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Abstract—In cognitive radio networks, secondary users (SUs)
utilize the unused spectrum slots in the assigned band for the pri-
mary users (PUs). Conventional cognitive radio networks operate
in half-duplex (HD) mode. Recently, full-duplex (FD) communi-
cation has become feasible. SUs with full-duplex capabilities can
sense the spectrum and transmit simultaneously, which improves
the efficiency of cognitive radio networks. In this paper, we study
the performance of spectrum sensing based on general likelihood
ratio (GLR) when the SU is operating in FD mode. We compare
our results to the HD GLR case. We present the effect of residual
self interference on the performance of the spectrum sensing
technique. Moreover, we consider uncertainty in estimating the
variance of the combined residual self interference and noise and
show its effect on the performance of the FD GLR.

Index Terms—Full-Duplex, Spectrum sensing, Cognitive Radio,
Cognitive radio network, Quickest detection, GLR

I. INTRODUCTION

Conventionally, radios operate in half-duplex (HD) mode,
i.e., either transmit or receive at the frequency at the same
time. Recently, simultaneous transmit and receive by a wireless
device on the same frequency band, i.e., operate in full-
duplex (FD) mode, has become possible. Self interference
cancellation is the key for a practical FD communication [1].
Therefore, most of the current research in FD communica-
tion is directed towards designing efficient self interference
cancellation techniques. However, residual self interference is
inevitable and developing algorithms adaptable to it remains
a challenging issue in FD communication.

Rapid deployment of wireless communication systems in
diverse applications resulting in an increasing urge for des-
ignated exclusive bandwidth allocations [2] is challenged by
the scarcity of dedicated spectrum resources. Recent statistical
studies of dedicated spectrum usage revealed spectrum under
utilization, which triggered the interest in cognitive radio
networks based on deploying dynamic spectrum allocation
to achieve higher spectrum utilization [3]. In cognitive radio
networks, a secondary user (SU) accesses the spectrum when-
ever the spectrum owner, named primary user (PU), is not
transmitting or both PU and SU share the spectrum under the
PU’s defined terms of usage. Consequently, reliable spectrum
sensing is paramount to realization of efficient and successful
cognitive radio networks.

Efficient utilization of spectrum holes in PU’s assigned band
calls for robust spectrum sensing techniques at the SU’s radio.

Amongst the class of signal detection that is used to decide
between two hypotheses is general likelihood ratio (GLR)
[4], which is used when detection is performed with some
unknown parameters. GLR has been adopted in many signal
detection frameworks including spectrum sensing [5]. All the
GLR based approaches presented in [6], [7], [8] are based
on evaluating the sample covariance matrix and its eigenvalue
decomposition, which has high implementation complexity.

Currently, cognitive radio networks are assumed to operate
in HD mode. If the SUs can operate in FD mode, i.e., sense and
transmit at the same time, the spectrum usage efficiency will
be improved significantly. Existing literature on FD spectrum
sensing is still limited. However, recently the broader subject
of FD cognitive radio networks has attracted an increasing
attention from the research community. Examples of FD
spectrum sensing can be found in [9], [10], [11]. The authors
studied the performance of FD spectrum sensing using energy
detection in [9], using correlator detector in [10] and in the
context of collaborative sensing in [11]. In the aforementioned
papers, the probability of detection was affected by the residual
self interference when compared to the HD case.

Our contributions in this work as compared to existing lit-
erature are as follows. We study the performance of spectrum
sensing based on GLR when the SU is equipped with full-
duplex capabilities. Residual self interference is considered in
our system model and the distributions of the two hypotheses
are adjusted accordingly. In addition, uncertainty in estimating
the variance of the combined residual self interference signal
and noise is considered and its effect on the performance of
the sensing efficiency is presented. We compare our results to
the HD case and show the degradation in the performance of
FD GLR due to residual self interference as well as variance
uncertainty.

The rest of this paper is organized as follows. In Section
II we present our system model. Spectrum sensing based on
GLR for HD system is then reviewed in Section III. In Section
IV, we present our analysis on spectrum sensing in FD system
under residual self interference. Results are then presented in
Section VI. The paper is then concluded in Section VII.

II. SYSTEM MODEL

In HD system, as each SU is listening to a specific frequency
band, it starts collecting samples, yHD[i]. Hypothesis H0



denotes the case when the PU is not using this frequency
band, i.e., empty spectrum slot. Hypothesis H1 denotes the
case when the PU is using this frequency band. The received
signal is given by:

H0 : yHD[i] = w[i], i = 1, ..., N

H1 : yHD[i] = x[i] + w[i], i = 1, .., N (1)

where w[i] is white Gaussian noise with variance σ2
w, x[i] =

hs[i] is the product of the channel gain h and the PU’s signal
s[i] and N is the total number of samples. σ2

w is receiver
dependant and can be estimated on average ahead of time.
x[i] is assumed to be Gaussian with zero mean and variance
σ2
x [5]. The value of σ2

x depends on the channel gain and
the power of the PU signal. When the PU signal is present,
yHD[i] follows N (0,σ2

w + σ2
x), which we denote by FHD

1 .
When there exists an empty spectrum slot, yHD[i] follows
N (0,σ2

w), which we denote by FHD
0 . The HD signal to noise

ratio is γHD = σ2
x/σ

2
w.

In FD system, as depicted in Fig. 1, the SU transmits its own
signal while simultaneously sensing the spectrum. Although
self interference passes through two cancellation steps, one
in the radio frequency (RF) domain and the second in the
baseband domain, residual self interference is unavoidable.
The residual self interference, z[i], is modelled as Gaussian
with zero mean and variance σ2

z = γzwσ2
w [9], [10], [11],

where γzw is the residual self interference signal to noise ratio.
The received signal in the FD case is given by:

H0 : yFD[i] = z[i] + w[i], i = 1, ..., N

H1 : yFD[i] = x[i] + z[i] + w[i], i = 1, .., N. (2)

When the PU signal is present, yFD[i] follows N (0, γzw(σ2
w+

1) + σ2
x), which we denote by FFD

1 . When there exists an
empty spectrum slot, yFD[i] follows N (0,σ2

w(γzw+1)), which
we denote by FFD

0 . The FD signal to noise ratio is given by
γFD = γHD/(1 + γzw).

We follow the generalized likelihood ratio change detection
algorithm [5] to decide on the presence or absence of the
PU signal. The scenario we are interested in is when σ2

w is
known on average and σ2

x is within a range σ2
Sx ≤ σ2

x ≤ σ2
Mx.

The decision statistic is computed sequentially for a given N
and compared to a threshold to decide on the status of the
spectrum. We are interested in the case where the spectrum
is empty and we are detecting the entrance of the PU. After
the entrance of the PU signal, the decision statistic will start
to show a consistent positive drift. We start by reviewing the
GLR for HD system and then proceed to present our analysis
for the FD system.

III. SPECTRUM SENSING BASED ON GLR IN HD SYSTEM

For the detection of the entrance of the PU signal, the
collected samples by the SU first follow distribution FHD

0

with density function fHD
0 . As a PU starts using the spectrum,

the distribution changes to FHD
1 with density fHD

1 . We
summarize the work presented in [5], which is based on the

PU

Full-duplex
SU

Tx/
Rx

Rx Tx

Self InterferencePU Signal

SU Signal

Fig. 1. SU equipped with full-duplex capabilities transmitting its own signal
while listening for the PU signal.

GLR analysis [12], [13] below. The log-likelihood ratio for a
known σ2

x is estimated for each sample sequentially as:

l1(yHD[i]) = ln

{
fHD
1 (yHD[i])

fHD
0 (yHD[i])

}
. (3)

By substituting the probability density functions fHD
1 and

fHD
0 and taking the natural log, (3) reduces to:

l1(yHD[i]) =
1

2
ln

{
σ2
w

σ2
x + σ2

w

}
+

σ2
xy

2[i]

2(σ2
x + σ2

w)σ
2
w

. (4)

During H0 [5]

EfHD
0

{l1 (yHD[i])} =

∫
fHD
0 (yHD) ln

{
fHD
1 (yHD)

fHD
0 (yHD)

}
dy

= −D
(
fHD
0 ||fHD

1

)
≤ 0, (5)

and during H1 [5]

EfHD
1

{l1 (yHD[i])} =

∫
fHD
1 (yHD) ln

{
fHD
1 (yHD)

fHD
0 (yHD)

}
dy

= D
(
fHD
1 ||fHD

0

)
≥ 0, (6)

where E{·} denotes the expectation operation,
D

(
fHD
0 ||fHD

1

)
is the Kullback-Leibler divergence of

fHD
0 from fHD

1 and D
(
fHD
1 ||fHD

0

)
is the divergence of

fHD
1 from fHD

0 . Therefore, l1(yHD) exhibits a negative drift
during H0 and a positive drift during H1. We denote the
decision statistic for the detection of the entrance of the PU’s
signal by BN , which is estimated as [5]:

BN = max
k≤N

sup
σ2
x

ln

{
N∏

i=k+1

fHD
1,σ2

x
(yHD[i])

fHD
0 (yHD[i])

}
,

= max
k≤N

sup
σ2
x

N∑

i=k+1

(
1

2
ln

{
σ2
w

σ2
x + σ2

w

}

+
σ2
xy

2
HD[i]

2(σ2
x + σ2

w)σ
2
w

)
. (7)

Within the above expression, fHD
1,σ2

x
is the probability density

function of the received HD signal with the actual variance



of the PU’s signal being σ2
x and k is the sample at which the

decision statistic, BN , started to show a consistent positive
drift.

IV. SPECTRUM SENSING BASED ON GLR IN FD SYSTEM

Due to residual self interference in FD systems, the log-
likelihood ratio for the detection of the entrance of the PU
signal is estimated for each sample sequentially as:

l2(yFD[i]) = ln

{
fFD
1 (y[i])

fFD
0 (y[i])

}
. (8)

By substituting the probability density functions fFD
1 and

fFD
0 and taking the natural log, (8) reduces to:

l2(yFD[i]) =
1

2
ln

{
σ2
w (γzw + 1)

σ2
x + σ2

w (γzw + 1)

}

+
σ2
xy

2
FD[i]

2(σ2
x + σ2

w (γzw + 1))σ2
w (γzw + 1)

. (9)

While the spectrum is empty, i.e., H0

EfFD
0

{l2 (yFD[i])} =

∫
fFD
0 (yFD) ln

{
fFD
1 (yFD)

fFD
0 (yFD)

}
dy

= −D
(
fFD
0 ||fFD

1

)
≤ 0, (10)

where the Kullback-Leibler divergence of fFD
0 from fFD

1 ,
D

(
fFD
0 ||fFD

1

)
, estimated as

D
(
fFD
0 ||fFD

1

)
= −1

2
ln

{
σ2
w (γzw + 1)

σ2
x + σ2

w (γzw + 1)

}

− σ2
x

2 (σ2
x + σ2

w (γzw + 1))
. (11)

After the entrance of the PU in the case H1,

EfFD
1

{l2 (yFD[i])} =

∫
fFD
1 (yFD) ln

{
fFD
1 (yFD)

fFD
0 (yFD)

}
dy

= D
(
fFD
1 ||fFD

0

)
≥ 0, (12)

where D
(
fFD
1 ||fFD

0

)
estimated as:

D
(
fFD
1 ||fFD

0

)
=

1

2
ln

{
σ2
w (γzw + 1)

σ2
x + σ2

w (γzw + 1)

}

+
σ2
x

2σ2
w (γzw + 1)

. (13)

l1(yFD) shows a negative drift during H0 and a positive drift
during H1. The decision statistic based on GLR for the FD
system, EN , can be written as:

EN = max
k≤N

sup
σ2
x

{
N∑

i=k+1

l2,σ2
x
(yFD[i])

}
,

= max
k≤N

sup
σ2
x

ln

{
N∏

i=k+1

fFD
1,σ2

x
(yFD[i])

fFD
0 (yFD[i])

}
,

= max
k≤N

sup
σ2
x

N∑

i=k+1

(
1

2
ln

{
σ2
w (γzw + 1)

σ2
x + σ2

w (γzw + 1)

}

+
σ2
xy

2
FD[i]

2(σ2
x + σ2

w (γzw + 1))σ2
w (γzw + 1)

)
. (14)

Let:

fFD
1 (σ2

x) =
N − k

2
ln

{
σ2
w (γzw + 1)

σ2
x + σ2

w (γzw + 1)

}

+
σ2
xŷFD

2(σ2
x + σ2

w (γzw + 1))σ2
w (γzw + 1)

. (15)

where ŷFD =
∑N

i=1 y
2
FD[i]. σ2

x is not known, we find its
estimate σ2

x
∗ by solving (15) for the value that maximizes it

within the given range σ2
Sx ≤ σ2

x ≤ σ2
Mx, which results in (16).

So, in order to estimate the decision statistic EN , we first find
σ2
x
∗ through (16) and then substitute it in (14) for a preset N

and iterative k.
The decision statistic EN is computed for the entire N

samples and then compared to a threshold λE to decide on
the presence or absence of the PU’s signal according to:

EN

H1

≷
H0

λE . (17)

The relationship between the average delay to false alarm, T0,
and the threshold, h, is obtained through [12], [13]:

λE = − ln{a/b}, (18)

where a is a design parameter, which is set based on T 0

according to:

T 0 ≥ 1/a, (19)

and b is given by:

b = 3 ln

⎧
⎨

⎩a−1

(
1 +

1

DE(fFD
1,σ2

Sx
||fFD

0 )

)2
⎫
⎬

⎭ , (20)

where DE(fFD
1,σ2

Sx
||fFD

0 ) is estimated as in (13) at σ2
Sx. When

detecting an empty spectrum slot, the probability of false alarm
is defined as:

Pf = Pr (EN > λE |H1) , (21)

and the probability of detection as:

Pd = Pr (EN > λE |H1) . (22)

V. UNCERTAINTY IN ESTIMATING THE VARIANCE OF
RESIDUAL SELF INTERFERENCE AND NOISE

In Section IV, perfect knowledge of the noise variance
as well as the variance of the residual self interference was
assumed. However, in practical systems, due to several reasons
including lack of noise calibration and interference, noise
uncertainty is inevitable. In addition, error in estimating the
variance of the residual self interference is likely due to
calibration and/or the self interference channel not being a
flat fading channel. This affects the sensitivity of the GLR
algorithm presented above.

In the next Section, We study the sensitivity of the GLR
algorithm in the FD case, when there is uncertainty in the
noise variance and/or the residual self interference. It is worth
noting that this is different from the case where the variance is
completely unknown, which leads to nonparametric detection



σ2
x
∗
=

⎧
⎪⎨

⎪⎩

σ2
Mx, (N − k) ≤ ŷFD

σ2
Mx+σ2

w(γzw+1)
,

ŷFD

N−k − σ2
w (γzw + 1) , ŷFD

σ2
Mx+σ2

w(γzw+1)
≤ (N − k) ≤ ŷFD

σ2
Sx+σ2

w(γzw+1)
,

σ2
Sx, (N − k) ≥ ŷFD

σ2
Sx+σ2

w(γzw+1)
.

(16)

as in [14]. Uncertainty in the noise variance and/or the residual
self interference leads to leads to what is known as signal
to noise ratio (SNR) wall, which is the SNR level below
which reliable sensing is impossible [15]. Below the SNR wall,
increasing the number of collected samples does not improve
the performance of the sensing algorithm. In order to estimate
the SNR wall for the FD GLR algorithm presented above, we
model both uncertainty by the parameter ρ > 1, which quan-
tifies the size of uncertainty. The variance of (z[i] + w[i]) lies
in the range

(
σ2
z + σ2

w

)
∈

[
(1/ρ)

(
σ2
z + σ2

w

)
: ρ

(
σ2
z + σ2

w

)]
.

ρ = 1 indicates that there exists no uncertainty in the variance
of (z[i] + w[i]).

VI. RESULTS

In this section, we simulate the performance of the GLR FD
algorithm presented above. We use the HD case as a baseline
against which we compare the performance of the FD case. We
start by plotting the decision statistic for the GLR algorithm
and proceed to present the probability of detection versus the
required number of samples at a fixed probability of false
alarm. We then study the effect of uncertainty in the noise and
residual self interference variance on the performance of the
GLR FD algorithm. Typically, the requirement for an efficient
spectrum sensing is to achieve Pd ≥ 90%, while Pf ≤ 10%.
The results below are for a fixed Pf = 10%, σ2

Sx = 0.5σ2
Sx

and σ2
Mx = 2σ2

Sx.

A. GLR decision statistic

We start by plotting the decision statistic for both HD
and FD GLR algorithms in Fig. 2. The simulation is for
400 samples with the PU entering the spectrum at the 100th

sample. γHD = 10 dB and γzw = 3 dB. The FD GLR
algorithm is simulated at ρ = 1, i.e., perfect knowledge of
the variance of the noise and the residual self interference,
and at ρ = 2. As a PU enters the spectrum, the decision
statistic in the three cases starts to increase rapidly. However,
the amplitude of the HD case is higher than the two FD cases,
which indicates that once a threshold is set, detection of the
PU signal will have a higher probability of detection at lower
number of collected samples.

B. Probability of detection vs. number of samples

We numerically compute the probability of detection for
HD GLR and FD GLR (ρ = 1 and ρ = 2) algorithms at a
fixed probability of false alarm for different number of samples
collected after the entrance of the PU signal. Fig. 3 shows the
simulation results for Pd vs. number of samples, where γzw
was fixed at 6 dB, while γHD changed from (a) 3 dB, to (b)
6 dB to (c) 10 dB. The same simulation parameters are used

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

Samples

D
ec

is
io

n 
S

ta
tis

tic

HD: BN

FD: EN at ρ=1

FD: EN at ρ=2

Fig. 2. Decision statistic for the HD case, FD at ρ = 1 and FD at ρ = 2.
The PU enter the spectrum at the 100th sample.
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Fig. 3. Probability of detection vs. number of samples for γzw = 6 dB and
(a) γHD = 10 dB, (b) γHD = 6 dB and (c) γHD = 3 dB.

in Fig. 4, but for γHD = 9 dB and (a) γzw = 9 dB, (b)
γzw = 12 dB and (c) γzw = 15 dB. It can be inferred from
both figures that HD GLR algorithm performs better than FD
GLR algorithm. This degradation in the performance of the FD
GLR algorithm is due to the residual self interference. As γHD

increases, lower number of samples are required to achieve the
target Pd ≥ 90%. For example, for γzw = 6 dB and γHD = 3
dB, HD GLR requires approximately 10 samples, FD GLR at
ρ = 1 requires approximately 275 samples, while FD GLR
at ρ = 2 fails to achieve Pd > 70% for a preset number
of collected samples of 300. Same notion is inferred as γzw
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Fig. 4. Probability of detection vs. number of samples for γHD = 9 dB and
(a) γzw = 9 dB, (b) γzw = 12 dB and (c) γzw = 15 dB.
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decreases.

C. Uncertainty in the variance of the noise and residual self
interference

We first introduce different levels of uncertainty and study
its performance on the FD GLR algorithm. In Fig. 5, we plot
Pd vs. ρ at (a) fixed γzw and different γHD and (b) fixed γHD

and different γzw. Regardless of the level of γzw and γHD, the
degradation in the performance of the FD GLR saturates at ρ ≥
2. We then use ρ = 2 in Fig. 6 to evaluate the boundaries, i.e.,
the SNR wall of the FD GLR algorithm. We plot Pd vs a large
number of samples (1000) for (a) different levels of (γzw −
γHD) and for (b) low γHD levels. If γzw is approximately 9
dB higher than γHD, or more, Pd saturates at 70%, no matter
how many samples are collected. In addition, for γHD ≤ −9
dB, Pd also saturates to 70%, no matter how low γzw gets.
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Fig. 6. Probability of detection vs. number of samples (a) different levels of
(γzw − γHD) values (b) low γHD levels.

VII. CONCLUSION

Due to the scarcity of the spectrum, efficient utilization of
it is imperative in any cognitive radio network. FD secondary
users can transmit and sense at the same time, which improves
the efficiency of exploiting empty spectrum slots. In this paper,
we presented FD GLR algorithm with residual self interference
taken into consideration. We compared the performance of FD
GLR to HD GLR. In addition, we introduced uncertainty in
the estimation of the variance of noise and residual self inter-
ference, an we evaluates its impact on the performance of FD
GLR algorithm. Moreover, we investigated the performance of
the presented FD GLR in some extreme cases.
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