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Abstract 

In the beginning of 1950s [1, 2], the usage of microscopic and spectroscopic 

methods allowed the identification of nanosized tubular clay minerals, such as 

halloysite, chrysotile and imogolite. However, the concept of nanosized tubular clay 

minerals was not so popular and a few papers were only published on this topic. 

After the first observation of carbon nanotubes (CNTs) in 1991 [3], the interest for 

nanosized tubular clay minerals, which could be synthesized besides being present 

in nature, was renewed.  

Nanosized tubular clay minerals, as their name implied, are tubular 

nanostructures clay minerals with dimensions in the 1 - 100 nm range [4, 5] and a 

hollow tubular structure. So far, among all clay minerals both halloysite and 

imogolite have attracted more attention for their applications in fabrication of clay 

polymer [6] nanocomposites [7], catalysis and adsorption [8, 9]. The reason for their 

popularity is attributed to their unique, one-dimensional tubular structure and 

properties, which are modifiable by altering the internal and external surfaces [9-

11]. 

Proper imogolite is a hydrous aluminum silicate with chemical formula 

(OH)3Al2O3SiOH [2, 12], occurring as single walled nanotubes (NTs) with 

Al(OH)Al and Al-O-Al groups at the outer surface, and silanols (SiOH) at the inner 

one. This thesis is aimed at assessing the catalytic behavior of the hybrid 

organic/inorganic analogue of imogolite, i.e. methyl-imogolite (MeIMO, 

(OH)3Al2O3SiCH3), with an inner surface lined by Si-CH3 groups (hydrophobic) 

and an outer surface resembling that of imogolite (hydrophilic). The special 

structure of MeIMO leads to enhanced adsorption properties that render it suitable 

for gas separation/storage [9]. Furthermore, MeIMO NTs have higher degree of 

long range order [13], higher production yield, larger pores (> 0.2 nm) and surface 

area (~ 600 m2.g-1) with respect to proper imogolite [9]. 

Modification of the outer surface of MeIMO NTs includes either formation of 

covalent bonding or electrostatic interaction. The former is achieved by the reaction 

of MeIMO with organosilanes [11], whereas the latter is possible due to the 
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protonation of outer surface of NTs in water, which leads to charge matching 

between a proper counter-ion and the outer surface of NTs [14]. These specific 

properties may be exploited in several applications, mainly for removal of organic 

pollutant from water by the electrostatic interaction of anion/cations with the 

charged surface of NTs [15-19]. 

The second topic of this work concerns another modification of the outer 

surface by isomorphic substitution (IS) of octahedral Al3+ in the outer surface by 

Fe3+. Fe-doped MeIMO was obtained by both ionic exchange (IE) and direct 

synthesis (DS) method with two Fe contents, i.e. 0.70 wt.% (Fe-0.70-MeIMO) and 

1.4 wt% (Fe-1.4-MeIMO). Although IS of Al3+ by Fe3+ is a common process in 

almost all natural alumino-silicates, little is known about Fe doped imogolite NTs. 

Several studies have been recently performed dealing with the synthesis, surface 

characterization and applications of Fe doped imogolite NTs. So far, no specific 

study has been devoted to the surface properties of Fe-doped MeIMO NTs, nor to 

their application as heterogeneous catalyst.  

The presence of Fe3+ in the structure of NTs induces new chemical and solid 

state properties. Based on theoretical calculations on Fe-doped imogolite NTs, IS 

of Fe for Al may create “defective sites” both inside and outside NTs, and reduce 

the band gap of imogolite (an electrical insulator) from 4.7 eV to 2.0-1.4 eV [20]. 

On the other hand, the first experimental studies, mainly due to Ookawa and later 

to Shafia et al., indicate that NTs are preserved up to 1 wt % Fe isomorphically 

substituted in the NTs. Higher Fe contents lead to the unavoidable formation of iron 

oxo-hydroxides particles/clusters [21-24]. 

This study confirms that in Fe-doped MeIMO as obtained by both IE and DS 

methods,  Fe3+ species in the NTs structure decrease the band gap of MeIMO from 

4.9 to 2.4 eV. Moreover, with 1.4 wt % Fe, some FexOy oligomeric clusters and 

Fe2O3 particles are forming. Decreasing the Fe content to 0.7 wt % shows that 

isolated Fe3+ species are more abundant by DS method, whereas by ionic exchange 

Fe tends to form more oligomeric iron oxo/hydroxide clusters or Fe2O3 particles. 

This particular behavior of Fe-doped MeIMO could help one to choose the proper 

method for specific application.  

The thermal stability of MeIMO and Fe-doped MeIMO NTs has also been 

studied. Mechanisms of collapse of NTs (at T > 300 °C dehydroxylation and NTs 

deformation result in collapse of structure) have been investigated with samples at 

different Fe loading and also in different heating environment (either in air or in 

vacuum). According to the obtained results, thermal treatment in air results in the 

faster cleavage of MeIMO NTs by burning the inner methyl groups to CO2. 
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Whereas, thermal treatment in vacuum, triggers the cleavage of NTs from another 

route which is detectable by more positive chemical shift in 29Si MAS NMR 

analysis.  

Although the wall structure of collapsed samples is partially damaged or 

disordered, and finally collapsed at around 400 °C, the phases stemming by the 

thermal collapse of NTs show considerably high surface area and high porosity, due 

to residual microporous regions likely derived from unaffected pristine NTs within 

the layers [25]. Furthermore, the analysis of IR spectra of pyridine adsorption on 

collapsed samples show the presence of strong Lewis/Brønsted acidic sites.  

Another interesting aspect is the deformation of NTs due to dehydroxylation, 

which may lead to the alteration of light adsorption capacity and to the reduction of 

band gap in deformed NT with respect to original one. This has been investigated 

by theoretical calculation (SCC-DFTB) of dehydroxylated imogolite NTs [26]: in 

the literature, it has been observed by practical band gap evaluation obtained by 

UV-Vis spectroscopy on MeIMO NTs. Therefore, the dehydroxylated imogolite or 

MeIMO NTs is considered as a semiconductor and controlling the degree of 

dehydroxylation in the heat treatment process may open the possibility to adjust and 

control the electronic and mechanical properties of NTs. All these observations 

trigger the future investigations on the different structural phases arrived from 

thermal treatment of NTs.  

In order to investigate the photocatalytic application of Fe-doped MeIMO NTs, 

the samples obtained by IE method have been studied for the photo-Fenton 

oxidation of tartrazine dye, an important pollutant of both wastewater and 

groundwater.  

The obtained results imply that IS of Al3+/Fe3+ at low Fe content (i.e. 0.7 wt. % 

Fe) starts the photo-Fenton process and provides total discoloration and 

mineralization of tartrazine dye. Whereas, at higher Fe content (i.e. 1.4 wt. % Fe) 

the higher amount of Fe oxo-hydroxide clusters play a detrimental effect on 

tartrazine mineralization, due to both a lower photo-Fenton activity of the clusters 

with respect to isolated Fe3+ species and their ability to catalyze the (undesired) 

decomposition of H2O2 to oxygen and water. Remarkably, Al-OOH groups at the 

outer surface of bare MeIMO also enhance the photocatalytic activity towards the 

dye mineralization.Tartrazine removal was studied also in the presence of the 

buckled phases stemming from NTs thermal collapse. The results were interesting 

and show the high dye adsorption and degradation in the presence of collapsed 

phase, mainly due to new coordination environments for both Al and Fe sites, 

leading an active site towards the photo-Fenton reaction.  
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Chapter 1 
1. Physico-chemical Properties of Imogolite-Type Nanotubes 

Physico-chemical Properties of 

Imogolite-Type Nanotubes 

1.1 Introduction 

Nanotubes (NTs) have attracted significant attention in the last decades, due to their 

specific physical properties, which are a combination of their nanoscale dimension, 

hollow cylindrical form, structure, porosity and composition. These specific aspects 

allowed to consider their use as building blocks in several applications for 

nanostructured assemblies, e.g. high strength nanocomposites, field emitting 

surfaces, electrode materials, sensors, nano transistors, and energy storage devices 

[28-30]. Discovery of carbon nanotubes (CNTs) in 1991 by Iijima [3] has opened a 

new horizon in a world of science and technology, due to their particular properties 

and application in electronics, composite materials, electrochemistry and  molecular 

separations [31-37].  

Despite such attractive properties, several intrinsic limitations of CNTs inhibit 

their application, such as high temperature process with low product yield [38-40], 

their color limits their applications as nano fillers in transparent hybrid materials 

[41], low compatibility in bio-applications, some negative environmental aspects, 

potential toxicity [41, 42], and the difficulty in the surface functionality [43, 44].  

The existing barriers facing the use of CNTs encouraged the research for 

analogue structures among inorganic materials, especially metal oxide NTs, with a 

lower synthesis cost and mild synthesis conditions (usually hydrothermal or 
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solvothermal), higher surface reactivity (similar to a metal oxide/hydroxide), higher 

flexibility for surface modification, and controllable dimensions (the average length 

in the ~20-500 nm range) for better performance in fabrication of thin membranes 

[45, 46]. 

Two inorganic NTs namely imogolite NTs [12] and halloysite NTs [47] with 

the single-wall structure, have been rise attentions in the last years. Imogolite NTs 

with unique and attractive properties for molecular adsorption and membrane 

formation, controllable and monodisperse dimensions [48, 49], high hydrophilicity 

[8], and fast mass transport (e.g. for water and alcohols) [50, 51], show a potential 

application in different fields of science and technology. The inner surface of the 

aluminosilicate SWNT contain silanol (Si-OH) groups and can be expected to 

resemble those of metal oxide/hydroxide and silicate materials. Therefore, 

potentially can be functionalized in a manner analogous to the well-known 

techniques for functionalization of mesoporous and microporous silicas [52-55]. 

On the other hand, the hydroxyl groups at the external surfaces of aluminosilicate 

SWNTs may possess good affinity to hydrophilic polymers [56], which could open 

the possibilities for producing NTs/polymer membranes. 

1.2 Nanosized tubular clay minerals 

Nanosized tubular clay minerals, as the name implies, are clay minerals with tubular 

hollow nanostructure with a length varies from 1 nm to several microns [4]. In the 

beginning of 1950s, the structure of nanosized tubular clay, such as halloysite, 

imogolite and chrysotile [2] have been identified, using several analytical 

techniques. 

Halloysite is a dioctahedral clay mineral with Al:Si ratio 1:1 as depicted in 

Scheme 1-1 [57]. Gibbsite octahedral sheet, Al(OH)3, comprises the main 

framework of the halloysite NTs. The outer surface of the this sheet can be 

modified by siloxane groups yielding Al2Si2O5(OH)4·nH2O [57]. Tubular 

halloysite varies in length from the submicron scales to several microns, even > 30 

μm [57, 58], and the external diameter ranging approximately from 10 to 100 nm 

[59, 60]. The outer surface of halloysite is formed by Si-O-Si groups and bears a 

negative charge at pH 6 – 7, while the inner cylinder core is related to Al2O3, and 

is slightly positively charged [61]. 
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Scheme 1-1: Monolayer structure of halloysite and cross section views of (a) a (12,0) 

imogolite NT and (b) a (12,0) halloysite NT. White atoms are H, red O, blue Al, and 

yellow Si (41) 

Imogolite consists of single walled aluminosilicate nanotubes with an inner 

diameter of approximately 1.0 nm, which naturally occurs in weathered volcanic 

rocks soils. The NTs consist of curved gibbsite sheets, in which the (SiO3)OH 

groups substitutes the inner hydroxyl surface of gibbsite sheets [62].  

Chrysotile is another clay mineral, which is normally transformed through 

hydrothermal alteration process from ultra-basic rock forming minerals, like 

olivines. Chrysotile is in fact a hydrous magnesium phyllosilicate with chemical 

formula Mg3(OH)4Si2O5 [63], and consist of SiO2 and Mg(OH)2 layers. The 

octahedral Mg(OH)2 groups form the outer surface of the tubes and the SiO4 groups 

are located in the inner part [64]. The inner diameter of NTs varies from 7-8 nm 

and the outer diameter from 22-27 nm [65]. 

1.3 Imogolite-type NTs 

Imogolite is a hydrated aluminosilicate clay mineral with a fibrous structure with 

the Al:Si atomic ratio of 2:1 and chemical formula of (HO)3Al2O3SiOH 

(Scheme 1-2). The name “imogolite” was first used by Yoshinaga and Aomine in 

1962 [12] for a constituent present in the clay fractions of the soil (“imogo”) found 

in glassy volcanic ash (Figure 1-1). 
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From the 1970s an intense research activity in this subject was carried out by 

V.C. Farmer and others [66-70], in order to find the molecular structure and 

properties of imogolite. Based on their results, imogolite results to be a 

paracrystalline mineral, which appears as long thread- or fiber-like structures and 

may be from 400 nm up to several microns long with a constant inner diameter of 

1.0 nm [8, 71]. The outer diameter is ca. 2.0 nm in natural imogolite, whereas it 

varies around 2.5-2.7 nm in synthetic samples, due to the presence of different inter-

tubes impurities [2].  

In 1972, Cradwick et al. [2]
 

presented a structural analysis of imogolite. 

According to their analysis, the imogolite NTs consist of orthosilicate groups at the 

inner surface, while the outer surface consists of gibbsite units (Scheme 1-2) [8]. 

The tubular structure of imogolite was initially explained by the connection of 

larger octahedral sites in the gibbsite sheet with the smaller silicon tetrahedron: this 

misfit in size causes a contraction of the gibbsite sheet, in which the O-O distances 

between two shared oxygens shorten to less than 3 Å. This change in geometry 

causes the gibbsite sheet to curl and form a tube. Bridged  hydroxyl groups Al-OH-

Al are found on the outer tube walls, whereas the inner tube surface consists of  ≡Si-

OH groups [2]. 

There are two possible distances between SiOH groups inside the NTs, one 

between two SiOH within the same circumference (the distance 0.25 nm), the other 

between two SiOH of two adjacent circumferences (the distance 0.44 nm) 

(Scheme 1-2). This aspect leads to high SiOH density in imogolite structure, which 

is twice the average density of SiOH groups at the surface of hydrated amorphous 

silica [8]. The high hydrophilicity of inner surface of imogolite hinders the diffusion 

of species within inner cavity, such as catalyst and adsorbents; therefore a primary 

dehydration step is always required in order to remove the inner surface adsorbed 

water molecules.  
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Scheme 1-2: Section view of imogolite NT with 1.0 nm the inner diameter of A pores and 

two possible circumferences, both containing 12 imogolite units: the calculated distance 

are: (i) the 0.44 nm, the distance between two SiOH groups of two adjacent 

circumference, (ii) the 0.26 the distance between two SiOH in the same the circumference 

[8] 

TEM micrographs (Figure 1-1) have shown that imogolite NTs arrange in 

bundles with nearly hexagonal packing. Tubes tend to aggregate with different 

degrees of order and are rarely found in isolated units [72-75]. Furthermore, the 

number and dispersion of bundles appears to be pH dependent [76, 77]. 

Consequently, due to particular network, imogolite NTs, reflect 3 different kind of 

porosities [78, 79] and surfaces, as reported in Scheme 1-3 [80]:  

(i). pores A are intra-tube pores with 1.0 nm diameter, lined by silanols, which 

are very hydrophilic and able to interact with H2O, NH3 and CO [80, 81]; 

(ii). pores B are inter-tube spaces with very small dimensions (0.3-0.4 nm wide) 

among three aligned NTs within a bundle, and hardly accessible to even small 

molecules like water [8, 78].  

(iii) pore C are slit mesopores among bundles and can interact with larger 

molecules, like phenol [8] and 1,3,5-triethylbenzene [80]. 
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Figure 1-1: HRTEM images of an IMO bundle formed by parallel NTs (a) forming a 

hexagonal array (b) [23] 

 

 

Scheme 1-3: imogolite NTs hexagonally packed in bundles. The cell parameter “a”, 

corresponds to the distance between the centers of two NTs within a bundle. Pores A, B 

and C correspond to proper imogolite nanopores (Φ=1.0 nm); pores among three aligned 

NTs (Φ=0.3 nm) and (disordered) slit mesopores between bundles, respectively [82] 
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The particular structure of imogolite leads to a high surface area (250-800 m2 g-1) 

[83] and the high anion adsorption capacity, due to the outer gibbsite groups that 

is positively charged in water in a wide range of pH. Because of this, the outer 

surface of imogolite, in its pure form, has a net positive charge below pH 10 [23, 

84, 85], which favors the adsorption of anions in the ‘natural’ pH range. 

1.4 Allophane: a poorly crystalline aluminum silicate clay (proto-

imogolite) 

Allophane is a non-lamellar aluminosilicate, which is a product of the weathering 

or hydrothermal alteration of volcanic glass and feldspars [83, 86]. The chemical 

structure of allophane was long unknown, since being non-crystalline could not be 

detected by X-ray diffraction techniques [87], although chemical analysis showed 

the presence of aluminum (Al), silicon (Si), oxygen (O) and hydrogen (H). 

Imogolite was differentiated from coexisting allophanes on the basis of its 

dispersion characteristic in warm dilute alkali solution, in which it proved more 

resistant than the allophane impurities. Further, X-ray diffraction analysis of 

imogolite showed several broad intense lines and electron microscope 

investigations visualized the presence of threads with dimension between 10 and 

20 nm. 

Allophane is the short-range-order group of clay-size minerals, which contain 

water, alumina and silica [88]. The structure of allophane has a spherical or ring-

shaped morphology with a diameter of 4–5 nm. XRF, NMR and XPS studies have 

affirmed that aluminum occupies different structural sites: octahedral, tetrahedral 

and even pentahedral. In natural allophanes, the total ratio of AlVI/Al depends on 

their composition and decrease with decreasing Al/Si ratios [89-93]. Allophane are 

categorized in three types:(i) the aluminum-rich allophanes with a Al/Si ratio of 

about 2 and the same structure as imogolite; (ii) the silicon-rich allophanes, with 

the Al/Si ratio of about 1 and contain polymerized silicate; (iii) and the stream-

deposit allophanes, whit the  Al/Si ratios of 0.9–1.8, that Al substitutes for some Si 

in the polymeric tetrahedral [94]. 

The coordination of Al in allophanes structure is different from imogolite, since 

a significant proportion of the Al is in tetravalent coordination [88, 95]. Therefore 

the surface of allophane is permanently negative charged. The Al-rich, or ‘proto-

imogolite’ allophane, has a chemical structure which defines as ‘fragments of 

imogolite tubes’ with the Al : Si ratio is normally between 2 and 3 [83, 88]. The 

higher Al : Si ratio in allophane with respect to the imogolite is due to the 

https://en.wikipedia.org/wiki/Aluminium
https://en.wikipedia.org/wiki/Silicate
https://en.wikipedia.org/wiki/Clay
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substitution of the O
3
SiOH tetrahedra of the inner surface with hydroxyls groups 

[83, 88]. This substitution results in the formation of small (4 - 5.5 nm thick) 

spherules structures instead of fibers (Scheme 1-4 and Figure 1-2) [83]. 

 

 

Scheme 1-4: Chemical structure of nano-ball allophane (A) Full structure, (B) and (C) 

Atomic arrangement in cross section at pore region [96] 

 

Figure 1-2: HR-TEM photograph of synthetic allophane with Al:Si=2, associated in 

fractal aggregates [97]  
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1.5 Mechanism of formation of imogolite 

The basic structure of imogolite structure consists of gibbsite sheets with 

orthosilicic acid groups. The synthesis of imogolite NTs involves a simple 

hydrolysis step followed by a growth step at 95 °C - 100 °C [98]. However, the 

phenomenology and mechanism of the formation of imogolite NTs are still not 

well-understood. Two different mechanisms are hypothesized in the literature: the 

former claims kinetic aspects to drive the formation; the latter emphasizes the role 

of a self-assembly process under thermodynamic control.  

In the first mechanism, the formation of a precursor is expected to take place at 

an early stage of the reaction, providing a number of nuclei that induce the 

development and the growth of NTs by polymerization. NTs length, which is 

monodisperse during all synthesis process, would therefore increase substantively 

with synthesis time and by constant addition of growth units to the end of NTs [48].  

Conversely, in the self-assembly process, the proto-imogolite clusters formed 

at the initial stage are considered as building blocks of the NTs structure. Therefore 

NTs with the specific dimensions are expected to self-assemble (Scheme 1-4). In 

this mechanism, the formation of proto-imogolite clusters is highly dependent on 

factors that influence the thermodynamic equilibrium, such as concentration of the 

precursors and/or temperature. 

In order to understand the mechanism of formation of imogolite NTs, several 

studies have been done on the mechanism of self-assembly of aluminogermanates 

as a model.[99] The corresponding results imply that the Al atoms are hydrolysed 

and polymerised, and form the structure similar to gibbsite. The driving forces of 

tubular imogolite formation is the minimum strain energy relaxation caused by the 

Al−O and Si−O bond distance variation when the hydroxyl groups at the surface of 

gibbsite are substituted by SiOH groups to generate proto-imogolite clusters, and 

hydrogen-bonding networks [100]. Based on MAS-NMR and FTIR analysis done 

by Lee et al. [101] the size of the NT diameter is directly depends on SiOH 

substitution which is, in turn, influenced by the temperature [99, 101, 102]. 

The formation energy of imogolite NTs from 2D planar gibbsite sheets is 

endothermic (43.45 Kcal mol-1); therefore, by increasing the synthesis temperature, 

SiOH substitution increases; consequently, the diameter of imogolite NTs increases 

[101]. (Scheme 1-5) However, the optimum temperature range to obtain imogolite 

in few days is in the range of 95-100 °C [98, 103]. For instance, it needs 7 years for 

the synthesis of imogolite with a  diameter close to the natural ones at 25 °C [104]. 
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Scheme 1-5: Structural evolution of the precursors formed during the synthesis of 

imogolite [105] 
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Scheme 1-6: (a) Formation energy of two dimensional planar gibbsite-like imogolite from 

a planar gibbsite sheet, 43.45 kcal mol−1, and (b) curvature of proto-imogolite clusters 

based on the degree of substitution of silanol group. Increasing in the curvature from 

3.48° to 15.66° by an increase in the number of silanol groups [101] 

The Nair’s group reported that the shape of proto-imogolite clusters can be 

controlled by anionic ligands, and that the proto-imogolite cluster shape is directly 

related to the diameter of the NTs [49]. According to their research, binding of 

different types of anionic ligands to proto-imogolite clusters resulted in alteration 

of cluster curvature, which may affect the final shape and arrangement of the 

aluminosilicate NTs [49]. 

Farmer and Fraser [106] found that during imogolite formation from proto-

imogolite, pH drops from 4.5 to 3.0 and explained this finding by the formation of 

-Al-O-Al- bridges that favor the loss of a proton (Scheme 1-6). Nevertheless, 

addition of anions such as chloride or very weak bases significantly inhibits the 

formation of imogolite [106], which suggests that strong ion-pairing prevents the 

intramolecular reaction. 



12 Physico-chemical Properties of Imogolite-Type 

 

 

 

 

Scheme 1-7: Formation of an -Al-O-Al- bridge that favors the loss of a proton [106] 

1.6 Modification of imogolite NTs 

In order to increase the technical applications, several modifications have been 

proposed on synthetic materials. Consequently, an outer-surface modification on 

NTs could increase their compatibility with solid- or liquid-phase, such as nano-

composite; whereas the inner-surface modification enhances the surface reactivity, 

which would be advantageous for shape/size selective separations and catalysis.  

Imogolite NTs modification of inner and outer surface is possible in mild 

conditions, and provides an opportunity to enhance reactivity and alter the 

hydrophilicity, pore structure and electrical conductivity [107]. However, 

physisorbed water, especially in the inner surface of NTs due to the high surface 

silanol density (~9.1 OH/nm2) may interfere the functionalization process [8, 108, 

109]. 

All kind of modifications of imogolite NTs can be applied by two main 

procedure: direct synthesis modification and post synthesis modification. 

1.6.1 Modification of inner pores of imogolite NTs 

In imogolite NTs, the small dimension of inner pores (ca. 1.0 nm), combined with 

high hydrophilicity, hinders the accessibility of small probes molecules, such as 

CO, CO2, NH3, unless NTs are dehydrated in the 270 °C-300 °C temperature range. 

Therefore, obtaining a larger inner pores dimension with less hydrophilicity is 

considered as one of the main targets, which can be achieved by either direct 

synthesis or post synthesis method.  

1.6.1.1  Direct synthesis method 

Direct synthesis methods are based on changing the silicon precursor in the 

syntheses bath. Therefore, Si atoms can be replaced by other atoms, like 

Germanium [81, 110], or the hydroxyl groups can be replaced by organic 
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functionalities [9]. Consequently, direct synthesis methods open a possibility to 

modify inner surface of NTs and changing the hydrophilicity, polarity and size of 

A pores. 

Germanium-imogolite (OH3Si1-xGexOH) is an example of imogolite type NT, 

in which silicon atoms are replaced by germanium atoms, partially or totally, by 

means of germanium precursors like tetraethoxygermanium (TEOG) or germanium 

tetrachloride (GeCl4) [81, 111, 112]. Germanium-imogolite may appear as both SW 

and double-walled (DW) NTs [110, 113, 114]. By increasing Ge substitution, the 

diameter (3.3 nm) increases, whereas the NTs length decreases in that even NTs 

with 20 nm length can be synthesized [81, 111, 112]. This material has a high 

potential in artificial ion channel devices, due to hydrophilic interior surface 

combined with the short length of NTs [111]. 

Another successful example of inner surface modification of NTs and the 

alteration of hydrophilicity was obtained with the substitution of silicon precursor 

with an organosilane (e.g. triethoxymethylsilane). This modification introduces a 

new imogolite type material, named methyl-imogolite (MeIMO), which was 

synthesized for the first time by Bottero et al. [9]. Methyl-imogolite has a chemical 

composition of (OH)3Al2O3SiCH3, with completely hydrophobic inner surface, 

lined by methyl groups and theoretically unmodified outer surface same as 

imogolite one. Furthermore, the inner diameter of NTs increase (ca. 2.0- 2.5 nm) 

due to substitution of larger methyl groups instead of hydroxyl groups; therefore, 

the size of B pore increases respectively. The larger B pores increase the 

accessibility for adsorption of probe molecules like ammonia and CO2 [107, 115]. 

MeIMO has simple synthesis procedure and higher yield, with respect to imogolite.  

Recently, Kang et al. [116] synthesized new imogolite type material with 

synthesis precursor namely (CH3CH2O)3-Si-CH2-NH2 (Aminomethyl 

triethoxysilane, AMTES) in which the inner Si-OH groups have been replaced by 

Si-CH2-NH2 up to 15 %. The new synthesized material are named ANT, which 

refers to “amine functionalized NT”. The new synthesized material has a shorter 

tubes length (average length ca. 50 nm) as observed by TEM analysis (Scheme 1-7). 

Amino methyl substitution resulted in loss of micropores surface area, due to larger 

amino methyl groups with respect to SiOH groups (38.1 Å3 with respect to 16.9 Å3 

estimated by atomic van der Waals radii). Besides, amino groups positively affect 

the selective adsorption of carbon dioxide from both CO2/CH4 and CO2/N2 mixtures 

[116]. 
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Scheme 1-8: Forming NTs by incorporation of the organic moieties in the inner surfaces, 

using a mixture of TEOS and a designed organosilane  [116] 

Amara et al. (2015) [117] introduced a new hybrid imogolite with the 

composition (OH)3Al2Si1-xGexCH3 in which the chemical composition of the A 

pores has been changed by using the mixture of TEMS and triethoxymethylgermane 

(TEMG) to a solution containing Al precursor and acidified with HClO4. Varying 

the amount of TEMG precursor allows controlling the inner diameter of the final 

material.  

1.6.1.2  Post synthesis methods 

For post synthesis modification of inner pores, it is mandatory to carry out a proper 

dehydration of the material in order to remove molecularly adsorbed water. 

Thermally, this occurs at 270 °C-300 °C. Furthermore, the small dimension of the 

inner pores (ca. 1.0 nm), limits the size of organic linker for entering the A pores 

[10]. 

The unique example of the inner pores modification by post synthesis method 

had been done by Kang et al. (2011) [10], by grafting  organic functionalizer on 

well dehydrated imogolite NTs in the inert atmosphere of glove box with the 

continues stirring for 24 h. The functionalizing reagent R (acetyl chloride, 

trimethylmethoxysilane or trichlorosilane) was added in the molar ratio R: 

imogolite hydroxyl group = 2:1. The new material had a smaller inner pore volume 

due to larger molecular dimension of functionalizing reagent. Furthermore, organic 

groups decreased the hydrophilicity of inner pores [10]. 
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1.6.2 Modification of the outer surface of imogolite NTs 

Outer surface functionalization of imogolite NTs improves their application in the 

field of clay polymer nanocomposites [118], transparent films [119], films of 

aligned NTs [14]. In order to enhance the surface compatibility with organic 

solvents, for the applications of imogolite in polymer nanocomposites, 

hydrophobization of the outer surface of NT is mandatory [118]. Furthermore, 

isomorphic substitution (IS) of transition metals like iron (Fe) instead of Al in the 

outer surface, may decrease the bandgap of material, for applications in catalysis 

and photocatalysis [21, 22, 24, 85].  

In general, the modification of the outer surface of imogolite NTs reported so 

far could be divided into three categories: (i) grafting with 3-APTES (3-

aminopropylsilane, NH2-(CH2)3-Si(OEt)3), the most common organosilane for the 

modification of oxides [120, 121]; (ii) functionalization with alkylphosphonic acid; 

(iii) isomorphic substitution of Aluminum with Fe3+ ions. The latter is a unique 

modification, which can be obtained by both direct synthesis and post synthesis 

method [21-24]. 

 

1.6.2.1   Post synthesis modification of outer surface of imogolite NTs  

The first outer surface modification was reported by Johnson and Pinnavaia, who 

in 1990 employed 3-APTES in water acidified by acetic acid [122]. The acidic 

condition allows a very good dispersion of imogolite NTs due to the positively 

charged outer surface, as well as fast and complete hydrolysis of 3-APTES and 

inhibition of polymerization. The physico-chemical characterization of the material 

(by FTIR spectroscopy and solid state NMR) confirmed the outer surface 

functionalization. The main limitation was the instability of 3-APTES monomers 

in aqueous solution. Later, the same authors reported that the functionalizing indeed 

was not limited to the outer surface only, but also involved to a certain extent the 

inner surface of NTs [120]. At the beginning of the process, 3-APTES species 

grafted at the outer surface of NTs, then grafting of 3-APTES moieties at the inner 

surface also occurred. The presence of SiOH groups at the mouth of NTs may result 

in the partial functionalization of a proportion of inner surface. Therefore, in order 

to avoid this process, having the inner hydrophobic surface is critical.  

Later Qi et l. in 2008 [121] and Zanzottera et al. in 2012 [11], reported grafting 

of 3-APTES on imogolite and methyl-imogolite in toluene respectively, in order to 

prevent undesired hydrolysis. In the case of imogolite, NTs reacted with 3-APTES 
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leading to a material named Imo-APTES. Subsequent immobilization of osmium 

tetroxide (OsO4) on the outer surface of Imo-APTES introduced a new material 

named Imo-APTES-OsO4, which showed a good catalysis behavior in droxylation 

of olefins including the reaction of olefins with chiral ligands trough asymmetric 

dihydroxylation [121].  

In the case of MeIMO, due to stability of inner Si-CH3 bonding toward 

hydrolysis, no hydrolysis and subsequently no reaction with 3-APTES was 

observed. By full functionalization of MeIMO surface the nominal chemical 

composition of the new material should be NH2-(CH2)3-Si(O)3Al2O3SiCH3. 

However, Zanzottera et al. [11] chose instead one-third of the content of 3-APTES, 

which corresponds to the functionalization of all Al(OH)Al groups (Scheme 1-8). 

They claimed that using lower amount of 3-APTES prevents the condensation of 3-

APTES molecules and formation of undesired phases. Furthermore, due to specific 

structure of imogolite NTs, probably not all the external Al(OH)Al groups (e.g, 

those within B pores) may react with 3-APTES. Therefore, even with lower 

loadings, the aminopropyl groups are likely to cover the all surface. MeIMO-NH2 

showed a moderate increase in thermal stability and lower surface area (450-530 

m2 g-1) with respect to imogolite, as well as the ability to react with CO2 and forms 

carbamates [11]. 

 

 

Scheme 1-9: Functionalization of MeIMO with 3-APTES in toluene leads a material 

bringing three kinds of groups in the outer surface [11] 

In 2005, Yamamoto et al. [119] reported the successful modification of the 

outer surface of imogolite by using alkyl phosphonic acid in hydrophobic solvents 

such as hexane and chloroform. Phosphoric acid groups show strong interaction 
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with Al–OH groups in the outer surface and the acidic pH provides a good 

dispersion of NTs in the solvent (Scheme 1-9). 

Park et al. (2007) [14] report another example of phosphoric acid groups for 

producing the two dimensional imogolite composite material by reaction between 

either octadecyl phosphonic acid (ODPA) or tetradecyl phosphonic acid (TDPA). 

The obtained imogolite polymer nanocomposite were well dispersed in organic 

solvent with well aligned NTs in a film obtained with aligned NTs on graphite 

support. However, using ODPA shows more ordered films, with respect to TDPA, 

due to longer alkyl chains, which improve the intercrossing with respect to TDPA. 

The surface modification of imogolite with ODPA was confirmed by force-distance 

curve measurement between the cantilever tip and imogolite surface before and 

after adsorption of ODPA. The results revealed that the adhesion force between 

imogolite and cantilever tip was much larger than between ODPA-chemisorbed on 

imogolite surface (Scheme 1-10). Adsorption of ODPA change the hydrophilicity 

due to hydrophobic alkyl groups that substitute hydroxyl groups [14]. 

 

Scheme 1-10: Interaction mode between imogolite surface and alkyl phosphonic acid 
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Scheme 1-11: Histogram of adhesion forced between imogolite surface and cantilever tip 

before and after adsorption of OTDA 

A further step is needed in order to obtain imogolite polymer nanocomposite 

and enhance the affinity toward organic moieties. The outer surface of imogolite is 

functionalized with organic groups bearing a negatively charged head, which can 

react with outer surface of other imogolite NTs and reactive end can undergo further 

polymerization [119]. This method introduces a new imogolite poly (methyl 

methacrylate) hybrid material [123]. For instance, immobilization of ATRP (atom 

transfer radical polymerization) on imogolite surface develops an amphiphilic 

surface-attachable ATRP initiator, which is soluble in water and plays an important 

role for the homogenous modification of imogolite NTs. PVC/PMMA-g-imogolite 

nanohybrid was prepared by using this PMMA grafted imogolite as shown in 

Scheme 1-11. The new modified imogolite-based materials are expected to be 

important in the synthesis of organic/inorganic hybrid materials [6, 119]. 

 

 

Scheme 1-12: Fabrication procedure for PVC/PMMA-g-imogolite nanohybrid 



Modification of imogolite NTs 19 

 

 

 

Another new modification of the outer surface refers to isomorphic substitution 

of Al3+ with Fe3+ ions, which is a common process in all natural aluminosilicates 

and brings interesting physico-chemical properties to the new material. However, 

only few papers have been published in this area. By substitution of iron in place of 

aluminum three Fe(OH)Al and three Fe-O-Al groups should form and the new 

material demonstrates new chemical and solid state properties (Scheme 1-12) [21, 

22, 24, 85]. All this notwithstanding, the nature and electronic effects generated by 

Al3+/Fe3+ IS are not fully understood yet.  

Several authors agree that up to 1 wt. % Fe may isomorphically substitute for 

Al, whereas at higher Fe loadings (> 1.4 wt% Fe), iron oxo-hydroxide clusters 

formation occurs along with IS, and NTs formation is hampered at high Fe contents 

[21, 23, 24]. Nonetheless, Shafia et al. obtained Fe-doped imogolite NTs by both 

direct synthesis and post-synthesis ionic exchange [23, 24, 85], the latter result 

opening the possibility to dope imogolite without perturbing the (delicate) 

hydrolysis equilibria leading to NTs formation. Furthermore, the band gap (Eg) of 

imogolite, as an insulator with Eg = 4.9 eV, decreased to 2.4-2.8 eV in Fe-doped 

NTs that ultimately show semiconducting properties [23, 24]. Shafia et al. also 

investigated the synthesis and application of Fe-doped imogolite NTs in the 

degradation of Acid Orange 7: remarkable catalytic properties where observed 

under dark conditions, due to the formation of very reactive Al-OOH groups in the 

presence of H2O2 [85]. 

 

Scheme 1-13: Section a: front view of an imogolite NT, with an inner diameter of 1.0 nm 

with the SiOH and Al(OH)Al groups at the inner and outer surface, respectively. Section 

b: isomorphic substitution of one Al(VI) at the outer surface of imogolite by one Fe3+ ion 

and formation of three Fe-OH-Al groups and three Fe-O-Al groups [23, 24] 
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1.7 Topics covered in my thesis 

During my PhD thesis, I mainly focused on synthesis, application and thermal 

stability of methyl-imogolite (MeMO), with higher microporosities and larger 

specific surface area, with respect to imogolite ones. One of the main critical 

obstacles facing the synthesis of this material is reproducibility of NTs with high 

percentage of purity. The optimum synthesis process in order to get the highly pure 

MeIMO NTs and complete physico-chemical analysis performed on this material 

was done during this PhD research (Chapter 2). 

Since Fe doped imogolite type NT showed an interesting catalytic performance, 

loading of iron in MeIMO structure has been also studied for the first time in this 

PhD thesis. Iron doping was obtained by means of ionic exchange (IE) and direct 

synthesis method (DS) with two Fe contents, namely 0.7 and 1.4 wt. % and 

thorough physico-chemical analysis was performed in order to investigate the 

structure of these new materials. (Chapter 3). 

Since thermal stability is an issue for many catalytic applications, the thermal 

stability of MeIMO and iron doped MeIMO with two methods (DS and IE), and in 

different atmosphere (air and vacuum) was fully investigated by a means of thermal 

analysis (TG/DTG) and the calcined samples treated in high temperature analyzed 

(by means of TEM, Solid state NMR, UV-vis spectroscopy, BET and XRD) 

(Chapter 4).  

The investigation of different acidic sites on the surface of NT has been 

performed by FT-IR spectroscopy. Furthermore the catalytic activity toward the 

interaction with NaAO7 dye in water has been studied (Chapter 5). 

Finally the catalytic application of MeIMO and iron doped MeIMO have been 

investigated in adsorption and discoloration of azo dye (A07) and photocatalytic 

performance for discoloration and mineralization of Tartarazine dye in photo-

Fenton process (Chapter 6). 

 

 

 

 



 

 

Chapter 2 
2. Synthesis and Characterization of Methyl-Imogolite (Meimo) 

Synthesis and Characterization of 

Methyl-Imogolite 

2.1 Introduction 

Bonelli and co-workers (2009) patented a new modified imogolite NTs by synthesis 

method and replacing TEOS (Tetraethyl orthosilicate) precursor with TEMS 

(Triethoxymethylsilane) [9, 107] (Scheme 2-1). The new type of imogolite-like NT 

is named methyl-imogolite (MeIMO: (OH)3Al2O3SiCH3), and is chemically 

modified at the inner surface with methyl groups replacing hydroxyl groups; 

therefore, it presents an inner hydrophobic surface and outer hydrophilic surface, 

due to SiCH3 and Al(OH)Al groups respectively (Scheme 2-2) [9, 80, 124].  

 

Scheme 2-1: Structural representation of TEOS (a) and TEMS (b) precursors 

MeIMO NTs have larger diameter with respect to imogolite, due to the 

substitution of methyl groups in the structure (Ø MeIMO  2.0-2.5 nm, Ø IMO  1.0 

nm) [125]. There are two main factors for tubular imogolites formation: (i) the 

hydrogen bond (HB) networks is constructed by the arrangement of inner hydroxyl 
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(OH) groups. This favors the strain energy-minimum, which is the preference for 

zigzag chirality; (ii) the variations of the atomic bond distance between the inner 

and outer Al-O and Si-O bonds [100, 125]. Since in MeIMO with inner methyl 

groups there should be no HB contribution, the most significant factor is likely the 

second one. Consequently, in MeIMO, energy-minimum decreases with increasing 

the tubular curvature followed by an increase of the NT diameter [100, 125]. 

  

Scheme 2-2: Frontal view of a MeIMO single-walled NT, exposing Si-CH3 at the inner 

surface and Al-OH-Al, Al-O-Al groups at the outer surface [126] 

MeIMO is as an example of organic/inorganic hybrid material with a 

nanometric diameter combined with a length of several microns, with specific 

surface properties and both larger pores and higher specific surface area with 

respect to imogolite NTs [9]. 

The structure of MeIMO NTs increases the potential of this material in different 

applications, such as gas chromatography and gas separation [9]. The special 

arrangement of NTs in dehydrated samples gives rise to three kinds of pores 

(Scheme 2-3): (i) intra-tube pores (pore A, ca. 2.0 nm) that are not accessible to 

probe molecules like CO, CO2, NH3 and H2O, due to poor affinity within these 

molecules and inner surface of NTs, because of non-polarity and hydrophobicity of 

Si-CH3 groups [9]. On the contrary, in imogolite (as mentioned in chapter 1) A 

pores are accessible to gas molecules only after dehydration and evacuation at 300 

°C [8]. (ii) B pores, which in imogolite structure are not accessible to even small 

molecules, such as water [78, 79]; however, in MeIMO these pores are slightly 
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larger (ca. 0.3-0.45 nm) (Scheme 2-4) and accessible to molecules like carbon 

monoxide (CO), carbon dioxide (CO2) and ammonia (NH3) [107, 115]. (iii) C 

surface, with similar amphoteric properties in both materials (MeIMO and 

imogolite), due to the presence of Al-O-Al and Al-OH-Al groups. Therefore, the 

outer surface can react with both acidic molecules [i.e. with carbon dioxide (CO2), 

by forming carbonate like species] and with basic molecules [like ammonia (NH3), 

by forming ammonium species]. 

Bonelli et al. [9] studied MeIMO capacity for the adsorption of methane at 30 

°C with increasing pressure range (5-35 bars). According to their studies, MeIMO 

has a higher adsorption capacity (~about 2.5 times higher) with respect to imogolite, 

due to three times larger inter-tube cavities in this material comparing to imogolite 

(Scheme 2-4) [107]. Furthermore, these pores can provide a confined environment 

to the carbon dioxide molecule, and relatively large van der Waals interactions 

between the molecule and the walls [107].The comprehensive representation of 

different types of porosities and their potential accessibility to acidic and basic 

molecules are shown in Scheme 2-5.  

 

Scheme 2-3: MeIMO NTs hexagonally packed in bundles. The cell parameter a 

corresponds to the distance between the center of two adjacent NTs. Pores A, B and C 

correspond to proper NTs micropores ( = 2.0 nm), pores among three aligned NTs 

within a bundle ( 0.30-0.45 nm) and slit mesopores between bundles, respectively 
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Scheme 2-4: Representation of imogolite and MeIMO bundles, show that the hexagonal 

packing of nanotubes in dehydrated samples, give rise to larger intertube cavities (pore B) 

in MeIMO with respect to imogolite [107] 

 

 

Scheme 2-5: The accessibility of A, B and C surface in imogolite and MeIMO to different 

probe molecules, like CO, NH3, CO2 and H2O [80] 
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Previous studies on imogolite NTs, show that AlSi and AlGe Imogolite-NTs 

present an intriguing real space separation of the valance band energy (VBE) and 

conduction band energy (CBE), which enhanced electron-hole (e–h) separation via 

optical charge-transfer excitations across the NT-walls [127-129]. Based on linear-

scaling density functional theory (DFT) study on imogolite, the NT wall are 

permanently polarised due to the different nature of inner and outer wall surface 

[126]. Furthermore, increasing the NT polarization improves the selective oxidation 

and reduction of different reactants within different cavities of the NT [130, 131]. 

However, any specific information are to date unknown for methyl-imogolite wall-

polarization, VBE–CBE separation, and optical properties. 

Recently, Elliot et al. [126], established the DFT modeling on VBE–CBE 

separation and optical properties of MeIMO and compared the results with those of 

rutile and anatase TiO2, whose mixture is well-known to lead an effective water 

photolysis [132-134]. Their results demonstrate that methylation of inner surface, 

NT curvature and local permanent polarizations may not affect the band-separation, 

band-alignment, and the occurrence of charge-transfer excitations [126]. Indeed, 

MeIMO NTs induce a lower H2O direct photo-oxidation and respectively higher 

H2O photo-reduction ability with respect to TiO2. Moreover, increasing the NT 

polarization to values comparable with state of the art ferroelectric photocatalyst 

and tuning NT-reactant electronic alignments, by altering the NT radius and wall-

thickness, enhance the e-h separation. Therefore, MeIMO may introduce a novel 

hybrid organic–inorganic NT for polarization-enhanced photocatalytic application, 

which will stimulate further experimental interest and investigations [126].  

In this chapter, the physico-chemical properties of the synthesized methyl-

imogolite NTs were characterized by means of several techniques, including XRD, 

TEM, adsorption/desorption of N2 at -196 °C, FTIR and solid state NMR 

spectroscopies, and compared to imogolite NTs. 

2.2 Synthesis of MeIMO 

Synthesis of MeIMO was made according to a procedure proposed by Bonelli et al. 

[9, 124]. 

In order to synthesize ca. 3 gr of MeIMO NTs, in a dry-box at room temperature 

(r.t.), a 80 mM aqueous solution of HClO4 in double distilled water is prepared (pH 

= 1.0) by slowly adding 1.3 mL of perchloric acid (70 wt. %) to 187.7 mL of double 

distilled water. 
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In a smaller beaker within the dry-box, 8 mL of aluminum-tri-sec-butoxide 

(97%, ATSB, as source of aluminum) [135, 136] and 3.2 mL triethoxymethylsilane 

(99%, TEMS, as source of Si) are mixed in the molar ratio Al:Si = 2 : 1.1. A slight 

excess of TEMS (10 wt%) is used in order to prevent the preferential formation of 

gibbsite during hydrolysis [135, 137]. Immediately after out of dry-box, with a 

Pasteur pipette the whole mixture is dropwise added to the aqueous solution of 

HClO4 under stirring (the final molar ratios are Si : Al : HClO4 = 1.1 : 2 : 1). By 

adding the mixture to the HClO4 aqueous solution, white clusters form and pH 

increases to 5.0. The final mixture is stirred at r.t. for about 18 h, until a transparent 

solution is obtained. Under stirring, 1.3 L of double distilled water are added to 

dilute the solution to 20 mM with respect to Al. The obtained 20 mM Al solution is 

stirred for about 20 min. The mixture is poured into a polytetrafluoroethylene 

autoclave (with thick walls) and placed in a stove for 4 days at 95-100 °C without 

stirring. Decreasing the temperature decrease the formation rate of NTs, whereas 

increasing the temperature results in impurities (aluminum oxide polymorphs) 

formation. After 4 days, NTs are collected by filtration (0.02 micron filter) and 

washing with double distilled water. The solid product is dried in oven at 50-60 ° 

C for 1 day. The final MeIMO powder has a white color.  

2.3 Textural properties of MeIMO NTs 

2.3.1 FE-SEM and HR-TEM characterization 

The FE-SEM and HR-TEM (High resolution-transition electron microscopy) image 

combined with SAED (Selected Area Electron Diffraction) pattern of MeIMO are 

shown in Figure 2-1 and Figure 2-2, respectively. As shown in Figure 2-1, once 

NTs formed, they organize into a porous network of interwoven bundles of closely 

packed NTs, similar to those of imogolite. 
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Figure 2-1: FE-SEM image of MeIMO bundles of NTs 

HR-TEM images show wide domains of aligned NTs with considerable length 

(Figure 2-2). NTs have ca. 2-2.5 nm diameter and sub micrometric length (ca. 200 

nm) [11, 138]. NTs tend to aggregate with different degrees of order. Sidorkin et 

al.[139] reported that the Si–O bond length in (HO)3Si–X and (CH3O)3Si–X series 

of compounds is directly affected by the electronegativity of the X substituent. 

Therefore, the presence of methyl groups instead of hydroxyls induces the same 

effect and results in the structural relaxation, and shifts the energy-minimum 

towards NTs with a higher number of units in circumferences. Indeed in MeIMO, 

bonds are freer to arrange in close packed configuration with respect to those of 

imogolite [13]. It has been demonstrated that the number and dispersion of bundles 

in solution appears to be pH dependent [76, 77, 140, 141]. According to studies 

done by Karube et al. [142] imogolite NTs flocculate under alkaline conditions and 

disperse under acidic conditions, having a point of zero net charge (PZNC) around 

pH 6.  

The inset of Figure 2-2, shows selected area diffraction pattern (SAED) of 

bundles formed by few NTs, which demonstrate crystallinity within them. The first 

broad reflection corresponds to the scattering of individual tubes. The second ring 

corresponds to the tubes associated in parallel bundles given a comparably sharp 

reflection. The third reflection corresponds to center-to-center tube separation, and 
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could be taken as characteristic signatures that differentiate the NTs from any 

amorphous materials [68, 103]. 

 

 

Figure 2-2: (a,b) HR-TEM micrographs of MeIMO taken with two different 

magnifications. Inset (c) SAED taken from a bundle of few NTs 

2.3.2 Powder X-ray diffraction (XRD) 

Figure 2-3 reports powder XRD patterns of the powder MeIMO sample in 

comparison with imogolite NTs in a range of 2.5 – 20° 2θ. The XRD pattern 

corresponds to a hexagonal packing of NTs. The most intense peak is attributed to 

the d100 reflection, from which the cell parameter a, corresponding to the center-to-

center distance between two aligned NTs, is calculated as 𝑎 =  2𝑑100 √3 ⁄  

(Table 2-1). The (100) reflection is at slightly smaller 2θ angles in MeIMO NTs 

with respect to imogolite NTs, due to substitution of larger methyl groups instead 

of hydroxyls. The same behavior has been observed in Ge-imogolite NTs, where 

silicate groups (Si–O bonds) are partially substituted by germanate groups (Ge-O 

bonds) [112]. Two broader signals at higher 2 values are assigned to the d001 and 

d211 reflections, stemming from repetition of MeIMO structural units along NTs [2, 

25, 48, 119, 141]. The intensity of all peaks and specially the main peak are higher 

for MeIMO NTs as compared to imogolite NTs. This phenomenon is attributed to 

the higher degree of long-range order with more ordered packing of the NTs and 

higher number of units in circumferences for MeIMO NTs with respect to imogolite 

NTs [13].  
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According to Table 2-1, the cell parameter a values in MeIMO and imogolite 

are 2.97 nm and 2.62 nm, respectively and the calculated diameters for MeIMO and 

imogolite are ca. 2.0-2.5 nm and ca. 1.0 nm, respectively [125]. It means that in 

MeIMO, NTs are closer to each other. A possible reason could be the fact that 

within imogolite NTs more ClO4
- ions are present between NTs to balance the 

positive charge of external surface (higher than in MeIMO). This fact can lead to a 

larger inter-tube distance in imogolite with respect to MeIMO NTs.  

 
 

Figure 2-3: Low-angles XRD patterns of imogolite and MeIMO. Vertical lines 

correspond to d100 main reflection of NTs structure 

2.3.3 Porosity characterization by N2 adsorption/desorption 

isotherms 

To determine BET SSA (Brunauer-Emmett-Teller Specific Surface Area) and 

porous volume, N2 isotherms were measured at -196 °C on both samples (MeIMO 

and imogolite), previously outgassed at 250 °C, a temperature allowing the removal 

of water and other atmospheric contaminants still preserving NTs structure [8, 25, 

143]. Microporous volume was calculated according to the t-plot method. NL-DFT 

(Non Local Density Functional Theory) method was used to determine Pores Size 

Distributions (PSDs), by applying a N2-silica kernel for cylindrical pores on 

isotherms adsorption branch. The same method was also used to measure the ratio 

between microporous surface area and total SSA. 
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N2 sorption isotherms at -196 °C and corresponding pore size distribution are 

reported in Figure 2-4a and 2-4b respectively. The related values of BET SSA and 

pores volume being reported in Table 2-1. 

As-synthesized MeIMO sample (Figure 2-4a) shows type IV isotherms with 

type H4 hysteresis loop, typical of microporous systems with some mesoporosity 

[144]. Imogolite has instead a type I isotherm, typical of a (mostly) microporous 

materials. According to the isotherms, the SSA and microporous volume of MeIMO 

is twice of those reported imogolite treated at the same outgassing temperature, due 

to larger inner pore cavities. PSD curves of MeIMO show a family of nanopores 

with diameter of ca. 2.0-4.0 nm range. A wide range of mesoporosity (ca. 2.5-5.0 

nm) is also detectable, due to heterogeneous C pores and indicating that MeIMO is 

mostly a mesoporous material. According to previous studies, the microporous 

volume increases with increasing the outgassing temperature, whereas larger 

mesopores are less affected by thermal treatment [9].  

 
Figure 2-4: N2 isotherms at -196 °C (a) and corresponding PSDs (b) as obtained by 

applying the NL-DFT method on samples MeIMO (blue triangles), imogolite (black 

circles) 

 

Table 2-1: Samples textural properties as derived by XRD patterns and N2 sorption 

isotherms at -196 °C 

 

Sample 

d100, 

nm 

(±0.01) 

a 

(nm) 

(100) 

reflection 

(°) 

BET 

SSA 

(m2 g-1) 

Microporous 

volume 

(cm3g-1)b 

Total 

Pore Volume 

(cm3 g-1) 

imogolite 2.27 2.62 3.8 237 0.08 0.14 

MeIMO 2.58 2.97 3.4 580 0.11 0.28 
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2.3.3.1 Formation of aluminum oxide polymorphs 

Based on several studies on imogolite structure, numerous factors are recognized 

to influence the polymorphic nature of an initial aluminum hydroxide precipitate 

including pH, temperature, kinetics, the presence and absence of ligands and 

foreign ions, particularly anions [103]. Moreover, formation of imogolite NTs is 

affected by different variables like temperature, Si concentration in the bulk 

solution and polymerization time [103]. 

According to studies done by Farmer et al. [106]  enthalpy and free energy of 

the reaction have been measured for imogolite ((HO)3Al203SiOH) and boehmite 

(AlO(OH)) from equilibrium silicon concentration and at different temperatures in 

solution (reaction 2-1), and consequently calculated for gibbsite (Al(OH)3), 

halloysite (Al2Si2O5(OH)4) and kaolinite (Al2Si2O5(OH)4) (Table 2-2). 

(𝑂𝐻)3𝐴𝑙2𝑂3 + 𝐻2𝑂 ↔ 2𝐴𝑙𝑂𝑂𝐻 + 𝑆𝑖(𝑂𝐻)4    (2 − 1) 

Accordingly, at 25 °C and in a solution containing 20 μg cm-3 SiO2, halloysite, 

imogolite and gibbsite are equilibrium with each other. At T< 25 °C and in 

sufficient silica concentration (for preventing decomposition to gibbsite), halloysite 

is more stable than imogolite. At T> 25 °C and specific range of silica concentration 

imogolite is more stable than halloysite, while with respect to kaolinite both are 

metastable [106]. Their results were in agreement with previous observation that 

imogolite, halloysite and gibbsite can co-exist in soil [145]. 

 

Table 2-2:.Enthalpy and free energy of formation of soil components (kJ mol- l) [103] 

Minerals ΔH°f (25 °C) ΔG°f (25 °C) 

H2O -285.8 -237.2 

Si(OH)4 -1459.0 -1308.7 

Boehmite -988.9 -914.2 

Imogolite -3189.6 -2926.7 

Gibbsite -1293.1 -1154.9 

Kaolinite -4120.1 -3799.4 

Halloysite -4101.5 -3780.8 
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In Wada’s experiment [104], it was shown that a 7 year long synthesis at 25 °C 

leads to synthetic imogolite having a diameter close to the natural ones. More 

recently, both Nair et al.[99] and Rose et al. [102] reported that the growth of 

imogolite NTs may be a thermodynamically driven self-assembly process, in which 

controlling the temperature controls the nanoparticle condensation and allows for 

the self-assembly process. According to their studies [99, 102], proto-imogolite 

clusters formed at the initial stage of the synthesis are able to assemble into a NT 

structure. 

Synthesis of MeIMO as well as imogolite [101] depends on kinetics and 

thermodynamics of formation, however, up to now no studies have been done for 

better understanding of formation mechanism of MeIMO NTs. Temperature, as one 

of the principal thermodynamic parameters, plays an important role in formation 

and diameter modulation of proto-MeIMO cluster, which in turn is a function of the 

degree of SiCH3 substitution in the structure. 

The SiCH3 substitution in the proto-methyl-imogolite structure highly depends 

on the synthesis temperature. At low temperature the SiCH3 substitution is low, 

whereas by increasing the temperature (up to 95 °C) the SiCH3 substitution 

increases and sets the stage for formation of stable NT structure. However, any 

distribution in equilibrium thermodynamic and kinetic conditions, results in 

formation of other phases. Therefore, in order to achieve an effective synthesis of 

MeIMO, several criteria must be met by both the aluminum and silicon sources. 

One of the most common phases formed from unsuccessful synthesis process is one 

specific type of aluminum oxide polymorph called Nordstrandite with triclinic 

crystalline unit cell, observed as a star shape phase in FE-SEM microscopy 

(Figure 2-5), and typical reflection centered at ca 18.5 2θ, in XRD pattern 

(Figure 2-6) [146, 147]. 
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Figure 2-5: Structure of nordstrandite (Al(OH)3), projected on xy plane, b: FE-SEM 

image of nordstrandite phase 

In this PhD thesis, the effect of temperature and polymerization time on 

formation of MeIMO was investigated. The optimum temperature and time 

achieved in the presence of Al:Si= 1.1:2 molar ratio, was  between 95-100 °C and 

4 days. NTs formation rate decreases to much below 95 °C, whereas above 100 °C, 

the formation of aluminum oxide polymorph is highly probable. 

According to XRD patterns, increasing the temperature above 105 °C (Sample 

1: 105 °C <T<110 °C) results in the formation of high amount of aluminum oxide 

polymorphs (nordstrandite) as derived by a lower intensity of the main peak of the 

XRD pattern. Conversely, in sample 2 (98 °C <T<105 °C, 4 days) a negligible 
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amount of nordstrandite is detectable and Sample 3 (95 °C <T<100 °C, 4 days) has 

no trace of formation of nordstrandite. 

 

Figure 2-6: Low-angles XRD patterns of MeIMO synthesis in different temperatures with 

different times: sample 1-black line (105 °C <T<110 °C and 4 days), Sample 2-red line 

(98 °C <T<105 °C and 4 days), Sample 3-blue line (95 °C <T<100 °C and 4 days) 
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Figure 2-7: N2 isotherms at -196 °C (a) and corresponding PSDs (b) as obtained by 

applying the NL-DFT method on sample 1-black squares (105 °C <T<110 °C and 4 

days), Sample 2-red stars (98 °C <T<105 °C and 4 days), Sample 3-blue triangles (95 °C 

<T<100 °C and 4 days) 

 

Figure 2-7a and 2-7b report the N2 isotherms at -196 °C and corresponding pore 

size distributions, respectively. Sample 1, with the highest amount of aluminum 

oxide polymorph, has the lowest amount of micropores (in a range of 2.0-2.5 nm) 

and also the lowest total pore volume. On the contrary, samples 2 and 3 have higher 

amount of micropores in a range of 1.8-2.7 nm. The related BET SSA and pores 

volume are reported in Table 2-3. 

 

Table 2-3: Samples textural properties as derived by XRD patterns and N2 sorption 

isotherms at -196 °C 

Sample 

 

Time of 

autoclav

e (day) 

Temp of autoclave 

(°C) 

d100 (nm) 

( ±0.01) 

a 

(nm) 

BET SSA 

(m2 g-1) 

Microporous 

volume 

(cm3g-1)b 

Total 

Pore 

Volume 

(cm3 g-1) 

MeMO-1 4 days T=105-110°C 2.6 2.97 334 0.09 0.23 

MeMO-2 4 days T=98-105°C 2.5 2.95 617 0.11 0.32 

MeMO-3 4 days T=95-100°C 2.6 2.67 580 0.11 0.28 
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2.3.4 MAS NMR characterization 

NMR spectroscopy is an important analysis method, which provides considerable 

information about the structure of aluminosilicates [148-150] including clay 

minerals [76, 151]. The position of the silicon resonance is mainly influenced by its 

degree of polymerization, and by the nature of cations in the nearest neighboring. 

The aluminum resonance is mainly affected primarily by the number of atoms in its 

immediate coordination environment, i.e. to whether the aluminum is four- or six 

fold coordinated by oxygen. Therefore, MeIMO was characterized by 13C, 27Al and 
29Si MAS NMR measurements, for studying the structure and investigating the 

structural units of this material. 

The 13C NMR shows a chemical shift at ca. -1.35 ppm, a value reasonably close 

to that of 13C in the reference TEMS (Triethoxymethylsilane), around 0 ppm 

(Figure 2-8). 

 

Figure 2-8: Solid-state 13C-MAS NMR of MeIMO 

29Si MAS NMR spectrum (Figure 2-9) presents a sharp peak with a chemical 

shift value δ = -42.5 ppm, which is typical for tetrahedral Si atoms bonded to one 

carbon and three Al atoms through oxygen bridges at the inner surface of NTs [9, 

13] 
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Figure 2-9: Solid-state 29Si-MAS NMR of MeIMO 

The 27Al MAS NMR spectrum in Figure 2-10 shows a major single shift, 

approximately at 7.52 ppm. The shift is the same as gibbsite (δ = 7.52 ppm), 

indicating the prevalent presence of octahedral Al atoms [152]. The NMR spectrum 

also exhibits a minor peak at δ = 61.77 ppm (inset), along with a small contribution 

from the second spinning-sideband of the major peak (asterisks). According to 

previous studies, the 61.77 ppm peak is likely due to a minor amount of four-

coordinated Al atoms, probably due to formation of an amorphous phase rather than 

NTs, in agreement with the literature [143]. 

 

Figure 2-10: 27Al-MAS NMR of MeIMO  
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2.3.5 Thermogravimetric analysis (TGA) 

Figure 2-11 reports both thermogravimetric (TG; black line) and derivative 

thermogravimetric (DTG; blue line) analysis of MeIMO. The analysis was 

performed on 10 mg sample powder, heating from room temperature up to 500 °C, 

under Ar flow (55 ml min-1), with the temperature increasing rate of 10 °C min-1, 

by SDT 2960 DTA/TGA-MS instrument. 

According to the curves, two broad endothermic peaks corresponding to two 

weight losses were observed. The first peak at 75 °C is assigned to the dehydration 

of the hydrophilic outer surface of MeIMO NTs. Comparing the results with those 

obtained by Zanzottera et al. [25], MeIMO starts loosing adsorbed molecular water 

at lower temperature with respect to imogolite. This behavior ascribed to larger B 

pores in MeIMO structure, which favor mass transfer through the porosities 

(Scheme 2-4). The second peak at 360 °C is due to an actual structural transition 

through dehydroxylation and collapsing the NTs structure at temperatures higher 

than 300 °C [25], which will be explained in chapter 4. According to Zanzottera et 

al. [25] in MeIMO, the reaction between inner CH3 groups and outer hydroxyl 

groups at around 300 °C, resulted in Si-O-Al bonding and formation of methane, 

which was detected in their experiments (reaction 2-2): 

𝑆𝑖 − 𝐶𝐻3 + 𝑂𝐻 − 𝐴𝑙 → 𝑆𝑖 − 𝑂 − 𝐴𝑙 + 𝐶𝐻4      (2 − 2) 

An additional minor endothermic mass loss observed in TG analysis is at 440 

°C, assigned to the release of oxygen molecules, caused by thermal decomposition 

of remaining perchlorate species (𝐶𝑙𝑂4
−

) present in the synthesis bath. The same 

peak has been observed in previous studies on imogolite  [25] and alumino-

germanate imogolite NTs  at 477 °C and 415 °C [113, 153], respectively. 

https://en.wikipedia.org/wiki/Thermogravimetric_analysis
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Figure 2-11: Thermogravimetric (TG; black line) and derivative thermogravimetric 

(DTG; blue line) analysis of MeIMO 

2.3.6 FTIR characterization of MeIMO NTs 

Figure 2-12 reports the IR spectra of a MeIMO pellet, outgassed at r.t. and 150 °C. 

With increasing the temperature (T > 75 °C) the band at 1644 cm-1, due to the 

bending mode of water molecules mainly located at the outer surface of NTs, 

disappears almost completely, in agreement with the data obtained from TGA 

analysis. Indeed, in more hydrophilic imogolite NTs, this band is still observed after 

outgassing up to 150 °C [8, 9]. The sharp band at 1275 cm-1 is due to the bending 

mode of the Si–CH3 (δ CH3) groups; as well as the bands at 2978 and 2919 cm-1, 

which are respectively assigned to the asymmetric (νa CH3) and symmetric (ν CH3) 

stretching modes of the Si–CH3 groups. The broad and intense absorption in the OH 

stretch region (3800–3000 cm-1) is assigned to the presence of outer Al(OH)Al 

groups [8]. 
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Figure 2-12: IR spectra of MeIMO outgassed at: r.t (a) and 150 °C (b). The methyl groups 

functionalities pointed out by arrow 

2.4 Conclusion 

Methyl-imogolite (MeIMO) is a hybrid organic/inorganic NT obtained by non-

expensive, environmental friendly and mild-conditions synthesis. This material has 

high surface area, and its tubular structure is stable up to 300 °C. 

The inner pores of NTs are accessible to small molecules like N2 after 

outgassing at 150 °C and removing the entire adsorbed water. The presence of an 

inner hydrophobic surface along with an outer hydrophilic one makes this material 

suitable for potential applications, e.g. in the fields of gas chromatography and gas 

separation. Nonetheless, obtaining the NTs of controlled dimension with the whole 

inner surface covered by functionality other than methyl groups, and increasing the 

NTs polarization with ferroelectric photocatalysts in order to enhance e-h 

separation within the structure, may introduce a novel hybrid organic–inorganic NT 

for polarization-enhanced photocatalytic applications and opens the way to other 

(OH)3Al2O3Si–X analogues. 

 

 



 

 

Chapter 3 
3. Synthesis and Characterization of Fe-Doped Methyl-Imogolite Nanotubes 

Synthesis and Characterization of 

Fe-Doped Methyl-Imogolite 

Nanotubes 

3.1 Introduction 

Modification of the outer surface of NTs involves either electrostatic interaction or 

covalent bonding [11, 14, 154]. Recently, several researchers have studied Fe-

doped imogolite NTs [21, 24, 85]. Although Al/Fe isomorphic substitution is a 

common process in all natural aluminosilicates, little is known about Fe-doped 

imogolite. The presence of Fe3+ in the structure imparts new chemical and solid-

state properties [20]. Ookawa and co-workers for the first time synthesized Fe-

containing imogolite NTs [21, 22].Their studies demonstrate that there is an upper 

limit to the amount of iron that can be hosted in the structure, in that NTs are 

preserved up to an overall 1.4 wt % Fe content. 

The recent studies on Fe-doped aluminum-germanate NTs, analogous to 

imogolite NTs, showed that NTs formation is preserved up to an overall 1.4 wt % 

iron content, whereas the upper limit to the amount of isomorphically substituted 

(IS) iron is 1 wt% and the formation of Fe oxo-hydroxides unavoidably occurs at 

higher Fe content [155]. Theoretical calculations showed that iron could either 

isomorphically substitute for aluminum or create “defective sites”, and reduces the 

band gap energy of the original material. According to Shafia et al. [24] doping 
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with iron reduces the band gap of imogolite from 4.9 to 2.4-2.8 eV. Alvarez-

Ramírez et al. [20] have also studied the incorporation of iron in Ge-Imogolite NT, 

demonstrating that the optimized NT models have iron content in the interval 0.05 

≤ X ≤ 0.1 and the band gap of Ge-imogolite goes from 4.6 to 2.6 - 1 eV. 

According to those authors, Fe ions can locate in three different places in the 

imogolite structure: inner, outer surface of imogolite and by isomorphic substitution 

in the Al gibbsite layer (Scheme 3-1). In all of the configurations iron affects the 

electronic states of the bandgap region, generating the reduction of the gap values 

with respect to original NTs. 

 

Scheme 3-1: Diagonal cross section of the imogolite structure, which indicates the atomic 

layers in the structure. (b) Schematic representation of octahedral isomorphic substitution 

of Al+3 for Fe+3. (c-d) Adsorption of octahedral Fe+3 ions on the inner and outer defects of 

imogolite surface. In all the cases, the M symbol denotes both Si and Ge containing 

structures [20]  
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So far, no work has addressed the effect of Fe-doping on MeIMO: in this 

chapter we will report the results of the successful synthesis of novel Fe-MeIMO 

NTs (Scheme 3-2), in which iron doping is achieved by either direct synthesis (Fe-

x-IMO-DS) or post-synthesis ionic exchange (Fe-x-IMO-IE, where x = 0.7 or 1.4 

wt % Fe). 

The physico-chemical properties of the synthesized samples were characterized 

by means of several techniques (XRD, TEM, Elemental analysis, UV-Vis 

spectroscopy, EPR, adsorption/desorption of N2 at -196 °C, FTIR and solid state 

NMR and compared to the original MeIMO. 

 

Scheme 3-2: On the left side: frontal view of a MeIMO single-walled NT (left side) 

exposing Si-CH3 at the inner surface and Al(OH)Al, Al-O-Al groups at the outer surface. 

On the right side: environment ideally surrounding each octahedral cation (Al3+, Fe3+) at 

the external surface of NTs 
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3.2 Synthesis of iron doped MeIMO 

Fe-containing methyl Imogolite (Fe-MeIMO) samples were synthesized by two 

different methods: 

3.2.1 Direct synthesis of iron doped MeIMO (Fe-x-MeIMO-DS, 

where x = 0.7 or 1.4 wt % Fe) 

In a dry box, a proper amount of iron (III) chloride hexahydrate (FeCl3*6H2O 

(97%)), as a source of iron, was added to 80 mM solution of perchloric acid in 

double-distilled water. Aluminum-tri-sec-butoxide (97%) as a source of Al and 

Triethoxymethylsilane (99%) as sources of Si, were mixed and stirred for some 

minutes (molar ratio: ATSB:TEOS 2:1.1). The pH of the equilibrium of solution 

was 4. The mixture was stirred for 18 h at room temperature. After 18 h stirring, a 

clear reddish brown solution was obtained. Bi-distilled water was added in order to 

dilute solution to 20 mM Al and the resulting solution was stirred for 20 min. For 

preparing 2 g of Fe-1.4-MeIMO-DS (1.4 wt.% Fe), use 0.2 g FeCl3·6H2O in 127 

mL of an 80 mM solution of perchloride acid and add the mixture of ATSB (5.4 

mL) and TEMS (2.2 mL) dropwise to the solution, dilute the solution after 18 h of 

stirring with 885 mL double-distilled water. After dilution, the mixture was poured 

into a thick wall Teflon bottle, and autoclaved for 4 days at 96° C. After 4 days, 

jelly liked clusters were observable in the solution. The solution was filtered (0.02 

micron filter) and washed with bi-distilled water. The final product was dried in the 

oven at 120 ° C for 1 day. 

3.2.2 Post-Synthesis Loading of MeIMO NTs with Fe (Fe-x-

MeIMO-IE, where x = 0.7 or 1.4 wt % Fe) 

The proper amount of fine powder of MeIMO was added to double-distilled water 

in a small beaker. Depending on the iron content (0.7-1.4 wt% of final sample), the 

proper amount of FeCl3*6H2O (97%) was added to mixture and stirred for 18 h at 

room temperature. (For 0.25 g MeIMO NTs, add 0.025 g iron (III) chloride 

hexahydrate in 15 ml of double-distilled water). The uniform stirring of the mixture 

insures a higher homogeneity in the final structure. 

The resulting mixture was then filtered with 0.02 μ filter, washed with bi-

distilled water, and dried at 120 °C for 48 hours. 
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3.3 Characterization and textural properties of Fe-

MeIMO 

3.3.1 TEM characterization 

Figure 3-1(a-b) reports the HR-TEM images of MeIMO NTs with two different 

magnifications. The network of bundles of NTs is observable at lower 

magnification (Figure 3-1a), whereas, at higher magnification, bundles of parallel 

NTs with considerable long lengths are detectable. 

Figure 3-1(d-e) reports TEM and dark field-TEM images of Fe-1.4-MeIMO-IE 

NTs. Figure 3-1d shows the series of bundles of parallel NTs aligned in different 

directions and with more disorder as compared to MeIMO NTs, mainly due to post 

iron loading, which induces disorder in the NTs arrangement in bundles. The inset 

to Figure 3-1d displays a detail of a terminal region of bundles, showing the 

hexagonal arrays of NTs. The red arrows in Figure 3-1e point out the occurrence of 

some Fe-containing clusters at the outer surface of NTs in Fe-1.4-MeIMO-IE 

sample. For a better observation of such clusters in the structure of NTs, the dark 

field HR TEM was also performed on the mentioned sample. In dark field –TEM, 

diffracted beams strongly interact with the specimen; therefore, it provides useful 

information for observation of planar defects, stacking faults and/or particle size. 

According to dark field-TEM image (inset of Fig. 1e), Fe-containing clusters with 

an approximate size of 4-5 nm are detectable (red arrows). 

Figure 3-1 (g-h) reports TEM and dark field-TEM images of Fe-1.4-MeIMO-

DS NTs. The Fe-1.4-MeIMO-DS NTs, show the same morphological features of 

MeIMO NTs (Figure 3-1g), however, some clusters are detected (Figure 3-1h, red 

arrows). Furthermore, the presence of an amorphous phase is also observable 

(Figure 3-1h, white arrow). The inset of Figure 3-1h shows a dark field-TEM 

picture of the related sample, with the slightly smaller Fe-containing clusters (~ 4 

nm) with respect to Fe-1.4-MeIMO-IE sample. 

Figure 3-1 (c,f and i) correspond to selected area diffraction pattern (SAED) of 

MeIMO, Fe-1.4-MeIMO-IE and Fe-1.4-MeIMO-DS, respectively. As discussed in 

a previous chapter, SAED pattern is related to structure crystallinity. The first 

reflection ring corresponds to the scattering of individual NTs, which has a 

comparably sharp reflection for MeIMO (Figure 3-1c) and Fe-1.4-MeIMO-IE 

(Figure 3-1f); however for Fe-1.4-MeIMO-DS (Figure 3-1i) is broader. The second 

ring corresponds to parallel NTs within a bundle, which is identical in all three 

samples. The last reflection corresponds to center-to-center NTs separation and 
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could be taken as characteristic signature that differentiate the NTs from any 

amorphous phases [68, 103]. This ring is more blurred in the direct synthesis 

sample, probably due to the formation of some amorphous phase, due to high 

amount of iron. 

Figure 3-2 (a-c) correspond to EDX (Energy-dispersive X-ray) analysis of 

MeIMO, Fe-1.4-MeIMO-IE and Fe-1.4-MeIMO-DS, respectively. According to 

the EDX analysis, the samples show the same Al:Si atomic ratio of  2:1, which is 

in agreement with the NTs structure. 
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Figure 3-1: HRTEM images of MeIMO bundles (a), formed by parallel NTs (b) and 

corresponding SAED pattern (c). HRTEM images taken from Fe-1.4-MeIMO-IE 

(sections d and e), forming the hexagonal arrays (inset to section d), black filed-TEM of 

iron-containing clusters (inset to section e) and corresponding SAED pattern (f). The 

HRTEM images taken from Fe-1.4-MeIMO-DS (sections g and h), black filed-TEM and 

particle size of iron-containing nanoclusters (inset to section h) and corresponding SAED 

pattern (i) 
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Figure 3-2: EDXS (Energy-dispersive X-ray-spectroscopy) analysis of MeIMO (a), Fe-

1.4-MeIMO-IE (b) and Fe-1.4-MeIMO-DS (c) 
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3.3.2 Powder X-ray diffraction (XRD) 

Figure 3-3 reports powder XRD patterns of the studied samples, corresponding to 

a hexagonal packing of NTs. The most intense peak is due to the d100 reflection, 

from which the cell parameter a, corresponding to the center-to-center distance 

between two aligned NTs, is calculated (Table 3-1). 

Broad peaks at higher angles are assigned to d001 and d211 reflections due to the 

repetition of MeIMO structural units along the tubes [2, 25, 48, 119, 141]. Samples 

obtained by IE show a shift in the d100 peak position to lower angles with respect to 

MeIMO (2θ= 3.42°, 3.38° and 3.10° in MeIMO, Fe-0.7-MeIMO-IE and Fe-1.4-

MeIMO-IE, respectively), with a corresponding increase of the cell parameter a 

(Table 3-1). Upon Fe3+/Al3+ IS, NTs inner diameter is indeed expected to increase, 

due to the larger Shannon radius of octahedral (Oh) Fe3+(r= 0.645 Å) with respect 

to Al3+ (r= 0.535 Å) (Curves 3 and 5) [24, 140]. Such effect was instead not 

observed in samples obtained by DS (curves 2 and 4). The same effect (i.e. a cell 

parameter decrease in samples obtained by direct synthesis) was observed in Fe-

doped imogolite NTs, due to the presence of chloride ions replacing (larger) 

perchlorates ions that remained trapped between NTs in the dry powders (18). The 

washing procedure after ionic exchange likely allows the removal of such ions, 

leading to a larger cell parameter. However, it should be noted that XRD patterns 

vary slightly from sample to sample depending on sample alignment and adsorbed 

water content in ambient condition [82, 104]. Furthermore, incorporation of Fe 

atoms in tube structure without alteration of MeIMO structure is limited. According 

to studies done by Shafia et al. on Fe doped imogolite NTs [24, 156] obtained by 

direct synthesis, increasing the amount of Fe ≥1.4 wt%, resulted in a decrease of 

the characteristic d001 peak of imogolite in XRD pattern, showing that increasing 

the iron content will hinder the formation of NTs in fair agreement with the 

observations by Ookawa about iron doped imogolite NTs [21, 22]. The same 

consideration can be done for samples obtained by direct synthesis method with 

higher amount of iron (curve 4) (1.4 wt%; Fe-1.4-MeIMO-DS), in which the 

intensity of first peak is slightly lower than the original MeIMO and Fe-0.7-

MeIMO-DS samples, as well as, less repetition of structural units along the NTs 

(the intensity of d001 and d211 reflections). These results can be attributed to the high 

amount of amorphous phase, coming from unreacted precursor in agreement with 

SAED pattern and 29Si MAS NMR analysis, which confirm indeed the presence of 

the trace of silanols condensation in the Fe-1.4-MeIMO-DS. XRD patterns of ion 

exchanged samples (curves 2 and 3), indeed, show that the hexagonal packing is 

maintained, since the characteristic peaks of imogolite NTs are observed. 
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Figure 3-3: Low-angle XRD patterns of MeIMO (1), Fe-0.7-MeIMO-DS (2), Fe-0.07-

MeIMO-IE (3), Fe-1.4-MeIMO-DS (4) and Fe-1.4-MeIMO-IE (5) 

 

3.3.3 Porosity characterization by N2 adsorption/desorption 

isotherms 

To determine the BET SSA (Brunauer- Emmett-Teller Specific Surface Area) and 

porous volume reported in Table 3-1, N2 isotherms were measured at -196 °C on 

samples previously out-gassed at 250 °C, a temperature allowing the removal of 

water and other atmospheric contaminants still preserving NTs structure [8, 143]. 

NL-DFT (Non Local Density Functional Theory Method) was used to determine 

the Pores Size Distributions (PSDs), by adopting a N2-silica kernel for cylindrical 

pores. 

N2 sorption at -196 °C (Figure 3-4a) gives rise with all the studied samples to 

type IV isotherms with limited hysteresis loops, as typical of microporous systems 

with some mesoporosity. All iron doped samples (0.7wt% and 1.4 wt% with IE and 

DS) have larger mesopores volume and SSA values with respect to MeIMO 
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(Table 3-1), likely due to the fact that Fe-doping mainly affects the outer surface of 

NTs and especially C mesopores [24]. This is confirmed by PSDs curves, showing 

an increase of volume due to mesopores larger than 3.0 nm (Figure 3-4b).  

 

 

Figure 3-4: N2 isotherms at -196 °C (a) and corresponding PSDs (b), as obtained by 

applying the NL-DFT method, of samples: MeIMO (stars), Fe-0.7-MeIMO-IE (hollow 

triangles), Fe-1.4-MeIMO-IE (triangles), Fe-0.7-MeIMO-DS (hollow circles) and Fe-1.4-

MeIMO-DS (circles) samples 
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3.3.4 Nature of iron species as studied by UV-Vis spectroscopy 

DR UV-Vis spectra of dehydrated samples are reported in Figure 3-5a MeIMO has, 

as expected, a negligible absorption in the UV-Vis region (curve 1).  

All Fe containing samples (0.7wt% and 1.4 wt% with IE and DS) have strong 

absorption bands both below and above 300 nm. According to the literature, bands 

around 240 and 290 nm are due to charge-transfer (CT) transition between O2- and 

isolated Fe3+ ions in different coordination (tetrahedral or higher). The 240 nm band 

likely implies that besides Al3+/Fe3+ IS, another type of ionic exchange occurred: 

previous theoretical work [129] has indeed postulated the occurrence of some 

defects/vacancies at both sides of MeIMO NTs wall, which could lead to the 

formation of some Td Fe3+ sites upon ionic exchange. Absorption bands in the 300-

400 nm range and above 400 nm are assigned to d-d transitions of Fe3+ ions in 

oligomeric clusters (FexOy) and Fe2O3 particles, respectively [157-160].  

UV–Vis spectra point out the preferential formation of clusters and Fe2O3 

particles by IE method especially at higher iron content, in agreement with what 

was observed by Shafia et al. [24] with Fe-doped imogolite. Furthermore, 

broadening of UV-vis spectrum over 290 nm contributed to the small FexOy 

oligomeric clusters and Fe2O3 particles that their absorption bands partially overlap 

in the high-wavelength [158, 159]. In DS samples, however, a higher proportion of 

isolated Fe3+ sites is observed with respect to clusters (curves 2 and 4). If the same 

iron content is considered, more intense bands, related to isolated Fe3+, are observed 

by DS, as well as more intense band related to the formation of small FexOy 

oligomeric clusters and Fe2O3 particles are observed in IE method. The occurrence 

of some Fe2O3 clusters in both IE and DS samples indicates that the actual 

isomorphic substitution of Fe for Al in the MeIMO structure is lower than that 

corresponding to 1.4 % by weight, in agreement with the literature [24]. 

The presence of isolated Fe3+ sites in Fe-x-MeIMO-IE samples indicates that 

Al bridges at the outer surface of NTs are reactive in water, and consequently the 

following reaction takes place [24]: 

 

[𝐴𝑙(𝑂𝐻)𝐴𝑙]𝑠 + 𝐹𝑒(𝐻2𝑂)6
3+  →  [𝐹𝑒(𝑂𝐻)𝐴𝑙]𝑠 + 𝐴𝑙(𝐻2𝑂)6

3+    (3-1)      
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Figure 3-5:DR UV-Vis spectra (a) and corresponding Tauc plots (b) of MeIMO (1), Fe-

0.7-MeIMO-DS (2), Fe-0.7-MeIMO-IE (3), Fe-1.4-MeIMO-DS (4) and Fe-1.4-MeIMO-

IE (5) 

Reaction (3-1) was already observed in iron-doped imogolite, since such NTs 

structure is able to exchange Al3+ and Fe3+ ions dynamically in water solution, 

rendering ionic exchange an alternative method with respect to more complicated 

direct synthesis procedures. 

Figure 3-5b reports the corresponding Tauc’s plot, from which the band-gap of 

the materials can be extrapolated: MeIMO is an insulator with an energy band gap 

Eg =4.7 eV (curve 1). With Fe-containing samples, band gap values are as follows: 

Eg = 2.4 eV for Fe-0.7-MeIMO-IE and Fe-1.4-MeIMO-IE, and Eg = 2.7 and 2.6 eV 

for Fe-0.7-MeIMO-DS and Fe-1.4-MeIMO-DS, respectively. Isomorphic 

substitution of iron reduces the band gap of MeIMO, especially by IE, though a 

precise determination of the band gap is hampered by the presence of Fe2O3 clusters 

along with substitutional iron. 

3.3.5 Nature of iron species investigated with EPR spectroscopy 

EPR spectroscopy has been extensively used to identify the state of iron species in 

molecular structures and in the solid state, since it is an efficient technique for 

identification of isolated Fe3+ species of different coordination geometry [161-165], 

as well as  FexOy clusters of different degrees of aggregation by analysis of the 

mutual magnetic interactions of the Fe sites [161]. Furthermore, EPR is considered 

as a technique of choice for characterization of geometrical and electronic 

peculiarities of different isolated Fe+3 ions at very low iron concentrations (which 

is often not possible to analyze by other techniques e.g. Mössbauer spectroscopy). 
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In order to get deeper insight in the state of iron in MeIMO structure, the two 

samples with lower amount of iron loadings (0.7 wt% of Fe) were studied, as they 

were expected to have lower amount of iron oxo/hydroxide clusters. 

For better observation of the paramagnetic behavior of iron species, EPR 

signals were recorded both a room temperature (r.t.) and low temperature (l.t. at -

153 °C) with the corresponding sample powder in 1 mm quartz tubes. 

EPR analysis of both samples at l.t. show typical signals at effective geff values 

of 2, 4.3, and 6 (Figure 3-6c). These signals were frequently detected in Fe-ZSM-5 

and with Fe3+ ions in other solid matrices [166-170]. 

The number and position of EPR transitions for isolated Fe3+ ions highly 

depends on the local ligand-field symmetry of the sites (reflected by the magnitude 

of the zero-field splitting (zfs) parameters, E and D), as well as the possible 

magnetic interactions between them [171]. Therefore, from the signal position 

alone it is not possible to obtain the exact coordination of the respective Fe ions 

(octahedral or tetrahedral), since the signal position is driven by the magnitude of 

both D and E, i.e. the extent of distortion of the Fe coordination. Such distortion 

can arise from both tetrahedral and octahedral coordination. E/D parameter has a 

limited range (0-1/3), and shows the distortion degree of rhombic structure in the 

electronic environment [161]. 

The signals at g ≈ 4.5 and at g ≈ 6 arise from the |−
1

2
> ↔ <

1

2
|  transition of 

isolated Fe3+ sites in strong rhombic (D ˃ hν, E/D = 
1

3
, g ≈4.3) or axial distortion (D 

˃ hν, E/D = 0, g≈ 6), respectively [161]. This implies that a Fe3+ species giving rise 

to a line at g ≈ 4.3 is more strongly distorted with respect to  a Fe3+ site represented 

by a signal at g ≈ 6, due to the difference in the magnitude of the parameter E, which 

characterizes the additional asymmetry [166, 172]. In zeolites, g ≈ 4.3 is assigned 

to Fe3+ sites incorporated in tetrahedral framework positions, whereas a line at g ≈ 

6 is attributed to isolated Fe3+ species in higher coordination [161, 166-169, 173]. 

The signal at g ≈ 2 is assigned to either isolated Fe3+ in high symmetry (D, E ≈ 0) 

or FexOy clusters [161]. 

In aluminum silicates, Fe+3 ions are in high-spin electronic configuration, (S = 

5/2), since the possible ligands are oxygen, OH or water molecules (which are weak 

field ligands). According to previous studies, the prominent peak at geff = 4.3 in 

EPR spectra (Figure 3-6) is assigned to the presence of isolated Fe3+ ions in high-

spin state, likely corresponding to species absorbing at 290 nm in the DR-UV–Vis 

spectra [166]. 
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As expected for pure paramagnetic behavior according to the Curie-Weiss law, 

the intensity of two peaks at 4.3 and 6 increases with decreasing temperature. The 

intensity loss of these two peaks at (r.t.) is strongly suggesting a shorter relaxation 

time for the corresponding Fe3+ species (Figure 3-6a and 3-6b). 

 In contrast, the intensity of the line at g ≈ 2 does not markedly increase upon 

cooling (Figure 3-6a and 3-6b). This suggests that the Fe3+ sites responsible for this 

signal are coupled by antiferromagnetic interactions within FexOy clusters, which 

reduce the number of unpaired spins contributing to the EPR signal. The presence 

of FexOy clusters in these two samples has been confirmed by previous UV-Vis 

spectra (Figure 3-5a). 

Therefore, the temperature dependence of the EPR signal intensity gives 

significant information on the presence of magnetically coupled phases [174-177]. 

While well-ordered crystalline α-Fe2O3 is antiferromagnetic below TN =960 K (TN: 

Neel temperature) and, therefore, not EPR-active, it has been shown that 

nanoparticles of α-Fe2O3 (d ≈ 3 nm) do give rise to an EPR signal below TN due to 

incomplete compensation of the spin moments [161, 174]. 

According to Figure 3-6c, by comparing the relative intensity of the geff = 4.3 

for both iron doped samples at low temperature (-153 °C), the intensity of this signal 

is higher in Fe-0.7-MeIMO-DS, with respect to Fe-0.7-MeIMO-IE. Previous 

studies Fe-iron doped imogolite NTs imply that FexOy clusters /particles in the 

structure (with the geff ≈ 2.0 -2.3) strongly interact with Fe3+ isolated iron sites, 

hampering the evaluation of the relative spin concentration of clustered and /or 

isolated Fe3+ sites [166, 178, 179]. Therefore, in this case, there is a high anisotropy 

in the transition probabilities of Fe3+ high-spin states. Comparison of UV-Vis 

spectra (Figure 3-5a) and EPR signals (Figure 3-6c) show that by ionic exchange 

more Fe formed oligomeric clusters and/or Fe2O3 particles than isolated sites, which 

may negatively affect the intensity of corresponding peak at geff = 4.3 in the EPR 

analysis. Summarizing, these results show that isolated Fe3+ species are much more 

abundant in Fe-0.7-MeIMO-DS. 
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Figure 3-6: EPR spectra of (a) Fe-0.7-MeIMO-IE in r.t. and l.t. (-153 °C), (b) Fe-0.7-

MeIMO-DS in r.t. and l.t. (-153 °C) and (c) Fe-0.7-MeIMO-DS (blue curve) and Fe-0.7-

MeIMO-IE (red curve) at -153 °C  
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3.3.6 Elemental analysis 

The Fe-0.7-MeIMO-DS sample was characterized by elemental analysis 

(Table 3-2). The results show an exact amount of 0.7 wt% loading in the NT 

structure, although a slight excess of iron (1 wt%) was loaded in the syntheses bath.. 

Furthermore, the Al/Si molar ratio is 0.496, which is in fair agreement with the 

Al/Si ratio for both natural and synthetic imogolite NTs [180]. 

 

Table 3-2: Elemental analysis of Fe-0.7-MeIMO-DS sample 

Element Unit amount 

Al mass-% 27.8 

Si mass-% 13.8 

Fe mass-% 0.69 

3.3.7 MAS 13C, 27Al and 29Si NMR on iron doped samples 

Solid-state 13C, 27Al and 29Si MAS NMR measurements were carried out in order 

to investigate the coordination of both silicon and aluminum atoms in methyl-

imogolite samples. 

As mentioned in chapter 2, 13C NMR shows a chemical shift at ca. -1.35 ppm, 

which has the value reasonably close to 13C NMR of the reference compound, 

TEMS (Triethoxymethylsilane), around 0 ppm (Figure 3-7). In the Fe-1.4-MeIMO-

DS, however, an additional small peak with a chemical shift of ca. 50.0 ppm is 

detectable, assigned to ethoxy groups (δ= 48.8 ppm) stemming from the silicon 

precursor. The same peak has been observed in 13C NMR of modified imogolite 

type NT obtained by using methyltrimethoxysilane precursor and has been assign 

to C4 in the methoxy group coming from the precursor [10]. 
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Figure 3-7: Solid-state 13C-MAS NMR of MeIMO and iron doped MeIMO NTs 

29Si MAS NMR spectra show a sharp peak centered at chemical shift value of 

at δ (-43 ppm) for all samples (Figure 3-8), which is typical for tetrahedral silicon 

atoms bonded to one carbon and three aluminum atoms through oxygen bridges at 

the inner surface of NTs [9, 13].  

The spectra also show a minor shoulder at δ (-78 ppm) for all samples, which 

is not commonly found in other aluminosilicate frameworks. This chemical shift is 

assigned to the unique Q3(6Al) silicon framework, probably due to the limited 

occurrence of an amorphous phase in the structure [50, 76]. Furthermore, Fe-1.4-

MeIMO-DS a extra minor shoulder at δ (-100 ppm), assigned to Q4(6Al) and 

considered the contribution from the small number of condensed silanols groups 

[50, 76]. The inset of Figure 3-8, shows a magnification of the main peak at -43 

ppm. MeIMO and Fe-0.7-MeIMO-DS show the same spectra, whereas by 

increasing the amount of iron in Fe-1.4-MeIMO-IE, disorder induced by ion 

exchange in the structure slightly affects the shape of the peak. The widest peak 

belongs to Fe-1.4-MeIMO-DS, which indicates the different environment around 

Si atoms, due to heterogeneity in the sample structure. 
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The results of 13C and 29Si MAS NMR,  along with the TEM and corresponding 

SAED pattern of  Fe-1.4-MeIMO-DS, confirm that a higher amount of iron in the 

synthesis bath affects the structural stability in formation of  the MeIMO NTs, by 

imposing strain energy into the structure, hence, hinders the formation of NTs. 

These results are in agreement with previous findings on iron doped imogolite NTs, 

where Fe may isomorphically substitute for Al up to 1 wt. %, whereas by ionic 

exchange method and higher Fe loadings  (>1 wt. % Fe), Fe oxo-hydroxide clusters 

formation occurs along isomorphic substitution (Figure 3-5a) [21, 23, 24, 85]. 

 

Figure 3-8: Solid-state 29Si-MAS NMR of MeIMO and iron doped MeIMO NTs 

The 27Al MAS NMR spectra (Figure 3-9) show a major single shift, 

approximately at 7.5 ppm for all samples (MeIMO, Fe-0.7MeIMO-DS, Fe-1.4-

MeIMO-DS and Fe-1.4-MeIMO-IE), indicating the presence of octahedral 

aluminum close to that found for gibbsite (δ = 7.8 ppm) [152]. The small shoulder 

around 61.7 ppm presented in inset of Figure 3-9, along with a small contribution 

from the second spinning- sideband of the major peak, is attributed to small 

proportion of four-coordinated aluminum atoms, probably coming from an 

amorphous phase within the structure of NT [143]. 

 



Conclusion 61 

 

 

 

 

Figure 3-9: Solid-state 27Al-MAS NMR of MeIMO and iron doped MeIMO NTs 

3.4 Conclusion 

This is the first report on Fe-doping of hybrid organic-inorganic NTs of the 

imogolite-type (methyl-imogolite; MeIMO) with two weight percent Fe (0.7 and 

1.4 wt %). It is shown that doping with iron may occur both by direct synthesis, i.e. 

by addition of Fe3+ species in the synthesis mixture, or by ionic exchange of 

preformed NTs in aqueous phase. 

The resulting materials, however, show some different properties, mainly 

concerning the state of Fe-species. Direct synthesis (with 0.7 wt% of Fe loading) 

seems to favor actual isomorphic substitution of Fe3+ for Al3+. Comparison between 

Fe-0.7-MeIMO-DS and Fe-0.7-MeIMO-IE show that isolated Fe3+ species are more 

abundant in Fe-0.7-MeIMO-DS, whereas by ionic exchange iron tends to form 

oligomeric iron oxo/hydroxide clusters or Fe2O3 particles rather than isolated sites.  

By increasing the amount of iron up to 1.4 wt%, in direct synthesis method (Fe-

1.4-MeIMO-DS), some FexOy oligomeric clusters and Fe2O3 particles were 

detected in black field-TEM. Some traces of an amorphous phase deriving from 

unreacted precursors and/or unsuccessful synthesis process, due to perturbing the 

synthesis condition, were detected by XRD, SAED pattern and 13C and 29Si MAS 

NMR. 

On the other hand, in ion exchange method, the original NTs structure is 

preserved. However, post loading of iron mainly affects the outer surface of NTs 

(C surface). Consequently, it induces some disorders in the NTs bundles, which is 

detectable in HR-TEM spectra, as well as the formation of larger mesopores and 

higher SSA values. Furthermore, formation of small FexOy oligomeric clusters and 
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Fe2O3 particles are more likely by this method, as observed in dark-filed TEM and 

also proofed by UV-Vis analysis.  

Although a simpler experimental procedure, post-synthesis ionic exchange 

leads to a higher formation of FexOy clusters and Fe2O3 particles. Nonetheless, 

isomorphic substitution also occurs by ionic exchange. The better dispersion of Fe3+ 

ions in the synthesis mixture during direct synthesis is probably the main factor 

affecting the preferential formation of isolated (octahedral) Fe3+ sites in the NT 

structure.  

Independently of the synthesis method, the presence of Fe has a significant 

effect on decreasing the band gap of MeIMO (an insulator), and finally a new hybrid 

materials with semiconducting properties (Eg=2.4 - 2.7 eV) is obtained.  

Finally, novel Fe-doped MeIMO NTs have higher porosity and higher surface 

area, and can be considered as support of catalytic species, and could be considered 

a novel material in the fields of adsorption and catalysis. 

 

 



 

 

Chapter 4 
4. Dehydration and Dehydroxylation of Bare and Fe-Doped Methyl-Imogolite Nanotubes 

Dehydration and Dehydroxylation 

of Bare and Fe-Doped Methyl-

Imogolite Nanotubes 

4.1 Introduction 

The dehydroxylation phenomenon has been observed in aluminosilicate and 

aluminogermate NTs, within a broad temperature range by TG analysis [25, 113, 

153]. By thermal heating, the following successive processes are taking place on 

the structure of as-synthesized NTs: (i) dehydration, (70-150 °C) (ii) 

dehydroxylation with subsequent structural collapse above 300 °C, (iii) formation 

of mullite crystalline phase, due to structure transformation at temperature above 

1000 °C. 

MacKenzie et al. [143] postulated two possible mechanisms for the structural 

transformation of imogolite NTs by increasing the temperature. According to their 

studies, the cleavage of the NTs is probably prompted by the loss of some external 

Al-OH groups [25, 143]. In the first mechanism (mechanism A), the single-tube 

cleavage occurs with the tube breaking along its axis and formation of Si-O-Si 

bridges with Al-O-Si-O-Si-O-Al repeating sequence (Scheme 4-1a). The second 

mechanism (mechanism B), instead, is the vertical cleavage of two adjacent NTs 

and deals with two tubes cleavage, resulting in dehydroxylation of silanol and 

aluminol groups of two adjacent NTs. Consequently, Si-O-Al bridges form due to 



64 Dehydration and Dehydroxylation of Bare and Fe-Doped Methyl-

Imogolite Nanotubes 

 

 

 

condensation and formation of Al-O-Si-O-Al-O-Si repeating sequences 

(Scheme 4-1b). 

 

 

Scheme 4-1:Two possible collapsing mechanisms occur within NTs structure upon 

heating, [143]: (a) single-tube cleavage (b) two tube cleavage and condensation [25] 

Later, Zanzottera el al. (2012) [25] reported an irreversible structural transition 

and formation of lamellar phase from the collapse of aluminosilicate imogolite NTs 

starting at around 400 °C. Additionally, they proposed that the structure contains 

some residual microporous regions derived from unaffected pristine NTs within the 

layers (Scheme 4-3) [143]. Base on their research on thermal stability of imogolite 

and MeIMO and Me-Imo-NH2, with imogolite, the proposed mechanism was the 

cleavage of NTs across their diameter (Scheme 4-3a), causing the formation of the 

repeating sequence Al-O-Si-O-Si-O-Al. Nonetheless, with two other hybrid 

imogolite-like samples the mechanism is much more complex and both 

mechanisms seem to act sequentially [25]. 

Comprehensive studies on dehydration, dehydroxylation and rehydroxylation 

of imogolite NTs have been carried out by Kang et al. (2010) [50]. According to 

their studies, NTs were completely dehydrated under vacuum and at 250 °C, as a 

prerequisite to partial dehydroxylation process that was previously investigated up 
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to 450 °C. However, at this temperature also a small proportion of hydroxyl groups 

was still present and the tubular structure was preserved [50].  

Numerical calculations done by da Silva et al. (2015) [26] indicated that 

dehydroxylation of silanols groups at the inner surface of NTs induces deformation 

of NTs before the recovery of cylindrical structure with the subsequent 

rehydroxylation of the outer surface. They concluded that dehydroxylation of the 

silanol groups led to Si–O–Si bonding in the inner surface and cleavage of NTs due 

to the thermal treatment, and subsequently affected the geometry, band gap and 

Young’s modulus of the material, as shown in Scheme 4-2 [26]. Therefore, 

controlling the degree of dehydroxylation in the heat treatment process may open 

the possibility to adjust and control the electronic and mechanical properties of 

imogolite NTs. According to their SCC-DFTB calculations on the dehydroxylation 

imogolite NTs [26], the dehydroxylated imogolite is  considered a semiconductor 

with a lower band gap energy with respect to parent imogolite. 

 

Scheme 4-2: (A) Dehydroxylation reaction occurs in the inner surface of NTs. (B) 

Optimized structures of the dehydroxylated zigzag (12,0) imogolite NT [26, 180]  
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Nevertheless, no information is available for the irreversible collapsing 

mechanism of MeIMO and iron doped MeIMO in different calcination medium. 

Based on experimental results concerning solid state nuclear magnetic resonance 

(NMR), powders X-ray diffraction (XRD), thermogravimetric−mass spectrometry 

(TG-MS), and Fourier transform infrared spectroscopy (FT-IR), in this chapter 

evidence is reported that these materials do show an irreversible collapse 

phenomenon, just as imogolite [25], which was previously studied. However, the 

thermal treatment of NTs in either air atmosphere or under high vacuum may affect 

the collapsing mechanism, as well as the presence of iron.  

 

 

 

Scheme 4-3: Patches of the layers occur by imogolite NTs cleavage and condensation 

[143] (a) and proposed buckled structure based on calculated values of d100 from XRD 

peak position and the residual porosity after thermal collapse (b) [25] 
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4.2 Characterization and textural properties of collapsed 

NTs 

4.2.1 TGA-DTG analysis  

Figure 4-1a and 4-1b report the differential thermal analysis (DTA) and 

thermogravimetric analysis (TGA) of MeIMO, Fe-0.7-MeIMO-IE and Fe-0.7-

MeIMO-DS samples. 40 mg of each sample were used for TG analysis from 40 to 

500 °C, with 10 °C min-1 heating rate and under Ar flow. 

According to the curves on Figure 4-1a and 4-1b, two broad endothermic peaks 

accompanied by a weight loss were observed with all the samples. The first and 

second endothermic peaks are attributed to the loss of adsorbed water and the 

dehydroxylation of outer surface by removing of Al-OH-Al groups [25, 50], 

respectively. MeIMO sample start releasing water above 40 °C, most of water being 

desorbed at 75 °C, whereas, molecular water desorption from pristine imogolite 

NTs desorbs at higher temperature (130-150 °C), due to higher hydrophilicity of 

both inner and outer surface and smaller pores. However, dehydroxylation of the 

outer surface appears at about the same temperature with MeIMO, in agreement 

with the similar composition [8, 25].  

With MeIMO, a third mass loss is observed at 440 °C, whereas, in iron doped 

samples the mentioned peak has not been observed. As mentioned in chapter two, 

this peak has been assigned to the release of oxygen molecules, caused by thermal 

decomposition of remaining perchlorate species (𝐶𝑙𝑂4
−

) present in the synthesis 

bath and has been previously observed in DTG and MS analysis of both of imogolite 

and alumino-germanate imogolite NTs [25, 50, 113].  
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Figure 4-1: Derivative thermogravimetric (DTG; a) Thermogravimetric (TG; b) analysis 

of MeIMO, Fe-0.7-MeIMO-IE and Fe-0.7-MeIMO-DS 
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4.2.2 TEM characterization 

Figure 4-2 reports the HR-TEM images of MeIMO-c and Fe-1.4-MeIMO-c samples 

(thermally treated at 500 °C in argon for 4 h; heating rate of 5 °C min-1). 

The HR-TEM image of MeIMO-c is reported in Figure 4-2a, and the residual 

voids derived from the thermal collapse of the structure are detectable. In the inset 

of Figure 4-2a, the proposed structure of collapsed NTs made from patches of layers 

(yellow arrows) are sealed together. Also, some residual voids coming from 

unaffected NTs in the thermal treatment process (white arrows) are visible [25, 

143]. The distance between layers in the collapsed structure is roughly about 1.0- 

1.2 nm.  

Figure 4-2b reports TEM pictures of Fe-1.4-MeIMO-IE-c sample. The parallel 

layers and residual voids derived from thermal collapse of NTs are detectable. The 

inset of Figure 4-2b shows the parallel layers with the average distance of ca.1.0 

nm. 

The presence of some clusters are detectable in both samples (Figure 4-2, red 

arrows). In a case of MeIMO, these clusters may be assigned to carbon residues in 

structure. The EDXS analysis of sample from different zones, also confirms the 

presence of carbon in the structure after collapsing (Figure 4-3a). On the other hand, 

for Fe-1.4-MIMO-IE-c, the same signal may be assigned to either carbon residues 

and/or Fe-containing clusters (Figure 4-3b).   
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Figure 4-2: HRTEM images of collapsed (MeIMO-c) with carbon residual content  

indicated with red arrows (a), forming a lamellar phase along with patches of layers and 

pores coming from pristine NTs indicated with white arrows (inset to section a). HRTEM 

image of Fe-1.4-MeIMO-IE-c with iron-containing clusters indicated with red arrows (b), 

forming a layered structure with some residual voids (inset to section b)  

 

 

Figure 4-3: EDXS analysis of MeIMO-c (a) and Fe-1.4-MeIMO-c (b). EDXS analysis 

energy resolution 139.2 eV at Mn Kα 

4.2.3 Solid state NMR analysis on the collapsed samples 

In order to study the collapse mechanism of MeIMO and Fe-doped MeIMO NTs at 

the earlier stage of collapsing by considering the effect of thermal treatment 

environment on the collapse mechanism, all samples were thermally treated at 400 

°C with heating rate of 5 °C.min-1 for 2h either in air or in vacuum. The solid state 
13C, 27Al and 29Si MAS-NMR studies have been performed on all samples.  
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Clearly, increasing temperature or heating time may result in more structural 

collapse. For proofing this fact, a longer heating time was considered for one of the 

samples (Fe-0.7-MeIMO-DS; thermal treatment in air for 2 and 4 hour) and 

corresponding NMR spectra (13C, 27Al and 29Si) were reported for comparison.  

4.2.3.1 13C MAS-NMR 

Figure 4-4 shows the 13C Solid NMR of all the studied samples. All samples, with 

the exception of MeIMO-air-2h, display a main peak at -1.6 ppm that is very close 

to the 13C chemical shift of Me4Si compound (δ= 0 ppm). However, comparing to 
13C NMR in tubular structure, the peak is broader and slightly shifted to more 

negative chemical shift, representing 13C species in slightly different environments, 

mainly in form of Si-CH3 and Si-CH2 groups (Figure 4-5). With MeIMO-air-2h, 

the mentioned peak is not detectable likely due to burning of methyl groups to CO2 

in the presence of air. However, the small peak at around 30 ppm is assigned to 

aliphatic carbon species in the structure (Figure 4-5) [181]. Apparently, the thermal 

treatment in vacuum or the presence of iron in the structure affect the collapsing 

mechanism in a way that high amount of carbon bonded to Si atoms are still present 

in the final phase.  
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Figure 4-4: Solid-state 13C-MAS NMR of MeIMO and iron doped MeIMO, heated at 400 

°C, for 2 h or 4 h with heating rate of 5 °C.min-1, either in air or in vacuum (xDS/IE, 

represent the Fe-x-MeIMO-DS/IE; x=0.7 and 1.4 wt% of Fe) 

 

 

Figure 4-5: The 13C chemical shift scale in solid state NMR 

 

4.2.3.2 27Al MAS-NMR 

Figure 4-6 reports 27Al NMR spectra: with all the samples, three peaks at 4, 33, and 

62 ppm are seen. As previously discussed, the peak at 4 ppm is assigned to 

octahedrally coordinated Al, also present in as-synthesized NTs [95]. A broad peak 

at 33.6 ppm (absent in the as-synthesized samples) is observed in all the thermally 

treated samples. There are several possible assignments for such peak. Previous 

studies stated that peaks in the 20-50 ppm range can be assigned to distorted 

tetrahedral Al [182, 183], distorted octahedral Al [184] or penta-coordinated Al 

[184-187]. Based on previous research on structural collapse of imogolite type NTs 

and in the analogy to the structural transformation of gibbsite under calcination, this 

peak is assigned to the penta-coordinated Al species [50, 62, 188-191], as observed 

with some transition alumina, mostly γ-alumina  with a chemical shift at 

approximately 26 ppm [192] and also observed in amorphous aluminosilicates at 

33 ppm [191, 192].  

The peak at 60 ppm is attributed to tetrahedral aluminum Al(IV)  [25, 50, 191] 

and it has been observed, although with lower intensity, in NTs structure and 

assigned to some structural defects within the NT wall [49]. 

The 27Al MAS NMR spectra of both imogolite and MeIMO in collapsed form 

are very similar. This is in agreement with the fact that the outer surface of both 

type of NTs may collapse in the same way. 
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Figure 4-6: Solid-state 27Al -MAS NMR of MeIMO and iron doped MeIMO, heated at 

400 °C, for 2 h or 4 h with heating rate of 5 °C.min-1, either in air or in vacuum. (xDS/IE, 

represent the Fe-x-MeIMO-DS/IE; x=0.7 and 1.4 wt% of Fe) 

4.2.3.3 29Si MAS-NMR 

29Si NMR provides a molecular-level understanding of the structural change in the 

interior wall of the SWNT during heat treatment, (Figure 4-7). The NMR spectra 

indicate the presence of various environments around Si atom (Scheme 4-4). 

Accordingly, three different peaks are observed with almost all samples, namely a 

sharp peak at - 43 ppm, a broad one centered at −90 ppm and a reduced intensity 

“tail” at −78 ppm. However, the peaks intensities and the chemical shift positions 

vary from sample to sample, and significantly depend on different heat treatment 

and on iron loading. 

The peak at -43 ppm is assigned to Si atoms bonded to three oxygen atoms and 

one carbon atom, i.e. O3Si-CH3 moieties present also in collapsed samples [25]. 

The broad peak at −90 ppm indicates that most Si atoms are present as Q4 sites. 

This peak has been observed at -100 ppm and -90 in imogolite and MeIMO NTs, 

respectively, and has been assigned to the transformation of the Si coordination 

environment, due to the thermal collapse of the NTs [25, 50]. Further experiments 
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on amorphous aluminosilicates showed that 29Si in Q4 sites display more positive 

chemical shifts, with increasing the substitution of Al loading as a second neighbor  

[149, 191, 193-197].   

Copéret et al. (2015) [191], conducted a comprehensive DFT study on the 

interface between Silica and Alumina in aluminosilicates. According to their 

results, the presence of various environments around similar 29Si species, such as 

different Si−O−Al and Si−O−Si angles and bond lengths, different coordination 

numbers of Al atoms, presence of non-covalently bonded Al atoms in the 

neighborhood of Si−O bonds resulted in the chemical shifts distribution within a 

range of -80 to -97 ppm. The analysis of crystalline and amorphous aluminosilicates 

with corresponding empirical assignments [149, 191, 194, 196, 197] shows that 

both H and Al as a second neighbors are the source of increasing in the chemical 

shift of 29Si MAS-NMR. Consequently, the small tail at −78 ppm chemical shift 

could correspond to a higher number of Al neighbors (n = 4) together with a proton 

[149, 191, 194, 197]. The negative shift toward the peaks centered at -83 ppm are 

due to the bonding of silicate directly to the Al surface, with increasing in Si content 

in less Al neighbors [191]. 

On the other hand, in the presence of high Si content in the surrounding 

environment, 29Si is found at more negative values, especially around −93 ppm (and 

to a lower extent, −100 ppm), consistent with the existence of more numerous Si as 

second neighbors and formation of a SiO2 multilayer and a pure silica network 

[191].  
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Figure 4-7: Solid-state 29Si -MAS NMR of MeIMO and iron doped MeIMO, heated at 

400 °C, for 2 h or 4 h with heating rate of 5 °C.min-1, either in air or in vacuum. (xDS/IE, 

represent the Fe-x-MeIMO-DS/IE; x=0.7 and 1.4 wt% of Fe) 
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Scheme 4-4: Silicate connections detected from the analysis of 29Si magic angle spinning 

nuclear magnetic resonance (MAS NMR) spectra [198] 

 

4.2.3.4 The effect of thermal treatment environment and the presence 

of iron in collapse of nanotube 

Comparison between MeIMO treated in air or vacuum (curves 1 and 4) shows that 

thermal treatment in air results in the disappearance of the 29Si -43 ppm peak and 

preferential formation of the peak at -90 ppm with a tail at -78 ppm both with high 

intensity. The broad peak centered at -90 ppm can be ascribed to the formation of a 

Si-reach phase (Si-O-Si) in air. Furthermore, the tail at -78 ppm is likely due to 

substitution of a higher number of aluminum neighbors (n=4) into tetrahedral sites 

around tetrahedral Si atoms, hence, formation of Si−O−Al(IV) groups. 

On the other hand, for both bare and Fe-doped samples (curves 4, 5 and 6) by 

thermal treatment in vacuum a high amount of Si-CH3 moieties is still present (peak 

at -43 ppm) and a positive displacement of 29Si chemical shift to the peak centered 

at -83 ppm, with a small shoulder at -78 ppm.  
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Following the two mechanisms proposed by MacKenzie for collapsing of 

imogolite NTs  [143], it seems that thermal treatment in air provides occurrence of 

both mechanisms (mechanism A and B; Scheme 4-1). Accordingly, the cleavage 

occurs along the NTs by dehydroxylaton between silanol and aluminol groups of 

two adjacent NTs. Therefore, formation of repeating sequence of O−[Si−O−Al]−O 

(mechanism B, Scheme 4-1b) occurs, as well as condensation of silanols across the 

NTs diameter, and formation of the repeating sequence: Al−O− [Si−O−Si]−O−Al 

(mechanism A, Scheme 4-1a). In fact the presence of air acts as a driving force for 

faster cleavage of NTs, due to effect of air in total (no sign of peak at -43 ppm for 

MeMO) or partial (less partial intensity of peak at -43 ppm for Fe-doped samples) 

burning of the inner methyl groups. 

On the other hand, the presence of Fe in structure favors the mechanism B 

(comparing the spectrum 1 and 2), in agreement with the 29Si chemical shift toward 

more positive values (-78 < δ (ppm) < -83) and formation of peak centered at -90 

ppm with lower intensity with respect to collapsed MeIMO in air.  

According to Zanzottera et al. [25], there could be two possible routes 

(Scheme 4-5) for the reaction between an aluminol group and a SiCH3 group 

according to mechanism B: (i) direct elimination of methane by transferring the H 

atom from the aluminol species to SiCH3 (equation 4-1); (ii) and transferring the H 

atom of methyl group to the aluminol species, followed by releasing of molecular 

hydrogen (equations 4-2). The Si-CH2-O-Al species form in the second route are 

unstable and may release CH2 groups which are reactive and can either dimerize or 

decompose to coke-like carbon and molecular hydrogen (H2) (equations 4-3, 4-4 

and 4-5) [25]. In fact, the presence of coke-like carbon is much more evident even 

by visual inspection of samples thermally treated in high vacuum (10-4 mbar), as 

shown by the dark grey color of the sample (Figure 4-8).  

To summarize, thermal treatment in air, results in the occurrence of both 

mechanisms, in which mechanism B takes place mostly according to equation 4-1. 

On the other hand, the presence of Fe in the structure and the thermal treatment in 

vacuum favor mechanism B, mostly through the second route (equations 4-2 to 4-

5).  

Si − CH3 + OH − Al → Si − O − Al + CH4     (4−1) 

𝑆𝑖 −  𝐶𝐻3  +  𝑂𝐻 −  𝐴𝑙 →  𝑆𝑖 − 𝐶𝐻2 − 𝑂 − 𝐴𝑙 + 𝐻2   (4 − 2) 

Si − 𝐶𝐻2 − 𝑂 − 𝐴𝑙 →  Si − 𝑂 − 𝐴𝑙 + "𝐶𝐻2"   (4−3) 
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"𝐶𝐻2" →  𝐻2 + 𝐶 (coke)   (4−4) 

"𝐶𝐻2" →  𝐻2 + 𝐶𝑥𝐻𝑦   (4 − 5) 

 

Scheme 4-5: Different proposed route for hybrid imogolite type NTs cleavage [25] 

 

Figure 4-8: The Fe-0.7-MeIMO-DS powder sample, treated in air and vacuum at 500 °C, 

for 4 h with the heating rate of 5 °C.min-1 
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4.2.4 Powder X-ray diffraction (XRD) 

XRD analysis were done on three selected samples (MeIMO, Fe-0.7-MeMO-IE and 

Fe-0.7-MeIMO-DS) in the as-synthesized and collapsed form, thermally treated at 

500 °C, for 4 h and with the heating rate of 5 °C min-1 (Figure 4-9).  

With as-synthesized samples (Figure 4-9, left part), the peaks corresponding to 

an ideal hexagonal packing of NTs are observed as discussed in the previous 

chapters. After the thermal treatment either in air or in vacuum, the XRD patterns 

essentially show a single reflection, ascribed to the (100) plane of a lamellar phase. 

A faint peak due to the (200) diffraction is also barely visible in almost all samples 

(Figure 4-9, right part). 

As shown in Table 4-1 the d100 inter-reticular distance in both air and vacuum 

environments is smaller than the distance between hexagonally packed NTs, 

causing a shift of d100 peak to higher 2θ angles with respect to the parent sample. 

According to previous studies, the obtained lamellar structure cannot be viewed 

as a simple close packing of proper layers [25, 68]. Indeed, based on the mechanism 

proposed by MacKenzie et al. [143] the lamellar phase should result in a thickness 

of ∼0.32 nm (Scheme 4-3b), which is definitely smaller than the inter-reticular 

distance in the collapsed sample [25]. More likely, the structure of all the collapsed 

materials is made of patches of layers sealed together, with some micropores 

entrapped within the layers, deriving by the presence of residual NTs, unaffected 

by thermal treatment and acting as spacers between the layers (Scheme 4-3b) [25]. 

Comparing the XRD patterns of samples thermally treated in either air or under 

vacuum (Figure 4-9, right part), the d100 inter-reticular distance is slightly smaller 

under vacuum, resulting in a shift of d100 peak to higher 2θ angles with respect to 

heat treatment in air (MeIMO: 2θ = 3.98° and 4.20°, Fe-0.7-MeIMO-IE: 3.93° and 

4.06° and Fe-0.7-MeIMO-DS: 3.99° and 4.30°, with the values corresponding to 

the air and vacuum, respectively). 

Some molecular dynamic calculations performed on either hydrated or dried 

imogolite showed that NTs are highly deformable [199, 200] and dried NTs can 

deform into an oval shape [199] (Scheme 4-6). Besides, defects such as vacancies 

within the imogolite structure may favor NTs deformation [49]. 

Moreover, calculations on the frequency values of radial breathing modes of 

NTs which have been performed by both Guimarães [62] and Konduri [112], 

suggest that imogolite NTs are rather “soft” and the correspondingly calculated 

Young’s modulus for both aluminosilicate and aluminogermanate NTs is in the 
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range of 200–400 GPa [62, 112, 114, 180], which is smaller than Young’s modulus 

for carbon or boron nitride NTs [49]. 

The XRD results also give an idea about the possible mechanism for collapsing 

of tubular structure, which agrees with the previous results. Under vacuum, NTs 

firstly deform around their contact points due to intertube interactions (Scheme 4-6) 

[199]. This primary deformation may triggers the cleavage of NT more toward the 

mechanism B and formation of more compact layers with respect to air 

environment. 

 

Figure 4-9: (right): Low-angle XRD patterns of as-synthesized MeIMO, Fe-0.7-MeIMO-

IE and Fe-0.07-MeIMO-DS. (left): Low-angle XRD patterns of MeIMO, Fe-0.7-MeIMO-

IE and Fe-0.07-MeIMO-DS, thermal treated at 500 °C for 4h with heating rate of 5 

°C.min-1 either in air or in vacuum 
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Scheme 4-6: Calculated imogolite structure by molecular dynamics simulations, viewed 

along the direction of the tube axis: (A) for two interacting NTs and (B) for three 

interacting NTs [180, 199]. (C) Contact point of two NTs, resulting in their local 

deformation [199] 
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Table 4-1: Samples textural properties as derived by XRD patterns 

Sample 2θ (°) d100 (nm) a (nm) a 

MeMO 3.42 2.58 2.98 

MeIMO-500 °C-Air 3.98 2.21 2.55 

MeIMO-500 °C -Vac 4.20 2.10 2.42 

Fe-0.7-IE  3.40 2.61 3.00 

Fe-0.7-IE-500 °C-Air 3.93 2.26 2.61 

Fe-0.7-IE-500 °C-Vac 4.06 2.17 2.50 

Fe-0.7-DS 3.43 2.57 2.97 

Fe-0.7-DS-500 °C-Air 3.99 2.13 2.45 

Fe-0.7-DS-500 °C-Vac 4.30 2.06 2.38 

(a) Hexagonal cell parameter as obtained by applying the equation  𝑎 =
2𝑑100

√3
  

4.2.5 Porosity characterization by N2 adsorption/desorption 

isotherms 

N2 sorption isotherms at -196 °C were measured on three selected samples 

(MeIMO, Fe-0.7-MeMO-IE and Fe-0.7-MeIMO-DS) in both the as-synthesized 

and collapsed forms, thermally treated at 500 °C, for 4 h and with heating rate of 5 

°C.min-1 (Figure 4-10 (a-c)). The corresponding values of SSA and pores volume 

are reported in Table 4-2. 

All as-synthesized samples (Figure 4-10 (a-c), full symbols) show type IV 

isotherms with H4 hysteresis loop, typical of microporous systems with some 

mesoporosity [144]. The ratio between the values of microporous SSA and total 

SSA (as determined by NL-DFT) shows that doping with iron induces an overall 

decrease of the microporous area and a corresponding increase in the mesoporous 

one, in agreement with Shafia et al. [23, 24, 85, 156], who showed that Fe-doping 

mainly affects the outer surface of MeIMO NTs (C mesopores). 

All the collapsed samples also show type IV isotherm (Figure 4-10 (a-c): half 

hollow and hollow symbols, corresponds to heat treatment in air and vacuum 

respectively). Corresponding values, reported in Table 4-2, show that collapsed 
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samples have lower BET SSA with respect to parent samples, due to partial pore 

blocking caused by the structural cleavage accompanied by dehydroxylation [25, 

50]. Although the wall structure of collapsed samples is partially damaged or 

disordered, the microporous volume and corresponding ratio between microporous 

and total SSA, are indeed higher in both thermal treatment in air and vacuum with 

respect to parent samples (Table 4-2). In fact, the achievement of a fully layered 

structure is unlikely at the adopted temperature. 

The PSD curves of as-synthesized and collapsed samples are reported in 

Figure 4-10(d-f): the as-synthesized samples (Figure 4-10 (d-f):full symbols) show 

similar porosity, in agreement with values reported in Table 4-2, with a slight 

increase in the volume of large mesopores in the presence of Fe [23, 24, 156]. On 

the other hand, the PSD curves of collapsed samples (Figure 4-10 (d-f)) show at 

least two families of micropores (~1.0 nm and 1.0-2.0 nm), and a dramatic decrease 

of mesopores volume with respect to parent samples. The total pore volume for the 

samples treated in vacuum is lower than samples treated in air and even lower than 

that of parent samples. Conversely, the ratio between micropore and total SSA are 

considerably high. These data can indicate that in the presence of vacuum the layers 

are more compact, in agreement with the results obtained by XRD analysis. 

Furthermore, the decomposition of methyl groups in the presence of vacuum results 

in formation of coke-like phase [25], as mentioned previously (Figure 4-8). The 

presence of residual C-containing fragments in the structure may partially block the 

pores and results in lower micropores volumes with respect to the air treated 

samples.  
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Figure 4-10: (a-c) N2 isotherms of samples at -196 °C for as-synthesized samples (full 

symbols) and thermal treated samples at 500 °C for 4h with heating rate of 5 °C.min-1, 

either in air (half hollow symbols) or in vacuum (hollow symbols). (d-f) corresponding 

PSDs, as obtained by applying the NL-DFT method, of as-synthesized samples (full 

symbols) and thermal treated samples at 500 °C for 4h with heating rate of 5 °C.min-1, 

either in air (half hollow symbols) or in vacuum (hollow symbols) 

4.2.6 Nature of iron species as studied by UV-Vis spectroscopy 

DR UV-Vis spectra of collapsed samples (heated in air at 500 °C for 4 h with the 

heating rate of 5 °C.min-1) are reported in Figure 4-11a. The spectrum of all 

collapsed samples is mainly dominated with two characteristic oxygen-to-metal 

charge-transfer (CT) bands below 300 nm, assigned to CT transitions from O2- to 

Fe3+ ions in tetrahedral (Td, 240 nm) and octahedral (Oh, 290 nm) coordination 

[157]. 

In the case of Fe-1.4-MeIMO-IE-c, a broadening of UV-vis spectrum is 

observed in the range of 300-600 nm with a maximum around 500 nm. The 

broadening of UV spectrum in the 300-400 nm range is assigned to CT transitions 

of oligomeric Fe oxo-hydroxide clusters, whereas bands above 400 nm to larger Fe 

oxo-hydroxide particles and d-d transitions [157, 159, 201]. 

After collapsing (Figure 4-11b), UV bands ascribed to Fe oxo-hydroxide 

clusters in the range of 300-400 nm almost disappear, whereas the bands below 300 

nm (211 and 270 nm) increase in intensity. The position of 270 nm band is typical 

of CT transitions, indicating a change in the environment of Fe3+ ions, by changing 
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in the environment of Si and Al atoms.  During thermal treatment at 500 °C, Fe 

oxo-hydroxide clusters likely reacted with the aluminum-silicate network, as 

observed for Fe in LFO perovskite [202]. Such phenomenon is expected to impact 

on the catalytic activity of collapsed samples, which will discuss in chapter 6.  

In addition in the Fe-1.4-MeIMO-IE-c sample, CT at 370 nm shifted slightly to 

higher wavelengths, which may indicate the migration of part of the Fe3+ ions from 

framework to extra framework positions and aggregation into Fe oxo-hydroxide 

clusters present Fe-1.4-MeIMO-IE sample [203].  

Band gap energy (Eg) values of all collapsed samples were calculated according 

to Tauc’s formula and the corresponding curves are reported in Figure 4-11c. In Fe-

doped samples, the calculated band gap is different with respect to as-synthesized 

samples, indicating a change in the environment of Fe in agreement with previous 

observations (Table 4-3). 

However, in the case of MeIMO, the band gap of collapsed sample is lower 

than the as-synthesized sample. This agrees with the theoretical calculation based 

on Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB) 

calculations, on the effect of dehydroxylation on the band gap energy of imogolite 

NTs which has been performed recently by da Silvia et al. [26]. According to their 

studies, upon dehydroxylation up to 50 %, NTs tend to deform and changing in the 

environment of silanols and formation of Si-O-Si bonds result in the decreasing of 

band gap energy. Therefore, the dehydroxylated imogolite is considered as a 

semiconductor. 
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Figure 4-11: DR UV-Vis spectra of collapsed samples obtained at 500 °C for 4h with 

heating rate of 5 °C.min-1 in the air atmosphere (a) and comparison between DR UV-Vis 

spectra of as-synthesis samples (solid line) and corresponding collapsed samples (dashed 

line) (b). Corresponding Tauc plots of collapsed samples (c) 

  



88 Dehydration and Dehydroxylation of Bare and Fe-Doped Methyl-

Imogolite Nanotubes 

 

 

 

Table 4-3: Calculated band gap energy according to Tauc’s formula for both NTs and 

collapsed samples 

Sample Band Gap in NT form 

(eV) 

Band Gap in collapsed 

form (eV) 

MeIMO 4.7 3.9 

Fe-0.7-MeIMO-IE 2.4 2.8 

Fe-0.7-MeIMO-DS 2.7 3.2 

Fe-1.4-MeIMO-IE 2.4 2.3 

Fe-1.4-MeIMO-DS 2.6 3.1 

4.3 Conclusion 

Thermal treatment of imogolite type NTs reveals the progressive dehydroxylation 

in the NT structure resulting in the formation of new phase where a lamellar 

structure coexist with some residual voids derived from pristine NTs. Moreover, 

thermal treatment in air or vacuum may affect the collapse mechanism and the 

structure of the final phase. Accordingly, the thermal treatment in air leads to faster 

cleavage of NTs by the elimination of methyl group from structure and collapse of 

NTs through both mechanisms (mechanisms A and B) postulated by MacKenzie et 

al. [143]. On the other hand, under vacuum, the burning of methyl groups is 

hindered. The presence of Fe in the structures, same as vacuum treatment triggers 

the mechanism B, probably due to joining tendency of Fe3+ ions in the NTs 

framework to the extra framework Fe-containing clusters. 

The collapsed samples also exhibit a different light adsorption capacity and 

different band gap values with respect to the as-synthesized ones, probably due to 

the changing in the environment of atoms in the collapsed phase. However, more 

complete studies on collapsed samples are needed to investigate their formation 

mechanisms and their modifications. Control of thermal stability of imogolite type 

NT and the different structural phases arrived from thermal treatment is a 

prerequisite for the elaboration of future materials and their applications. 

 



 

 

Chapter 5 
5. Surface Acidity and Reactivity of Bare and Fe-Modified Methyl-Imogolite Nanotubes with azo-dye  

Surface Acidity and Reactivity of 

Bare and Fe-Modified Methyl-

Imogolite Nanotubes with azo-dye  

5.1 Introduction 

The composition of the inner and outer surfaces of imogolite type NTs with the 

unique porous structure occurring in the dehydrated NTs (Scheme 5-1) introduces 

this material as an interesting choice for different chemical engineering 

applications. The major applications of this material relate to its surface where the 

presence of cavities with various pore dimensions with different chemical 

properties and large specific surface areas (SSA) are required. For example one 

might utilize this material for catalysis application, gas adsorption and storage [9, 

10, 116], removal of ions from aqueous solution [23, 85], etc. The outer and inner 

surface of imogolite NTs, with the presence of silanol and aluminol amphoteric 

groups, have different acid/base properties and ion exchange capacity [8]. Further 

advances in this field are significant for improvement of materials with different 

functionality based on imogolite and imogolite-like constituents. In this chapter the 

surface acidity and catalytic reactivity of MeIMO NTs and Fe-doped MeIMO NTs 

have been studied for the first time, in order to gain a deeper insight for further 

applications. 
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Scheme 5-1: representation of different kind of surfaces present in the bundles of 

dehydrated imogolite type NTs [8] 

5.2 Determination of acid–base properties by adsorption of 

pyridine followed by IR spectroscopy 

In order to study the adsorption properties of imogolite type NTs, the proper heat 

treatment is needed at elevated temperatures under vacuum in order to remove the 

water molecules [8, 107, 115]. However, the outgassing temperature must remain 

below 300 °C to avoid the structural collapse  as mentioned in chapter 4. Therefore, 

the optimal pretreatment temperature for maximum pore accessibility still 

maintaining the nanotubular structure, is in the range of 270°C–300°C [25, 115]. 

To investigate further the catalytic potential of imogolite type NTs, the 

adsorption of different reactive molecules can be studied for probing the acidic and 

basic sites in the structure of material, particularly the type and abundance of acidic 

Lewis and Brønsted species. Bonelli et al. [8, 9, 107, 115], carried out several 

studies on the surface acidity of imogolite-type NTs, using IR spectroscopy of 

various probes including NH3, CO and CO2. The results imply the interaction of 

NH3 molecules as well as, CO molecules with silanol groups and confirms the 

significant acidic sites associated with these groups in the inner surface of imogolite 

NTs. However, in a case of MeIMO NTs non-polarity and hydrophobicity of Si-

CH3 groups may hinder the interaction of probe molecules with the inner surface 

[8, 9, 115, 138]. On the other hand, the outer surface of both imogolite and MeIMO 

NTs, show weak Lewis acidity, as shown by the coordination of NH3 molecules on 

external Al3+ Lewis sites. 



Determination of acid–base properties by adsorption of pyridine followed 

by IR spectroscopy 

91 

 

 

 

One of the most common probe molecules for identification of acidic sites, 

especially in aluminosilicates and silica-alumina is pyridine [204]. Unlike ammonia 

which interacts with both weak and strong acidic cites, differently-bonded pyridine 

gives different absorption bands in the IR range which are quite evident and give 

information about different Lewis (LPy) acidic sites, Brønsted (BPy) acid sites and 

the hydrogen-bonded pyridine (HPy) molecules on the surface of materials [205-

208]. 

5.2.1 Sample preparation for IR analysis and pyridine adsorption 

method 

The samples for pyridine adsorption analysis are preheated at 200 °C or 500 °C for 

4 h in high vacuum line and maintained in glovebox for further experiments. The 

pellets for IR measurements are obtained in the form of thin, KBr-supporting wafers 

(10% of the sample concentration in KBr; all procedure is performed in glovebox). 

The extra pure dry pyridine is attached on IR cell including the sample pellet, which 

was pre-evacuated in the line. The IR spectra of outgassed samples are studied both 

before and after pyridine adsorption at r.t., followed by consecutive evacuation at 

r.t., 80 °C, 150 °C (and for some samples even up to 250 °C). All spectra are 

subtracted from spectrum of sample before pyridine adsorption. All Spectra are 

recorded using a Bruker FT-IR Alpha spectrometer, equipped with OPUS software. 

Spectra are recorded at resolution <2 cm-1, A typical experiment consisted of the 

measurement of transmission in 32 scans in the region from 4000 to 1000 cm-1. 

 

5.2.1.1 Identification of both Brønsted and Lewis Acid Sites as obtained 

by IR spectra of adsorbed pyridine 

Inspection of IR spectra show that several bands in the 1650-1430-cm-1 region 

appear due to pyridine adsorption. This indeed corresponds to v(C-C) stretching 

vibrations of the ring (Table 1) [209, 210]. The relative intensity ratio of the IR 

band at 1545 cm−1 (characteristic of the pyridium ions PyH+) to the band at 1455 

cm−1 (characteristic of the LPy species), are considered as an index of relative 

concentration of the Brønsted to Lewis acid site [204, 212]. 

Lewis sites (LPy): Tri-coordinated aluminum atoms are strong Lewis acid 

centers [212]. The LPy species produced the characteristic bands in the range of 

1630–1600 cm−1 [210]. However, the most typical Lewis acid sites are the bands 
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near 1455, 1490 cm−1, and the 1455 cm−1 band is typical sign of these sites [212]. 

Lewis acid sites have high stability to outgassing at high temperatures [210]. 

Brønsted sites (BPy): The protonation of pyridine molecules to pyridinium ion 

(PyH+) is the main reason of the formation of BPy sites. BPy shows adsorption 

bands at 1640–1630 cm−1 and 1550–1530 cm-1 regions and bands near 2450 and 

1580 cm−1 [210]. However, the most common bands are at about 1490, 1540, and 

1635 cm−1. The band at 1540 cm−1 is also considered a typical band of this site [211, 

212]. BPy species are relatively less thermally stable than LPy species [210].  

Hydrogen-bonded pyridine (HPy): these sites are formed due to H-bond donor 

sites (surface-OH groups) [210] and also the strong electrostatic interaction 

between the cation and the pyridine molecule [212, 213]. They are  characterized 

by strong IR bands in the range of 1596–1590 and 1455–1445 cm−1 [210]. 

Furthermore, another characterization of HPy is the low frequency shifts of νOH 

vibrations of the associated surface-OH groups [210]. According to studies, HPy 

sites on the clay solid, has vibration bands near 1440 and 1590 cm−1 [211, 212]. 

These species are likely unstable to outgassing at even low temperatures with  most 

of metal oxides (100 °C) [210]. 

Physisorbed-bonded pyridine (PPy): it is due to loosely adsorbed closed packed 

layers (liquid-like) of Py molecules give bands in the range of 1450 –1430 

cm−1[210]. These bands are normally removed after evacuation at temperature near 

150 °C or even room temperature [214]. 

The summary of different configurations with corresponding IR characteristic 

bands of adsorbed pyridine on the surface of metal oxides at r.t., is reported in 

Table 5-1 [210]. Scheme 5-2, also addresses an overview of different IR 

characterization bands of pyridine adsorbed on the surface of acid solid [211, 212].  
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Scheme 5-2: IR characterization bands of pyridine adsorbed on the surface of acid solid 

Pyridine adsorbed on B, Brønsted sites; L, Lewis sites; H, hydrogen- bonded, and P, 

physisorbed pyridine [211, 212] 
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Table 5-1: Shape and IR characteristics bands of adsorbed pyridine on the surface of 

metal oxides at ≥ 27°𝐶 [210] 

 

5.2.1.1.1 IR spectra of pyridine adsorbed on the surface of MeIMO and Fe-doped 

MeIMO 

The IR spectra of  bare and Fe-doped MeIMO samples after dehydration at 200 °C 

and 500 °C, are reported in Figure 5-1a and 5-1b respectively. For samples 

dehydrated at 200 °C, the broad adsorption range (3800-3000 cm-1) is observed due 

to hydroxyl groups on the outer surface of NTs [8]. For all Fe-doped samples, no 
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significant difference has been observed, due to low iron content, which results in 

the similarity in the IR spectra. Lamellar structure is formed for all samples after 

pre-heating at 500 °C [25] (Figure 5-1b), as discussed in forth chapter and based on 

results obtained by XRD, MAS NMR, TEM and BET surface area analysis. 

According to the spectra, the bands related to the C-H stretching and bending are 

still observable with remarkable high relative intensity and seems unperturbed due 

to their unchanged position with respect to pristine NTs [25] (2970 and 2916 cm−1,  

assigned to asymmetric and symmetric stretching of inner CH3 groups, 

respectively). These observations are in agreement with the results found in chapter 

four and strongly suggest that for MeIMO NTs collapsing mainly affects the outer 

surface, and inner surface mostly remained unchanged [25]. In the OH stretching 

region, the intensity of OH vibration is decreased mainly due to the dehydroxylation 

of the outer surface. 

 

 

Figure 5-1: Comparison of FT-IR spectra of a MeIMO (curve 1), Fe-0.7-MeIMO-IE 

(curve 2), Fe-0.7-MeIMO-DS (curve 3) and Fe-1.4-MeIMO-DS (curve 4) KBr wafer 

samples, outgassed at 200 °C (section a) and 500 °C (section b). 

5.2.1.1.2. IR spectra of pyridine adsorption in the 1700-1400 cm-1 range 

Figure 5-2 (a-d) reports different IR spectra of pre-heated samples at 200 °C in the 

adsorption region of 1700-1400 cm-1 after pyridine adsorption at r.t.,(only displays 

for Fe-0.7-MeIMO-IE and Fe-1.4-MIMO-DS for comparison) followed by 

evacuation in r.t., 80 °C and 150 °C for all samples and even at 250 °C (for 

MeIMO). 

According to the spectra, the samples display adsorption bands at 1440, 1450, 

1488, 1545, 1590 and 1610-1622 and 1635 cm-1. The bands at 1450 and 1610-1622 
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cm-1, correspond to Lewis acid sites, with notably high intensity in MeIMO with 

respect to other Fe-doped samples. The intensity of these band is decreases after 

evacuation at high temperature. The relative intensity of Lewis bands at 150 °C for 

all Fe-doped samples are low; however, for MeIMO, these bands are even 

detectable in evacuating at 250 °C, which confirms the stronger acidity of the outer 

surface of MeIMO due to coordination of pyridine molecules on the Al3+ Lewis 

sites, with respect to Fe-doped samples [23, 107, 115]. 

Both Lewis and Brønsted acidic sites are characterized by IR band at 1490 cm-

1, which is evident in MeIMO sample at higher relative intensity with respect to Fe-

doped samples. Brønsted acidic sites are characterized by absorption bands at 1545 

and 1636 cm-1, which are the typical bands for pyridinium cations, formed by 

protonation of pyridine by Brønsted acidic surface OH groups [205, 207]. These 

bands are detectable in MeIMO samples, even after evacuation at 150 °C. For Fe-

doped samples (Figure 5-2 b-d), these bands are not observable, or observable with 

low intensity (e.g. in Fe-1.4-MeIMO-DS) due to less acidic properties of Fe-(OH)-

Al groups [23].  

Pyridine molecules adsorbed by hydrogen bonding, are characterized by bands 

at 1442 and 1590 cm-1. These bands are not detectable in IR spectra of MeIMO 

samples; however, they are present in all Fe-doped samples (Figure 5-2 b-d), mainly 

due to electrostatic interactions between pyridine molecules and weakly acidic OH 

groups, likely related to Fe2O3 clusters [23]. 

Physisorbed pyridine molecules show bands in the 1430-1440 cm-1 and 1580-

1595 cm-1 range. In almost all samples they disappeared after evacuation at r.t. 



Determination of acid–base properties by adsorption of pyridine followed 

by IR spectroscopy 

97 

 

 

 

 

Figure 5-2: Difference IR spectra obtained on samples preheated at 200 °C, after 

adsorption of pyridine at r.t. (red spectrum), desorption at r.t. (blue spectrum), 80 °C 

(green spectrum), 150 °C (purple spectrum) and 250 °C (orange spectrum), on MeIMO 

(a), Fe-0.7-MeIMO-IE (b), Fe-0.7-MeIMO-DS (c) and Fe-1.4-MeIMO-DS (d) 

Figure 5-3 (a-d) reports different IR spectra of pre-heated samples at 500 °C 

and corresponding desorption at r.t., 80 °C and 150 °C and 250 °C. The spectra 

show that all samples have both Lewis and Brønsted acidic sites, which are stable 

even after evacuation at 250 °C. 

According to the observations in fourth chapter and based on previous studies 

on the structural collapse of imogolite and MeIMO [25, 183], the presence of penta-

coordinated, tetra-coordinated and hexa-coordinated aluminum sites and also 

residual hydroxyl group, are the main reason for acidic properties of collapsed 

samples and also bands observed in OH region [215], in fair agreement with what 

was observed with Bonelli et al. [8, 115] on surface acidity of collapsed phase. 

Furthermore, the increase in the intensity of Brønsted sites with respect to the parent 

samples may indicate that the collapsed phase has interesting acidic properties. 
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Figure 5-3: Difference IR spectra obtained on samples preheated at 500 °C, after 

desorption of pyridine at r.t. (blue spectrum), 80 °C (green spectrum), 150 °C (purple 

spectrum) and 250 °C (orange spectrum), on MeIMO (a), Fe-0.7-MeIMO-IE (b), Fe-0.7-

MeIMO-DS (c) and Fe-1.4-MeIMO-DS (d) 

 

5.2.1.1.3. Studying the IR spectra of pyridine adsorption in the OH stretching region 

The adsorption spectra of pyridine on Fe-0.7-MeIMO-IE and Fe-0.7-MeIMO-DS 

(pre heat at 200 C) were selected to study the adsorption in OH stretching regions 

(3800-300 cm-1) (Figure 5-4 a-b). Negative adsorption bands in the region of 3800-

3000 cm−1 are assigned to the disappearing of hydroxyls, due to interaction with 

pyridine [8, 115]. 

The IR spectra of Fe-0.7-MeIMO-IE, show 3 different bands at 3700, 3623 and 

3429 cm -1, while for Fe-0.7-MeIMO -DS only one adsorption band presents at 3770 

cm-1. 

The adsorption band at 3700 cm -1 is assigned to hydroxyl species of Fe2O3 

clusters: such OH groups should be less acidic, and indeed in Fe-0.7-MeIMO-DS 
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with less expected amount of Fe2O3 clusters, this band is not detectable. The band 

at 3623 cm -1, corresponds to the inner hydroxyl groups, located in the B surface 

between 3 NTs (Scheme 5-1). In clay minerals (kaolinite), this band is ascribed to 

octahedral and tetrahedral sheets of inner hydroxyl groups [212]. Probably in IE 

method, the presence of more iron-containing clusters within NTs results in higher 

accessibility of B pores with respect to DS method. The adsorption bands in the 

3440-3360 cm -1 region, are signed to inter-layer OH species, forming H-bonds to 

O atoms of another layer [115]  

Due to similarity between the IR spectra of pyridine adsorption on samples 

prepared at 500 °C, the Fe-0.7-MeIMO-IE was selected for studying the adsorption 

behavior of pyridine molecules. The IR spectra present the adsorption bands at 3742 

cm-1. The negative sharp bands in the 3770-3630 cm-1 region, are mainly due to the 

H-bonding interaction between hydroxyl groups of silanols in collapse structure 

with high acidity, in agreement with the previous studies on surface acidity of 

collapsed imogolite-type materials with NH3 interaction [8].  
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Figure 5-4:IR spectra obtained after desorption of pyridine at r.t., 80 °C, 150 °C and 250 °C on 

(a) Fe-0.7-MeIMO-IE preheated at 200 °C, (b) Fe-0.7-MeIMO-DS preheated at 200 °C, (c) Fe-0.7-

MeIMO-IE preheated at 500 °C 

5.3 Interaction with acid orange 7 (NaAO7) dye in the 

aqueous solution 

Dye pollutants are considered a source of environmental contaminants, which 

damage both aquatic and human life, due to their toxic, carcinogenic and mutagenic 

effects [216, 217]. Azo dyes are characterized by the presence of one or more azo 

groups (˗N꞊N-) bounded to aromatic rings. They are considered as the most 

important class of synthetic organic dyes, which are applied widely in different 

industries. Due to high chemical stability and versatility of azo dyes, it has been 

estimated that more than half of all commonly used dyes are from this category. 

Synthetic azo dyes are widely used by textile, cosmetic, photographic, 

pharmaceutical and food industries, representing environmental concerns. The 

increasing amount of azo dyes increases the water toxicity due to inhibition of 
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sunlight penetration, which negatively affects the photosynthetic reaction of aquatic 

flora [218-222]. Therefore, the removal of these pollutants and aromatic 

compounds from water is considered as one of the most important challenges that 

scientists and researchers must address [223-225]. However, the synthetic azo-dyes 

have a high stability and resistance to light and oxidation agents in the aqueous 

media [226], due to their complex aromatic structure that makes them stable to 

biodegradation [227]. One of the most common used azo dye is, Acid Orange 7 

(NaAO7, chemical formula: C16H11N2NaO4S), which is soluble in water and is a 

textile dye mainly used for silk and wool dyeing [228]. 

In this section the adsorption of NaAO7 dye with the synthesized MeIMO and 

Fe-doped MeIMO NTs, has been investigated. The same studies have been 

performed by Shafia et al. [23, 85] on the adsorption of NaAO7 dye with imgolite 

and Fe-doped imogolite NTs. According to their research results, the NaAO7 as a 

sodium salt, in the presence of water was dissociated and the anion part 

(C16H11N2O4S
-) could interact electrostatically with outer Al(OH2)

+Al or 

Fe(OH2)
+Al groups and enhanced the adsorption process. Moreover, the inner 

≡SiOH groups also showed minor interaction with AO7-, due to difficulty in 

diffusion of dye within the pores (Sheme 1). 

 

5.3.1 Adsorption and catalytic test 

5.3.1.1 Adsorption of NaAO7 

The adsorption behavior of NaAO7 dye (Fluka) is studied by contacting the powder 

(1g L-1) with a 0.67 mM aqueous solution of NaAO7 dye at the starting pH of 6.8. 

The powders used for investigating the adsorption towards NaAO7, are: MeIMO, 

and Fe-x-MeIMO (x= 0.7 and 1.4 wt% of Fe) produced by ion exchange (IE) 

methods. Due to poor adsorption behavior Fe-doped powder with respect to 

MeIMO, the adsorption behavior of Fe-doped MeIMO obtained by direct synthesis 

method (DS) was not considered. 

Aliquots of the suspension are collected at regular time intervals, during the 

adsorption tests. The suspended catalyst powder is separated from the solution by 

centrifuging (ALC centrifuge PK110, at the speed of 4000 rpm and for 4 min). The 

residual solution is measured by UV-vis spectroscopy in the 200-800 nm range 

(Cary 5000 UV-Vis-NIR spectrometer, Varian instrument), by using 1 mm path 

length quartz cell. The residual concentration of AO7˗ n the solution is measured 
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by the intensity of the main peak in adsorption of AO7˗ at 482 nm (vide infra) after 

calibration. 

5.3.1.2 NaAO7 degradation 

The degradation of NaAO7 in the presence of  H2O2 is studied by contacting 

the powder (1g L-1) with 0.67 mM aqueous solution of NaAO7 dye and 0.030 M 

H2O2. The powders used for investigating of the degradation of NaAO7 toward 

catalytic pathway, are MeIMO, Fe-x-MeMO (x= 0.7 and 1.4 wt% of Fe) produced 

with both IE and DS methods. 

Aliquots of the suspension are collected at regular time intervals, during the 

catalysis tests. The suspended catalyst powder is separated from the solution by 

centrifuging (4000 rpm and for 4 min) and the residual solution is measured by UV-

vis spectroscopy in the 200-800 nm range. The concentration of residual AO7˗ in 

the solution is measured by the intensity of the main peak in adsorption of AO7˗ at 

482 nm. 

In the presence of H2O2 the catalytic reaction takes place leading to the 

degradation of NaAO7 dye according to the below reaction: 

𝐶16𝐻11𝑁2𝑆𝑂4𝑁𝑎 + 42𝐻2𝑂2 → 16 𝐶𝑂2 + 46𝐻2𝑂 + 2𝐻𝑁𝑂3 + 𝑁𝑎𝐻𝑆𝑂4    (5 − 1) 

According to reaction (5˗1) the stoichiometric concentration of H2O2 necessary 

for complete degradation of NaAO7 dye is 0.03 M, which has been chosen during 

this analysis. 

 

5.3.2 Results of adsorption and catalytic activity of MeIMO and Fe-

doped MeIMO 

The molecular structure and UV-Vs spectrum of NaAO7 dye in the water are 

reported in Scheme 5-3. 

The hydrazone form of AO7 in the presence of water is stable in the solid phase. 

Therefore, the azo-hydrazone tautomerization takes place in water by intra-

molecular proton transfer. Consequently, both hydrazone and azo-form are 

simultaneously present in water [85, 156]. The bands at 230 and 310 nm and the 

shoulder at 256 nm are assigned to electron transmissions of the aromatic rings. 
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The band at 482 is the maximum visible adsorption wavelength of the NaAO7 

dye and is due to the n-π* transition involving the lone pair on N atoms and the 

connected system, which extend over the two aromatic moieties and include the N-

N group of the hydrazone form [85, 156, 229-231] The small shoulder at 403 nm 

has a similar nature, including the N–N group of the azo-form [230, 232, 233]. 

 

 

Scheme 5-3:(a) Structure formula and molecular dimension of AO7- dye, (b) UV-Vis 

spectroscopy of 0.67 mM aqueous solution of AO7 dye, with the corresponding 

adsorption bands due to azo- and hydrazone forms 

 

 
Scheme 5-4: MeIMO NTs and species present on the outer surface of this material before 

and after isomorphic substitution of Fe3+/Al3+ 
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Figure 5-5 reports the UV-Vis spectra of supernatant solution after contact with 

the MeIMO and Fe-x-MeIMO-IE (x= 0.7 and 1 wt% of Fe) samples. Based on the 

spectra, no extra bands have been observed with respect to the initial NaAO7 

solution, which indicate the minor adsorption process. Due to the hydrophobicity 

of inner surface of MeIMO type NTs, the interaction of dye with the inner pores is 

hindered. On the other hand, the fast process takes place on the C surface of NTs 

(Scheme 5-1) with the interaction of dye either with Al(OH)Al groups in the 

MeIMO NTs or with Fe(OH)Al groups in Fe-doped samples. 

In the case of MeIMO, the minor adsorption of AO7- molecules at the first 120 

min of process (46 %), indicate the electrostatically reaction of AO7- with the outer 

surface of NTs (Figure 5-6). However, in the case of the Fe-doped samples, the 

minor adsorption of AO7- molecules, for both samples with different amount of 

iron doping (32 %) indicate that only few Fe(OH)Al groups are protonated 

(Figure 5-6). 
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Figure 5-5: UV-Vis spectra of the starting AO7 solution (0.67 mM in water; bold black 

curve) and supernatant solutions obtained after different time intervals in contact with 

MeIMO (a) and Fe-0.7-MeIMO-IE (b) and Fe1.4-MeIMO-IE (c). The colors of spectra 

are assign to 10 min (gray), 1 h (red), 2 h (green), 5h (blue), 24 h (purple), 72 h (dark 

cyan) 96 h ( dark yellow) 
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Figure 5-6: Percentage of AO7 adsorption by MeIMO (stars), Fe-0.7-MeIMO-IE (hollow 

squares) and Fe-1.4-MeIMO-IE (squares) 

The results of NaAO7 degradation and catalytic reaction in the presence of 

0.030 M H2O2 and 1g L-1 catalyst loading in dark condition is reported in Figure 5-7. 

Sections “a-e” of Figure 5-7 report the UV-Vis spectra of supernatant solution in 

contact with MeIMO and Fe-doped MeIMO samples, obtained by either direct 

synthesis or post synthesis in different time intervals, and section “f” compares the 

UV-Vis spectra of supernatant solution in contact with catalyst after 72 h from 

starting of the process. Figure 5-8 reports the total conversion (% of AO7- 

degradation) of the dye in contact with the corresponding catalysts. 

According to spectra (Figure 5-7), for all samples the intensity of AO7 bands 

is decreased. However, for the whole experiment time, Fe-1.4-MeIMO-IE (93%) 

and MeIMO (73%) show higher AO7- removal respectively with respect to all other 

samples. Furthermore, in all Fe-doped samples either with direct synthesis or with 

ion exchange methods, those with higher iron loading (1.4 wt %) show the higher 

ability for AO7- removal, compared to the lower Fe-doped samples (0.7 wt %) 

(Figure 5-7f and Figure 5-8). Therefore, the total AO7- removal in the whole 

process time is decreased following this order: Fe-1.4-MeIMO-IE (93%) > MeIMO 

(73%) > Fe-1.4-MeIMO-DS (57%) > Fe-0.7-MeIMO-IE (45%) > Fe-0.7-MeIMO-

DS (35%). 



Interaction with acid orange 7 (NaAO7) dye in the aqueous solution 107 

 

 

 

The high reactivity of the bare MeIMO is likely attributed to the presence of 

reactive aluminum sites on the outer surface of NTs, which is in agreement with the 

results reported by Shafia et al. [85] on the catalytic reactivity of imogolite NTs for 

degradation of NaAO7 dye. According to their study, the aluminum sites on the 

surface of imogolite NTs have higher reactivity in comparison with the similar ones 

at the surface of transition aluminas, which have been shown to be active in 

epoxidation reaction [85, 234-236]. The higher reactivity of aluminium sites at the 

surface of imogolite and MeIMO NTs, with respect to transition aluminas in the 

degradation AO7- can be attributed to the structure and the curvature on the surface 

of NTs Table 5-2 [85].  

Regarding the lower reactivity of three Fe-doped samples (Fe-1.4-MeIMO-DS, 

Fe-0.7-MeIMO-DS and Fe-0.7-MeIMO-IE, Figure 5-7f, spectra 6, 3 and 4 

respectively): doping iron in the NTs structure, results replacement of one Al3+ with 

one Fe3+ group and formation of three Fe(OH)Al and three FeOAl groups 

(Scheme 5-4). Based on this modification, the amount of Fe-related sites are high 

enough to affect the hydroxyl population at the outer surface, and change the surface 

properties of MeIMO NTs. Furthermore, the Fe3+ in the structure of NTs are highly 

coordinated, which may negatively affect their reactivity toward H2O2 molecules. 

Simultaneously, the presence of H2O2 interferes the interaction of Fe3+ and AO7- 

species which is in agreement with the previous observations obtained by Shafia et 

al. [85]  on the reactivity of imogolite NTs. 

In the case of Fe-1.4-MeIMO-IE NTs, the higher catalytic reactivity of this 

sample with respect to other Fe-doped samples, is likely due to the presence of some 

Fe3+ ions in the solution. The origin of Fe3+ ions is probably the clusters within the 

NTs structure. The presence of these Fe3+ ions motivates the occurrence of Fenton-

like reaction and enhances the dye degradation according to the below reactions: 

𝐹𝑒2+ + 𝐻2𝑂2 → 𝐹𝑒
3+ +𝑂𝐻. + 𝑂𝐻−     (5 − 2) 

𝐹𝑒3+ + 𝐻2𝑂2 ↔ 𝐻
+ + 𝐹𝑒(𝐻𝑂2)

2+     (5 − 3) 
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Figure 5-7:UV-Vis spectra of starting 0.67 mM AO7 solution (bold black curve) and of 

the supernatant solution after different time intervals in contact with 0.03M H2O2 and Fe-

0.7-MeIMO-IE (a), Fe-1.4-MeIMO-IE (b), Fe-0.7-MeIMO-DS (c), Fe-1.4-MeIMO-DS 

(d) and MeIMO (e). (f) Comparison between UV-Vis spectra of starting AO7 solution 

(curve 1) and of the supernatant solution obtained after 72h in contact with 0.03 M H2O2 

and MeIMO (curve 2), Fe-0.7-MeIMO-IE (curve 3), Fe-0.7-MeIMO-DS (curve 4), Fe-

1.4-MeIMO-IE (curve 5) and Fe-1.4-MeIMO-DS (curve 6). The colors of spectra are 

assign to 10 min (gray), 1 h (red), 2 h (green), 5h (blue), 24 h (purple), 72 h (dark cyan) 

96 h ( dark yellow) 
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Figure 5-8: Percentage of AO7 conversion obtained by MeIMO (stars), Fe-0.7-MeIMO-

DS (hollow triangles), Fe-0.7-MeIMO-IE (hollow squares), Fe-1.4-MeIMO-DS 

(triangles) and Fe-1.4-MeIMO-IE (squares) 

 

Table 5-2: Catalytic conversions as obtained with 0.030 M H2O2 and 0.67 mM AO7 in 

water 

Catalyst 
Conversion with 0.030 M 

H2O2 (%) 

MeIMO 73 

Fe-0.7-MeIMO-IE 45 

Fe-1.4-MeIMO-IE 93 

Fe-0.7-MeIMO-DS 35 

Fe-1.4-MeIMO-DS 57 

γ-Al2O3 35 

None 5.0 

 

  



110 Surface Acidity and Reactivity of Bare and Fe-Modified Methyl-

Imogolite Nanotubes with azo-dye 

 

 

 

5.4 Conclusions 

MeIMO and Fe-doped MeIMO NTs present strong and mild acidic sites, according 

to IR spectra of adsorbed pyridine on different Lewis and Brønsted sites and 

reversible desorption up to 250 °C for MeIMO and 150 °C for Fe-doped MeIMO 

ones. The thermally collapsed samples (samples preheated up to 500 °C) exhibit 

stronger acidic properties due to Lewis and Brønsted sites. The strong acidic sites 

of collapsed samples are ascribed to the formation of Al-related sites, and different 

Al coordination with respect to NTs.  

Studying the reactivity of MeIMO and Fe-doped samples in water with H2O2 

for adsorption and degradation of azo-dye, imply the notable reactivity of MeIMO 

for both adsorption and degradation of dye, due to reactive aluminum sites on the 

outer surface of NTs. Nonetheless the presence of highly coordinated Fe3+ in iron-

doped samples negatively affects the reactivity of these samples in the presence of 

H2O2. However, at higher iron loading and especially in ion exchange method, the 

probability of the presence of some Fe3+ ions in solution coming from iron-

containing clusters, provokes the Fenton-like reaction and higher reactivity toward 

dye degradation. 

 



 

 

Chapter 6 
6. Photo-Activated Degradation of Tartrazine by H2O2 as Catalyzed by Both Bare and Fe-Doped MeIMO Nanotubes and the Related Collapsed Phases 

Photo-Activated Degradation of 

Tartrazine by H2O2 as Catalyzed by 

Both Bare and Fe-Doped MeIMO 

Nanotubes and the Related 

Collapsed Phases 

6.1 Introduction 

Tartarazine E102 (TRZ, Scheme 6-1) is a synthetic azo dyes, which is widely used 

as a food coloring agents. TRZ, is recalcitrant to biodegradation under aerobic 

conditions, and appears to be responsible of the most allergic and/or intolerance 

reactions in comparison to the other azo dyes. Advanced oxidation processes 

(AOPs), implying the production of reactive oxygen species (above all the hydroxyl 

radical HO), are currently considered a powerful method for the in situ remediation 

of both wastewater and contaminated groundwater [238]. 
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Scheme 6-1: Structure formula of tartrazine (TRZ) 

HO radicals may be produced in contaminated aquifers by the well-known 

Fenton reaction (eq. 6-1): Fe2+ ions are introduced into groundwater, and 

concentrated hydrogen peroxide (H2O2) is added in order to oxidize Fe2+ ions to 

Fe3+ ions and to produce HO species. However, after oxidation of Fe2+ to Fe3+, the 

overall oxidation rate decreases due to (slower) reduction of Fe3+ to Fe2+ (eq. 6-2 

and 6-3) [239, 240]. By applying UV irradiation, the so-called photo-assisted 

Fenton reaction (or photo-Fenton system) occurs [241], through which Fe2+ species 

are regenerated by photolysis of Fe3+ hydroxide complexes yielding additional HO 

radicals (eq. 6-4 and 6-5) and, simultaneously, photocatalytic decomposition of 

H2O2 occurs (eq. 6-6): 

 

𝐹𝑒2+ + 𝐻2𝑂2 → 𝐹𝑒
3+ + 𝐻𝑂+ 𝑂𝐻−          (6 − 1) 

𝐹𝑒3+ + 𝐻2𝑂2  ⇋  𝐻
+ + 𝐹𝑒(𝐻𝑂2)

2+              (6 − 2) 

𝐹𝑒(𝐻𝑂2)
2+ → 𝐹𝑒2+ + 𝐻𝑂2                              (6 − 3) 

𝐹𝑒(𝑂𝐻)2+ + ℎ𝜈 → 𝐹𝑒2+ + 𝑂𝐻∙                       (6 − 4) 

𝐹𝑒3+ + 𝐻2𝑂 + ℎ𝜈 → 𝐻𝑂+ 𝐹𝑒
2+ + 𝐻+       (6 − 5) 

𝐻2𝑂2 + ℎ𝜈 → 2𝐻𝑂                                              (6 − 6)  
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For an actual application of the photo-Fenton method to wastewater treatment, 

homogeneous catalysts bring some limitations, due to production of Fe-containing 

sludge, catalyst deactivation and limited range of operating pH [242]. Several 

studies have been also carried out on heterogeneous photo-Fenton systems 

implying, for instance, the use of Fe/HY zeolite for the degradation of polyvinyl 

alcohol [243], the photo-Fenton oxidation of phenol [244] as catalyzed by Fe 

species incorporated in different silica supports, and the oxidation of Acid Orange 

7 (a model molecule of many azo dyes) by Fe-bentonite and Fe-laponite catalysts 

[245]. Moreover, Saninno et al. studied the application of structured catalysts 

(namely LaFeO3 and Pt/LaFeO3 perovskites supported on different cordierite or 

corundum honeycomb monoliths) in the heterogeneous photo-Fenton removal of 

TRZ [246, 247].  

Among nanomaterials with potential application as heterogeneous catalysts, 

there is a growing interest for imogolite-related materials, as testified by the recent 

studies on their synthesis [141, 248-251], structure [111, 143, 252], electronic states 

[62, 253], stability [62, 199], and application as catalyst and/or catalytic support [8, 

21].  

The subject of this chapter is treated in an article that we have already submitted 

concerning the catalytic behavior of MeIMO, along with Fe-doped MeIMO 

obtained by ionic exchange (IE) and of the phases stemming by the thermal collapse 

of NTs. Two Fe contents were considered: 0.7 and 1.4 wt. % Fe. According to the 

results of previous chapters and also based on previous studies on Fe-doped 

imogolite NTs, Fe may isomorphically substitute for Al up to 1 wt. %, whereas at 

Fe loadings as high as 1.4 wt. % Fe oxo-hydroxide clusters formation occurs along 

with IS, NTs formation being instead hindered at higher loadings [21, 23, 24, 85].  

The specific structure and different porosities in the dry powder of MeIMO 

NTs with hexagonal packing (Scheme 2-3 and Scheme 5-1) (Intra-tube pores (A) 

have  2.0 nm diameter; inter-tube pores (B) among three aligned NTs in a bundle 

have ca. 0.45 nm diameter and larger C mesopores are disordered slit-pores 

occurring among bundles [11, 78-80], giving rise to potential use of this material 

for catalysis.  

So far, no specific study has been devoted to Fe-doped MeIMO NTs, nor to 

their application as heterogeneous catalysts in the degradation of TRZ. Shafia et al. 

obtained Fe-doped imogolite NTs by both direct synthesis and post-synthesis ionic 

exchange [23, 85, 254], the latter result opening the possibility to dope imogolite 

without perturbing the (delicate) hydrolysis equilibria leading to NTs formation. 

Furthermore, the band gap (Eg) of imogolite, an insulator with Eg = 4.9 eV, 
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decreased to 2.4-2.8 eV in Fe-doped NTs that ultimately show semiconducting 

properties [23, 24, 254]. Moreover, the outer surface of imogolite NTs forms 

reactive Al-OOH groups in the presence of H2O2 [85] and show remarkable 

catalytic properties in the degradation of Acid Orange 7 under dark conditions. The 

reactive Al-OOH groups also have been observed for MeIMO NTs in particular, 

for the degradation of NaAO7 in previous chapter. Indeed, it is expected that such 

groups (Al-OOH) be photo-catalytically active under UV light when MeIMO is 

used as photo-catalyst. Moreover, in the presence of UV light Fe-doped MeIMO 

could trigger a photo-Fenton process (eq. 1-6). 

A further aspect considered in the present chapter was the catalytic activity of 

the structure stemming from NTs thermal degradation: previous chapters showed 

that after thermal treatment at 500 °C MeIMO NTs collapse into a buckled structure 

(Scheme 4-3), which retains high surface area and porosity remaining suitable for 

catalytic purposes [25]. The photo-catalytic activity of such collapsed phases was 

also addressed in this paper, with particular attention to the effect of the new 

environments surrounding both Al and Fe in the buckled structure as discussed in 

Chapter 4. After MeIMO NTs thermal collapse, the Al coordination changes from 

octahedral to both tetrahedral and pentacoordinated Al [25], which could led to the 

formation of more reactive Al-OOH groups, whereas the new environment 

surrounding Fe in the collapse phase is expected to affect its photo-Fenton 

performance, when the material is exposed to H2O2 and UV light. 

6.2 Experimental Section 

6.2.1 Materials synthesis  

The as-synthesis MeIMO was obtained according to synthesis procedure discussed 

in chapter 2. Two Fe-x-MeIMO samples (x= 0.7 and 1.4 wt. % Fe) were obtained 

by ionic exchange of MeIMO NTs, as discussed briefly in chapter 3.  

Thermally collapsed samples were obtained by calcining aliquots of both 

MeIMO and Fe-0.70-MeIMO-IE at 500 °C for 4 h in air [25] (the collapsing 

procedure did not concern Fe-1.4-MeIMO-IE sample, which showed a poorer 

catalytic activity (vide infra), and therefore its collapsed phase was not considered). 

The collapsed samples are hereafter labeled with an ending –c (e.g. MeIMO-c 

stands for the collapsed phase obtained from MeIMO). 
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6.2.2 TRZ degradation tests 

Tests were carried out on 160 ml aqueous solution of TRZ (purity grade > 99.0%; 

initial concentration = 40 ppm; initial pH = 6.4) in a stainless-steel sealed batch 

photoreactor designed by Sannino et al. (Scheme 6-2)  [255]. After catalyst addition 

(0.25 g L-1), the suspension was continuously stirred by nitrogen fine bubbling and 

external recirculation by a peristaltic pump (Watson Marlow). Before re-entering 

the reactor, the solution was cooled down by means of a cold trap in order to 

maintain a constant temperature of 25 °C. The outlet gases pass through a cold trap 

(0 °C) in order to assure water condensation, prior entering the gas analyzer (Uras 

14, ABB) for CO2 concentration measurement. 

In order to investigate the effect of pH, the initial pH of the solution was 

changed to either acidic conditions (pH = 3.0, by addition of HCl) or basic 

conditions (pH = 10.0, by addition of NH3). 

A Perkin Elmer UV-Vis spectrophotometer (λmax = 426 nm) was used to 

measure TRZ concentration, in order to study discoloration. TRZ initial 

concentration C0 (without catalyst) was measured at time t = 0, the 8 W mercury 

vapor lamp emitting at 254 nm was then placed inside the photoreactor with tight 

connections. The system was kept in dark conditions for 3 h, in order to reach 

adsorption/desorption equilibrium of TRZ at catalyst surface. During the tests, TRZ 

concentration was analyzed by monitoring changes in absorbance at λmax=426 nm 

at different time intervals. After 3 h, UV irradiation started and, simultaneously, 

H2O2 was continuously dosed by means of a peristaltic pump (Miniplus 3-

GILSON). Three different H2O2 flow rates were adopted (0.019, 0.038 and 0.057 

mol h-1). 

The catalytic performance was evaluated in terms of Total Organic Carbon 

(TOC) removal: 

 𝑇𝑂𝐶(𝑟𝑒𝑚𝑜𝑣𝑎𝑙%) =
𝑇𝑂𝐶0 − 𝑇𝑂𝐶𝑡

𝑇𝑂𝐶0
        (6 − 7) 

where TOC0 is the initial TOC (t = 0) and TOCt is the TOC value after a given 

irradiation time t.  

The TOC0 of the reference aqueous solution (solely containing 40 ppm TRZ as 

initial concentration C0) corresponds to 17 ppm. The TOC as a function of time 

(TOCt) was evaluated by means of high temperature catalytic combustion in a 

tubular flow microreactor operating at 953 K, with a stream of hydrocarbon-free air 

to oxidize the organic carbon (catalyst: Pt/Al2O3). 
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The reaction products in the gas phase were monitored by continuous gas 

analyzers (Uras 14, ABB) measuring the gaseous concentration of CO, CO2 at the 

outlet of the photo-reactor. 

 

 

Scheme 6-2: Laboratory apparatus for the catalytic photo-Fenton oxidation [255] 

 

6.3 Results and discussions 

6.3.1 Powders characterization 

The X-ray Powder Diffraction (XRD), BET surface area and UV-Vis spectroscopy 

have been performed for analyzing the structure of all powder samples (MeIMO, 

Fe-0.7-MeIMO-IE and Fe-1.4-MeIMO-IE), even in as-synthesis form or collapsed 

form. Nevertheless, all characterization have been discussed in chapter three and 

four. In order to avoid unnecessary repetition, surface characterization presented 

earlier are not reproduced in this chapter.  

Figure 6-1 reports -potential curves obtained with MeIMO, Fe-0.7-MeIMO-

IE and Fe-1.4-MeIMO samples. MeIMO NTs (stars) are positively charged at low 

pH values, and the point of zero charge (PZC) is found at pH 8.8, a value close to 
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that of both imogolite [136] and transition aluminas [256], in agreement with the 

chemical composition of NTs outer surface. The -potential curves and PZC values 

of MeIMO and Fe-0.70-MeIMO-IE are very close, due to the low Fe content in the 

latter sample [23, 85]: with both samples, the outer surface of NTs is positively 

charged below pH 8.8, and therefore prone to interact with TRZ anions. Conversely, 

the PZC of Fe-1.4-MeIMO sample (Table 1) is found at lower pH, most likely due 

to a higher amount of Fe oxo-hydroxide clusters (as observed in the UV-Vis 

spectrum, Fig 4-11), which affect PZC value, although the presence of some 

residual chloride ions coming from the Fe-precursor could contribute to PZC 

lowering as well [257]. The -potential curves of collapsed samples differ from 

those of the parent samples: both MeIMO-c and Fe-0.70-MeIMO-IE-c are 

negatively charged in a wide range of pH. Their lower PZC values, close to that of 

amorphous silica (between 1.9 – 3.5), indicate the occurrence of a new phase, where 

the surface accessible after NTs collapse likely contains silicon oxide patches, in 

agreement with eq. 8 and 9 and with the literature [257, 258]. The remarkable 

change in -potential curves after collapsing is also in agreement with the UV-Vis 

spectral features of Fe-0.7-MeIMO-IE-c, indicating that Fe species reacted with the 

alumino-silicate phase resulting embedded in the buckled structure in a different 

environment with respect to the parent sample. 
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Figure 6-1: -potential curves of MeIMO (full stars), MeIMO-c (hollow stars), Fe-0.70-

MeIMO-IE (full triangles), Fe-0.70-MeIMO-IE-c (hollow triangles) and Fe-1.4-MeIMO-

IE (full squares) 

6.3.2 Results of TRZ degradation 

Figure 6-2a and 6-2b report curves of TRZ discoloration and mineralization, 

respectively: measurements were carried out at natural pH of the solution (pH = 

6.4) and H2O2 was continuously dosed with the constant 0.038 mol h-1 rate after 

starting UV irradiation. TRZ discoloration (Figure 6-2a) is reported as C/C0 where 

C0 is the initial absorbance (t = 0) and C is the absorbance at reaction time t.  

In the absence of UV irradiation, the curves of as-synthesized samples in 

Figure 6-2a show ca. 10-20 % rapid discoloration during the first 10 min, due to 

some non-equilibrium adsorption/diffusion phenomena likely followed by some 

desorption, until equilibrium is reached after ca. 2 h. Collapsed samples did not 

show an appreciable TRZ adsorption, in agreement with their surface charge (vide 

supra).  
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Figure 6-2: Discoloration (a) and mineralization (b) of TRZ by photolysis (circles) and in 

the presence of MeIMO (full stars), MeIMO-c (hollow stars), Fe-0.7-MeIMO-IE (full 

triangles), Fe-0.7-MeIMO-IE-c (hollow triangles) and Fe-1.4-MeIMO-IE (squares)  



120 Photo-Activated Degradation of Tartrazine by H2O2 as Catalyzed by Both 

Bare and Fe-Doped MeIMO Nanotubes and the Related Collapsed Phases 

 

 

 

After starting UV irradiation, in the absence of catalyst (green circles in 

Figure 6-2a) TRZ discoloration by mere photolysis reached 90 %, remaining 

constant at longer irradiation time, meaning that UV light alone was ineffective in 

the degradation of TRZ intermediates. Conversely, in the presence of the studied 

catalysts total discoloration occurred after almost 2 h under UV irradiation. 

Inspection of Figure 6-2a shows that Fe-0.70-MeIMO-IE-c was very effective 

towards UV-induced discoloration: after thermal collapse Fe is mostly embedded 

in the alumino-silicate matrix as the species absorbing at 270 nm n UV-Vis spectra 

of powder samples (Figure 4-11), reducing the amount of Fe oxo-hydroxide species, 

which have a detrimental effect on photo-degradation (vide infra). Fe-1.4-MeIMO 

reached 100 % discoloration before MeIMO and Fe-0.70-MeIMO-IE, likely due to 

the higher amount of IS Fe3+ sites active in the photo-Fenton process. Interestingly, 

MeIMO was also effective, due to reactive Al-OOH groups formed by reaction with 

H2O2 and which, under UV light, promptly release HO species able to attack 

organic moieties.  

Summarizing, TRZ discoloration occurs through different mechanisms. 

Concerning non-reactive pathways, electrostatic interaction plays a role, as already 

observed between anions of the azo dye Acid Orange 7 and (positively charged) 

imogolite NTs [23, 85]. The dye moieties may also adsorb/diffuse within the pores 

of as-synthesized materials and, finally, N atoms of TRZ may coordinate Fe3+ sites 

in Fe-doped samples, through a ligand displacement mechanism [23, 85]. 

Concerning reactive pathways, though photo-Fenton reaction occurs with all the 

Fe-containing samples, also very reactive Al-OOH groups form in the presence of 

H2O2 [85].  

Concerning TRZ mineralization (Figure 6-2b), after 3 h under UV irradiation 

TOC removal decreases as follows: Fe-0.70-MeIMO-IE (100%) > MeIMO  

MeIMO-c (90%) > Fe-0.7-MeIMO-IE-c (83%) and Fe-1.4-MeIMO (69%). The 

interaction between TRZ ions and accessible Fe3+ ions in Fe-0.70-MeIMO-IE (full 

triangles) likely results in a more effective mineralization of TRZ by photo-Fenton 

process (eq. 4-6). This is in agreement with previous work by Shafia et al. showing 

that Acid Orange 7 anions may also adsorb at the surface of Fe-doped imogolite 

NTS through a ligand displacement mechanism, with N atoms coordinating Fe3+ 

ions [23, 85].  

Conversely, Fe3+ sites in the buckled structure of Fe-0.70-MeIMO-IE-c (the 

most active sample towards discoloration) seems less active towards TRZ 

mineralization with respect to Fe3+ sites in Fe-0.70-MeIMO-IE: such result could 
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be ascribed to some hindered diffusion of TRZ intermediates within the micropores 

of the buckled structure, which hampers mineralization. All this notwithstanding, 

the TOC removal obtained with Fe-0.70-MeIMO-IE-c was higher than with Fe-1.4-

MeIMO. A higher Fe content has a detrimental effect on TRZ removal, in that with 

Fe-1.4-MeIMO sample the TOC removal almost equals mere photolysis 

(Figure 6-2b, squares): this may be due to the Fe oxo-hydroxide clusters having a 

lower photo-Fenton reactivity as compared to IS Fe3+sites. Such clusters may also 

catalyze the decomposition of H2O2 to water and oxygen [259, 260], a process that 

decreases the production rate of HO radicals. Nonetheless, the electric field 

surrounding Fe oxo-hydroxide clusters may negatively affect the separation of 

photo-induced electron–hole pairs.  

The remarkable activity of MeIMO towards TRZ mineralization can be 

accounted for by the formation of the aforementioned Al-OOH groups. The same 

reactivity towards H2O2 was already observed with some transition aluminas [234-

236] and imogolite NTs, the latter being able to degrade Acid Orange 7 in the 

presence of H2O2 even in dark conditions [23, 85]. Concerning MeIMO-c, previous 

Solid State NMR study showed that the coordination of some Oh Al3+ sites in 

MeIMO changes [8, 25, 143] to tetra- and pentacoordinated Al sites in the buckled 

structure, as also observed with amorphous aluminosilicates with similar Si/Al ratio 

[261], with the likely formation of some oxygen vacancies [262]. Such tetra- and 

pentacoordinated Al sites present in MeIMO-c can produce reactive HO radicals 

in the presence of H2O2 and UV irradiation, finally explaining the sizeable catalytic 

activity of the collapsed material. 

The best catalyst in terms of TOC removal (i.e. Fe-0.70-MeIMO-IE sample) 

was then used for further experiments testing stability and the effects of H2O2 

dosing rate, catalyst dosage and initial pH. 

6.3.3 Stability experiments on Fe-0.70-MeIMO-IE sample 

With the aim to evaluate the stability of the Fe-0.70-MeIMO-IE sample, recycling 

experiments under UV light irradiation were performed for five cycles under the 

same experimental conditions. After 180 min reaction, the sample was separated by 

centrifugation and the recovered catalyst powder was washed several times with 

distilled water, before being re-dispersed into a (fresh) aqueous solution of TRZ. 

After five recycling tests, Fe-0.70-MeIMO-IE sample did not show significant loss 

in activity, since TRZ discoloration and TOC removal remained constant at about 

98 and 97%, respectively, as shown in Figure 6-3. Accordingly, the results of 

leaching test showed that Fe concentration, as determined by ICP-AES, in the 
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treated solutions after the fifth photo-Fenton test was very low, i.e. about 0.3 mg L-

1, indicating a nearly negligible, and therefore acceptable, Fe dissolution from the 

Fe-0.70-MeIMO-IE sample. Such results indicate that the Fe-0.70-MeIMO-IE 

sample is a stable photocatalyst confirming the reproducibility of the photo-Fenton 

process in the treatment of aqueous solutions containing the target dye. 

 

Figure 6-3: TRZ discoloration and TOC removal after 180 min under UV irradiation as 

obtained with the Fe-0.70-MeIMO-IE catalyst for five cycles. H2O2 dosage rate 0.038 

mol h 1; catalyst dosage: 0.25 g L-1; initial dye concentration: 40 ppm; initial pH of 

solution: 6.4. 

6.3.4 Effect of continuous H2O2 dosage rate 

Previous studies showed that H2O2 dosage rate directly affects the efficiency of 

photo-Fenton reaction; furthermore, in the presence of continuous H2O2 dosage, the 

maximum value of CO2 production, contributing to TOC removal, is higher than a 

H2O2 dosage with the same amount once at the beginning of the test [263].  

The effect of H2O2 continuous dosage on photo-Fenton removal of TRZ at a 

constant pH of 6.4 was studied at three different flow rates (0.019 mol h-1, 0.038 

mol h-1 and 0.057 mol h-1) in the presence of Fe-0.70-MeIMO-IE (the best catalyst 

in terms of TOC removal). The corresponding results of discoloration and TOC 

removal are reported in Figure 6-4a and 6-4b, respectively.  
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According to Figure 6-4a, the decrease in H2O2 flow rate from 0.038 mol h-1 to 

0.019 mol h-1 improves discoloration, whereas at both rates total TOC removal was 

reached in 3 h. A rate increase to 0.057 mol h-1 did not affect much discoloration 

(Figure 6-4a) and negatively affected mineralization, as the TOC removal decreased 

(Figure 6-4b). Such results underline the fact that TRZ discoloration mainly 

occurred through reaction between HO radicals (produced from H2O2 under UV 

light) and TRZ moieties, both species being in liquid phase, whereas the 

heterogeneous catalytic process played an important role in TOC removal 

(Figure 6-4b), as already observed in the heterogeneous photo-Fenton removal of 

the azo dye Orange D [264]. At low and intermediate H2O2 flow rate, Fe3+ species 

resulted in the production of more HO radicals, which accelerated the 

mineralization of TRZ (eq.1, 5 and 6) [260]. Conversely, a further increase in H2O2 

flow rate to 0.057 mol h-1 resulted in worsening the overall TOC removal 

performance, likely due to HO radical consumption, through the following 

“parasitic” reactions [265]: 

 

𝐻𝑂+ 𝐻2𝑂2 → 𝐻𝑂2. +𝐻2𝑂       (6 − 8) 

𝐻𝑂2+ 𝐻𝑂 → 𝑂2 + 𝐻2𝑂             (6 − 9) 

The reaction reported in eq. (6-8) produces HO2 radicals, which are weaker 

oxidizing species with respect to HO radicals and, nonetheless, may also react with 

HO radicals (eq. (6-9)) consuming the latter species. 
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Figure 6-4: Influence of continuous H2O2 dosage rate on TRZ discoloration (a) and 

mineralization (b): 0.019 mol h-1 (circles), 0.038 mol h-1 (triangles) and 0.057 mol h-1 

(squares). Catalyst: Fe-0.70-MeIMO-IE; initial dye concentration: 40 ppm; initial pH of 

solution: 6.4  
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6.3.5 Effect of Fe-0.70-MeIMO-IE dosage on the photo-Fenton 

reaction 

The effect of catalyst concentration on the photo-Fenton process was studied with 

Fe-0.70-MeIMO-IE: results concerning TRZ discoloration and TOC removal at 

0.25 and 1 g L-1 catalyst concentration are reported in Figure 6-5a and 6-5b, 

respectively. 

As discussed before, at lower catalyst dosage, both discoloration and 

mineralization occurred gradually, and 100 % TOC removal was reached after 3 h 

under UV irradiation (Figure 6-5a, triangles). By increasing the catalyst dosage to 

1 g L-1, instead, ca. all TRZ was adsorbed at the photocatalyst surface in the first 

10 min in dark conditions (Figure 6-5a, diamonds) and, consequently, 100 % TOC 

removal was reached almost immediately under UV irradiation (Figure 6-5b, 

diamonds). Comparison of the amount of carbon consumed during reaction (as 

assessed by TOC analysis with 1 g L-1 Fe-0.70- MeIMO-IE) and the amount of 

carbon released as CO2 (as measured by catalytic combustion) leads to carbon mass 

balance very close to 100%. Such result supports the conclusion that adsorbed TRZ 

is selectively converted to CO2 in the presence of 1 g L-1 Fe-0.70-MeIMO-IE, as 

previously observed in the photo-Fenton removal of acetic acid carried out in the 

same photoreactor [265]. 
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Figure 6-5: Influence of catalyst concentration on (a) discoloration and (b) mineralization 

of TRZ with Fe-0.70-MeIMO-IE catalyst: 0.25 g L-1 (triangles) and 1 g L-1 (diamonds) 
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6.3.6 Effect of pH on the photo-Fenton reaction 

Figure 6-6 reports the effect of pH on both discoloration (a) and TOC removal (b) 

during photo-Fenton tests carried out with 0.25 g L-1 Fe-0.70-MeIMO-IE and 0.038 

mol h-1 H2O2 flow rate at three different initial pH values (3.0, 6.4 and 10.0). As 

expected, pH modifies NTs adsorption properties, and therefore their discoloration 

behavior in dark conditions (Figure 6-6a): pH plays an important role on the amount 

of TRZ adsorbed at Fe-0.70-MeIMO-IE surface, in that the equilibrium adsorption 

capacity of the catalyst is lower at pH 10.0, when the surface is negatively charged, 

whereas maximum TRZ adsorption is achieved at pH 3.0, in agreement with -

potential measurements. At higher pH the amount of positive charges at Fe-0.70-

MeIMO-IE surface decreases, hampering adsorption of TRZ ions [266] and 

ultimately leading to electrostatic repulsion at pH = 10 [267], when also OH- ions 

likely compete with TRZ ions for positively charged adsorbing sites [266]. 

Accordingly, after 30 min under UV light, discoloration (Figure 6-6a) was ca. 95, 

70 and 25 % at pH = 3.0, 6.4 and 10.0, respectively. Such behavior agrees with 

previous results regarding TRZ discoloration by photo-Fenton reaction with 

perovskites-based photocatalysts [268].  

After 3h under UV irradiation, TOC removal was ca. 55, 100 and 3.0 % at pH 

= 3.0, 6.4 and 10.0, respectively (Figure 6-6b). The decrease in TOC observed at 

acidic pH has to be ascribed to a negative effect of low pH values on the Fenton 

reaction, in that excess H+ species “consume” HO radicals producing water [266]: 

𝐻𝑂 · +𝐻+ + 𝑒− → 𝐻2𝑂             (6 − 10) 

On the other hand, by increasing pH to 10.0, H2O2 concentration in the liquid 

increases due to the higher stability of H2O2 in alkaline conditions, and 

consequently the photo-Fenton performance decreases, due to a limited photolytic 

production of HO radicals [234, 260].  
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Figure 6-6: Influence of initial pH on a) discoloration and (b) mineralization of TRZ at 

pH = 6.4 (triangles), pH = 3.0 (stars) and pH = 10.0  (circles) with 0.25 g L-1 Fe-0.70-

MeIMO-IE catalyst (initial dye concentration: 40 ppm; H2O2 flow rate: 0.038 mol h-1 ) 
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6.4 Conclusions 

Fe-doping of methyl-imogolite has been obtained by ionic exchange of preformed 

nanotubes. Such process led to enhanced properties towards the photo-Fenton 

oxidation of tartrazine, an important pollutant of both wastewater and groundwater, 

as the moieties is a common food dye recalcitrant to biodegradation.  

At low Fe content (i.e. 0.70 wt. % Fe), isomorphic substitution of Al3+ by Fe3+ 

is the main process occurring during ionic exchange, leading to a material 

containing isolated Fe3+ sites within the nanotube structure, able to provide total 

discoloration and mineralization of tartrazine after 3 h under UV irradiation, when 

a catalyst concentration of 0.25 g L-1 is used.  

At higher Fe content (i.e. 1.4 wt. % Fe) the higher amount of Fe oxo-hydroxide 

clusters, likely located at the outer surface of nanotubes, has a detrimental effect on 

tartrazine mineralization. This is due to both a lower photo-Fenton activity of the 

clusters with respect to isolated Fe3+ species and their ability to catalyze the 

(undesired) decomposition of H2O2 to oxygen and water. 

Interestingly, bare methyl-imogolite is also active towards tartrazine removal 

in the presence of H2O2, due to the formation of reactive Al-OOH groups (after 

reaction of H2O2 with the outer surface of nanotubes), which under UV irradiation 

promptly release HO radicals able to attack the dye.  

Tartrazine removal was studied also in the presence of the buckled phases 

stemming from nanotubes thermal collapse: they still showed a remarkable surface 

area, mainly due to micropores volume, and reached a TOC removal of ca. 80-90 

% after 3h under UV irradiation. Such result was ascribed to the presence of new 

coordination environments for both Al and Fe sites, leading in the latter case to new 

Fe3+ sites embedded in the microporous aluminosilicate, which resulted active 

towards the photo-Fenton reaction. 

 

 

 

 



 

 

Appendix  
7. Appendix 

7.1 Methods of Analysis 

XRD (Powder X-ray diffraction) 

Place of analysis: Polytechnic University of Turin (Italy) 

Powder X-Ray Diffraction (XRD) patterns were obtained on a X’Pert Phillips 

diffractometer operating with Cu Ka radiation (1.541874 Å) in the 2.5 – 25° 2θ 

range (step width = 0.02˚; time per step = 2.00 s). 

 

BET (Brunauer- Emmett-Teller Specific Surface Area) 

Place of analysis: Polytechnic University of Turin (Italy) 

To determine BET SSA (Brunauer- Emmett-Teller Specific Surface Area) and 

porous volume, N2 isotherms were measured at -196 °C on samples previously 

outgassed at 250 °C, a temperature allowing the removal of water (and other 

atmospheric contaminants) preserving NTs structure [8, 25, 143]. Microporous 

volume was calculated according to the t-plot method. NL-DFT (Non Local Density 

Functional Theory) method was used to determine Pores Size Distributions (PSDs), 

by applying a N2-silica kernel for cylindrical pores on isotherms adsorption branch, 

microporous surface area and total SSA. 

 

UV-vis spectroscopy (Ultraviolet–visible spectroscopy) 

Place of analysis: Polytechnic University of Turin (Italy) 

Diffuse Reflectance (DR) UV-Vis spectra of out-gassed samples were measured on 

a Cary 5000 UV-Vis-NIR spectrophotometer (Varian instruments). 
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Zeta Potential  

Place of analysis: Polytechnic University of Turin (Italy) 

Samples electrophoretic mobility as a function of pH was measured at 25°C by 

means of electrophoretic light scattering technique on a Zetasizer Nano-ZS 

(Malvern Instruments, Worcestershire, UK). The ζ-potential curves were measured 

by Henry‘s equation: UE = 2ε ζ f (Ka)/3η, where UE is the electrophoretic mobility, 

ε is the dielectric constant, ζ is the zeta potential, f(Ka) is the Henry‘s function and 

η is the viscosity. In aqueous solutions of moderate electrolyte concentration, a 

value of f(Ka) equal to 1.5 is adopted, in agreement with the Smoluchowski’s 

approximation. Water suspensions were sonicated for 2 min with an ultrasonic 

probe (400 W, 24kHz, UP400S, Hielscher; Germany); the pH of the suspension was 

then adjusted by adding either 0.10 M HCl or 0.10 M NaOH. 

 

FE-SEM (Field Emission Scanning Electron Microscope) 

Place of analysis: polytechnique University of Turin (Italy) 

FESEM pictures were collected with a high resolution SEM instrument (LEO 1525) 

equipped with a Gemini field emission column. 

 

Solid State NMR (Nuclear Magnetic Resonance Spectroscopy) 

Place of analysis: ETH University of zürich (Switzerland) 

 

TGA (Thermogravimetric Analysis) 

Place of analysis: ETH University of zürich (Switzerland) 

TGA analysis was performed on 10 mg sample powder, under Ar flow (rate of Ar 

flow), with the temperature increasing rate of 10 °C min-1 Under Ar flow by SDT 

2960 DTA/TGA-MS instrument. 

 

FTIR (Fourier Transform Infrared Spectroscopy) 

Place of analysis: ETH University of zürich (Switzerland) 

Bruker FT-IR Alpha spectrometer, equipped with OPUS software. Spectra are 

recorded at resolution <2 cm-1, A typical experiment consisted of the measurement 

of transmission in 32 scans in the region from 4000 to 1000 cm-1. 
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Since KBr is ionic compounds does not have any peaks in the related IR 

spectrum range. The Sample/KBr ratio was used according to standards. About 5 

wt% of sample used to make a mixture of KBr and sample powder of about 80 mg. 

The mixture were well grinded, however it should be noted that an excessive 

grinding of the potassium bromide is not required. The finely powdered potassium 

bromide will absorb more humidity (=hygroscopic) from the air and therefore lead 

to an increased background in certain ranges. The sample powder then treated in 80 

°C, 150 °C and 500 °C for 4 h in high vacuum line (<10-4 mbar), and transfers to 

glove box with Ar atmosphere in order to make KBr pellet for FTIR analysis. 

 

HR-TEM (High Resolution Transmission Electron Microscopy) 

Place of analysis: ETH University of zürich (Switzerland) 

HR-TEM microscopy was carried out using a JEOL 2200FS microscope operated 

at 200 kV with a point resolution of 0.23nm 

 

EPR (Electron Paramagnetic Resonance) 

Place of analysis: ETH University of zürich (Switzerland) 

The EPR spectra were recorded with an X-band Bruker EMX (Bruker BioSpin, 

Rheinstetten, Germany) continuous wave instrument, equipped with a TM 

(transverse magnetic) type cavity. The spectra were measured at ≈9.7 GHz with a 

modulation frequency of 100 kHz, modulation amplitudes of 1 G and resolution of 

2048. The microwave power applied was 20 mW. The sample temperature in the 

cavity was controlled with a Eurotherm liquid nitrogen evaporator and heater. In 

situ experiments were carried out in 1 mm quartz tubes at a temperature of -153 °C 

with the same substrate concentrations as in the batch. 
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7.2 Post modification of Methyl-imogolite nanotubes with 

plasma 

A simple test on post modification of MeIMO nanotubs, done during my 

collaboration research with ETH university of Zürich. The process performed on 

MeMO samples, preheated at 200 °C for 4 h under vacuum, to insure the total 

surface dehydration of NTs. About 15 mg of dried powder was placed on the Ar 

plasma cell and the cell purged with Ar for about 30 min in order to remove the 

residual air. The instrument then programmed for using the Ar plasma with 200 V 

power on two samples, once for 80 seconds and another time for 240 seconds.  

After plasma treatment, samples were analyzed by EPR after about an hour. 

The organic radicals were observed in both samples with higher intensity in sample 

exposed for 240 s to Ar plasma (arrows in the Figure 7-1).  

The samples then analyzed with XRD, which confirmed the structure of NTs 

were maintained due to the presence of three characteristic peaks of imogolite type 

nanotubes.  

This observation opens the possibility for selective surface modification of NTs 

by exposing the plasma treated NTs to corresponding modification agent. 

 

Figure 7-1: EPR spectra of MeIMO (black curve), MeMO exposed to Ar plasma for 80 s 

(red curve) and MeIMO exposed to Ar plasma for 240 s (blue curve) at -153 °C  
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7.3 Index 

3-APTES: 3-aminopropylsilane, NH2–(CH2)3–Si(OEt)3 

AO7: acid orange 7 dye (NaAO7) 

AOPs: Advanced oxidation processes 

ATRP: Atom Transfer Radical Polymerization) 

ATSB: aluminum-tri-sec-butoxide 

BET SSA: Brunauer- Emmett-Teller Specific Surface Area 

CBE: Conduction Band Energy 

CNTs: Carbon Nanotubes 

CT: Charge-Transfer 

DTG: Derivative Thermogravimetric 

DWNT: Double Wall Nanotube 

e-h separation: electron-hole separation 

EDX: Energy Dispersive X-Ray 

EPR: Electron Paramagnetic Resonance 

FE-SEM: Field Emission Scanning Electron Microscope 

FTIR spectroscopy: Fourier Transform Infrared spectroscopy 

Fe-x-MeIMO-DS: Fe-doped MeIMO NTs, by Direct Synthesis (x= 0.7 and 1.4 

wt% of Fe) 

Fe-x-MeIMO-IE: Fe-doped MeIMO NTs, by Ion Exchange (x= 0.7 and 1.4 wt% 

of Fe) 

Fe-x-MeIMO-DS-c: Fe-doped MeIMO NTs, by Direct Synthesis (x= 0.7 and 1.4 

wt% of Fe), collapsed 

Fe-x-MeIMO-IE-c: Fe-doped MeIMO NTs, by Ion Exchange (x= 0.7 and 1.4 wt% 

of Fe), collapsed 

HB: Hydrogen Bonded 

HR-TEM: High resolution-transition electron microscopy 

ICP-AES: Inductively coupled plasma atomic emission spectroscopy 

Imo: Imogolite: 
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IS: Isomorphic Substitution 

LFO perovskite: Lanthanum ferrite perovskite 

l.t. : low temperature 

MeIMO: Methy-imogolite 

MeIMO-c: Methy-imogolite-collapsed 

MAS NMR: Magnetic Angles Spinning- Nuclear Magnetic Resonance 

NT(s): Nanotube(s) 

NL-DFT: Non Local Density Functional Theory Method 

NH2-MeIMO: (MeIMO react with 3-APTES) 

ODPA: Octadecyl Phosphonic Acid  

Oh: Octahedral 

PZC: Point of Zero Charge 

PZNC: Point of Zero Net Charge 

PSDs: Pores Size Distributions 

r.t. : room temperature 

SAED pattern: Selected Area Electron Diffraction 

SSA: Specific surface area 

SWNT: Single Wall Nanotube 

Tartarazine: TRZ dye 

Td: Tetrahedral 

TEOG: Tetraethoxygermanium 

TEOS : Tetraethyl orthosilicate 

TEMS : Triethoxymethylsilane 

TGA: Thermogravimetric Analysis 

TDPA:. Tetradecyl Phosphonic Acid 

TOC: Total Organic Carbon 

UV-Vis spectroscopy: Ultraviolet–visible spectroscopy 

VBE: Valance Band Energy 
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X XRD: Powder X-ray diffraction 

ZFS: Zero-Field Splitting 
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