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Abstract—Tracking time-varying sparse signals is a novel problem,
with broad applications. Techniques merging compressed sensing and
Kalman filtering have been proposed in the related literature, which
typically rely on specific dynamic models. In this work, we propose a
new perspective on the problem, based on elements of online convex
optimization. In particular, we design a suitable optimization problem and
develop algorithms which do not assume any specific dynamic model. For
these algorithms, we analytically evaluate the behavior of their dynamic
regrets that serve as their performance measure.

The problem of tracking dynamic (i.e., time-varying) sparse signals
has arisen in the last few years in the literature of sparse signal
estimation [1], [2], [3], [4], [5]. The dynamic environment is more
natural in a number of applications, e.g., magnetic resonance imaging
[6], [7] and spectrum sensing in cognitive radios [8], [9], where the
signal of interest is subject to variations. The acquired measurements
are then time series, for which online processing is generally preferred
for promptness of response and computational complexity: at each
new measurement (or bunch of measurements) the current signal is
estimated. Sparsity may be inherent in the signal itself (i.e., each
signal frame has a sparse representation) or it may occur in the
difference between consecutive frames assuming a sufficiently slow
dynamics.

In the static environment, compressed sensing (CS) [10] has
introduced a rigorous theory and efficient algorithms to recover sparse
signals from linear, compressed measurements. It has then been
natural to try to extend the CS paradigm to the dynamic environment.
On the one hand, iterative CS algorithms have been revisited for the
dynamic framework (e.g., approximate message passing in [1], [2],
iterative soft thresholding in [4]); on the other hand, Kalman filtering
approach has been merged with CS and sparsity models [11], [12],
[13], [5]. In both cases, numerical results are encouraging, while
theoretical results are lacking or strongly related to the knowledge of
a specific signal evolution model.

This work aims at filling this gap, by providing a theoretical
analysis untied from specific evolution models. For this purpose, we
resort to the online convex optimization (OCO) theory [14], recently
developed within the machine learning community. OCO can be
described as a game in which, at each time step t ∈ {1, 2, . . . , T},
a learner incurs in a convex cost functional ft revealed by an
adversary. Then, the learner aims at minimizing ft, which may be not
computationally feasible. To circumvent that, a low-complex tracking
strategy is adopted instead, that keeps as close as possible to the
desired optimum. A suitable performance metric to evaluate such a
strategy is the so-called dynamic regret, defined as follows [15], [16]:

RegdT (x?1, . . . , x
?
T ) :=

T∑
t=1

ft(xt)− ft(x?t )

where x?t = argmin
x∈X

ft(x) (X being the feasibility set), and xt is
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the action played by the learner at time t, before the revelation of
ft. ft(xt)− ft(x?t ) is usually referred to as loss.

In the OCO literature, the action typically is a gradient descent step
[15]. Let CT :=

∑T
t=2 ‖x

?
t − x?t−1‖2. In [15], it has been proved

that RegdT (x?1, . . . , x
?
T ) = O(

√
T (1 + CT )). More recently, in [16]

this result has been improved to RegdT (x?1, . . . , x
?
T ) = O(1 + CT ),

under the hypothesis that ft is strongly convex, and assuming that
∇ft is Lipschitz continuous and bounded [16, Assumptions 2-3].

Our aim is to design a suitable optimization problem and an
online algorithm for our sparse signal tracking problem, and ob-
tain a dynamic regret result analogous to [16]. Let x̃t ∈ RN ,
t ∈ {1, 2, . . . , T}, be the sparse signal to be tracked. According to
the CS paradigm, we acquire compressed measurements yt = Ax̃t,
where A ∈ RM,N is a suitable sensing matrix with M < N . As cost
functional, we consider the Elastic-net, which supports sparsity with
a grouping effect [17], [18], and reads as follows:

ft(x) =
1

2
‖yt −Ax‖22 + λ ‖x‖1 +

µ

2
‖x‖22, t ∈ {1, . . . , T}, (1)

where λ > 0 and µ > 0 are parameters to be fixed. The Elastic-net is
strongly convex, but does not fulfill the assumptions of [16] (actually
ft is even not differentiable), which prevents us to use the methods
and the analysis proposed in that paper. Our contribution consists
then of (a) the development of algorithms to tackle the dynamic
Elastic-net, and (b) their corresponding dynamic regret analysis.
The algorithms that we propose to tackle such dynamic Elastic-
net are online versions of the well-known iterative soft thresholding
(IST) algorithm [19] and alternating direction method of multipliers
(ADMM) [20], see Table I. Let C̃T :=

∑T
t=2 ‖x̃t−1−x̃t‖2. Our main

results are summarized in the following theorems (whose proofs are
omitted for brevity):

Theorem 1. If τ ‖A‖22 < 1 (where τ is the gradient param-
eter, see Table I), the online IST for dynamic Elastic-net has
RegdT (x?1, . . . , x

?
T ) = O(1 + C̃T ).

Theorem 2. If ‖x̃t‖ ≤ β for some β > 0, the online ADMM for
dynamic Elastic-net has RegdT (x?1, . . . , x

?
T ) = O(1 + C̃T ).

These theorems state in particular that the regret stabilizes when the
signal x̃t stabilizes. Table II puts these results into perspective with
previous OCO works. To conclude, in Figure 1 we show the results
of some numerical tests . We consider two models for x̃(t) ∈ RN :

(M1) constant support Ω ⊂ {1, . . . , N} (chosen uniformly at
random), |Ω| = k, non-zero values:

(
x̃|Ω
)
i
(t) = ηi,0 +

ηi,t
t

, where
ηi,j ∼ N (0, 1), i ∈ {1, . . . , N}, j ∈ {0, 1, . . . , T};

(M2) support Ωt chosen uniformly at random at each t, with
|Ωt| = k constant; non-zero values:

(
x|Ωt

)
i
(t) =

(
x|Ωt

)
i
(t −

1) +
ηi,t
t

where ηi,t ∼ N (0, 1), i ∈ {1, . . . , N}, t ∈ {1, . . . , T}.
In Figure 1, we see that, for both algorithms, RegdT stabilizes as

expected when the signal stabilizes, and accordingly the loss tends
to zero. Moreover, ADMM turns out to be quicker than IST.



Table I
PROPOSED ALGORITHMS

Notation and initialization

Sα denotes the soft thresholding operator with parameter α, defined as follows:
given x ∈ R, if |x| ≤ α, Sα(x) := 0; otherwise, Sα(x) := x− sgn(x)α.
The definition is extended component-wise to vectors.

τ > 0 is the gradient parameter of IST; it must be chosen such that τ ‖A‖22 < 1
(see Theorem 1). µ and τ are defined in (1).

For any t ∈ {1, . . . , T}, the measurement yt = Ax̃t (hence, ft) is revealed
after that action xt is played.

B =
[
ATA+ (1 + µ)I

]−1; x1 = z1 = u1 = 0 ∈ RN .

Online IST for dynamic Elastic-net

For any t ∈ {2, . . . , T},

1. xt = S λτ
µτ+1

[
xt−1+τAT (yt−1−Axt−1)

1+µτ

]
2. read yt

Online ADMM for dynamic Elastic-net

For any t ∈ {2, . . . , T},

1. xt = B
[
AT yt−1 + zt−1 − ut−1

]
2. zt = Sλ [xt + ut−1]
3. ut = ut−1 + xt − zt
4. read yt

Table II
DYNAMIC REGRET ANALYSIS (C = CONVEX; SC = STRONGLY CONVEX)

ft RegdT Assumptions
[15] C O(

√
T (1 + CT )) ‖∇ft‖ ≤ β, X compact

[16] SC O(1 + CT ) ‖∇ft‖ ≤ β
This work Elastic-net (SC) O(1 + C̃T ) For ADMM: ‖x̃t‖ ≤ β
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Figure 1. Simulations on models M1 (left column) and M2 (right column);
N = 100, M = 20, k = 5. The graphs represent (from top to down)
the signal variation

∑T
t=1 x̂t+1 − x̃t and the optimum point variation =∑T

t=1 x
?
t+1 − x?t , the loss ft(xt)− ft(x?t ), and the dynamic regret RegdT .
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