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Steerable Discrete Fourier Transform
Giulia Fracastoro, Enrico Magli

Abstract—Directional transforms have recently raised a lot of
interest thanks to their numerous applications in signal compres-
sion and analysis. In this letter, we introduce a generalization
of the discrete Fourier transform, called steerable DFT (SDFT).
Since the DFT is used in numerous fields, it may be of interest in a
wide range of applications. Moreover, we also show that the SDFT
is highly related to other well-known transforms, such as the
Fourier sine and cosine transforms and the Hilbert transforms.

Index Terms—Directional transform, DFT, graph Fourier
transform, graph signal processing, rotational transform.

I. INTRODUCTION

IN the last few years, several authors have proposed using
directional transforms for various signal and image process-

ing tasks. Examples include the directional [1] and steerable
[2] discrete cosine transform, the rotational transform [3], as
well as other transforms employing sophisticated nonseparable
geometries, e.g. curvelets [4], bandlets [5], contourlets [6],
and so on. Such transforms are appealing in many applica-
tions, including signal analysis and compression, because the
adaptation of geometric parameters can optimally match the
transform to the signal of interest.

Along the same lines, the discrete Fourier transform (DFT)
is one of the most important tools in digital signal processing.
It enables us to analyze, manipulate, and synthesize signals and
it is now used in almost every field of engineering [7]. In the
past, some generalizations of the Fourier transform have been
presented, such as the short time Fourier transform [8] and
the fractional Fourier transform (also called angular Fourier
transform) [9] [10]. The short time Fourier transform subdi-
vides the signal into narrow time intervals in order to obtain
simultaneous information on time and frequency. Instead, the
fractional Fourier transform, and its discrete version called
discrete rotational Fourier transform [11], can be interpreted as
a rotation on the time-frequency plane. Recently, the concept
of a graph Fourier transform (GFT) has been introduced in
[12]; this new transform generalizes the traditional Fourier
analysis to the graph domain.

In [2], the theory of graph signal processing [13], and
particularly the relationship between the graph Fourier trans-
form and grid graphs, has been exploited to define a new
directional 2D-DCT [14] that can be steered in a chosen
direction. In this letter, we extend this concept and present
a new generalization of the DFT, called steerable discrete
Fourier transform (SDFT). The proposed SDFT can be defined
in one or two dimensions (unlike the steerable DCT which
can be defined only in the 2D case). In 1D, we start from the
definition of the GFT of a cycle graph and we obtain a new
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transform, the 1D-SDFT, by rotating the 1D-DFT basis. The
1D-SDFT can be interpreted as a rotation of the basis vectors
on the complex plane. Instead, in the 2D case we use the
GFT of a toroidal grid graph to introduce the new 2D-SDFT,
which can be obtained by rotating the 2D-DFT basis. The 2D-
SDFT represents a rotation on the two-dimensional Euclidean
space. Since the DFT is used in a wide range of applications,
the SDFT represents an interesting generalization that could
be applied in various fields, including e.g. filtering, signal
analysis, or even multimedia encryption where parametrized
versions of common transforms have been used for security
purposes [15], [16]. We also show that the SDFT is related
to other well-known transforms, such as the Fourier sine and
cosine transforms and the Hilbert transform.

II. BASIC DEFINITIONS ON GRAPHS

A graph can be denoted as G = (V, E), where V is the
set of vertices (or nodes) with |V| = N and E ⊂ V × V
is the set of edges. It is possible to represent a graph by its
adjacency matrix A(G) ∈ RN×N , where A(G)ij = 1 if there
is an edge between node i and j, otherwise A(G)ij = 0.
The graph Laplacian is defined as L(G) = D(G) − A(G),
where D(G) is a diagonal matrix whose i-th diagonal element
D(G)i is equal to the number of edges incident to node i.
Since L(G) is a real symmetric matrix, it is diagonalizable by
an orthogonal matrix L(G) = ΦΛΦH , where Φ ∈ RN×N is
the eigenvector matrix of L(G) that contains the eigenvectors
as columns, Λ is the diagonal eigenvalue matrix where the
eigenvalues are sorted in increasing order and H denotes the
Hermitian transpose.

A graph signal x ∈ RN in the vertex domain is a real-
valued function defined on the nodes of the graph G such that
xi, where i = 1, ..., N , is the value of the signal at node i ∈ V
[13]. The eigenvectors of L(G) are used to define the graph
Fourier transform (GFT) [13] of the signal x as follows

x̂ = ΦHx. (1)

III. SDFT - 1D CASE

The forward one dimensional discrete Fourier transform
(1D-DFT) of the signal x ∈ RN can be computed in the
following way

x̂k =
N−1∑
n=0

xne−i
2πkn
N .

We can write it in matrix form x̂ = V x, where Vkn =
e−i

2πkn
N = ρnk . V ∈ CN×N is the 1D-DFT matrix and it

has the following property.

Theorem 1 (Theorem 5.1 [17]). The rows of the DFT matrix
are eigenvectors of any circulant matrix.
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Fig. 1. On the left: a cycle graph C8. On the right: A toroidal grid graph
T16,16.

Let us now consider an undirected cycle graph CN with N
vertices, whose structure is shown in Fig. 1. This type of graph
is called a circulant graph because its adjacency matrix, and
therefore its Laplacian matrix, is circulant. Circulant graphs
are of great importance in graph signal processing, because
they accommodate fundamental signal processing operations,
such as linear shift-invariant filtering, downsampling, upsam-
pling, and reconstruction [18], [19]. It is well known that a
valid set of eigenvectors for any circulant matrix is the set of
DFT matrix rows, then the 1D-DFT is a valid GFT for CN
(i.e. ΦH = V ). However, repeated eigenvalues are present in
the spectrum of L(CN ), because the following property holds

λk = λN−k, (2)

where λk is the k-th eigenvalue of L(CN ) with k =
1, 2, ..., N2 − 1 [20]. The eigenvalues λk can be computed in
the following way [20]:

λk = 2− 2 cos
2πk

N
, (3)

for k = 0, 1, 2, ..., N−1. In addition, L(CN ) has N orthogonal
eigenvectors {v(k)}, where v(k) =

[
ρk, ρ

2
k, ..., ρ

n−1
k

]T
for k =

0, 1, 2, ..., N − 1 [20].
From (2) and (3), we can state that, if N is even, λ0 and λN

2

have algebraic multiplicity 1, instead all the other eigenvalues
have algebraic multiplicity 2 with λk = λN−k, where 1 ≤ k ≤
N
2 − 1. Since the eigenvectors are orthogonal, the geometric

multiplicity is equal to the algebraic multiplicity. This means
that the dimension of the eigenspaces corresponding to λk
where 1 ≤ k ≤ N

2 − 1 is 2, then the vector basis of the
1D-DFT is not the only possible eigenbasis of L(CN ).

We can then introduce the following corollary, whose proof
follows from the discussion above and is omitted for brevity.

Corollary 1. The graph Fourier transform of a cycle graph
CN may be equal to the 1D-DFT, but it is not the only possible
graph Fourier transform of a cycle graph.

We now proceed to define the 1D-SDFT. Given an eigen-
value λk of L(CN ) with multiplicity 2 and the two corre-
sponding 1D-DFT vectors v(k) and v(N−k), we can define
any other possible basis of the eigenspace corresponding to
λk as the result of a rotation of v(k) and v(N−k)[

v(k)′

v(N−k)′

]
=

[
cos θk sin θk
− sin θk cos θk

] [
v(k)

v(N−k)

]
, (4)

where θk is an angle in [0, 2π].
For every λk where 1 ≤ k ≤ N

2 − 1, we can rotate the
corresponding eigenvectors as shown in (4). In the 1D-DFT

θk

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π
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θk
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0

0.2
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x̂N−k

Re(x̂N−k)
Im(x̂N−k)

Fig. 2. An example of a pair of coefficients x̂′k and x̂′N−k as a function of
the rotation angle θ ∈ [0, 2π].

matrix, the pairs v(k) and v(N−k) are replaced with the rotated
ones v′(k) and v′(N−k) obtaining a new transform matrix
V (θ) ∈ CN×N called 1D-SDFT. The vector θ ∈ Rp contains
all the rotation angles used and its length is p = N

2 − 1. The
new transform matrix V (θ) can be written as

V (θ) = R(θ)V, (5)

where V = V (0) ∈ CN×N is the 1D-DFT matrix and R(θ) ∈
RN×N is the rotation matrix, whose structure is defined so
that, for each pair of eigenvectors, it performs the rotation as
defined in (4). It is important to underline that the choice of
the eigenvector pairs is given by the analysis of the eigenvalue
multiplicity. In this way, the transform defined in (5) is still
the graph transform of a cycle graph.

Equation (5) shows that the SDFT can be obtained by
applying the rotation described by R(θ) to the output of the
standard DFT, that can be easily computed using the FFT.

From a geometrical point of view, (4) represents a rotation
in the complex plane. Given a real-valued signal x ∈ RN , its
DFT coefficients x̂ have the symmetry property x̂k = x̂∗N−k,
where 1 ≤ k ≤ N

2 −1 and the “∗” symbol denotes conjugation
[7]. Then, using the rotation in (4) we can break this symmetry.
For example, if we perform a rotation by π

4 , we can completely
separate the real part and the imaginary part. In fact, given
v(k)′ and v(N−k)′ , which are obtained rotating v(k) and
v(N−k) by π

4 as in (4), the new transform coefficients are[
x̂′k

x̂′N−k

]
=

[
v(k)′

v(N−k)′

]
x =

[
cos π4 sin π

4
− sin π

4 cos π4

] [
v(k)

v(N−k)

]
x

=

[ √
2
2

√
2
2

−
√
2
2

√
2
2

] [
x̂k

x̂N−k

]
=

[ √
2 Re(x̂k)

−i
√

2 Im(x̂k)

]
,

where i =
√
−1. As an example, Fig. 2 shows a plot of a

pair of coefficients x̂′k and x̂′N−k as a function of the rotation
angle θk ∈ [0, 2π]. For both coefficients, we can clearly see
that the absolute values of the real and imaginary part are
inversely proportional. Moreover, when θk = (2t + 1)π4 with
t = 0, 1, 2, 3 one coefficient is a real value and the other one
is a pure imaginary value. Finally, it is important to underline
that the rotation described in (4) preserves the total energy
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of the coefficients in the eigenspace, i.e. |x̂k|2 + |x̂N−k|2 =
|x̂′k|2 + |x̂′N−k|2.

A. Relationships of the 1D-SDFT to other transforms

We have already shown that if θ = 0 the 1D-SDFT is equal
to the 1D-DFT. Instead if θ = π

4 , it is interesting to show
that for 1 ≤ k ≤ N

2 − 1 we have that x̂k =
√

2xcos
k , where

xcos
k is the k-th coefficient of the Fourier cosine transform

[21]. Analogously, for N
2 + 1 ≤ k ≤ N − 1 we have that

x̂k = −i
√

2xsin
k , where xsin

k is the k-th coefficient of the
Fourier sine transform [21]. In turn, the Fourier cosine and
sine transform are highly related respectively to the DCT and
DST [21].

Moreover, we can also relate the 1D-SDFT with the Hilbert
transform [22]. In fact, given a signal x it can be proved that

H(x) = Im
(
Ṽ
(π

4

)H
V
(
−π

4

)
x

)
, (6)

where H(x) is the Hilbert transform of x and Ṽ
(
π
4

)
is the

SDFT-1D correspondig to the improper rotation [23][
cos π4 sin π

4
sin π

4 − cos π4

]
,

moreover Re
(
Ṽ
(
π
4

)H
V
(
−π4
)
x
)

= (v(0)T x)v(0) +

(v(N2 )
T

x)v(N2 ).
These relationships are interesting because they may open

the way to new generalizations of these transforms.

IV. SDFT - 2D CASE

In the two dimensional case, the 2D-DFT of a signal X ∈
RN1×N2 can be computed as follows

X̂kl =

N1−1∑
n=0

N2−1∑
m=0

Xmne−i2π
(

l
N1
n+ k

N2
m

)
,

in matrix form we can write it as x̂ = Wx, where x ∈ RN1N2

is the vectorized signal X and W ∈ CN1N2×N1N2 is the 2D-
DFT matrix, which is defined in the following way

Wts = e−i2π
(

l
N1
n+ k

N2
m

)
= ρnl ρ

m
k ,

where s = mN1 + n, t = kN1 + l, 0 ≤ l, n ≤ N1 − 1 and
0 ≤ m, k ≤ N2 − 1.

We now consider a grid graph with periodic boundary
conditions that is called toroidal grid graph TN1N2

[24], where
|V| = N1N2. An example of a toroidal grid graph is shown
in Fig. 1. It is known that the toroidal grid graph TN1N2

corresponds to the product graph CN1
× CN2

, where CNi is
a cycle of Ni vertices [25].

In order to study the spectrum of the toroidal grid graph, we
recall the following theorem on the spectrum of the product
graph.

Theorem 2 (Theorem 2.21 in [26]; [27]). Let G1 and G2 be
graphs on N1 and N2 vertices, respectively. Then, the eigen-
values of L(G1×G2) are all possible sums of λi(G1)+λj(G2),
where 0 ≤ i ≤ N1− 1 and 0 ≤ j ≤ N2− 1. Moreover, if v(i)

is an eigenvector of G1 corresponding to λi(G1) and v(j) an
eigenvector of G2 corresponding to λj(G2), then v(i) ⊗ v(j)

(where ⊗ indicates the Kronecker product) is an eigenvector
of G corresponding to λi(G1) + λj(G2).

We now show that there is a strong connection between
2D-DFT and toroidal grid graph.

Theorem 3. Let TNN be a toroidal graph, then the 2D-DFT
basis is an eigenbasis of L(TNN ).

Proof. Let v(p) and v(q), where 0 ≤ p, q ≤ N − 1, be the
eigenvectors of CN corrisponding respectively to the eigenval-
ues λp and λq , as defined in Sec. III. Then, using Theorem 2
we can compute the eigenvector u(p,q) of TNN corresponding
to the eigenvalue µp,q = λp + λq

u(p,q) = v(p) ⊗ v(q) =


v
(p)
1 v(q)

v
(p)
2 v(q)

...
v
(p)
n−1v

(q)

 =


v(q)

ρpv
(q)

...
ρn−1p v(q)

 = w(k),

where k = pN + q and w(k)T is the k-th row of the 2D-
DFT matrix W . Therefore, the 2D-DFT is an eigenbasis of
the Laplacian of TNN (i.e. ΦH = W ).

Since µp,q = λp + λq = µq,p and recalling property (2) for
the eigenvalues λk of CN , in the spectrum of L(TNN ) several
repeated eigenvalues are presents:
• The eigenvalues µp,q where 1 ≤ p, q ≤ N

2 − 1 and
p 6= q have algebraic multiplicity 8 since µp,q = µq,p =
µp,N−q = µN−q,p = µN−p,q = µq,N−p = µN−p,N−q =
µN−q,N−p.

• The eigenvalues µp,p where 1 ≤ p ≤ N
2 −1 have algebraic

multiplicity 4 since µp,p = µp,N−p = µN−p,p =
µN−p,N−p.

• The eigenvalues µp,q where p = 0, N2 and 1 ≤ q ≤
N
2 − 1 (or 1 ≤ p ≤ N

2 − 1 and q = 0, N2 ) have algebraic
multiplicity 4 because µp,q = µq,p = µp,N−q = µN−q,p
(µp,q = µq,p = µN−p,q = µq,N−p).

• The eigenvalue µ0,N2
= µN

2 ,0
has multiplicity 2.

• The eigenvalues µ0,0 and µN
2 ,

N
2

are the only ones with
algebraic multiplicity 1.

Since the Kronecker product is not commutative, the eigen-
vectors u(p,q) of TNN are orthogonal. Then, the geometric
multiplicity is equal to the algebraic multiplicity. Therefore,
the dimension of the eigenspaces corresponding to the repeated
eigenvalues is bigger than one. This proves that the 2D-DFT is
not the unique eigenbasis for L(TNN ) and, thus, the 2D-DFT
is not the unique GFT for TNN .

As shown above, in the spectrum of L(TNN ) many eigen-
values with multiplicity greater than 2 are present. Therefore,
it may be possible to define rotations in more than two
dimensions. However, these rotations may not have a clear
geometrical meaning. For this reason, in the following of this
section we restrict our study to rotations in two dimensions
that exploit the symmetric property µp,q = µq,p. Instead, the
rotations that exploit the property µp,q = µN−q,N−p and
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µN−p,q = µp,N−q are analog to the ones shown in the 1D
case.

Given any vector pair of the 2D-DFT, u(p,q) and u(q,p)

where p 6= q, we can obtain a new pair of eigenvectors of
L(TNN ) by performing the following rotation[

u(p,q)′

u(q,p)′

]
=

[
cos θp,q sin θp,q
− sin θp,q cos θp,q

] [
u(p,q)

u(q,p)

]
, (7)

where θp,q is an angle in [0, 2π]. Then, analogously to the 1D
case, we can define a new transform matrix V (θ) ∈ CN2×N2

,
called 2D-SDFT, that is obtained by replacing in the 2D-DFT
matrix the pairs u(p,q) and u(q,p) with the rotated ones u(p,q)′

and u(q,p)′ . The vector θ ∈ Rp contains all the angles used
and its length is equal to the number of vector pairs, that is
p = N(N−1)

2 . Similarly to the 1D case, also the 2D-SDFT
matrix V (θ) can be computed as in (5), where, in this case,
R(θ) ∈ RN2×N2

is the rotation matrix whose structure is
defined so that, for each pair of vectors, it performs the rotation
as defined in (7).

Given a signal x ∈ RN×N , we can compute the SDFT
coefficients of x corresponding to the eigenvectors u(p,q)′ and
u(q,p)′ in the following way[

x̂′p,q
x̂′q,p

]
=

[
u(p,q)′

u(q,p)′

]
x =

[
cos θp,q sin θp,q
− sin θp,q cos θp,q

] [
u(p,q)

u(q,p)

]
x

=

[
cos θp,q sin θp,q
− sin θp,q cos θp,q

] [
x̂p,q
x̂q,p

]
=

[
cos θp,q sin θp,q
− sin θp,q cos θp,q

] [
Re(x̂p,q)
Re(x̂p,q)

]
+

+ i

[
cos θp,q sin θp,q
− sin θp,q cos θp,q

] [
Im(x̂p,q)
Im(x̂p,q)

]
.

Therefore, we can state that, from a geometrical point of view,
(7) performs separately a rotation of the real and imaginary
part in the 2D Euclidean space. Then, by applying (7) the total
energy of the real and imaginary part of the coefficient pair
remains unchanged, that is

Re(x̂p,q)
2 + Re(x̂q,p)

2 = Re(x̂′p,q)
2 + Re(x̂′q,p)

2,

Im(x̂p,q)
2 + Im(x̂q,p)

2 = Im(x̂′p,q)
2 + Im(x̂′q,p)

2,

but it is possible to unbalance the energy of the real and
imaginary part of each coefficient. For example, we can
compact all the energy of the real part in one coefficient,
zeroing out the other one. In fact, given the pair of DFT
coefficients x̂p,q and x̂q,p we rotate the pair of corresponding
DFT vectors u(p,q) and u(q,p) as in (7) by an angle defined
as follows

θp,q = arctan
Re(x̂q,p)

Re(x̂p,q)
.

Then, we get that Re(x̂′q,p) = 0 and the energy of the real part
of the coefficient pair is conveyed to x̂′p,q , as shown in Fig. 3.

V. APPLICATIONS OF THE SDFT

In this section we discuss possible applications of the SDFT.
The 1D-SDFT can be useful for signal analysis and pro-

cessing. For example, it can be used for easily filtering the
even/odd component of a signal. In fact, if we rotate the pairs

Re(x̂p,q)

Re(x̂q,p)

θp,q

Re(x̂′p,q)

Fig. 3. Rotation of the 2D-DFT vector pair u(p,q) and u(q,p).
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-200

-100
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400
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output data

Fig. 4. Example of filtering the even component of a real signal.

of vectors v(k) and v(N−k) by π
4 , we can design a filter that,

convolved with the input signal, retains only the first (last) N
2

coefficients and outputs the even (odd) signal component, as
shown in Fig. 4 where we obtain as output of the filter the even
component of the input signal. We can also easily filter the
even or odd component of specific frequencies. Analogously
in 2D, we can perform the same filtering operation by rotating
by π

4 the pairs of vectors u(p,q) and u(N−p,N−q) and the
pairs u(p,N−q) and u(N−p,q). This filtering operation could
be useful for signal representation, as in [28].

Moreover, in (6) we have already shown that the SDFT-1D
may be used to perform the Hilbert transform, this could be
useful for computing the local phase and amplitude, that is
used in many applications, such as edge detection [29] and
image feature extraction [30].

The 1D-SDFT can be applied also in multimedia encryption
problems. In this field, several works use parametrized ver-
sions of common transforms for security purposes [15], [16].
Since the SDFT is a parametrized version of the DFT, one can
use the parameter θ ∈ Rp as a secret key. More specifically,
given a signal x ∈ Rp we can obtain x̂ = V (θ)x and then
consider the first N2 components of x̂ as the encrypted signal.
Given θ, it is possible to reconstruct x̂ and then we can obtain
the original signal x by applying the inverse SDFT. We can
also consider the SDFT as a keyed transform basis that can be
used for compressed sensing-based cryptography [31], [32].

The applications presented in this section are just a few
examples of possible applications of the SDFT, but the SDFT
could be of interest for a wide range of fields, such as array
signal processing, phase retrieval and magnetic resonance
imaging.

VI. CONCLUSION

The proposed SDFT is an important generalization of the
classical DFT and it may be of interest in a wide range
of application fields, such as filtering, signal analysis and
multimedia encryption.
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