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RESEARCH ARTICLE
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Uncertainty Quantification in Discrete Fracture Network
Models: Stochastic Geometry
Stefano Berrone1, Claudio Canuto1, Sandra Pieraccini2 , and Stefano Scial�o1

1Dipartimento di Scienze Matematiche, Politecnico di Torino, Turin, Italy, 2Dipartimento di Ingegneria Meccanica e
Aerospaziale, Politecnico di Torino, Turin, Italy

Abstract We consider the problem of uncertainty quantification analysis of the output of underground
flow simulations. We consider in particular fractured media described via the discrete fracture network
model; within this framework, we address the relevant case of networks in which the geometry of the
fractures is described by stochastic parameters. In this context, due to a possible lack of smoothness in the
quantity of interest with respect to the stochastic parameters, well assessed techniques such as stochastic
collocation may fail in providing reliable estimates of first-order moments of the quantity of interest. In this
paper, we overcome this issue by applying the Multilevel Monte Carlo method, using as underlying solver
an extremely robust method.

1. Introduction

Several applications related to subsoil exploitation require to perform underground flow simulations, for exam-
ple, in order to assess safety and viability of the procedure under investigation. Just to mention a few, examples
include geothermal applications, aquifers monitoring, geological storage (e.g., CO2 or nuclear waste storage). In
many situations, the pattern of fractures in the underlying medium is relevant in order to establish directionality
of the flow, and the medium is modeled by means of the so-called discrete fracture network (DFN) model.
Within this framework, fractures in the rock matrix are modeled via a 3-D set of intersecting polygons. We con-
sider here a single phase flow problem in an impervious rock matrix, so that the flow is confined in the DFN.
Fractures are pathways for the flow, and flux exchange among fractures occurs through fracture intersections.

Since full deterministic data about the underground are not available, the fracture networks used for com-
putations are stochastically generated starting from probabilistic distributions of geometrical and hydrogeo-
logical properties. The stochastic generation of DFNs is likely to generate geometrical configurations very
challenging for the meshing process.

There is a vast literature on the simulation of flow in porous and fractured media, see for example (Ahmed
et al., 2015; Brenner et al., 2016; Dershowitz & Fidelibus, 1999; Faille et al., 2016; Karimi-Fard et al., 2004;
Lenti & Fidelibus, 2003; Martin et al., 2005; Sandve et al., 2012), to mention a few. Many works in the recent
literature are especially targeted at tackling the geometrical complexity of DFNs, aiming at performing effi-
cient and reliable simulations in complex networks. Among the others, in Pichot et al. (2010, 2012, 2014),
the mortar method is used in order to allow for a partial nonconformity of the mesh at fracture intersec-
tions. Other strategies involve the use of nonstandard finite element techniques in order to ease the mesh-
ing process: the eXtended Finite Element Method (XFEM) has been used in Huang et al. (2011), D’Angelo
and Scotti (2012), Berrone et al. (2013a), Formaggia et al. (2014), and Schwenck et al. (2015) allowing for
meshes that can cross the interfaces; Mimetic Finite Differences (MFD) were used in Huang et al. (2014) and
Al-Hinai et al. (2015); the Virtual Element Method (VEM) was applied in Benedetto et al. (2014, 2016a,
2016b), allowing for polygonal meshes. A new code for the simulation of flows in fracture networks, also
taking into account randomness of input parameters is described in Hyman et al. (2014), Makedonska et al.
(2015), and Hyman et al. (2015). Different approaches rely on dimensional reduction of the problem, as sug-
gested in Nœtinger and Jarrige (2012) and Nœtinger (2015), or on modifications of the geometry to simplify
the mesh generation process, as, e.g., in Mustapha and Mustapha (2007).

In several applications, a relevant quantity of interest is the overall flux flowing through the network. In this
work, we focus on this quantity, nevertheless the results obtained can be extended to other quantities of
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interest. Due to the large uncertainty in several parameters describing the subsoil, the problem of uncer-
tainty quantification on the output of simulations is a relevant issue.

The main target of this paper is to present a viable technique for addressing this problem, in particular in
the relevant case of uncertainty in the geometry of the network; this is especially challenging because ran-
domness in the geometry of computational domain may yield a quantity of interest which is nonsmooth in
the space of the stochastic parameters. This lack of smoothness is known to prevent a successful application
of modern stochastic collocation strategies and as such calls for alternative approaches. We consider here a
geometric Multilevel Monte Carlo (MLMC) method, introduced by Giles (2008), which improves the compu-
tational efficiency with respect to standard Monte Carlo method relying on several levels of accuracy in the
space discretization, catching the stochastic behavior of the quantity of interest with possibly many samples
at the less accurate (and cheaper) levels, while improving on the estimates with few samples at the finer lev-
els. An effective application of this strategy requires that an underlying solver is available, which allows to
use possibly very coarse meshes. In the framework of DFN simulations this is an issue, as the meshing pro-
cess is known to be one of the major challenges. In very complex systems, for methods based on conform-
ing meshes, the coarsest mesh compatible with geometrical constraints would count a relevant number of
elements, therefore successive refinements would increase the number of unknowns yielding soon intracta-
ble problems. The solver proposed by Berrone et al. (2013a) is based on nonconforming meshes and has
proven to be extremely effective in tackling complex geometrical configurations even with coarse meshes;
this key property makes it a suitable tool to be used in conjunction with a multilevel strategy, allowing to
use an affordable number of levels of refinement. The use of MLMC method in the framework of DFN simu-
lations with uncertainty in the network geometry is therefore proposed here for the first time, relying on
the robustness of the mentioned solver. Several numerical results show the reliability of this approach.

The paper is organized as follows. In section 2, we briefly sketch the flow model and recall the key features
of the numerical method used to perform the simulations. In section 3, we discuss the stochastic description
of the network and describe the method adopted for uncertainty quantification analysis. In section 4, we
report some results highlighting the viability of the approach.

2. The Underlying Problem

Let us consider a discrete fracture network D, given by the union of mutually intersecting polygonal frac-
tures Fi, i51; . . . ; I. Fracture intersections are called traces, denoted by Sm, m51; . . . ;M. According to the
DFN framework, traces are always segments, and, for simplicity, we assume that each trace is shared by
exactly two fractures, such that there is a one-to-one relationship between each trace index m and a couple
of fracture indices, denoted by im and jm, being Sm the intersection of Fim and Fjm . The hydraulic head H in D
is governed by Darcy’s law on each fracture, with additional matching conditions at fracture intersections,
enforcing the continuity of H across the traces, and the volumetric balance of the trace-normal component
of the flux of H at each trace. The boundary of D is given by the union of the boundaries of all the fractures
Fi, i51; . . . ; I, and is exactly divided in a Dirichlet part CD, on which a value of H is prescribed, and a Neu-
mann boundary CN, where a boundary-normal flux component is set. The hydraulic head H in D is then
given by the solution of the system of partial differential equations on the fractures with the above men-
tioned interface conditions at the traces and boundary conditions.

This formulation of the problem is mathematically well posed, but its numerical solution can be cumber-
some when an intricate network is considered. This is the case, for example, when standard techniques are
applied which require conformity of the mesh at fracture intersections, namely, if the edges of mesh ele-
ments, on each fracture, are required to match the traces on the fracture (partial conformity) and the ele-
ments on the intersecting fractures (total conformity). Indeed, in these cases, fractures intersecting with
extremely narrow angles can lead to elongated elements in the computational mesh, with a consequent
loss of accuracy in the computed solution. Also the presence on a fracture of traces very close to each other,
and/or traces with different length scales, can cause the introduction of a very large number of mesh ele-
ments in order to correctly reproduce all the geometrical features, if mesh conformity requirements have to
be satisfied; in these cases, the element size is mainly determined by geometrical constraints rather than by
the desired accuracy level.

Water Resources Research 10.1002/2017WR021163

BERRONE ET AL. 1339



Since the present work deals with the solution of the hydraulic head problem on networks with a random
geometry, the use of a solver robust to the presence of the aforementioned geometrical complexities in the
networks appears mandatory. In particular, the optimization-based solver proposed in Berrone et al. (2013a,
2013b, 2014a) was shown in Berrone et al. (2016) and Pieraccini and Scial�o (2016) to be extremely robust
against DFN complexities. In the aforementioned references, the hydraulic head problem in a DFN is refor-
mulated as a PDE-constrained optimization problem, in which a cost functional, expressing the error in the
imposition of the matching conditions at the traces, is minimized, constrained by the PDEs expressing
Darcy’s law on the fractures. The computation and the minimization of the functional can be performed
without requiring any kind of mesh conformity at the traces; this key feature allows, in particular, to apply
the method also with possibly very coarse meshes, independently of the complexity of the network. After
discretization, the problem is written in terms of the discrete variables hi, representing the discrete hydraulic
head on fracture Fi, and uim , representing the flux incoming fracture Fi through its trace Sm. In its simplest
formulation, the discrete problem can be written as:

min
XM

m51

jjhim 2hjm jj21jjuim 1ujm jj2

such that Ah5Bu1f

(1)

where him denotes the restriction of hi to Sm, f is a loading term, and matrices A and B arise from a finite
element-like discretization of the PDEs independently written on all the fractures. We refer the reader to
Berrone et al. (2014b) for a concise description of the method and to Berrone et al. (2013a) for full details.
We remark that if the optimization problem is tackled via a gradient-based solver, the solution can be
obtained by iteratively solving local problems on the fractures, the coupling arising from the minimization
of the functional. Well-posedness of the local problems, which may be an issue for some approaches (see,
e.g., Tartakovsky & Xiu, 2006; Xiu & Tartakovsky, 2006), is proven in Berrone et al. (2014a). The feature of
splitting the overall problem in small local problems provides the method also with good parallel scalability
performances (Berrone et al., 2015a).

3. Randomness Affecting the Network

Let w5ðh; uÞ be the exact solution of the mathematical model, which is assumed to depend on some sto-
chastic parameters. Let ðX;A;PÞ be a probability space, being X the set of outcomes, A the r-algebra of
events, and P : X 7!½0; 1� the probability measure. For each outcome x 2 X, let wðxÞ denote the corre-
sponding solution and let UðxÞ denote the random variable representing the quantity of interest (QoI),
which is typically a suitable function g of the solution, namely UðxÞ5gðwðxÞÞ. In several relevant applica-
tions, the QoI is, e.g., the overall flux flowing through the network, or, in case of transport simulations, the
concentration of a passive scalar in a selected point of the network.

The main target is in evaluating the first-order and second-order statistical moments of U, namely in com-
puting mean value and variance of the quantity of interest:

E½U�5
ð

X
UðxÞdPðxÞ; r2½U�5

ð
X
ðUðxÞ2E½U�Þ2dPðxÞ:

In recent works Berrone et al. (2015b, 2017), the authors have addressed the issue of evaluating the impact
of stochastic fracture transmissivities, assumed there to be uniform (i.e., constant in space) on each fracture
of the network. The quantity of interest was in the earlier work the portion of the overall flux affecting a
prescribed fracture, and in the later work, the concentration of a passive scalar at an outcrop in a time-
dependent transport problem. According to the network size, the transmissivities were assumed to be
independent stochastic variables with a known probability density function, or described by means of a
stochastic field, approximated by a truncated Karhunen-Loeve expansion (Le Mâıtre & Knio, 2010). In both
cases, stochastic collocation strategies (Nobile et al., 2008; Xiu, 2010) have been used to estimate mean
value and variance, proving to be very successful.

In the present framework, the geometry of the network is assumed to depend on random parameters. For
the sake of simplicity, we consider here randomness only affecting fracture sizes; namely, we consider frac-
tures with a rectangular shape, the two edge sizes being independent random variables. We remark that
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other sources of randomness could be considered, namely, the position of the center of mass, the density,
and the orientation.

Unlike the case considered in Berrone et al. (2015b), in which the authors prove that under proper assump-
tions the quantity of interest is a smooth function of the stochastic variables, in the present context
the quantity of interest may display a nonsmooth behavior in the stochastic parameter space (see, e.g.,
Figure 5). This is due to the fact that while varying the fracture dimensions, the number of traces may signif-
icantly change, and this can suddenly change flux intensity and directionality.

This lack of smoothness, as well known, may prevent a successful application of stochastic collocation strat-
egies for approximating the first-order and second-order moments. Possible alternative approaches can rely
on the Monte Carlo method, which estimates the mean value by averaging samples of the random variable.
The main drawback of Monte Carlo method is its computational cost, as it is indeed well known that achiev-
ing a root mean square error below a given accuracy E requires a number of samples which is OðE22Þ. Sev-
eral improvements of the standard Monte Carlo method have been proposed in the recent literature, such
as, for example, quasi-Monte Carlo method (Dick et al., 2013; Graham et al., 2011) or Multilevel Monte Carlo
method (Cliffe et al., 2011; Giles, 2008, 2015), or a combination of the two (Kuo et al., 2017).

We resort here to the Multilevel Monte Carlo method (from now on labeled MLMC), whose main ideas are
briefly sketched in the next subsection.

3.1. The Multilevel Monte Carlo Method
The main idea behind MLMC (Giles, 2008) is to sample the quantity of interest by using the numerical solu-
tion of the problem under investigation at several levels of accuracy; the first-order and second-order statis-
tical moments are roughly approximated using (possibly many) samples obtained from the lower levels,
while few samples at the higher levels are used to improve on the values of the moments. This way, the
overall computational cost can be largely reduced with respect to the standard Monte Carlo method (from
now on labeled sMC). In the framework of partial differential equations depending on stochastic parame-
ters, the different levels can be based on different levels of grid refinement in the space discretization, the
lowest and the highest level corresponding to the coarsest and the finest mesh, respectively; in this case,
the method is labeled geometric MLMC. We limit ourself to the description of this case, which is the one
adopted here. This approach has been successfully applied in the framework of PDEs with random coeffi-
cients in several recent papers, see, e.g., Cliffe et al. (2011) and Teckentrup et al. (2013); see also Icardi et al.
(2016) for an application in the framework of pore-scale simulations and Lu et al. (2016) for an application
to stochastic oil reservoir simulations. We remark that, in the framework of DFN simulations, the application
of this approach strongly hinges upon the availability of an underlying solver capable to work with very
coarse meshes.

In the following description, we closely follow Cliffe et al. (2011). Let us introduce a discretization parameter
d (e.g., a finite element mesh size), yielding N degrees of freedom; let wN denote the corresponding numeri-
cal solution and UN5gðwNÞ the quantity of interest computed from wN. For a fixed value of N, sMC builds
the following estimators for the mean value E½UN� and variance r2½UN�, respectively:

Û
sMC
N : 5

1
M

XM

m51

UNðxmÞ; (2)

Ŝ
sMC
N : 5

1
M21

XM

m51

ðUNðxmÞ2Û
sMC
N Þ2; (3)

where xm 2 X; m51; . . . ;M are independent samples. Note that these are unbiased estimators, i.e., E½ÛsMC
N �5

E½UN� and E½ŜsMC
N �5r2½UN�.

Assume that for N !1 we have jE½UN2U�j5OðN2aÞ for a positive constant a. A well-known result (see,
e.g., Cliffe et al., 2011) states that the mean square error E½ðÛsMC

N 2E½U�Þ2� is made of two contributions,
which are related to the sampling error and to the discretization error, respectively. Namely, it is easily
proven that
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E½ðÛsMC
N 2E½U�Þ2�5r2½ÛsMC

N �1ðE½ÛsMC
N �2E½U�Þ25

1
M

r2½UN�1ðE½UN2U�Þ2: (4)

Hence, the target of a root mean square error smaller than a given accuracy E is reached by ensuring, e.g.,
both terms on the right-hand side of the previous equation being smaller than 1

2 E2, yielding the following
requests on the number of samples and on the number of degrees of freedom, respectively:

M�E22; N�E21=a;

where the symbol � means that the inequality is satisfied up to a multiplicative constant independent of
any parameter. Assuming that the cost of a single simulation is approximately CN ’ Nc for a given positive
c, one obtains an overall cost for sMC which is

CsMC5MCN � E222c=a: (5)

The key point in MLMC is that several levels of accuracy of the solution come into play: sampling at lower
(and cheaper) levels is used to catch the stochastic behavior; the estimator is then improved by means of
higher levels sampling. The optimal number of samples to be computed at each level is obtained by mini-
mizing the variance of the estimator while maintaining the computational cost fixed.

In more detail, let us consider a family of space discretizations with mesh parameter d‘; ‘51; . . . ; L, yielding
N‘ degrees of freedom, with N1 < N2 < � � � < NL . Let w‘ represent the numerical solution obtained with the
‘th level mesh, and let U‘5gðw‘Þ be the corresponding QoI. The starting point of MLMC is the telescopic sum

UL5U11
XL

‘52

ðU‘2U‘21Þ:

For the sake of convenience of notation, we set

U0 : 50; Y‘ : 5U‘2U‘21:

Assume that U ’ UL . Linearity of expectation yields

E½U� ’ E½UL�5
XL

‘51

E½Y‘�; (6)

hence the quantity E½U� can be estimated by E½Y1� plus some corrections involving finer meshes. In order to
estimate values E½Y‘�, the one-level estimator (2) is applied, at each level ‘51; . . . ; L, based on M‘ samples,
obtaining

Ŷ ‘ : 5
1

M‘

XM‘

m51

Y‘ðxmÞ: (7)

Note that one has

E½Ŷ ‘�5E½Y‘�; r2½Ŷ ‘�5
1

M‘
r2½Y‘�:

Concerning r2½Y‘�, note that this can be made arbitrarily small by increas-
ing ‘, thanks to the convergence in mean of UN to U as N !1.

Recalling (6), the multilevel estimator Û
ML

for E½U� is built as

Û
ML

: 5
XL

‘51

Ŷ ‘:

Since the Y‘, for ‘51; . . . ; L, are independently estimated, standard
formulas yield

r2½ÛML�5
XL

‘51

1
M‘

r2½Y‘�: (8)

Similarly to (4), the following relation for the mean square error is eas-
ily derived:Figure 1. TP0. Geometry of the problem.
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E½ðÛML
2E½U�Þ2�5r2½ÛML�1ðE½ÛML�2E½U�Þ25

XL

‘51

1
M‘

r2½Y‘�1ðE½UL2U�Þ2:

As in the case of sMC, the target of reaching a root mean square error
lower than a prescribed accuracy E is attained by ensuring the two
terms on the right-hand side being smaller than 1

2 E2. While the second
one yields a limitation on NL which is similar as in the sMC case,
namely NL � E21=a , the first term can be made small at a cheaper
computational cost than sMC, thanks to the fact that r2½Y‘� decreases
as ‘ increases; therefore, very few samples are likely to be needed at
the higher levels, to guarantee a small overall variance of the estima-
tor. In more detail, letting C‘ denote the computational cost of a single
run at level ‘, the overall computational cost for MLMC is

CML5
XL

‘51

C‘M‘: (9)

The optimal M‘, for each ‘51; . . . ; L, is computed minimizing r2½ÛML�
given by (8), treating M‘ as continuous variables, subject to the con-

straint of the overall cost CML defined in (9) being constant; the solution of this constrained minimization
problem, yields at each level a value M‘ proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2½Y‘�=C‘

p
, with a constant of proportionality

depending on the accuracy E2 to be achieved.

The overall scheme for estimating the mean value is the following:

Multilevel Monte Carlo method

1. Compute Û1 as the one-level estimator (2) on a coarse mesh.
2. For each level ‘ > 1, compute Ŷ ‘ using (7) with the optimal number of samples M‘.
3. Build the final estimator as:

Û
ML

5
XL

‘51

Ŷ ‘:

The theoretical behavior of MLMC is summarized as follows (see Cliffe et al., 2011, Theorem 1; Giles, 2015,
Theorem 1). Let us recall that we denote by N‘ the number of spatial degrees of freedom associated to the
‘th level mesh. Suppose that there exist constants a; b; c > 0, with a � 1

2 min ðb; cÞ, such that

jE½U‘2U�j�N2a
‘ ; r2½Y‘��N2b

‘ ; C‘�Nc
‘ :

Then, for any E < e21, there exist L such that

Figure 3. TP0. Results obtained with MLMC (E 5 0.003) compared to sMC. (left) Mean value, (middle) errors in the computation of the mean value, and (right)
variance.

Figure 2. TP0. Flux measured versus values of the stochastic variables.
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E½ðÛML
2E½U�Þ2� < E2

with a total computational cost CML such that

CML�

E22 if b > c

E22ðlog EÞ2 if b5c

E222ðc2bÞ=a if b < c:

8>><
>>:

Few comments on this result are worthwhile. The result states that
the behavior of MLMC, in terms of the total computational cost, is
related to the relative values of b and c, i.e., how fast the variance of
U‘2U‘21 gets reduced with respect to how fast the work load C‘ (for
a single sample) increases with levels. Note that, due to previous com-
ments, the overall cost at ‘th level is C‘M‘ ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2½Y‘�C‘

p
, and one has

CML ’
XL

‘51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2½Y‘�C‘

p
:

If the case b > c applies, namely the variance gets reduced faster than
the computational cost increases, the dominant term in CML is at the
coarsest level; at this level, approximately M15OðE22Þ samples have
to be taken, but at a computational cost for each sample which is
Oð1Þ; this compares well with the cost of sMC in which one would still

take M5OðE22Þ samples but at a finer level. Recalling (5) we have a saving in MLMC which is
CML=CsMC ’ Ec=a . On the other hand, if one has b < c, the dominant term in CML is at the finest level, in
which Oð1Þ samples are likely to be taken; the gain with respect to sMC is CML=CsMC ’ Eb=a. We remark that
this latter case is the one occurring in our applications, see later in section 4.

Finally, as far as estimation of variance is concerned, following Bierig and Chernov (2015), the following mul-
tilevel estimator can be applied:

Ŝ
ML

: 5
XL

‘51

ŜM‘
½U‘�2ŜM‘

½U‘21�
� �

where for either k5‘ or k5‘21, we have set

Table 2
Number of Samples Used at Each Level

E 5 0.002 E 5 0.003 E 5 0.006 E 5 0.009 E 5 0.012

TP0
‘51 12,716 5,965 1,452 644 327
‘5 2 149 75 22 7 5
‘5 3 8 5 5 5 5
‘5 4 1 1 1 1 1
TP1
‘51 11,335 8,025 265 102 55
‘5 2 122 135 5 5 5
‘5 3 11 12 5 5 5
‘5 4 1 1 1 1 1
‘5 5 1 1 0 0 0
TP2
‘51 9,447 2,598 622 266 145
‘5 2 316 33 5 5 5
‘5 3 32 5 5 5 5
‘5 4 5 1 1 1 1

Table 1
Estimated Computational Costs (Floating Point Operations) for MLMC and sMC

MLMC cost sMC cost

TP0
E 5 0.002 7.874e104 1.675e108
E 5 0.003 6.498e104 7.443e107
E 5 0.006 5.836e104 1.861e107
E 5 0.009 5.697e104 8.270e106
E 5 0.012 5.657e104 4.652e106
TP1
E 5 0.002 1.825e106 1.634e109
E 5 0.003 1.823e106 7.262e108
E 5 0.006 5.550e104 5.029e106
E 5 0.009 5.533e104 2.235e106
E 5 0.012 5.528e104 1.257e106
TP2
E 5 0.002 5.280e104 1.176e107
E 5 0.003 1.032e104 5.226e106
E 5 0.006 7.719e103 1.306e106
E 5 0.009 7.343e103 5.806e105
E 5 0.012 7.215e103 3.266e105
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ŜM‘
½Uk � : 5

1
M‘21

XM‘

m51

UkðxmÞ2Û
ð‘Þ
k

� �2
; Uð‘Þk 5

1
M‘

XM‘

m51

UkðxmÞ:

4. Numerical Results

In this section, we show the effectiveness of MLMC in computing the
mean value and variance of the QoI in the context of DFN flow simula-
tions. We consider four DFN test problems with different characteris-
tics, while sharing a common structure. In the first three test
problems, two vertical fractures are present, representing a source
fracture and a sink fracture. This is realized prescribing a value of the
hydraulic head H on the top edge of such fractures (H 5 100 and
H 5 0, respectively). In the fourth test problem, an inlet plane and an
outlet plane are considered: a value H 5 10 of the hydraulic head is
prescribed on the intersections of fractures with the inlet plane, and
H 5 0 is set on intersections of fractures with the outlet plane. In all
the test problems, all other fracture edges are treated as insulated.
The quantity of interest is the overall flux flowing through the net-
work, from the source to the sink fracture.

In each test case, MLMC has been applied in order to estimate the mean value and variance of the flux, nor-
malized with respect to the maximum value attained in all the simulations, in such a way that the actual
quantity of interest ranges in the interval ½0; 1� and the E values can be considered as relative accuracies. All
the figures in this section report the actual values, without normalization. We have applied a geometric
MLMC, in which each level is characterized by a different spatial mesh, with an increasing number of dofs
as the level number increases, so that level ‘51 corresponds to the coarsest mesh, which is a triangular
mesh characterized by a minimum number of elements on each fracture equal to 25. In the first three test
problems, at each new level, meshes are refined by splitting each triangle at the previous level into four
smaller similar triangles, and then adding degrees of freedom corresponding to XFEM enrichments, which
is the space discretization technique adopted herein (see Berrone et al., 2013b, 2016). In the fourth problem,
standard FEM is used, in order to reduce the computational cost; at each level the number of triangles
required is again multiplied by a factor 4.

As far as the work load is concerned, the main computational effort is related to the solution of the linear
systems yielding the numerical solution. The first three test problems here proposed are small enough that
a direct solver can be applied, and the cost is essentially related to the LDLT factorization of the symmetric,
indefinite matrix of the linear system providing the solution of the constrained minimization problem (1). In
the fourth test, due to the large scale of the problems, the linear system is iteratively solved; in this case, the
computational cost is related not only to the number of dofs, which determine the cost of a single iteration,

Figure 5. TP1. Flux measured versus values of the stochastic variables (right: a top view).

Figure 4. TP1. Geometry of the problem.
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but also on the number of iterations performed, which clearly depends on the stopping criterion. We adopt
here an inexact framework, namely, the linear systems are solved at an accuracy which increases with levels,
using a stopping criterion with a relative tolerance which decreases with ‘.

4.1. Test Problem TP0
The first test problem is a very simple problem, aiming at showing the accuracy attainable with the
approach adopted herein with network configurations that are not yielding troublesome situations. The
network, depicted in Figure 1, is made of two vertical deterministic fractures (the source and the sink), and
a horizontal fracture with stochastic dimensions (the red one, in the figure). The two edge sizes of the hori-
zontal fracture are assumed to be two independent stochastic variables L1 and L2 with log-normal distribu-
tion, namely, log ðL1Þ � N ðl1;r1Þ and log ðL2Þ � N ðl2;r2Þ, being l1, l2 the average values and r1, r2 the
standard deviations. More in details, we have taken

l1520:2007; l2520:5573; r15r250:15:

Since, in this case, the variability of fracture sizes does not yield fracture detachments, the overall flux
crossing the network is a smooth function of the stochastic parameters. The QoI versus the images of the sto-
chastic variables is depicted in Figure 2, in which we report the values of the computed flux versus the sampled
values of log ðL1Þ and log ðL2Þ. The number of dofs ranges from approximately 300 (level ‘51) to approxi-
mately 8,500 (‘5 4). Different MLMC simulations with several values of the accuracy E, namely E 5 0.003, 0.006,
0.009, 0.012, have been performed. With reference to the theoretical result on the behavior of MLMC reported
in section 3.1, the values of the parameters a, b, and c have been numerically estimated using linear regression

and assuming that, for each ‘, one has N‘5sN‘21 for a suitable factor s;
the values obtained for this test problem are approximately
a50:7; b51:4; and c53:1, with an average growth factor s 5 3.2.

In Figure 3, left, we report, for E 5 0.003, the estimated value of E½U�
versus the computational cost. Similar behaviors are obtained for the
other values of E. The unit of measure for the x axis is the cost of one
simulation on the coarsest level used for MLMC. The computational
cost is measured in terms of estimated floating point operations, con-
sidering that the major source of computational effort for each run is
the solution of the linear system yielding the numerical solution. In
the same figure, we also report the value of the estimator computed
with sMC on the finest mesh used for MLMC, which corresponds to
L 5 4. Note that the number of levels to be activated is automatically
selected by the method in order to guarantee E½ðÛML

2E½U�Þ2� < E2,
see Giles, 2015. We observe that MLMC behaves quite well, compared
to sMC; in particular, it remarkably computes the final estimator at a
computational cost which is several orders of magnitude smaller thanFigure 7. TP2. Geometry of the problem.

Figure 6. TP1. Results obtained with MLMC (E 5 0.003) compared to sMC. (left) Mean value, (middle) errors in the computation of the mean value, and (right)
variance.
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the one required by sMC; note also that the estimator computed by the latter method has still an erratic
behavior.

In Figure 3, middle, we report for the same value of E as the left figure, the relative error in the estimation of
the mean value versus the computational cost, for both MLMC and sMC. The error is computed with respect
to a reference solution obtained with a smaller E for MLMC (E 5 0.002) and with a higher number of samples
for sMC. It can be seen that the error gets reduced remarkably fast with MLMC, and a fixed error is reached
by MLMC at a computational cost which is much lower than sMC. Finally, in Figure 3, right, we report the
variance computed by both methods. Again, MLMC outperforms sMC in estimating the variance.

We can gain more insight into the computational cost of MLMC method by looking at Tables 1 and 2. Table 1
reports the theoretical costs predicted for MLMC and sMC methods versus some selected accuracies E. It can
be seen that, for all considered values of E, MLMC is clearly expected to outperform sMC in attaining a pre-
scribed accuracy at an affordable computational cost, which is typically 2–3 orders of magnitude smaller than
sMC method. Table 2 reports the number of samples M‘ used at each level for the same accuracies E used in
the previous table. We may note that the number is rather high at the lowest level, but it rapidly decreases as
the level increases; for example, with the smaller considered E, we have M1 ’ 104, which quickly drops to
M2 ’ 102, M3 ’ 10, and M451. Most of the samples are therefore taken at the very coarse level (we recall that
‘51 corresponds to a few dozen triangles on each fracture), whereas at the fine levels, those at which one nor-
mally would compute the samples for sMC, just few samples are taken.

4.2. Test Problem TP1
This problem, while having a very simple geometry, yields a quite challenging behavior, which is typical of
networks with stochastic geometry. The geometry is depicted in Figure 4. In this problem, five fractures

Figure 9. TP3. Distribution of the number of (left) fractures and (right) traces among the simulations.

Figure 8. TP2. Results obtained with MLMC (E 5 0.003) compared to sMC. (left) Mean value, (middle) errors in the computation of the mean value, and (right)
variance.
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have a deterministic size, whereas a sixth fracture has stochastic dimensions (the red one, in Figure 4). The
number of dofs ranges from approximately 1,000 (level ‘51) to approximately 70,000 (‘5 5).

Also, in this case, the two edges of the nondeterministic fracture are assumed to be two independent sto-
chastic variables L1 and L2 with log-normal distribution defined by the parameters

l1520:8863; l2521:8026; r15r250:5:

As the dimensions of this nondeterministic fracture change, it progressively detaches from the other frac-
tures. Consequently, the number of traces ranges from 10, when the stochastic fracture does intersect all
but one fracture, down to 6, when the stochastic fracture intersects no other fracture in the network, thus
becoming excluded from the flux distribution along the network. These detachments cause a sudden
change in the flux intensity; thus, the function describing the flux in the stochastic parameter space displays
a nonsmooth behavior with several irregularity interfaces. This is shown in Figure 5 which, similarly to
Figure 2, reports the computed fluxes versus the sampled values of log ðL1Þ and log ðL2Þ. The right part of
the figure shows a top view; since the colorbar is proportional to the value of the flux, the two steep flux
variations that can be seen in the left plot correspond, in the top view, to the sudden change in color.

The MLMC method was applied to this problem with the same E values used in the previous test case. Here
the values estimated for the parameters a, b, and c are approximately a50:6; b50:7; and c53:2, with an
average growth factor s 5 3.0. The behavior is summarized in Figure 6, in which the same quantities as in
Figure 3 are shown for this example. In particular, the middle figure reports the errors computed with
respect to a reference solution obtained with E 5 0.002 (MLMC) and with a higher number of samples
(sMC). It can be noted that, despite the quantity of interest exhibits a nonsmooth behavior, MLMC behaves
quite well. Remarkably, the results obtained are quite similar to those attained in the smooth test case TP0,

Figure 11. TP3, case a. Results obtained with MLMC (E 5 0.003) compared to sMC. (left) Mean value, (middle) errors in the computation of the mean value, and
(right) variance.

Figure 10. TP3. Geometry of the problem.
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meaning that the possible presence of nonsmoothness in the parameter space does not significantly affect
the behavior of MLMC. The same conclusions can be driven by the analysis of Tables 1 and 2.

4.3. Test Problem TP2
The geometry of the third problem is depicted in Figure 7. In this case, we still consider two vertical frac-
tures acting as a source and a sink (the dark blue ones in the figure), but an overall number of 31 fractures
is present in the network. Among all these fractures, 8 are assumed to be deterministic (including the verti-
cal ones), whereas the remaining 23 are stochastically generated. Each fracture in this latter group is
assumed to have, as in the previous test problems, edge sizes modeled as two independent stochastic vari-
ables with log-normal distribution. The stochastic dimension is therefore d 5 46. In this test problem, the
connectivity changes within simulations as the number of traces ranges from 86 to 150, and also in this
case a nonsmooth behavior is expected. The number of dofs ranges from approximately 10,000 (level ‘51)
to approximately 125,000 (‘5 4). The behavior of MLMC is again summarized in Figure 8 and Tables 1 and
2. The errors reported in the middle part of Figure 8 are obtained as in the previous cases. Here the values
estimated for the parameters a, b, and c are a50:8; b51:2; and c53:2, with an average growth factor
s 5 2.4. Also, in this case, MLMC is remarkably successful in providing a reliable estimate of the first-order
and second-order moments at an affordable computational cost.

4.4. Test Problem TP3
The last problem is a more realistic one. Here we consider two vertical planes representing an inlet plane
and an outlet plane, according to the imposed boundary conditions; an overall number of 520 fractures is
stochastically generated in between, with edge sizes modeled as independent stochastic variables with log-
normal distribution. The connectivity of the network is then analyzed, and only the maximal group of con-
nected fractures is kept for the simulations. The total number of connected fractures present in each

Figure 13. TP3, case c. Results obtained with MLMC (E50:005) compared to sMC. (left) Mean value, (middle) errors in the computation of the mean value, and
(right) variance.

Figure 12. TP3, case b. Results obtained with MLMC (E 5 0.003) compared to sMC. (left) Mean value, (middle) errors in the computation of the mean value, and
(right) variance.
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simulation is therefore smaller than 520. In Figure 9, we report the empirical distributions of the actual num-
ber of fractures and traces occurring in approximately 20,000 simulations considered. An example of net-
work geometry is depicted in Figure 10, in which we also report, using a color scale, the numerical hydraulic
head computed; in the figure, the left part corresponds to the inlet region, whereas the right part corre-
sponds to the outlet region. The number of dofs ranges from approximately 15,000 to approximately
30,000 at the coarsest level (‘51), and from approximately 33106 to approximately 4:53106 at the finest
level (‘5 5).

In this last test problem, we also analyze the effects of a random transmissivity, in addition to randomness
in fracture sizes. To this aim, we consider three different models for the fracture transmissivities:

Case a: The transmissivity is constant on all fractures, and is set to K51029.
Case b: An uncorrelated model is adopted (see, e.g., Hyman et al., 2016): the transmissivity is considered a
random variable with a log-normal distribution, namely log K � Nðl;rÞ, with l5log ð1029Þ and r50:7 (val-
ues are loosely based on data available in Svensk K€arnbr€anslehantering (2010)).
Case c: A semicorrelated model is considered, in which transmissivity is related to fracture size, with an addi-
tional stochastic term: namely, we consider on each fracture log K5log ðcAdÞ1y, where A is the fracture area
and y � Nð0; rÞ; the parameters used, loosely based on those reported in Svensk K€arnbr€anslehantering
(2010), are c51029, d 5 0.25, and r50:7.

The values estimated for the parameters a, b, c are: a50:7; b51:3; and c53:1 with average growth factor
s 5 3.5 (case a); a50:8; b51:4; and c53:2 with average growth factor s 5 3.3 (case b); and a50:7; b51:3;
and c53:2 with average growth factor s 5 3.3 (case c). Figures 11–13 report the results obtained in the three
cases with E 5 0.003 (cases a and b) and E50:005 (case c); we used in this latter case a higher E value as the
computations turned out to be more expensive on this problem. Remarkably, the behavior of MLMC is quite
similar in the three cases, and also quite similar to the previous cases. The approach seems therefore to be
quite robust with respect to the network size and to the possible presence of several stochastic parameters
with different natures.

5. Conclusion and Perspectives

In the framework of underground flow simulations in discrete fracture networks, we have proposed a viable
approach to address the problem of uncertainty quantification on the output of simulations. In particular,
we have dealt with the challenging and relevant case of networks with uncertainty in fracture sizes. The
approach is based on the combination of the Multilevel Monte Carlo method with an extremely robust
numerical solver able to deal with any kind of geometrical complexity which may arise. The results are
remarkably promising, also when the quantity of interest is a nonsmooth function of the stochastic parame-
ters. Future work will be devoted to analyze the behavior of the approach when other nondeterministic
geometrical parameters are taken into account, such as position of center of mass and orientation. Further-
more, other strategies which may improve the method will be considered, such as, e.g., Multilevel quasi-
Monte Carlo methods.
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