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Relativistic analysis of a wave packet interacting with a quantum-mechanical barrier

Vittoria Petrillo* and Davide Janner
Dipartimento di Fisica, Istituto Nazionale di Fisica della Materia, Istituto Nazionale di Fisica Nucleare,

Universitàdegli Studi di Milano, Via Celoria, 16, Milano, Italy
~Received 6 March 2002; revised manuscript received 6 September 2002; published 30 January 2003!

The dynamics of a wave packet incoming on a quantum-mechanical barrier is analyzed in the framework of
a fully relativistic model, with particular emphasis on the case of a large spectrum. Some of the characteristic
times of tunneling are calculated and compared; they are all of the same order of magnitude and all indicate an
apparent superluminal motion, even if causality is maintained. A time-asymptotic expression for the transmit-
ted wave function is derived and its strong validity is shown.
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I. INTRODUCTION

The problem of wave tunneling through a quantu
mechanical barrier has recently been reopened by the re
of several experimental studies, which show a possible
perluminal behavior of the wave packet@1–6#. The theoret-
ical analysis of this phenomenon involves such general p
lems as the conservation of the concept of causality du
the motion of the wave packet, but also more peculiar qu
tions such as the definition and evaluation of the time sp
by the packet inside the barrier. The features of wave tun
ing were studied first by Wigner@7# and Hartman@8#. This
latter author proposed an expression for the traversal t
through the barrier which is valid for thin spectra. This tim
is usually called the phase time, and presents a satura
value for increasing barrier widths. The corresponding vel
ity should increase with this parameter and exceed the sp
of light in vacuum. His original work, however, as well a
most of the subsequent analyses@9–11#, was based on the
Schrödinger equation, which is not relativistic, and shou
therefore, be inappropriate to describe the dynamics o
wave packet propagating at luminal or superluminal veloc
In this sense, there remain reasonable doubts that the s
luminal behavior presented by the wave packet might be
artifact due to the inadequacies of the nonrelativistic mod
rather than a real effect.

A few authors@12–14# have extended the analysis of th
wave tunneling to a completely relativistic case, using
Dirac equation, which should be the natural tool to inves
gate the propagation of wave packets at large velocity
some of this work@12,13#, the authors describe the tempor
evolution of a wave packet in the tunneling situation a
demonstrate that it still presents superluminal behavior, e
if the causality is fully restored.

In the present paper, we want to give a contribution in t
direction. In Sec. II, we recall briefly the problem of prop
gation through a quantum-mechanical barrier by integra
of the Dirac equation, analyzing in particular the regime
large-spectrum wave packets, which was studied by Krek
et al. but in less detail than the opposite regime. In Sec.
we compute the time spent inside the barrier, making a c
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parison between the most common definitions of this qu
tity, namely, the Hartman phase time, the traversal time,
the dwell time @15,16#. In Sec. IV, we derive an origina
analytical estimate of the transmitted wave function and d
cuss the validity of this formula. Conclusions and comme
are given in Sec. V.

II. PROPAGATION OF THE WAVE PACKET THROUGH
THE BARRIER

The one-dimensional Dirac equation is commonly writt
as

i
]c

]t
52 icax

]c

]x
1c2bc1V~x!c, ~1!

where ax and b are the Pauli matrices,c is the two-
component Dirac spinor,V(x) is the potential, and atomic
units (e5\5m051, c5137) are used. If the potential is
square barrier of heightV0 and width a, using a standard
technique we obtain the stationary solutions of the equat
For instance, if a wave packet approaches the barrier f
the left, in the region at the right of the barrier the stationa
solution can be written as

u~x!5Feipx,

wherecp5(E22c4)1/2, E being the total energy andF the
two-component spinor

F

A
5S 1

AE2c2

E1c2
D 4gpp8e2 ipa

~p1gp8!2e2 ip8a2~p2gp8!2eip8a
,

~2!

where g5(E2c2)/(E2c22V0), cp85@(V02E)22c4#1/2

is the momentum of the particles inside the barrier, andA(p)
is the initial spectrum of the wave packet.

By analysis of the quantityp8, we recall briefly that
propagation through the barrier occurs whenE.V01c2 or
when c2,E,V02c2. This last region of propagation
~where the phenomenon called Klein tunneling takes pl
@17#! exists only if V0.2c2. In the intermediate region
namely, for V02c2,E,V01c2 (c2,E,V01c2, if V0
©2003 The American Physical Society10-1
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V. PETRILLO AND D. JANNER PHYSICAL REVIEW A67, 012110 ~2003!
,2c2) the wave inside the barrier is evanescent and the p
nomenon of tunneling takes place. This is shown, for a
tential V0 /c252.2, in Fig. 1, where the transmission coef
cient uTu5uF/Au is presented as a function ofE/c2 for a
barrier width a50.3. The presence of geometrical res
nances produces oscillations ofuTu in both regions of trans-
mission. If the potentialV0 is greater than 2c2, the analysis
of the step of the potential yields a paradoxical value of
reflection coefficient greater than 1, or, providedp is nega-
tive, to a nonvanishing value of the transmission coeffici
whenV0 tends to infinity. This is the so-called Klein parado
@17#, reconsidered by Telegdi@18# and resolved by Hanse
and Ravndal@19# by admitting that the potential step emi
electron-positron pairs. The analysis of the potential bar
made by Calogeracos and Dombey@20# shows that the emis
sion of particles from the barrier is a transient phenomen
occurring during the growth phase of the potential. In t
following, when cases withV0.2c2 are concerned, we con
sider a scenario where the potential is adiabatically switc
on from zero, and the wave packet is injected onto the bar
only when the particle emission occurring in this first pha
is completely concluded.

The temporal evolution of the wave packet can be
tained by reconstructing the wave function in its integ
form:

c5E dE F~E!eiAE22c4x/c2 iEt. ~3!

In the tunneling situation, superluminal behavior can
found. In fact, temporal analysis of the wave-packet dyna
ics shows that the transmitted wave packet, at least in s
situations, emerges from the barrier before the correspon
wave packet that travels freely in vacuum, accumulat
therefore a space advance. The space advance depends
width of the barriera as shown in Fig. 2, where the positio
of the peak of the wave packetxmax is shown versusa for a
fixed time and for a Gaussian spectrum centered atp0
5146, with various values of the spread in momentumDp0
and for two different values of the potentialV0 , the first one
V0 /c251.6 @curves~a! and ~b!# and the second oneV0 /c2

FIG. 1. Modulus of the complex coefficient of transmissionuTu
versus energyE/m0c2, for a50.3 andV0 /m0c252.2.
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52.2. The advance can increase regularly, as for instanc
curves ~a! (Dp050.5,V0 /c251.6), ~b! (Dp055.0,V0 /c2

51.6), ~c! (Dp050.5,V0 /c252.2), and ~d! (Dp0
52.0,V0 /c252.2). It can sometimes be so large that t
apparent velocity of translation of the wave packet is fou
larger thanc. Although the theory used is fully causal, th
average values sometimes show superluminal behavior.
situation is usually referred to as a behavior of weak cau
ity @21,22#.

In Fig. 2, the analysis has been carried out at a timt
50.1, which is sufficiently short to permit of obtaining mea
velocities~calculated over the whole spatial interval travel
by the wave packet, which is considerably wider than
barrier width! larger thanc. The range of the parameter
where this situation occurs is evidenced in the figure by d
ted curves. For instance, we have that a wave packet sta
at t50 at x0523.8, traveling with a velocityv5c5137,
will be at t50.1 in the positionx59.9. All the situations
where the packet is, at this same time, beyond this posit
are characterized by a mean velocity, averaged over
whole temporal period considered, larger thanc. In this
analysis, we compare the position of the peak of the w
packet att50.1 with its position att50, and we evaluate the
mean velocity in this interval. Since the wave packet p
sents interference fringes in the neighborhood of the bar
this comparison can be used to evaluate a mean velocity
if at the initial and at the final instants considered the wa
packet is sufficiently far from the barrier, in such a way th
the interference process is not yet begun or is comple
ended.

As can be seen from Fig. 2, the spatial advance increa
regularly forV0 /c251.5 for all values considered ofDp0 ; in
the caseV0 /c252.2 this monotonic increase takes place on
for thin spectra. In this range of potential, for a wave pac
with a large spectrum, a region of less pronounced adva
with respect to the free propagation takes place whenDx
'a @see curve~e!, in which Dp053.5]. This is due to the
fact that, when the spectrum is broad, the tail of the mom
tum distribution invades the Klein transmission region at lo
values of energy (E,V02c2), and these slower componen

FIG. 2. Position of the peak of the wave functionxmax versus the
barrier width a at t50.1 for p05146, V0 /m0c251.5, andDp0

5(a)0.5, ~b! 2.0 ~dashed lines!, and V0 /m0c252.2 with Dp0

5(c)0.5,~d! 2, and~e! 3.5 ~solid lines!. The dotted parts of the lines
correspond to situations where the average values are superlum
0-2
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RELATIVISTIC ANALYSIS OF A WAVE PACKET . . . PHYSICAL REVIEW A 67, 012110 ~2003!
compete with the faster ones, becoming progressively do
nant as the barrier width increases. For thin spectra, inst
the transmitted wave packet maintains the Gaussian s
without distortions and the peak value decreases stro
with increasing barrier width. In all cases whereV0 /c2.2,
the incidence of the wave packet onto the barrier must oc
after a time intervalt5(a/c)@V0 /(2c2)21#21/2 with respect
to the switch-on of the barrier itself@20#, in order to permit
the conclusion of the particle emission process. In Fig. 3,
dynamics of the transmitted wave packet is shown in
case of a large spectrum and high potential, withDp055,
and for various increasing values of the width of the barr
a. The analysis is made at a time sufficiently large (t520) to
permit clear separation between the slow and the fast c
ponents. For a very thin barrier@curve ~a!, a50.01], the
wave packet is strongly superluminal in the region of t
barrier and the peak is therefore advanced with respect to
free propagation of a quantitydx50.66. For more opaque
barriers the superluminality cannot be revealed from t
snapshot and the peak at this time shows a delay@curve~b!,
a50.5]. The formation of two distinct wave packets
shown in curve~c! (a50.75). The leading part, which i
more advanced, derives from the tunneling, maintains
Gaussian shape, and decreases strongly with increasina.
The trailing part derives from the low-momentum transm
sion and its shape is determined by the presence of geom
cal resonances. The curve~d! (a51.0) shows the case wher
the tunneled part is considerably smaller than the transm
one and the leading tail of the transmitted part masks
tunneling completely. This fact is apparent also in the te
poral analysis. In Fig. 4ucu is presented forx5a versus time

FIG. 3. Modulus of the wave functionuCu ~in arbitrary units!
versus x at t520 for p05146 V0 /m0c252.2, Dp055 and a
5(a)0.01,~b! 0.5, ~c! 0.75, and~d! 1.
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and for Dp055, a50.78. The peak of the wave packet a
rives at x50 at t'0.038. The sequence of two tempor
maxima, the first one superluminal, the second one retar
is clearly shown. The conclusions that can be drawn fr
comparison of the data of Figs. 3@curve ~c!# and 4 ~which
are made with only slightly different data! are not contradic-
tory. The superluminality of the first peak of Fig. 4 att
50.041 „evaluated asv'a/@ t(x5a)2t(x50)#'1.8c… is
reabsorbed at subsequent times just because the compo
of the spectrum with low momentum slow down the who
wave packet. The presence and the effects of the tail on
momentum distribution could be avoided by cutting off t
spectrum or by choosing the initial parameters of the wa
packet in a suitable way, for instance, by eliminating t
Klein transmission range with a potential valueV0,2c2.

III. TUNNELING TIMES

The characteristic time in which the phenomenon of tu
neling through a barrier takes place can be evaluated with
Hartman phase time calculated, for the Dirac equation,
Krekoraet al. @12,13#. The limiting value oftH for a@1 is
given bytH5(2E2V0)/(c2pp8). The Schro¨dinger equation
gives, instead, for this same limit, the valuetH

5V0 /c2pp8, where p5A2E and p85A2(V02E). If we
compare a relativistic and a nonrelativistic packet with t
same kinetic energy, the delay time for the relativistic wa
packet is shorter than the classical one for lower energ
while for higher energies the classical packet transits i
shorter time, according to the results of Ref.@13#. In any case
the differences are always very small and the order of m
nitude of these two times always remains the same, as
ported in Fig. 5, where the relativistic limit@curve ~a!# and
the classic one@curve ~b!# are presented as functions o
E/m0c2. Another characteristic time is commonly con
structed by recording the instantst in andtfin of the passage
of the wave-packet maximum through the initial and fin
points of the barrier, and calculating the differencet tr5tfin
2t in . It is important to note that, even if the interferen
between the transmitted and the reflected packets does

FIG. 4. Modulus of the wave functionuCu ~in arbitrary units!
versust at x5a, for a50.78,p05146,V0 /m0c252.2, Dp055.
0-3
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V. PETRILLO AND D. JANNER PHYSICAL REVIEW A67, 012110 ~2003!
permit one to record a spatial maximum of the wave pac
due to the presence of the fringes, the variation in time of
distribution of probability at a fixed position is bell shape
always without fringes, and this behavior permits one to
termine precisely the transit time of the wave-packet ma
mum. In Fig. 6 the traversal timet tr is reported as a function
of a for various values ofDp0 , and compared with the phas
time @curve~a!# for p05146 andV0 /c251.5. Even for rela-
tively thin spectra@curve ~b!, with Dp052.0], the traversal
time does not agree with the delay time, being always c
siderably shorter, and this disagreement increases for thi
barriers. For large spectra@curve ~c! with Dp058.0 and
curve~d! with Dp0515], the monochromatic analysis give
by Hartman is no longer valid, and the deviations of t
traversal time with respect to the phase time are strong
Fig. 7 the phase@curve ~a!# and the traversal times are pr
sented again for another set of parameters:V0 /c252.2 and
Dp052.0 @curve~b!#, 5.0 @curve~c!#, and 8.0@curve~d!#. In
this case, the deviations of the traversal time with respec
the phase time are in two directions. For large barriers,
slow components prevail, and the signal appears retarde
already shown in the previous section. For thin barriers,
stead, the signal is strongly accelerated; it can even o

FIG. 5. Limit for a@1 of the Hartman phase time in the no
relativistic ~dotted line! and relativistic ~solid line! model for
V0 /m0c252.2

FIG. 6. Curve ~a!: Hartman phase timetH versus a for
E/m0c251.46 andV0 /m0c251.5. Traversal timet tr versusa for
Dp052 @curve ~b!#, 8 @curve ~c!#, and 15@curve ~d!#.
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that the outgoing peak appears before the incoming p
enters. Situations of this kind, which are usually ascribed
the reshaping of the wave packet in traveling through
barrier, are shown in Fig. 8 wheret tr is plotted vsDp0 for
a50.0075 andV0 /c252.2 @curve ~a!#, for a50.03 and
V0 /c252.2 @curve ~b!#, and for a50.015 andV0 /c251.5
@curve ~c!#. The quantityt tr , for the case of the narrowe
barriers, becomes negative for increasingDp0 for both the
potentials considered. This regime is, however, limited t
very small region in the parameter space. In fact, in the c
V0 /c252.2 and for barriers a little thicker@curve ~b! with
a50.03] the situation is already different, and the traver
time is positive and larger than the phase time, indicating
prevalence of the slow component.

One of the characteristic times of the interaction betwe
the wave packet and the barrier is the dwell time@23#, de-
fined in its simplest form as

tD5E dtE
0

a

dxucu2. ~4!

FIG. 7. Curve ~a!: Hartman phase timetH versus a for
E/m0c251.46 andV0 /m0c252.2. Traversal timet tr versusa for
Dp052 @curve ~b!#, 5 @curve ~c!#, and 8@curve ~d!#.

FIG. 8. Traversal timet tr versusDp0 for ~a! V0 /m0c252.2, a
50.0075; ~b! V0 /m0c252.2, a50.03; and~c! V0 /m0c251.5 and
a50.015.
0-4
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RELATIVISTIC ANALYSIS OF A WAVE PACKET . . . PHYSICAL REVIEW A 67, 012110 ~2003!
It represents the time of permanence of the wave packe
side the barrier. We should note, however, that the use
expression~4! to give an estimate of the tunneling time mu
be limited to those cases where the reflection is actually n
ligible. In Fig. 9 the dwell time is represented, for the re
tivistic model, as a function ofa, for V0 /c251.5 and for
Dp055 @curve ~a!# and 0.5@curve ~b!#. The phase time is
also represented for comparison. For all cases shown,
transmission is larger than 97%, so that we can assume
full validity of the definition~4!. The dwell time in all these
cases turns out to be shorter than the phase times, and
rather independent of the spread in momentum. This cha
teristic time also shows therefore a superluminal behavio

IV. ANALYTICAL EXPRESSION
OF THE WAVE FUNCTION

In the transmission region, the components of the w
function are represented by the integral~3!, where F has
been defined as expression~2! in Sec. II, andA, appearing in
F, is the initial spectrum of the wave packet.

We consider, for the sake of simplicity, only the first com
ponentc1 of the spinor and all the considerations that will
made must be repeated for the other componentc2 .

The integral form~3! can be treated in the limitt@E with
the method of the stationary phase@24#, because the phas
f5AE22c4(x2a)/c2Et has a stationary point for th
valueE5Ẽ5c3t/Ac2t22(x2a)2.

Calling z5Ac2t22(x2a)2, a quantity connected with
the distance between the position examined and the l
front, the value of the stationary point can be written asẼ

5c3t/z, and the corresponding value of the phase isf(Ẽ)
52cz.

The first component of the wave function can then
approximated by the expression

c15A2p
xc3/2

z3/2 FS c3
t

z De2 icz2 ip/4, ~5!

where

FIG. 9. Dwell time tD for Dp055.0 ~open circles! and 0.5
~solid squares! and for E/m0c251.46 andV0 /m0c251.5. Phase
time for the same values of potential and energy.
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FS c3t

z D5
A~cx/z!e2 icxa/z

cos~p8a!22iQ sin~p8a!
E,

cp85AS V02
c3t

z D 2

2c4,

and

Q5
c2x22V0ctz

2xA~zW02c3t !22c4z2
.

The quantityA(cx/z) is the initial spectrum of the wave
packet, calculated at the valuep5cx/z. If the wave spec-
trum is Maxwellian, it is written as

A~cx/z!'e2~cx/z2p0!21 icxx0 /z.

Furthermore, if most of the spectrum falls in the tunneli
range and ifup8au@1 we can simplify the factorF(Ẽ) in the
form F(Ẽ)5@4A(Ẽ)gpp8/(p1 igup8u)2#eipa2up8ua and fi-
nally get

uc1u5Apc

2

cx22V0tz

z3/2A~zV0 /c22ct!22z2

3e2~cx/z2p0!2/~2sp
2
!2up8ua. ~6!

A numerical comparison between the complete~3! and the
approximate expression~6! performed for the modulus of the
wave functionucu5Auc1u21uc2u2 shows the strong validity
of the analytical expression. In fact, in the tunneling con
tion, the two forms essentially coincide even at very sh
times (t50.5) as shown in Fig. 10, whereucu is shown ver-
susx for a50.1, Dp055 ~complete form, dashed line, an
asymptotic form, solid line! at t5(a) 0.1 and~b! 0.5. If the
spectrum is centered in the Klein region, and there is the
fore a strong contribution from the transmission regions,
asymptotic form is always valid, but after a longer time. Th
situation, which we present for its mathematical interest a
test for the validity of the asymptotic expansion, is report
in Fig. 11 (a55, Dp051, V0 /m0c255, andp0550). Sub-
stantial coincidence between the complete and
asymptotic forms is reached att5500 ~b!. This is due to the
fact that, for the complete validity of the approximate e
pression, there must not be tails of the wave function ins
the barrier. The geometrical resonances present in the tr
mission region cause a bounce motion of the wave pac
inside the barrier, which enhances the permanence tim
the particles.

V. CONCLUSIONS

The relativistic dynamics of a wave packet incoming on
quantum-mechanical barrier has been analyzed by mean
the Dirac equation, which should be the most appropri
0-5
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V. PETRILLO AND D. JANNER PHYSICAL REVIEW A67, 012110 ~2003!
tool for the study of an energetic wave packet. The princi
conclusions that we can draw are that the nonrelativi
analysis based on the Schro¨dinger equation gives results tha
although coming from a theory that does not respect
causality, are qualitatively in substantial agreement with
relativistic ones. In particular, in the relativistic framewor
we also recover the superluminal behavior of the wa
packet, already found with the Schro¨dinger model. This be-
havior must be considered therefore not as an artifact c
nected to the use of an inadequate model, but as an e
compatible with the precepts of causality and of relativ
We agree with the conclusion of Ref.@12# also in finding
that, in some conditions, the superluminal behavior predic
by the Dirac model is more accentuated than in the nonr
tivistic one. We have extended the analysis to bro
spectrum wave packets. In this condition, there can be a
tribution from the slow components of the spectrum, falli
in the Klein transmission region, that alters the tunnel
phenomenon. In general, the superluminality disappear
this condition, except in the case of a very thin barrier, wh
the appearance of the tunneled peak beyond the barrier
even anticipate the entrance of the incoming wave pac
leading to negative traversal times. The superluminality m
depend on the shape of the potential, and in particular on
presence of a sharp discontinuity or on the value of the s
tial gradient of the potential. This behavior could be analyz

FIG. 10. Comparison between the complete integral form of
wave function~dotted line!, and the asymptotic form~solid curve!
in arbitrary units fora50.1, Dp055.0, V0 /m0c252.2, p05146,
and t5(a)0.1 and~b! 0.5.
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using, for instance, the Woods-Saxon potential barrier wh
has been analytically solved@25#. Another characteristic
time, namely, the dwell time, which is positive by definitio
and which is connected to the permanence of the parti
inside the barrier, gives for the tunneled packet traversal
locities larger thanc. It turns out to be independent of th
spread in momentum and to reach a saturation value for
creasing barrier width, showing therefore a behavior sim
to that of the Hartman phase time.

Finally, we derived an analytical expression for the wa
function in the transmission region for very large times.
comparison between the approximate and complete fo
shows the strong validity of the asymptotic expression in
the different regimes considered.

ACKNOWLEDGMENTS

Useful discussions with Professor C. Maroli, Professor
Bonifacio, Professor E. Recami, and Professor L. Lanz
gratefully acknowledged.

e

FIG. 11. Comparison between the complete integral form of
wave function~dotted line! and the asymptotic form~solid curve! in
arbitrary units fora55, Dp051.0, V0 /m0c255.0, p0550, andt
5(a)1 and~b! 500.
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