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Abstract  
 
 
The aim of the paper is to exhaustively exploit and test some statistical tools, such as ANOVA and Linear 

Discriminant Analysis, to investigate a massive amounts of data collected over a rig available @DIRG Lab, 

specifically conceived to test high speed aeronautical bearings; the rig permits the control of rotational 

speed (6000 – 30000 RPM), radial load (0 to 1800 N) and temperature, and allows monitoring vibrations by 

means of 4 tri-axial accelerometers.  

Fifteen different damages have been realised on the bearing but, for simplicity, this papers only treats 

those cases where simple identification methods have failed or not demonstrated to be fully affordable. 

The damages have been inferred on rolls or on the internal ring, with different severities, which are 

reported as a function of their extension, i.e. 150, 250, 450 μm. A total number of 17 combinations of load 

and speed have been analysed per each damaged bearing. 

Although ANOVA rigorously applies when some conditions are respected on the probability distribution of 

the responses, such as Independence of observations, Normality (normal distribution of the residuals) and 

Homoscedasticity (homogeneity of variances – equal variances), the paper exploits the robustness of the 

technique even when data do not fully fall into the requisites.  

Analyses are focused on the best features to be taken into account, trying to seek for the most informative, 

but also trying to extract a “best choice” for the acceleration direction and the most informative point to be 

monitored over the simple structure. 

Wanting to focus on the classification of the single observation, Linear Discriminant Analysis has been 

tested, demonstrating to be quite effective as the number of misclassification is not very high, (at least 

considering the widest damages). 

All these classifications have unfortunately the limit of requiring labelled examples. Acquisitions in un-

damaged and damaged conditions are in fact essential to guarantee their applicability, which is quite often 

impossible for real industrial plants. 

The target can be anyway reached by adopting distances from un-damaged conditions which, conversely, 

must be known as a reference. Advantages of the statistical methods are quickness, simplicity and full 

independence from human interaction. 
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Introduction 
Diagnosis of rotating machinery is becoming every day more significant, thanks to many high-level 

techniques able to reveal information on the exact position of the fault, the amount of damage and 

allowing forecasts about the expected time to failure. 

Unfortunately, these procedures often need to be human supervised and the computational burden makes 

them unsuitable for real-time implementation. In this respect, lower level algorithms, devoted to disclose a 

fault presence, could be a good alternative, for example as a continuous monitoring preliminary analysis. 

With a particular focus on bearing damages, which are usually difficult to detect, some basic statistical tools 

will be then introduced and tested, to understand whether it’s possible to effectively recognise the 

presence of a fault and with which efficiency and reliability. 

The experimental data used in this discussion refers to the test rig at the Department of Mechanical and 

Aerospace Engineering of Politecnico di Torino, shortly introduced hereinafter. 

The experimental setup 

The considered test rig consists of a direct drive rotating shaft supported by two bearings, one of which 

(the farthest from the motor) will exhibit different damage levels. A third central bearing is used to load the 

shaft with an increasing force of 0, 1000, 1400 and 1800 N, while the speed is set at four different values of 

about 90, 180, 280, 370, 470 Hz for a total number of 17 combinations of load and speed. 

The structure is equipped with four tri-axial accelerometers (positioned as reported in Figure 1) sampled at 

a frequency fs = 51200 Hz for a duration of T = 10 s. 

In this paper, acquisitions form six differently damaged high-speed aeronautical bearings (Table 1) will be 

investigated, relying on the information from two accelerometers placed on the main supports (position 1 

and 3). 

 

 

 

 Figure 1: The test rig, the orientation of the triaxial accelerometers and the 4A damaged roller. 

Table 1: Bearing codification according to damage type (Inner Ring or Rolling Element) and size. 

Code 0A 1A 2A 3A 4A 5A 6A 

Damage type none I.R. I.R. I.R. R.E. R.E. R.E. 

Damage size    [µm] - 450 250 150 450 250 150 
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The data 

In order to explore the available data in an efficient way, some features have been extracted. This allows to 

point out and summarize the hidden information using few characteristic parameters.   

Wanting to cope with the need of speed and automation of the analysis, simple time-series features have 

been selected, such as root mean square, skewness, kurtosis, peak value and crest factor (peak/RMS). 

Those features have been computed on shorter independent chunks (no overlap) of the original available 

data to ensure statistical reliability; the number of subdivisions has been chosen with a particular care, so 

as to balance the significance both on the features extraction, and on the further analysis. 

According to these consideration, each of the 17 acquisitions (see Table 2) have been subdivided in one 

hundred 0,1 s parts. 

Table 2: The operational conditions 

Label: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

f (Hz) 100 100 100 100 200 200 200 200 300 300 300 300 400 400 400 500 500 

F (N) 0 1000 1400 1800 0 1000 1400 1800 0 1000 1400 1800 0 1000 1400 0 1000 

 

We obtained then 1700 points in a 30 dimensional space (6 channels, 5 features) per each of the 7 damage 

conditions, from healthy to 6A (Table 1). 

 

The Analysis 
In order to preliminary explore the available data, some established statistical tools have been exploited. 

At first, a univariate Analysis Of Variance (ANOVA) was employed, together with the usual post hoc, multi-

comparison tests, to infer the omnibus (variance based) null hypothesis (presence of a relationship among 

groups – in this case damaged conditions) from the data. 

Then, the Linear Discriminant Analysis (LDA) algorithm was adopted, with the aim of understanding 

whether simple multivariate classification routines are able to distinguish among the different damage 

levels, and at which misclassification rates. 

Being a multivariate problem of dimension 30 (6 channels, 5 features), a Principal Component Analysis 

(PCA) was also proposed with the aim of visualizing the data. 

The main critical point of those analyses is that damaged acquisitions are not always available in real 

applications, in particular for big, expensive machines, whose damaged condition is very dangerous and 

cannot be investigated.  

In this case, some unsupervised techniques (no labels) referring only to the healthy-normal condition are 

preferred. An outlier analysis was then performed, simply disclosing a fault presence as a deviation from 

normality, through Mahalanobis Distance. 
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ANOVA 

ANOVA is a statistical inference tool able to deduce properties of the underlying distributions by an analysis 

of data. Practically it tests the omnibus null hypothesis H0 that all the different groups’ populations have 

equal mean values, meaning that no significant difference is detectable. 

Obviously, this could turn useful to test whether a damaged distribution differs from the healthy one, 

opening to a possibility of a discrimination at least in terms of distribution, if not for the single data points. 

Being ANOVA a univariate technique, it should be repeated per each channel and feature (30 

combinations), so that it would be possible to make some considerations about the more relevant channels 

and features.  

Unfortunately, even in case of H0 rejection, ANOVA is not able to provide additional information about 

which population differs the most and from which one of the others. Multiple two-sample tests (ANOVA 

reduces to a Student’s t-test in this case) could be performed, but this would increase the chance of 

committing statistical type I error (false rejection of H0), so the ordinary procedure requires the more 

reliable post hoc tests, allowing multiple comparisons. 

ANOVA  assumes a linear model according to which, an observation of the 𝑗𝑡ℎ group will be found as a 

random draw from a normal distribution around the group mean  𝜇𝑗  (often called treatment). 

𝑦𝑖𝑗 = 𝜇𝑗 + 𝜀𝑖𝑗 
𝜀𝑖𝑗  ~ 𝑁𝑗(0, 𝜎𝑗) 𝜎𝑗 = 𝜎 ∀ 𝑗 = 1: 𝐺 

𝜎𝑡
2 = 𝜎𝑤𝑔

2 + 𝜎𝑏𝑔
2  

In the case of independent observations with homogeneous variances (homoscedasticity: equal 𝜎𝑗∀ group 

𝑗), the overall variance 𝜎𝑡
2 can be divided into a within groups variance 𝜎𝑤𝑔

2 , approximately an average of 

the 𝜎𝑗
2 weighted according to the numerousness 𝑛𝑗 of each group, and a between groups variance 𝜎𝑏𝑔

2 , the 

squared deviation of the groups means 𝜇𝑗  from the overall mean 𝑦. 

When 𝜎𝑏𝑔
2  and 𝜎𝑤𝑔

2  are statistically equal, their ratio is distributed according to the Fisher-Snedecor’s 

 𝐹(𝐺−1,𝑁−𝐺), so they can be compared with a Fisher’s F test, which outputs a p-value, namely the probability 

that the statistical summary F, would be the same as, or more extreme than, the actual observed results.  

𝜎𝑏𝑔
2 =

1

𝐺 − 1
∑(𝑦 − 𝜇𝑗)

2
𝐺

𝑗=1

 𝜎𝑏𝑔
2  ~ 𝜒(𝐺−1)

2  

𝐹 =
𝜎𝑏𝑔

2

𝜎𝑤𝑔
2

 ~ 𝐹(𝐺−1,𝑁−𝐺) 
H0: same mean if 

     𝑭 ≤ 𝑭(𝑮−𝟏,𝑵−𝑮)
𝜶  

(critical value) 𝜎𝑤𝑔
2 =

1

𝑁 − 𝐺
∑ ∑(𝑦𝑖𝑗 − 𝜇𝑗)

2

𝑛𝑗

𝑖=1

𝐺

𝑗=1

 𝜎𝑤𝑔
2  ~ 𝜒(𝑁−𝐺)

2  

N: overall numerousness, G: number of groups;  

ANOVA simplified formulas for equal 𝑛𝑗 = 𝑛 in each group  

 

Therefore, when the p-value is lower than 𝛼 = 5% , the hypothesys of equal variances is rejected, together 

with  the ANOVA H0 null hypothesis, at a confidence of 1 − 𝛼 = 95%  (Figure 2). 



6 
 

 
Figure 2: Fisher-Snedecor’s  𝐹(6,11839) critical value for a p-value of 5% - one sided test 

 

It is worth to remember that the ratio F can be used as a measure of separation among two groups 

distributions; in fact the farther two classes are, the bigger will be the between-groups variance, leading to 

more extreme values of F, which corresponds to lower p-values. 

Multi-comparison test: Fisher’s Least Significant Difference (LSD) 

As previously introduced, ANOVA simultaneously infers the equality of the means for all the groups 

together. In order to decompose the analysis and compare the damaged conditions with the healthy, 

multiple comparisons are necessary. One of the most common tests to accomplish this task is the Fisher’s 

Least Significant Difference (LSD). Considering that ANOVA reduces to a Student’s t test if only two groups 

at a time are tested (in terms of distributios: 𝐹(1,𝑁−2) ≡ 𝑡2 ), a simple idea is to use a set of individual t-

tests. Fisher simply generalized these tests referring them to the pooled estimate of the standard deviation 

from all groups, so as to reduce the type I error (incorrect H0 rejection). 

Student’s t test: 

𝑡 =
𝜇𝑖 − 𝜇𝑗

√
𝜎𝑖

2 + 𝜎𝑗
2

𝑛

~ 𝑡(2𝑛 − 2) 

H0: same mean if      𝑡 ≤ 𝑡(2𝑛 − 2)
𝛼/2

 

Fisher’s generalisation: 

𝑡 =
𝜇𝑖 − 𝜇𝑗

√
𝜎𝑤𝑔

2

𝑛

~ 𝑡(𝑁 −𝐺) 

Fisher’s LSD: 

𝐿𝑆𝐷 = |𝜇𝑖 − 𝜇𝑗| ≤ 𝑡(𝑁−𝐺)
𝛼/2 √

𝜎𝑤𝑔
2

𝑛
 

Simplified formulas for equal 𝑛𝑗 = 𝑛 in each group 

 

Therefore it’s possible to build a limit range around the mean of each group of ± 𝐿𝑆𝐷
2⁄  ; intersecating 

groups will be then considered not significally distant, meaning that it will be hard to recognize them with 

enough confidence. 

  

PDF 
p-value: 5% 

Critical value: 

F(G−1,N−G)
5%  

PDF tail area: 

5% 
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Multivariate analysis: LDA classification 

In order to “fuse” the information from all the sensors and all the features, and then improving the 

classification, a multivariate analysis of variance (MANOVA) could be proposed. Unfortunately, it shows the 

same limitations of ANOVA, so instead of focusing on p-values of difficult interpretation, a multivariate 

classification has been preferred. Extending the considerations introduced for ANOVA, a Fisher’s Linear 

Discriminant Analysis (LDA) have been proposed.  

It must be kept in mind that such a classification, as previously introduced analyses, still requires labelled 

samples (it’s still supervised); after building the classifier function anyway, the discrimination will be 

pointwise and no more in terms of distributions. 

 
Figure 3: LDA idea - find the direction  on which the projected samples will show the higher separation 

 

 

LDA is simply a search for the projection w which maximizes the difference between the projected class 

means, normalized by a measure of the within-class scatter along the direction of w. Thus the measure of 

separation is always given by the ratio  𝜎𝑏𝑔
2 /𝜎𝑤𝑔

2 , generalizable for a multivariate space. 

Considering only 2 groups, for the sake of simplicity: 

Between class covariance matrix: 

𝑆𝑏𝑔
̿̿ ̿̿ = (𝜇2̅̅ ̅ − 𝜇1̅̅ ̅)(𝜇2̅̅ ̅ − 𝜇1̅̅ ̅)′ 𝐽(𝑤) =

𝑤′𝑆𝑏𝑔
̿̿ ̿̿ 𝑤

𝑤′𝑆𝑤𝑔
̿̿ ̿̿ ̿𝑤

 

Within class covariance matrix: 

𝑆𝑤𝑔
̿̿ ̿̿ ̿ = ∑ (𝑦𝑘̅̅ ̅ − 𝜇1̅̅ ̅)

𝑘∈𝐶1

(𝑦𝑘̅̅ ̅ − 𝜇1̅̅ ̅)
′

+ ∑ (𝑦𝑘̅̅ ̅ − 𝜇2̅̅ ̅)

𝑘∈𝐶2

(𝑦𝑘̅̅ ̅ − 𝜇2̅̅ ̅)
′
 

arg max
𝑤

𝐽(𝑤): 

𝑤 ∝ 𝑆𝑤𝑔
̿̿ ̿̿ ̿

−1
(𝜇2̅̅ ̅ − 𝜇1̅̅ ̅) 

Extending it to multiple classes, it’s possible to prove that, when w is an eigenvector of  𝑆𝑤𝑔
̿̿ ̿̿ ̿

−1
𝑆𝑏𝑔
̿̿ ̿̿ ̿ , the 

separation will be equal to the corresponding eigenvalue: 

𝑤 ∝ 𝑃𝐶 𝑜𝑓 𝑆𝑤𝑔
̿̿ ̿̿ ̿

−1
𝑆𝑏𝑔
̿̿ ̿̿̿ 

This algorithm, although very interesting from a theoretical point of view, does not usually perform well, as 

it expects linear separation among the classes. 

𝜇2 

𝜇1 
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Principal Component Analysis (PCA) 

The PCA is a technique that uses an orthogonal space transformation to convert a set of correlated 

quantities into uncorrelated variables called principal components. This transformation is basically a 

rotation of the space in such a way that the first principal component will explain the largest possible 

variance, while each succeeding component will show the highest possible variance under the constraint of 

orthogonality with the preceding ones. This is usually accomplished by eigenvalue decomposition of the 

data covariance matrix or singular value decomposition of the data matrix, usually after mean centering. 

PCA is sensitive to the relative scaling of the original variables, so a data normalization is often advisable 

(equivalent to use Z-scores). Alternatively, the data correlation matrix could be used. 

In general, the main application of PCA is for reducing a complex data set to a lower dimension, revealing 

the sometimes hidden, simplified dynamics. This dimensionality reduction will be performed simply by 

focusing on the first few components that explain the majority of the variation, while neglecting the others. 

 
Figure 4: PCA 

Although very useful for data visualization, for diagnostic purposes this variance-based dimensionality 

reduction is not really helpful as the condition-information is likely to be neglected, making the detection 

more challenging.  

Outlier Analysis 
Up to this point, all the methods proposed required labelled samples from all the damaged conditions 

(supervised techniques). Since this information is not always available in real applications, unsupervised 

options should be evaluated. The natural alternative to classification would be the cluster analysis, but, as 

the main purpose of condition monitoring is the early recognition of damages, possibly at the onset, the 

outlier analysis, trained only with data from the healthy-reference condition (training set), has been 

preferred.  

In general, in a data set, a discordant measure is defined “outlier”, when, being inconsistent with the 

others, is believed to be generated by an alternate mechanism. The judgment on discordancy will depend 

on a measure of distance from the reference distribution, usually called Novelty Index (NI), on which a 

threshold can be defined [3]. 

The Mahalanobis distance (MD) is the optimal candidate for evaluating discordancy in a multi-dimensional  

space, because it is unitless and scale-invariant, and takes into account the correlations of the data set.  

𝐷𝑀(𝑋) = √(𝑋 − 𝜇)𝑇𝑆−1(𝑋 − 𝜇) 

PC1 
PC2 
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The Novelty Indices computed with Mahalanobis distance can be compared against some objective 

criterion (a threshold) to judge whether the corresponding data comes from the healthy distribution; 

furthermore, even for graphical purposes, these NI are the optimal univariate tool to display possible 

outliers of a multivariate dataset.  

Unfortunately, the procedure to generate a suitable threshold is not trivial, as the distribution of the 

healthy data may be in general non-normal. In this respect, probability theory offers some good hints. For 

example, Chebyshev's inequality could be used to fix a limit, given that, for a wide class of probability 

distributions, "nearly all values are close to the mean — no more than a fraction of 1/𝑘2 of the 

distribution's values can be more than k standard deviations away from the mean”. This hypothesis in many 

cases overestimates the extreme values probabilities (for example for an ideal normal distribution, the tails 

decay more rapidly than that), but it helps understanding that in most of real-case distributions, tails are 

fatter than expected and particular attention should be kept.  

To improve the thresholding operation, several repeated Monte Carlo simulations (MC) of a p-dimensional 

Gaussian distribution could be performed. Drawing n observations in p variables and computing the NIs, 

the maximum operator could be used to generate a robust threshold, for example taking the 99th 

percentile of the maxima distribution [3]. 

Furthermore, the use of Mahalanobis distance based Novelty Indices has even the advantage of 

compensating for limited operational and environmental conditions variation under linearity (or quasi 

linearity) assumption. 

In fact, keeping in mind that the Mahalanobis distance is equivalent to an Eulerian distance on a 

transformed, standardized space, Novelty Indices computed in such a way will already account for a 

compensation, which is a consequence of the eigenvectors normalization on their own standard deviation. 

 

The Results 
After the feature extraction, the huge amount of data have been organized in 7 matrices (0 to 6A damages) 

of 1700 rows (17 speed and load combination, 100 samples each) and 30 columns (6 channels, 5 features 

each), corresponding to 1700 points in a 30 dimensional space. 

The analysis started then with a preliminary visual exploration of the healthy data after PCA: the samples 

have been summarized in the 2D plane generated by the first two principal components, reported in Figure 

5. 

From the picture it is concluded that the effect of speed is much more relevant than the load, in fact, if we 

neglect the condition of zero loading (labels 1,5,9,13, in any case not very common), the data would be 

clustered in equal speed subgroups, almost regardless from the load (see 2-3-4, 6-7-8, 10-11-12 and 14-15 

clusters). 

This is obviously just a simplifying projection, neglecting a lot of information, anyhow it is useful to 

underline that the working conditions strongly affect the data distribution, so that it would be wiser to 

make comparisons at the same operational conditions. 
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Figure 6 shows for example the data referred to acquisition 12 (300 Hz, 1800 N), at different damage levels, 

after removing the mean value of the healthy data. It’s easy to notice how the most damaged conditions 

(1A and 4A) will be the furthest from the healthy. This will be enhanced by the following outlier analysis. 

 

Figure 5: Healthy data for the 17 speed and load combinations (Table 2) _ 68% and 99% (1 and 3 sigma equivalent) 

ellipses compared to the convex hull. 

 
Figure 6: Healthy data compared to damaged acquisitions, centered on the same reference – work condition 12. 

 

ANOVA  

In order to preliminary evaluate the features performance and assess which sensor positioning and 

direction could enhance the damage detection, the Analysis Of Variance have been conducted on single 

channel, single feature distributions, for the entire set of 1700 points per 7 damaged conditions. 

ZOOM: 
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Although the assumptions  of normality and homoscedasticity were not completely met, ANOVA is 

generally considered robust to those kind of violations, in particular for the case in which all the groups 

under analysis show equal numerousness, so the method  was deemed to be accepted.  

In all the 30 tests, the ANOVA p-values resulted almost negligible, so it was normal to focus on the 

multicomparison post-hoc test reported in Figure 7 which resulted much more informative. 

In terms of features, it’s easy to notice that kurtosis and crest are the best, as they are able to always 

discriminate 1A and 4A conditions (highest damage) from the others; furthermore, they seem more 

consistent with the damage. For example, focusing on channel 4, it’s easy to notice a linear trend of 

distance and damage level. 

However the other features seem to add some information, in particular for the less damaged conditions, 

so that it would not be wise to ignore them. 

 

 

Figure 7: ANOVA post-hoc, Multicomparison result. For different channels and features, all the 6 damage conditions 

are compared to the healthy reference (0) through LSD limits. 

 

 

Classification 

In order to test if it is possible to discriminate the different damage conditions using the information from 

the 6 channels and the 5 features altogether, a multivariate classification have been proposed. 

The overall data set has been divided in two parts: the first 60 samples per each of the 17 operational 

conditions were used to train a classifier, which have been tested on the same set (in sample), but also on 

the remaining points used as a validation set (out of sample). 

Ch1 

Ch2 

Ch3 

Ch4 

Ch5 

Ch6 

RMS SKEWNESS KURTOSIS CREST PEAK 
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The performances have been evaluated through confusion matrices showing the approximated percentage 

of classified samples against the true, target class (read by rows). The further this matrix is from the 

identity, the worst the classification. 

Focusing on Table 3,  it’s possible to notice that a linear discriminant, although quite good in recognizing 1A 

and 4A conditions, shows some troubles in the other cases, in particular for correctly classifying 

undamaged acquisitions (only 50% of “healthy points” were really un-damaged). 

Table 3: LDA confusion matrices 

 
 

in sample (training) 
 

out of sample (validation) 

LDA 
Target Class 

 
Target Class 

0A 1A 2A 3A 4A 5A 6A 
 

0A 1A 2A 3A 4A 5A 6A 

O
u

tp
u

t 
C

la
ss

 

0A 51 0 10 12 0 9 15 
 

48 0 9 15 0 12 14 

1A 12 73 0 4 1 6 0 
 

12 73 1 4 1 6 0 

2A 14 0 59 13 0 4 7 
 

16 0 52 17 0 5 7 

3A 25 0 11 43 0 11 7 
 

22 0 12 44 0 13 7 

4A 1 4 0 0 81 10 0 
 

1 4 0 1 80 11 0 

5A 17 1 6 5 0 63 5 
 

15 1 8 8 0 61 4 

6A 13 0 8 12 0 7 57 
 

14 0 8 12 0 7 57 

 

 

Outlier Analysis 
As previously introduced, in many cases damaged acquisitions are not available, so an Outlier Analysis 

(based only on a healthy training set) seems ideal. This procedure, based on Mahalanobis distance, is very 

fast and effective in pointing out discordant measures, but it must be kept in mind that novelty does not 

necessarily imply the presence of a damage, as even variations of operational or environmental conditions 

would lead to similar deviations. 

To underline this fact, a first analysis on the entire data set has been conducted, as reported in Figure 8. In 

this case the strong effect of the different operational conditions can be seen both on the healthy, and on 

the damaged cases. Even if the biggest damages can be recognized quite effectively, almost all the other 

conditions will show a high rate of Missed Alarms. Furthermore many outliers will trigger False Alarms even 

in the training set.  
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Figure 8: Mahalanobis distance for the entire available data altogether, without considering the different operational 

conditions; in red the 99
th

 percentile of the maxima distribution from 1000 Monte Carlo repetitions, used as a threshold. 

 

It is worth then to repeat the analysis on each of the 17 available work conditions separately. The results in 

terms of False and Missed Alarms are reported in Table 4 and graphically in Figure 9. In this case it’s easy to 

notice that the performances are really improved, in fact, the alarm rates is very satisfying for almost all the 

conditions (just at low speed, condition 3 and 4, seem to have difficulty to diagnose 3A condition). 

Additionally, in many cases (look at Figure 9 - condition 12) the damaged condition show a wide distance 

from the healthy, so that the threshold could be increased to annihilate the FA rate, without increasing the 

MA. It’s interesting to notice that these Novelty Indices are even consistent with the damage, as they 

change almost monotonically with the severity. This could be used to diagnose not only the presence, but 

even the size of a damage.  

  
Work condition 12 Work condition 3 

Figure 9: Mahalanobis distance for certain operational conditions. 
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Table 4: False and Missed Alarms for the 17 operational conditions, considered independently and compared to their 

own reference healthy acquisitions (see Figure 9); the 99
th

 percentile of the maxima distribution from 1000 Monte Carlo 

repetitions, used as a threshold, is reported as well. 

 

FA MA MC's 99% 
threshold 

 

0A 1A 2A 3A 4A 5A 6A 

1 2 0 0 0 0 0 0 7,42 

2 2 0 0 0 0 0 0 7,37 

3 3 0 0 21 0 2 0 7,38 

4 4 0 0 7 0 0 0 7,46 

5 3 0 0 0 0 0 0 7,42 

6 1 0 0 0 0 0 0 7,43 

7 1 0 0 0 0 0 0 7,37 

8 3 0 0 0 0 0 0 7,41 

9 3 0 0 0 0 0 0 7,44 

10 1 0 0 0 0 0 0 7,37 

11 4 0 0 0 0 0 0 7,41 

12 2 0 0 0 0 0 0 7,39 

13 4 0 0 0 0 0 0 7,43 

14 2 0 0 0 0 0 0 7,49 

15 4 0 0 0 0 0 0 7,42 

16 1 0 0 0 0 0 0 7,40 

17 0 0 0 0 0 0 0 7,38 

referred to a 100 points sample:   
 

average 
threshold: 

7,41 
values can be considered as %  

 

In order to show the ability of MD Outlier Analysis of compensating for reduced variations around a 

nominal condition  (linear or quasi linear effect), a test have been conducted on 4 sets at constant speed 

but with changing load (acquisitions 9 to 12, at 300 Hz, while load ranges from 0 to Max). 

The results are reported in Figure 10. 

 

 

Alarms % 

0A 3 % 

1A 0 % 

2A 0 % 

3A 0,5% 

4A 0 % 

5A 0 % 

6A 0 % 

MC’s 99% 

threshold: 

8,2 

Figure 10: Mahalanobis distance for operational conditions 9-12 (constant speed 300 Hz). 
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Conclusions 
Different supervised and unsupervised techniques were tested in this paper, to compare their 

performances in extracting information from a big, high dimensional data set. 

As a preliminary analysis, PCA has been used to reduce the dimensionality and visualize the entire data set 

in a 2D representation.  

Then 30 univariate analyses of variance have been conducted, together with their corresponding 

multicomparison tests. This highlighted that all the channels and all the features were able to give different 

kind of information for different damages, so it was wise to fuse all this intelligence with multivariate tools. 

LDA was then tested, proving that in the 30 dimensional space, the different speed-load and damage 

conditions were quite well recognizable even if not really linearly separated. 

A Mahalanobis distance based outlier analysis was then finally proposed as an unsupervised technique to 

detect deviations from the healthy condition. Selecting as reference a single operational condition, and 

comparing its relative damaged sets, very good results were obtained in terms of False and Missed Alarms 

rate, and the damage severity was deducible as well. Taking advantage of the intrinsic ability of 

compensating for simple linear or quasi linear hidden effects, this analysis proved to be good even for 

groups of acquisitions at constant speed but variable load. Unfortunately, if the entire 17 operational 

conditions were considered altogether, the method could well recognize only 4A and 1A damages (the 

more severe), reducing  its reliability. 

These results are anyway very good if considering also the quickness of the algorithms, the simplicity and 

the full independence from human interaction, which make them suitable for real time implementation. 
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