (e1 ∼ e2) if e1 and e2 belong to the same
network node, but there is no equivalence or dominance
relationship amongst them. For example in Fig. 4a, sc1.l5
is a kin of sc1.l5′;

• e1 and e2 are disjoint (e1 ⊥ e2) if they belong to different
network nodes (and hence trees).

Note that if e1 and e2 are not disjoint (e1 6⊥ e2) that means
that they are on the same device, hence they are related by an
equivalence, dominance or kinship relationship.

B. Technologies (t)

In this paper we take into account a limited set of technolo-
gies, but our model is flexible enough to accommodate any
security protocol. In particular we will consider only:
• for the data link layer: WPA2 and 802.1AE MACsec;
• for the network layer: IPsec;
• for the session layer: TLS and SSH;
• for the application layer: WS-Security.

6

In addition we also use the special NULL technology,
indicating that a communication should be created without
any kind of protection.

Similar to the network entities, two technologies t1 and t2
can have different relationships:
• t1 is equivalent to t2 (t1 = t2), if they are exactly the

same technology;
• t1 dominates t2 (t1 � t2) if t1 operates at an OSI level

strictly less than the t2’s one. By definition, the NULL
technology is dominated by all the other technologies;

• t1 is a kin of t2 (t1 ∼ t2) if t1 and t2 are different and
work at the same OSI layer;

• t1 is disjoint from t2 (t1 ⊥ t2) if one technology is NULL
and the other one is not NULL.

In general, the following relationships hold:
t(i) ∼ t′(i), t(i) 6= t′(i)

t(2) � t(3) � t(5) � t(7)

t ⊥ NULL, ∀t 6= NULL

Where t(i) represent a technology at the OSI level i.

C. Security coefficients (C)

The tuple of security coefficients consists of several non-
negative real values that indicate a required security level
for a specific property. The higher a value the stronger the
enforcement of a property should be. On the other hand, if
a coefficient is zero the related security property must not be
enforced. Obviously if the chosen technology is NULL, all
the coefficients are zero. These values should be estimated by
the administrators with the use of some metrics, for example
on the chosen cipher-suite (e.g. taking into account the key
length, encryption/hash algorithms and cipher mode).

In this paper we focus our attention only on three properties,
which are header integrity (chi), payload integrity (cpi) and
(payload) confidentiality (cc), so that:

C = (chi, cpi, cc)

The relationships amongst two coefficient sets C1 and C2 are:
• C1 is equivalent to C2 (C1 = C2) if all the coefficients

of C1 are the same as their C2’s counterparts;
• C1 dominates C2 (C1 � C2) if at least one coefficient

of C1 is strictly greater than its C2’s counterparts and
the other coefficients of C1 are not less than their C2’s
counterparts;

• C1 is disjoint with C2 (C1 ⊥ C2) if there is neither
dominance nor equivalence between C1 and C2, that is
C1 6� C2 ∧ C1 6� C2.

D. Selectors (S)

Some security protocols (e.g. IPsec, see RFC-3585) allow
the definition of filtering conditions to select the traffic that
must be protected. Our model supports such conditions via
the selectors S of a policy implementation, that are tuples
of network fields. In theory (and in our model too), S can
be arbitrarily defined with any field, however, in practice, the
fields in S are usually the well-known five tuple consisting
of a source IP address (ipsrc) and port (psrc), a destination

IP address (ipdst) and port (pdst) and a protocol type (prt).
We will assume this in the rest of the paper that S at least
includes the five-tuple, that is:

S = (ipsrc, psrc, ipdst, pdst, prt, . . .)

We will use the notation
←−
S to indicate a reverse list of

selectors where source and destination are swapped, that is←−
S = (ipdst, pdst, ipsrc, psrc, prt, . . .). In addition, we use
the notation S|f1×f2×... to restrict the selector space to the
fields f1, f2, For instance, in the following sections, we
will often use the more compact S|ipsrc×psrc

= (ipsrc, psrc)
instead of the n-tuple (ipsrc, ∗, ipdst, ∗, ∗, . . .) (where the
asterisk symbol ∗ will denote a field matched by any value)
to define a selector that matches all the traffic from ipsrc to
ipdst regardless of the port numbers and protocol. Moreover,
the all-matching tuple (∗, ∗, ∗, ∗, ∗, . . .) will be also shortened
to a single ∗ inside a PI definition.

In addition, we will make use of the following relationships
between the selector tuples:
• S1 is equivalent to S2 (S1 = S2), if their selectors are

exactly the same;
• S1 dominates S2 (S1 � S2) if the matched traffic of S2

is a sub-set of the matched traffic of S1;
• S1 is a kin to S2 (S1 ∼ S2) if there is at least one

communication that matches S1 but not S2 and vice-
versa;

• S1 is disjoint from S2 (S1 ⊥ S2) if the sets of the traffic
matched by S1 and S2 are disjoint.

E. Crossed gateways (G)

Tunnel PIs contain an ordered set G that specifies the
gateways crossed by the channel traffic. The G sets of tunnel
PIs is statically computed from the network topology and the
content of the routing tables.

Note that the list of crossed gateways does not contain the
channel source and destination nodes. We use the notation
G∗ to indicate a list containing also the PI end-points, that is
G∗ = {s} ∪G ∪ {d}. We will also denote the list of crossed
gateways in reverse order with

←−
G .

It is worth presenting an example of PIs that use gateways.
Given the network in Fig. 1, a communication from ca1 to sc1
that passes into an IPsec tunnel between the two gateways ga1
and gc2 is implemented by two PIs:
i1 = (ca1, sc1,NULL, (0, 0, 0), ∗, (ga1, gc1, gc2))
i2 = (ga1, gc2, IPsec, (3, 3, 3), (ipca1

, ∗, ipsc1 , ∗, ∗), (gc1))
where i1 specifies the communication that will be encapsu-

lated in the tunnel defined by i2.

F. Paths

We introduce now the concept of path, which completes the
notions used by our model. The notation P e1,en represents
a path starting from the network entity e1 and terminating
into the network entity en. Each path is a tuple of policy
implementations (i1, i2, . . . , in) where:
• the source of the first PI i1 is e1;
• the destination of the last PI in is en;

7

• given two consecutive PIs in the path ij and ij+1, the
property dj ∈ Sj+1 holds.

For instance, a path from cc2 to sc2 is:
i1 = (cc2, gc3,NULL, (0, 0, 0), ∗,∅)

i2 = (gc3, gc2, IPsec, (3, 3, 3), (subnetcc , ∗, subnetcs , ∗, ∗),∅)

i3 = (gc2, sc2,NULL, (0, 0, 0), ∗,∅)

Since P e1,en is a set, we will use the notation |P e1,e2 | to
indicate its cardinality, that is the number of policy imple-
mentations that compose it.

Note that two paths P e1,en
1 and P e1,en

2 are different
(P e1,en

1 6= P e1,en
2) if they differ by at least one element and/or

if their respective PIs are placed in different orders.

VI. ANOMALY ANALYSIS AND RESOLUTION

Having formalized the definition of a policy implementa-
tion, we can now express the logic formulas used to detect
the various anomalies.

In Section IV, we introduced an anomaly classification
based on five macro-categories (Fig. 2), which emphasizes
the side effects of an anomaly. However in the following
paragraphs, we will use a more technical classification (Fig. 5),
better suited for a more formal discussion. In fact, such clas-
sification highlights the possible levels of interactions among
PIs and, hence, at which level the anomaly is generated. We
distinguish three levels of anomalies: 1) the PI level anomalies
that occur within a single PI; 2) the node level anomalies,
which come up between two distinct PIs placed on the same
node; 3) the network level anomalies arising between distinct
PIs that belong to different nodes.

internal loop
out of place
non-enforceability
inadequacy
shadowing
redundancy
exception

correlation
inclusion
affinity

contradiction
cycle
monitorability
alternative path
superfluous

filtered channel
L2
skewed channel
asymmetric channel

irrelevant

unsuitable
requirements

intra
technology

inter
technology

path

channel

PI
level

node
level

network
level

anomalies

Fig. 5: Information-centric taxonomy of anomalies.

A. PI level anomalies

We can distinguish two families of PI level anomalies:
irrelevant and unsuitable requirement anomalies. A PI that
generates an irrelevant anomaly (which splits into internal loop
and out of place) is meaningless for the network semantics,

so that their presence does not change how a network ex-
changes the data. The unsuitable requirement anomalies (non-
enforceability and inadequacy) instead break some security
requisite and they can lead to severe problems.

1) Internal loop – Ail(i1): There is an internal loop
anomaly when the source and destination end-points are on
the same node, thus creating a communication loop. These
anomalies can be inferred by using the formula:

Ail(i1)⇔ s1 6⊥ d1 (1)
The proposed resolution method is to simply delete i1.
2) Out of place –Aop(i1): There is an out of place anomaly

when a PI is deployed on a wrong network node. That means
that the source is disjoint with the node where the PI is
deployed. To detect these anomalies, we use the function
N (i1) that returns the node where the PI is actually deployed.
The formula is then:

Aop(i1)⇔ N (i1) ⊥ s1 (2)
The simplest resolution is to delete i1. However, a more
suitable approach can be to redeploy the PI on the correct
node or to appropriately modify its source.

3) Non-enforceability – Ane(i1): A PI i1 is non-
enforceable when its technology is not supported by the
source, the destination or when its security coefficients are
‘too high’, and hence cannot be enforced (e.g., due to missing
strong encryption algorithms).

We will make use of two functions: T (e), which returns the
set of technologies supported by the node e, and Cmax(i1),
which returns the set of maximum enforceable coefficients by
the PI i1. These anomalies can be identified with the formula:
Ane(i1)⇔ C1 � Cmax(i1) ∨ t1 6∈ T (s1) ∨ t1 6∈ T (d1)

To resolve these anomalies, an administrator can choose to
upgrade the security libraries/services on the PI source/desti-
nation to support the desired technologies or, alternatively, he
might modify the PI by changing the protocol or lowering the
security coefficients (at his own risk).

4) Inadequacy – Ain(i1): We have an inadequacy anomaly
when the security coefficients of a policy implementation
establish a channel with a security that is lower than an
acceptable threshold. We can use a function Cmin(i1) that
returns the minimum acceptable coefficients for the channel
defined by the PI i1. This function should be defined a priori
by the administrators according to a (corporate) metric or best
practice [10], [11], [12]. For example a network administrator
could define a function such as:

Cmin(i1) =

{
(1, 1, 1) if i1 is crossing the Internet
(0, 0, 0) otherwise

We can detect these anomalies with the rule:
Ain(i1)⇔ C1 ≺ Cmin(i1) (3)

In order to fix these issues, the security requirements of the
policy implementation must be increased so that the property
C1 � Cmin(i1) holds.

B. Node level anomalies

A node level anomaly occurs between two distinct policy
implementations laying on the same node.

8

If the two PIs have the same technology then we have
an intra-technology anomaly (shadowing, exception, redun-
dancy and correlation), otherwise we have an inter-technology
anomaly (inclusion, affinity and contradiction). The intra-
technology anomaly category has been heavily inspired by the
work of Hamed et al.’s [5].

For detecting these anomalies, we assume that the two PIs
have the same crossed gateways, that is G1 = G2. In addition,
we will also make use of the function π(i) ∈ N that returns
the priority of a PI in a PI set (the lower the number the higher
the priority).

1) Shadowing – Ash(i1, i2): A PI i2 is shadowed when
there is another policy implementation i1 with a higher priority
that matches all the traffic of the first one (s1 � s2 ∧ d1 �
d2 ∧ S1 � S2) and has disjoint security coefficients. We can
detect these anomalies using the formula:

Ash(i1, i2)⇔ π(i1) < π(i2) ∧ t1 = t2 ∧ s1 � s2∧
d1 � d2 ∧ S1 � S2 ∧ C1 ⊥ C2 ∧G1 = G2 ∧ i1 6= i2 (4)
In order to resolve these kind of anomalies, either the

shadowed PI is deleted or the two PIs are replaced by another
PI i3 that is an upper bound of the previous ones. In particular,
i3 will have the following fields:
• s3 is the least upper bound of s1 and s2 such that s3 � s1

and s3 � s2 hold;
• d3 is the least upper bound of d1 and d2 such that d3 � d1

and d3 � d2 hold;
• C3 = {c3,i}i can be computed as c3,i = max(c1,i, c2,i)

where C1 = {c1,i}i and C2 = {c2,i}i;
• S3 is the least upper bound of S1 and S2 such that S3 �
S1 and S3 � S2 hold;

• t3 = t1 = t2, G3 = G1 = G2.
To maintain the semantics of the system, the new PI i3

should be inserted at the highest priority (i.e. π(i1)).
2) Redundancy – Are(i1, i2): A PI i2 is redundant when

there is another policy implementation i1 with a higher priority
that matches all the traffic of the first one and its security
coefficients are equal or dominates the other PI’s coefficients.
The following formula can be used to infer these problems:

Are(i1, i2)⇔ t1 = t2 ∧ s1 � s2∧
d1 � d2 ∧ S1 � S2 ∧ C1 � C2 ∧G1 = G2 ∧ i1 6= i2 (5)
The proposed resolution is to delete i2, because it does not

add new semantics to the policy.
3) Exception – Aex(i1, i2): A PI i2 is an exception of

another policy implementation i1 with a higher priority if they
have disjoint security coefficients and i2 is a superset match
of i1 (s1 ≺ s2 ∧ d1 ≺ d2 ∧ S1 ≺ S2) . The relative detection
formula is:

Aex(i1, i2)⇔ π(i1) ≺ π(i2) ∧ t1 = t2 ∧ s1 ≺ s2∧
d1 ≺ d2 ∧ S1 ≺ S2 ∧ C1 ⊥ C2 ∧G1 = G2 ∧ i1 6= i2 (6)
Exceptions are analogous to the shadowing anomalies (just

the opposite order of precedences) thus they share the same
resolution approach.

4) Correlation – Aco(i1, i2): A PI i2 is correlated with
another policy implementation i1 if they have disjoint security
coefficients, i1 matches some traffic for i2 and vice versa. In
other words, the source and destination of i1 and i2 belong to

the same node and there is no other intra-technology anomaly
between policy implementations (i.e. shadowing, redundancy
or exception). We can detect these anomalies via the formula:

Aco(i1, i2)⇔ s1 6⊥ s2 ∧ d1 6⊥ d2 ∧ t1 = t2∧
S1 6⊥ S2 ∧G1 = G2 ∧ ¬Ash(i1, i2)∧
¬Aex(i1, i2) ∧ ¬Are(i1, i2) ∧ i1 6= i2 (7)

To resolve these anomalies, the two PIs i1 and i2 can be
replaced with a new PI i3 with the same fields as described
in the shadowing anomaly resolution technique. However, the
newly created policy implementation will be inserted with a
priority π(i3) = min(π(i1), π(i2)).

5) Inclusion – Ain(i1, i2): The PI i1 includes (or dom-
inates) the policy implementation i2 when all fields of i1
dominate or are equal to their respective i2 fields, except one
that is strictly dominant. We can detect these anomalies with:

Ain(i1, i2)⇔ s1 � s2 ∧ d1 � d2 ∧ t1 � t2∧
C1 � C2 ∧ S1 � S2 ∧G1 = G2 ∧ i1 6= i2 (8)

The simplest way to resolve these anomalies is to delete i2 (the
‘innermost’ PI). However, an administrator can also keep both
the policy implementations for a security-in-depth approach.

6) Affinity – Aaf (i1, i2): A PI i1 is affine with another
policy implementation i2 when they share some fields, but
none of the PIs includes the other. We can detect these
anomalies with the formula:

Aaf (i1, i2)⇔ s1 6⊥ s2 ∧ d1 6⊥ d2 ∧ t1 6⊥ t2∧
S1 6⊥ S2 ∧ ¬Ain(i1, i2) ∧ ¬Ain(i2, i1) ∧ i1 6= i2 (9)

To resolve this type of anomalies, the two PIs should be
replaced with a new PI i3 that is an upper bound of the
previous ones:
• s3 is the least upper bound of s1 and s2 such that s3 � s1

and s3 � s2 hold;
• d3 is the least upper bound of d1 and d2 such that d3 � d1

and d3 � d2 hold;
• t3 is the least upper bound of t1 and t2 such that t3 � t1

and t3 � t2 hold;
• C3 = {c3,i}i can be computed as c3,i = max(c1,i, c2,i)

where C1 = {c1,i}i and C2 = {c2,i}i;
• S3 is the least upper bound of S1 and S2 such that S3 �
S1 and S3 � S2 hold;

• G3 = G1 = G2 .
7) Contradiction – Aco(i1, i2): Two PIs i1 and i2 are in

a contradiction if their sources/destinations lay on the same
node but their technologies are disjoint (that is one PI is using
the NULL technology and the other one a security protocol).
The formula for detecting these anomalies is:

Aco(i1, i2)⇔ s1 6⊥ s2 ∧ d1 6⊥ d2∧
t1 ⊥ t2 ∧ S1 6⊥ S2 ∧ i1 6= i2 (10)

The resolution is the removal of one PI, however, due to
the high ambiguity of the situation is up to the administrator
to choose which one (we cannot automatically pick among
‘protect’ and ‘do not protect’).

C. Network level anomaly

The network level anomalies occur between distinct PIs that
belong to different nodes. We can split these anomalies into

9

two main categories: path (cyclic path, monitorability and al-
ternative path anomalies), and channel anomalies (superfluous,
filtered channel, L2, skewed channel and asymmetric channel
anomalies).

1) Superfluous – Asu(i1): A PI i1 is superfluous if it
models a tunnel that protects less than all its inner end-to-
end channels. That is, the security coefficient of a superfluous
tunnel i1 are smaller than all the encapsulated channels
(∀ ik : sk ∈ S1|ipsrc×psrc×... ∧ G∗k ⊃ G∗1). This anomalous
PIs can be detected by using the formula:

Asu(i1)⇔ @ ik : sk ∈ S1|ipsrc×psrc×...∧
G∗k ⊃ G∗1 ∧ Ck ≺ C1 (11)

Since all the data transported in the tunnel are better
protected than the tunnel itself, the obvious resolution is to
delete i1 (since it is superfluous). However, as in the inclusion
anomaly, an administrator could choose to keep the PI to
(slightly) increase the security of the network.

2) Skewed channel – Ask(i1, i2): Two PIs i1 and i2 that
define two tunnels are skewed if their respective channels
overlap. This type of anomalies are tricky because in a portion
of the network the traffic will be sent without any form of
encryption (Fig. 3). We can detect these anomalies with:
Ask(i1, i2)⇔ s1 ∈ S2|ipsrc×psrc×... ∧ (|G∗1 ∩G∗2|) > 2∧

(G∗2 \G∗1 6= 0) ∧ cc1 > 0 ∧ cc2 > 0 ∧ i1 6= i2 (12)
In order to resolve this kind of anomalies, the two PIs must

be split in three (or more) non-overlapping policy implemen-
tations.

3) Filtered channel –Afi(i1): A PI i1 is filtered when there
exists at least one node e in its path with a filtering rule that
discards all its traffic. Given a function Fe(i1), which returns
true if the traffic related to i1 is dropped and false otherwise,
we can formally model this anomaly with:

Afi(i1)⇔ ∃e : e ∈ G1 ∧ Fe(i1) = true (13)
In practice, the output of the function Fe(i1) can be populated
either by means of a network reachability analysis [13] or by
using some firewall policy queries [14].

This anomaly is particularly severe since it completely
hinders the connectivity between a number of network nodes.
To remove the problem, the administrator can choose to delete
the PI i1 or modify accordingly the filtering rule.

4) L2 – AL2(i1): An L2 anomaly occurs when a PI that
uses a data-link layer technology crosses an area using a
different layer 2 protocol. For instance, we have a L2 anomaly
when a WPA2 policy implementation crosses some Ethernet
nodes, so that we cannot use WPA2 for the whole path. We can
express this anomaly by using a function T (2)(e) that returns
the set of technologies at layer 2 supported by the node e. We
can then write the formula:

AL2(i1)⇔ ∃e : e ∈ G∗1 ∧ t1 6∈ T (2)(e) (14)
These anomalies are quite hard to resolve since they require
a complete edit of the PI, by choosing a technology at a layer
strictly greater than 2.

5) Asymmetric channel – Aas(i1): A PI i1 is asymmetric
if does not exist another PI with: 1) the source and destination
swapped (s1 6⊥ d2 ∧ d1 6⊥ s2); 2) the same technology and
security coefficients; 3) the same list of crossed gateways, but

in reverse order. In other words, these problems arise when
we have a bidirectional communication with a channel weaker
than the other. We can identify these anomalies by using the
formula:

Aas(i1)⇔ @i2 : s1 6⊥ d2 ∧ d1 6⊥ s2∧

t1 = t2 ∧ C1 = C2 ∧ S1 6⊥
←−
S2 ∧G1 =

←−
G2 (15)

Administrators must check these anomalies to verify if they
represent the wanted protection.

6) Cyclic path – Acy(P
e1,e2): There is a cyclic path

anomaly between two nodes e1 and e2 if there is at least
one cycle in the path connecting them. These anomalies can
be detected with any of the several very efficient algorithms
available in literature to perform cycle detection [15].

The only way to resolve this kind of anomalies is to modify
the PIs to remove the cycles.

7) Monitorability – Amo(P
e1,e2): A path P e1,e2 is moni-

torable when there is not an end-to-end channel between e1
and e2. That means that, even if the connections are protected
by encryption, there is at least one node where an encryp-
t/decrypt operation is performed, thus potentially breaking the
confidentiality of the communication. These anomalies can be
detected by using the formula:
Amo(P

e1,e2)⇔ @P e1,e2 : (|P e1,e2 | = 1∧ij ∈ P e1,e2 : ccj > 0)
(16)

If the network is not trusted, the obvious way to remove this
anomaly is to edit the PIs such that there are only end-to-end
channels between e1 and e2 .

8) Alternative path – Aal(P
e1,e2
1 , P e1,e2

2): There is an
alternative path between two nodes e1 and e2 if there are
two or more different paths that can be taken from the source
node to the destination node. These anomalies can be easily
found by using the formula:
Aal(P

e1,e2
1 , P e1,e2

2)⇔ ∃P e1,e2
1 , P e1,e2

2 : P e1,e2
1 6= P e1,e2

2

(17)
To remove this redundancy, the administrators have to

choose the ‘best’ path for the communication and delete the
other ones. The choice can be made by using different strate-
gies, such as picking the shortest path or the path containing
the PIs with the highest security coefficients.

VII. GRAPH-BASED REPRESENTATION OF THE ANOMALIES

Aiming for a model that also has practical relevance, we
investigated the possibility of a user friendly representation
of our anomalies, as logical formulas are not easily usable
by administrators. In Section V we have already sketched our
hierarchical view of a network node. This allows the repre-
sentation of secure communications by connecting network
nodes to form a multi-graph. The obvious advantage of such
representation is that it allows a network administrator to
visualize the communications at a glance. Our claim is that
it allows the intuitive identification of the anomalies and the
consequences and the reactions.

For example, Fig. 6 shows an affinity anomaly between
two PIs. The first policy implementation (solid line) enforces
IPsec in transport mode and requires only confidentiality, while
the second one (dashed line) uses TLS and enforces only

10

ca1

2

3

5

7

sc1

2

3

5 5′

7′

(∗, ∗, ∗, ∗, ∗)

IPsec: (0, 0, 3)

(∗, ∗, ∗, ∗, ∗)

TLS: (0, 3, 0)

Fig. 6: Graphical representation of an affinity anomaly.

payload integrity. The graph clearly shows that the two PIs
are correlated as there are two “parallel” arrows. These PIs
are affine since they share some common aspects, but none of
them includes the other one. An administrator may understand
that he can alternatively use (1) only the IPsec channel, if
he adds also payload and header integrity, (2) only the TLS
channel, if he adds confidentiality, or (3) keep both. Another
example is shown in Fig. 7, where a superfluous anomaly is
depicted. We recall that a channel is superfluous when there is
another tunnel that covers at least the same traffic but protects
the communication with a higher security level. In this case
the IPsec tunnel between gc3 and gc2 is redundant, so an
administrator immediately sees that it can be safely removed.

All the anomalies (but the out of place one) have a corre-
sponding graphical representation. These representations can
be built by including the network node trees corresponding
to the communication end-points (Fig. 4), that is, the source
and the destination of the PI. The PIs that enforce end-to-
end channels are represented as single directed edges between
two communication vertices, i.e. the proper communication
layer nodes. For instance, in Fig. 6 the edge connects the
layer 3 nodes as the technology is IPsec. To increase the
expressiveness of our representation, each edge is also labelled
with the technology, the security coefficients required by the
PI and the selectors. To represent the policy implementations
that enforce site-to-site and remote-access communications,
we add all the network node trees corresponding to the crossed
gateways and an edge crossing all the communication parties.
For instance, in case of a tunnel (Fig. 7), we introduce an
edge crossing the source node, the first gateway, the second
gateway and terminating into the destination node.

As anticipated, out of place is the only anomaly that we do
not represent graphically. Visualizing this anomaly negligibly
boosts practical usefulness of our graphical representation but
significantly increases its complexity.

VIII. MODEL VALIDATION

In this section, we present the evaluation of our anomaly
analysis model’s usefulness and usability.

A. Empirical assessment

In order to evaluate the practical importance of our work,
we conducted an empirical assessment. We tried to answer
two simple yet interesting research questions:

cc1

2

3

5

7

gc3

2

3

2′

3′

gc2

2′

3′

2

3

sc1

2

3

5 5′

7′

(∗, ∗, ∗, ∗, ∗)

IPsec: (1, 1, 1)

(∗, ∗, ∗, ∗, ∗)

IPsec: (3, 3, 3)

Fig. 7: Graphical representation of a superfluous anomaly.

RQ1. are anomalies presented in this paper actually introduced
by the administrators when configuring the CPPs?

RQ2. does the number of anomalies decrease when the ad-
ministrator expertise grows?

If RQ1 is confirmed, we could deduce that performing
the detection can help improving the policy enforcement
correctness in real world networks. RQ2 instead can give us
insights on users that can benefit the most from our anomaly
analysis model.

We mainly focused on the new kinds of anomalies presented
for the first time in this paper. For this reason we did not
report statistics on anomalies already present in the literature,
namely the shadowing, redundancy, exception, correlation,
the skewed channel (overlapping sessions) and out of place
(irrelevances) whose importance was already proved in other
original works [5], [16], [17]. We designed the experiment
to be completed by the administrators in one hour, therefore
we avoided to provide data link information and kept the
size of the network reasonably low. For this reason, the L2,
asymmetric channel, cycle and alternative path anomalies were
not considered in our study.

In order to answer the research questions, we conducted an
experiment by recruiting a set of 30 administrators. We split
them into three categories according to their expertise level
(high, medium and low), each one containing 10 people. In
the test, we have considered as high expertise administrators
people with more than two years of experience in the security
field, as medium expertise administrators people with more
than two years of practice in the (non-security) network field,
and as low expertise administrators the remaining ones.

We asked them to enforce five CPPs (e.g. “all the ad-
ministrators must securely reach the accounting service”) by
implementing them as a set of PIs. The landscape was a small
network (consisting of 5 subnets, 6 servers, 9 clients and
10 gateways). The network description and the CPPs were
available online to the participants both as a web page and
as a PDF document to be accessed offline. The participants
were asked to write all PIs where all the their fields where
constrained to valid values (e.g. correct node and protocol
names) to avoid uninteresting errors. We did not impose
neither a time limit nor a maximum number of PIs.

The analysis of experiments data gave us very interesting
information. First of all, 93% of administrators introduced at
least one anomaly, regardless of the expertise, as shown in
Table I. In addition, all the new anomalies have been intro-

11

expertise insecure communications unfeasible communications potential errors suboptimal implementations at least one type

low 70.00% 60.00% 60.00% 70.00% 100.00%
medium 60.00% 30.00% 50.00% 40.00% 90.00%
high 30.00% 20.00% 20.00% 70.00% 90.00%

average 53.33% 36.67% 43.33% 60% 93.33%

TABLE I: Percentage of administrators that created at least one anomaly in a macro-category.

expertise internal loop non-enforceability inadequacy inclusion affinity monitorability superfluous filtered contradiction

low 20.00% 30.00% 40.00% 30.00% 50.00% 30.00% 30.00% 30.00% 30.00%
medium 10.00% 20.00% 40.00% 20.00% 40.00% 20.00% 30.00% 10.00% 10.00%
high 10.00% 10.00% 10.00% 20.00% 20.00% 20.00% 50.00% 10.00% 0.00%

average 13.33% 20.00% 30.00% 23.33% 36.67% 33.33% 30.00% 16.33% 13.33%

TABLE II: Percentage of administrators that created at least one anomaly.

expertise insecure communications unfeasible communications potential errors suboptimal implementations total

low 18.41% 22.39% 15.92% 7.46% 64.18%
medium 16.54% 12.78% 9.77% 9.77% 48.87%
high 12.90% 4.03% 2.42% 12.90% 32.26%

average 16.38% 14.63% 10.48% 9.61% 51.09%

TABLE III: Percentages of anomalies introduced by the administrators grouped in macro-categories.

expertise internal loop non-enforceability inadequacy inclusion affinity monitorability superfluous filtered contradiction

low 1.49% 4.48% 10.95% 2.99% 6.97% 2.99% 7.46% 17.91% 8.96%
medium 1.50% 3.76% 13.53% 4.51% 5.26% 3.01% 3.76% 9.02% 4.51%
high 1.61% 0.81% 4.03% 3.23% 2.24% 8.87% 8.06% 3.23% 0.00%

average 1.53% 3.28% 9.83% 3.49% 5.24% 6.55% 4.59% 11.35% 5.24%

TABLE IV: Percentages of anomalies introduced by the administrators.

duced by at least one administrator (Table II). Interestingly
enough, all the anomaly types except contradictions were also
introduced by expert administrators. This result successfully
answered positively the research question RQ1, that is the
anomalies presented in this paper can appear in real world
scenario, hence it is useful to look for them.

The RQ2 research question (the more the expertise of
administrators the less the anomalies) has been also confirmed
for all the anomaly macro-categories except one, the subopti-
mal implementations (Table III). Obviously having a better un-
derstanding of a network and its different security controls, re-
duces the chance of introducing anomalies. This is particularly
evident for the filtered anomalies, as the administrators also
have to consider the interactions with firewalls to avoid them,
but it is also valid for the non-enforceability, inadequacy, affin-
ity, and contradiction anomalies (Table IV). On the other hand,
the suboptimal implementations tend to increases because the
expert administrators add more superfluous anomalies, most
likely for providing a defense in depth approach, although
this was not expressly required in the exercise. Moreover,
expert administrators’ PIs also contain several monitorability
anomalies, since they tend to make an extensive use of tunnels
while the less skilled ones mainly use end-to-end channels.
In short, the experienced administrators tend to break secure
communications to improve the overall network performance.
In this sample network, the monitorability anomalies are not
the most serious issues (as we had homogeneous security
levels in all networks), however, in general it is worth checking
them. Finally, there is a number of internal loop anomalies,

constant with the expertise, probably due to distraction errors.
The statistical significance of the differences between the

results on the three expertise levels, has been assessed with
the analysis of variances (ANOVA) with a significance level
of 0.05. We performed the test on the number of error types
and errors for each administrator and obtained two P-values
of 0.034 and 0.006, thus successfully proving the hypothesis.

We identified two major threats to the validity of our experi-
ment. First, for practical reasons (anonymity, expected number
of participants, web-based data collection) we provided a
single administration task, therefore, the experiment is subject
to the mono-operational bias. This threat has been mitigated as
the proposed task was realistic and complex enough to capture
the heterogeneity of administrators’ tasks. Then, the other
threat concerns the generalization of the results, as participants
may not approximate well security administrators. However,
participants were selected on a voluntary basis, so they were
motivated, they performed the task at their place with the most
familiar environment, and they had unlimited time; therefore,
in ideal conditions. Moreover, the ex post analysis of the
correlation with the expertise didn’t show inconsistencies.

More information about the experiments, the input policy
and network, the observed data, the statistical assessment, and
the threats to validity are available in the supplemental material
of this paper.

B. Complexity analysis

We will now derive some complexity formulas that prove
the theoretical performance of our model. We will start with

12

pre-computation analysis total.

100 200 300 400 500

2

4

6

8

entity count

tim
e

[s
]

(a) With 100 PIs.

100 200 300 400 500

0

10

20

30

entity count

tim
e

[s
]

(b) With 250 PIs.

100 200 300 400 500

0

50

100

entity count

tim
e

[s
]

(c) With 500 PIs.

Fig. 8: Performance tests: time to perform the anomaly analysis of a fixed number of PIs depending on the number of entities.

pre-computation analysis total.

100 200 300 400 500

0

20

40

60

80

PI count

tim
e

[s
]

(a) With 100 entities.

100 200 300 400 500

0

20

40

60

80

PI count

tim
e

[s
]

(b) With 250 entities.

100 200 300 400 500

0

50

100

PI count

tim
e

[s
]

(c) With 500 entities.

Fig. 9: Performance tests: time to perform the anomaly analysis on networks of a fixed size depending on the number of PIs.

a simple observation. Our approach can be split in two
consecutive phases. The first one is a pre-computation phase,
where the tree representation of the network and its paths are
obtained. The second one is an analysis phase that consists of
the real anomaly detection phase.

Let’s suppose that we have a network consisting of E entities
(IPs, ports, addresses, . . .), I policy implementations and C
connections between the network entities created by the PIs
(obviously C ≥ I).

We will start by taking a look at the pre-computation phase.
To create the tree representation of the network nodes, we need
to check every single entity, so that this process has an exact
complexity of E . Finding all the simple paths4 in an acyclic
graph is a NEXPTIME problem with a maximum complexity
of O(eE). Note, however, that the real networks are scarcely
connected and that multiple paths between two different nodes
are quite rare, making these calculations feasible also in large
IT infrastructures. In addition, an administrator can choose to
limit the number of paths to check to some fixed value P ,
typically P ≪ eE . Hence, the total complexity of the pre-
computation phase is E + P .

Regarding the analysis phase, we have to take into account
the different characteristics of the anomaly detection formulas.
In particular, we have that:
• the internal loop, out of place, non-enforceability, in-

4A simple path is a path with no duplicate vertexes.

adequacy, filtered channel, L2 and asymmetric channel
anomalies algorithms work on a single PI at a time, so
that they have a complexity of I;

• the shadowing, redundancy, exception and inclusion
anomalies algorithms need an ordered pair of PIs, thus
have a complexity of I(I − 1). Also the superfluous
anomaly has a quadratic complexity since it needs to test
every PI against all the other ones;

• the correlation, affinity and skewed channel anomalies
algorithms work on unordered pairs of PIs, giving a
complexity of I(I − 1)/2;

• the monitorability and alternative path anomalies algo-
rithms work on every path, hence their complexity is P;

• the cyclic path anomaly algorithm can be efficiently
performed using a proper cycle detection algorithm such
as [15], that has a complexity of O(E + C). Note that its
complexity is not necessarily P since a graph with few
loops may have an infinite number of paths.

Summarizing, the total complexity of the analysis phase is:
I + I(I − 1) + P +O(E + C) ≈ I2 + P +O(E + C)

C. Performance analysis

We implemented our anomaly detection model and tested it
in several scenarios using a number of synthetically generated
networks in order to assess its running time. Our tool was
developed using Java 1.8 and the natural graph-based repre-

13

sentation of ontologies offered by OWL API 3.4.10 and the
reasoner Pellet 2.3.1. We performed all our tests on an Intel
i7 @ 2.4GHz with 16GB RAM under Windows 7.

Each test was performed on several ad-hoc scenarios con-
sisting of an automatically generated network with a paramet-
ric structure where we can specify: 1) the number of network
entities; 2) the number of policy implementations; 3) the
percentage of conflicting PIs. We choose to fix the number
of conflicting PIs to about 50% since, from our empirical
analysis, on average, an administrator writes only about half
of the policy implementations without any kind of conflict
(Table III). We performed two kinds of tests. In the first one we
fixed the number of network entities and increased the number
of PIs, while in the second one we did the reverse (fixed the
number of PIs and changed the entities count). Fig. 8 shows
the test results when fixing the number of PIs respectively to
100, 250 and 500, while Fig. 9 shows the graphs when the
network entities count is 100, 250 and 500. We kept track of
three times: the pre-computation (the dotted lines), the analysis
phase (the dashed lines) and the total times (the solid lines).

Our tool proved to be very scalable, achieving a total time of
less than two minutes in the worst scenario (500 PIs and 500
network entities). We also noted that the results are aligned
with the complexity analysis in Section VIII-B. For instance,
the computation times grow when the number of network
entities (Fig. 8) increase, while the pre-computation phase time
is independent of the number of entities (Fig. 9).

IX. RELATED WORKS

Anomaly analysis, detection and resolution in policy-based
systems and security controls are hot topics. We briefly discuss
in the next paragraphs the most notable works in this area.

A. Communication protection policies

The current literature contains several works about anomaly
detection in CPPs, however, the research in this area is
solely focused on IPsec, and overlooks the effects of multiple
overlapping protection techniques.

Zao [18] introduced an approach based on the combination
of conditions that belong to different IPsec fields. The same
idea was used by Fu et al. [19] to describe a number of con-
flicts between IPsec tunnels, discovered through a simulation
process that reports security requirements violations. In their
analysis, the policy anomalies are identified by checking the
IPsec configurations against the desired policies written in a
natural language. In practice, an anomaly occurs when the
policy implementations do not satisfy the desired policies. In
addition, Fu et al. proposed a resolution process that finds
alternative configurations to satisfy the desired policy.

Hamed et al.’s analyzed the effects of IPsec rules on the
protection of networks [5], by proposing a number of ad-
hoc algorithms and formulas to detect these problems. They
formalized the classification scheme of [19] and proposed a
model based on OBDD (Ordered Binary Decision Diagrams)
that not only incorporates the encryption capabilities of IPsec,
but also its packet filter capabilities. He also identified two
new IPsec problems (channel-overlapping and multi-transform

anomalies). The first one occurs when multiple IPsec sessions
are established and the second session redirect the traffic of the
first one (similar to the case depicted in Fig. 3). On the other
hand, the multi-transform anomalies occur when a data pro-
tection is applied to an already encapsulated IPsec traffic and
the second protection is weaker than the first one. The same
authors also described a classification system for conflicts
between filtering and communication protection policies [16].
Niksefat et al. [20] presented an two improvements over the
Hamed et al.’s solution [5], a faster detection algorithm and
the possibility to resolve the detected anomalies. Finally, Li
et al. classified the IPsec rules in two classes: access control
lists (ACL) and encryption lists (EL) [21].

B. Filtering policies
Configuration/policy anomaly detection in networks is not

only restricted to communication protection technologies. In
literature there exist a rich collection of papers about filtering
policy analysis. These works belong to a different domain
w.r.t. the approach presented in this paper, however they are
interesting background on anomaly analysis. Note that in our
approach we perform a full-spectrum CPP analysis that takes
also into account the effects of filtering through the filtered
channel anomaly, while the works presented in the following
paragraphs focus solely on the conflicts between filtering rules.

One of the most influential works in this area is by Al-
Shaer et al., which addresses the analysis of filtering configu-
rations via FOL formulas [3]. The authors analyzed both the
local anomalies arising in a single firewall and the global ones
taking into account several distributed filtering devices.

Liu et al. focused on detecting and removing redundant
filtering rules with data-structure named FDD (Firewall Deci-
sion Diagram) [22]. The authors distinguish upward redundant
rules, which are rules that are never matched, and downward
redundant rules, which are rules that are matched but enforce
the same action as some lower priority rules.

Basile et al. described a geometric representation of filtering
rules (up to the application level) where detection and resolu-
tion is based on the intersection of hyper-rectangles [9], [23],
[24]. The authors extended the work performed by Al-Shaer by
introducing the anomalies between more than two rules and by
showing how to transform a policy representation in another
form that preserves its semantic. Similarly, Hu et al. suggested
to split the classic five-tuple decision space into disjoint hyper-
rectangles, induced by the rules, where conflicts are resolved
with a combination of automatic strategies [25].

Hu et al. proposed a thoroughly different approach, an
ontology-based management framework that detects anomalies
in filtering rule sets [26]. Analogously, Bandara et al. proposed
the use of logic reasoning, obtaining excellent performance
[27]. Alfaro et al. presented a collection of algorithms to
remove a series of anomalies between packet filter configu-
rations and NIDS in distributed systems [17] that have been
implemented in the MIRAGE tool [28].

X. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a list of nineteen anomalies
(classified in two taxonomies) that can arise during the imple-

14

mentation of communication protection policies, and devised
a formal model based on FOL formulas that is able to detect
them. Our approach can be used to find incompatibilities,
redundancies and severe errors among policy implementations
that use security technologies working at different OSI layers
and with different security properties.

We implemented our model in Java by making an extensive
use of ontological techniques, and verified in several network
scenarios that it is scalable and performs well. Most of the
anomalies can be visualized with a graph-based representation
that should facilitate their identification.

For the future, we plan to extend the expressivity of our
model by adding support for new types of network devices,
such as intrusion detection systems (IDS). Furthermore, we are
planning to perform other empirical assessments to evaluate
if our tool can help administrators to reduce the number of
anomalies in real-world scenarios.

REFERENCES

[1] A. Wool, “Trends in firewall configuration errors: measuring the holes
in Swiss cheese,” IEEE Internet Computing, vol. 14, no. 4, pp. 58–65,
Jul. 2010.

[2] Verizon, “Data Breach Investigations Report,” 2015.
[3] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict classifi-

cation and analysis of distributed firewall policies,” IEEE J. on Selected
Areas in Communications, vol. 23, no. 10, pp. 2069–2084, Oct. 2005.

[4] Cisco Systems, “User Guide for Cisco Security Manager 4.10,” pp. 731–
776, Dec. 2015.

[5] H. Hamed, E. Al-Shaer, and W. Marrero, “Modeling and verification of
IPsec and VPN security policies,” in 13th IEEE Int. Conf. on Network
Protocols, Nov. 2005, pp. 259–278.

[6] European Commission, “Directive 95/46/ec- protection of personal
data,” Jul. 2000. [Online]. Available: http://eur-lex.europa.eu/
legal-content/EN/TXT/PDF/?uri=CELEX:32000D0520&from=EN

[7] C. Basile, D. Canavese, A. Lioy, and F. Valenza, “Inter-technology
conflict analysis for communication protection policies,” in 9th Int. Conf.
on Risks and Security of Internet and Systems, Trento (Italy), Aug. 2014,
pp. 148–163.

[8] Amina, “Automatic detection and correction of firewall misconfigura-
tions: A formal approach,” in International Symposium on Symbolic
Computation in Software Science, vol. 45, Mar. 2017, pp. 68–76.

[9] C. Basile, A. Cappadonia, and A. Lioy, “Network-level access control
policy analysis and transformation,” IEEE/ACM Trans. Netw., vol. 20,
no. 4, pp. 985–998, Aug. 2012.

[10] NSA’s Information Assurance Directorate, “NSA Mitigation Guidance.”
[Online]. Available: https://www.nsa.gov/ia/mitigation guidance/index.
shtmls

[11] National Institute of Standard and Technology, “Recommendations
of the National Institute of Standards and Technology.” [Online].
Available: http://csrc.nist.gov/publications/PubsTC.html

[12] International Organization for Standardization and International Elec-
trotechnical Commission, “ISO/IEC 27033: Information technology –
security techniques – network security,” 2009.

[13] C. Basile, D. Canavese, A. Lioy, and C. Pitscheider, “Improved reacha-
bility analysis for security management,” in Euromicro Int. Conference
on Parallel, Distributed, and Network-Based Processing, Belfast (UK),
February 27 - March 1, 2013, pp. 534–541.

[14] A. Khakpour and A. X. Liu, “Quarnet: A tool for quantifying static
network reachability,” IEEE/ACM Trans. Netw., vol. 21, no. 2, pp. 551–
565, Feb. 2009.

[15] R. Tarjan, “Depth first search and linear graph algorithms,” SIAM
Journal on Computing, vol. 1, no. 2, pp. 146–160, 1972.

[16] H. Hamed and E. Al-Shaer, “Taxonomy of conflicts in network security
policies,” IEEE Communications Magazine, vol. 44, no. 3, pp. 134–141,
Mar. 2006.

[17] J. G. Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Complete analysis
of configuration rules to guarantee reliable network security policies,”
Int. J. of Information Security, vol. 7, no. 2, pp. 103–122, Mar. 2008.

[18] J. Zao, “Semantic model for IPsec policy interaction,” Internet Draft,
Mar. 2000.

[19] Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu,
“IPsec/VPN security policy: Correctness, conflict detection, and resolu-
tion,” in Policies for Distributed Systems and Networks, Jan. 2001, pp.
39–56.

[20] S. Niksefat and M. Sabaei, “Efficient Algorithms for Dynamic Detection
and Resolution of IPSec/VPN Security Policy Conflicts,” in 2010 24th
IEEE Intern. Conference on Advanced Information Networking and
Applications, Apr. 2010, pp. 737–744.

[21] Z. Li, X. Cui, and L. Chen, “Analysis and classification of IPsec
security policy conflicts,” in Japan-China Joint Workshop on Frontier
of Computer Science and Technology, Nov. 2006, pp. 83–88.

[22] A. X. Liu and M. G. Gouda, “Complete Redundancy Detection in
Firewalls,” in 19th Working Conference on Data and Applications
Security, Aug. 2005, pp. 193–206.

[23] C. Basile and A. Lioy, “Analysis of application-layer filtering policies
with application to HTTP,” IEEE/ACM Trans. Netw., vol. 23, no. 1, pp.
28–41, Feb. 2015.

[24] C. Basile, D. Canavese, A. Lioy, C. Pitscheider, and F. Valenza, “Inter-
function anomaly analysis for correct SDN/NFV deployment,” Int. J. of
Network Management, vol. 26, no. 1, pp. 25–43, 2016.

[25] H. Hu, G.-J. Ahn, and K. Kulkarni, “Detecting and resolving firewall
policy anomalies,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 9, no. 3, pp. 318–331, May 2012.

[26] H. Hongxin, A. Gail-Joon, and K. Ketan, “Ontology-based policy
anomaly management for autonomic computing,” in 7th Int. Conf. on
Collaborative Computing: Networking, Applications and Worksharing,
ser. CollaborateCom, Oct. 2011, pp. 487–494.

[27] A. K. Bandara, A. C. Kakas, E. C. Lupu, and A. Russo, “Using argu-
mentation logic for firewall configuration management.” in Integrated
Network Management-Workshops, Jun. 2009, pp. 180–187.

[28] J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, and S. Preda,
“Mirage: A management tool for the analysis and deployment of network
security policies,” in 5th Int. Workshop on Data Privacy Management,
Sep. 2011, pp. 203–215.

Fulvio Valenza received the M.Sc. degree (summa
cum laude) in computer engineering in 2013 from
the Politecnico di Torino. In 2016, he completed
his PhD in Computer Engineering at the Politecnico
di Torino. His research activity focused on network
security policies. Currently he is a Researcher at
the CNR-IEII Torino, Italy, where he works on
orchestration and management of network security
functions in the context of SDN/NFV-based net-
works and industrial systems.

Cataldo Basile received a M.Sc. (summa cum laude)
in 2001 and a Ph.D. in Computer Engineering
in 2005 from the Politecnico di Torino, where is
currently a research assistant. His research is con-
cerned with policy-based management of security in
networked environments, policy refinement, general
models for detection, resolution and reconciliation
of specification conflicts, and software security.

Daniele Canavese received the M.Sc. degree in
computer engineering in 2010 from the Politecnico
di Torino, where he is currently a research assis-
tant and a Ph.D. student. His research interests are
concerned with policy-based management systems,
models for network analysis, security management
via inferential systems and public key cryptography.

Antonio Lioy is full professor at the Politecnico di
Torino, where he leads the TORSEC research group
active in information system security. His research
interests include network security, policy-based sys-
tem protection, and electronic identity. Lioy received
a M.Sc. in Electronic Engineering (summa cum
laude) and a Ph.D. in Computer Engineering, both
from the Politecnico di Torino.

http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32000D0520&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32000D0520&from=EN
https://www.nsa.gov/ia/mitigation_guidance/index.shtmls
https://www.nsa.gov/ia/mitigation_guidance/index.shtmls
http://csrc.nist.gov/publications/PubsTC.html

	Introduction
	Contributions
	Background
	Motivating example
	Insecure communications
	Unfeasible communications
	Potential errors
	Suboptimal implementations
	Suboptimal walks

	PI hierarchical structure
	Sources (s) and destinations (d)
	Technologies (t)
	Security coefficients (C)
	Selectors (S)
	Crossed gateways (G)
	Paths

	Anomaly analysis and resolution
	PI level anomalies
	Internal loop – Ail(i1)
	Out of place – Aop(i1)
	Non-enforceability – Ane(i1)
	Inadequacy – Ain(i1)

	Node level anomalies
	Shadowing – Ash(i1, i2)
	Redundancy – Are(i1, i2)
	Exception – Aex(i1, i2)
	Correlation – Aco(i1, i2)
	Inclusion – Ain(i1, i2)
	Affinity – Aaf(i1, i2)
	Contradiction – Aco(i1, i2)

	Network level anomaly
	Superfluous – Asu(i1)
	Skewed channel – Ask(i1,i2)
	Filtered channel – Afi(i1)
	L2 – AL2(i1)
	Asymmetric channel – Aas(i1)
	Cyclic path – Acy(Pe1, e2)
	Monitorability – Amo(Pe1, e2)
	Alternative path – Aal(Pe1, e21, Pe1, e22)

	Graph-based representation of the anomalies
	Model validation
	Empirical assessment
	Complexity analysis
	Performance analysis

	Related works
	Communication protection policies
	Filtering policies

	Conclusions and future work
	References
	Biographies
	Fulvio Valenza
	Cataldo Basile
	Daniele Canavese
	Antonio Lioy

