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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

It is well-known in the literature that internal defects play a major role in the Very-High-Cycle Fatigue (VHCF) response of 
metallic materials. Generally, VHCF failures nucleate from internal defects characterized by a limited size. Unexpectedly, it has 
been found that cracks can grow from the initial defect even if the Stress Intensity Factor (SIF) is quite below the characteristic 
threshold for crack growth. Even though researchers unanimously accept this singular experimental evidence, they still dispute 
about its physical justification. Different micromechanical explanations have been proposed in the literature: local grain 
refinement, carbide decohesion, matrix fragmentation, hydrogen embrittlement, numerous cyclic pressure and formation of 
persistent slip bands are the most famous proposals. Regardless of the specific micromechanical explanation, it is generally 
acknowledged that a weakening mechanism occurs around the initial defect, thus permitting crack growth below the SIF 
threshold. 
The present paper proposes an innovative approach for the quantitative modeling of the weakening process around the initial 
defect. The proposed model considers an additional SIF that reduces the SIF threshold of the material. Starting from a very 
general formulation for the additional SIF, possible scenarios for crack growth from the initial defect are also identified and 
described. It is theoretically demonstrated that, depending on the scenario, a VHCF limit may also be present and its final 
formulation recalls the well-known expression previously proposed by Murakami. 
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1. Introduction 

The increasing demand for high performance machinery able to sustain significant loads for a very large number 
of cycles (larger than 108 cycles) is presently driving the research on the Very-High-Cycle Fatigue (VHCF) response 
of many metallic materials. 

In the last decades, the extensive experimental investigation on VHCF has shown that failures mainly originate 
from internal defects (inclusions, pores and inhomogeneities) with a typical fish-eye morphology. Within the fish-
eye, depending on the defect size and on the applied stress, fracture surfaces may show the so-called Fine Granular 
Area (FGA) in the vicinity of the internal defect. The FGA (also called Optically Dark Area or ODA by Murakami, 
Granular Bright Facet or GBF by Shiozawa and Rough Surface Area or RSA by Ochi) is a restricted region, dark at 
the optical microscope, that plays a key role in the initiation of the VHCF failure, since its formation consumes more 
than the 98% of the VHCF life. Researchers still dispute about the actual mechanism behind the FGA formation (Li 
et al., 2016), but they unanimously accept that, within the FGA, crack can grow even if the Stress Intensity Factor 
(SIF) is below the SIF threshold for crack growth. 

In the present paper, the reduction of the SIF threshold within the FGA is originally modeled in agreement with 
the different weakening mechanisms proposed in the literature. Starting from a very general formulation for the SIF 
reduction, possible scenarios for crack growth from the initial defect are also identified and described. It is 
theoretically demonstrated that, depending on the scenario, a VHCF limit may also be present and its final 
formulation recalls the well-known expression previously proposed by Murakami (Murakami, 2002). An illustrative 
numerical example, based on experimental data, is finally reported in the paper in order to show the applicability of 
the proposed model and its potentialities. 

 
 

Nomenclature 

FGA    Fine Granular Area 
HV    Vickers Hardness 
SIF    Stress Intensity Factor 
VHCF    Very-High-Cycle Fatigue 

ca , da , ,0da , ,FGA maxa , FiEa  projected area of defects 

,th gc , ,th g , ,th rc , ,th r   parameters involved in SIF thresholds 

Ic , Im , IIc , IIm , IIIc , IIIm , sc , sm , Paris’ constants in the three stages of crack growth 

dk     SIF of defect 

,th gk , ,th lk , ,th rk    SIF thresholds 

s     stress amplitude 

ls     fatigue limit 

fN     number of cycles to failure 

IN , ,I minN , ,I maxN , IIN , IIIN  number of cycles in the three stages of crack growth 
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2. Methods 

A general expression for modeling the SIF threshold within the FGA is presented in Section 2.1. Starting from the 
proposed model, an expression for the fatigue limit is defined in Section 2.2 and a model for the crack growth rate is 
introduced in Section 2.3. 

2.1. SIF threshold within the FGA 

It is generally acknowledged that crack can grow within the FGA even if the SIF is below the SIF threshold of the 
material. Regardless of the physical justification for this unexpected experimental evidence, crack growth can occur 
in the FGA only if a local reduction of the global SIF threshold of the material is accepted. 

The following assumptions permit to define a general model for the local reduction of the SIF threshold within 
the FGA: 

 
1. the global SIF threshold, referred to as ,th  gk , can be expressed as (Shiozawa et al. 2001; Murakami, 2002; 

Tanaka and Akiniwa, 2002; Chapetti et al., 2003; Liu et al., 2006; Li et al., 2010; Hong et al., 2014; 
Matsunaga et al., 2015): 

  ,
, , 120


  th g

th g th g dk c HV a ,    (1) 

where da  is the projected area of the defect, HV  is the Vickers hardness of the material in the vicinity of the 

defect and , 0th gc  and ,0 1/ 2 th g  (being , 0 th g  in case of global SIF threshold for long cracks) are 

two material coefficients. 
2. the SIF for an internal defect, referred to as dk , is given by (Murakami, 2002): 

1/2
0.5 d dk s a ,    (2) 

where s  is the local stress amplitude at the defect location. 
3. within the FGA, the local SIF threshold, referred to as ,th lk , is defined as: 

, , , th l th g th rk k k ,    (3) 

where ,th rk  accounts for the reduction of the SIF threshold induced by the different weakening mechanisms 

proposed in the literature: local grain refinement (Sakai, 2009; Nakamura et al., 2010; Grad et al., 2012; 
Sakai et al, 2015; Hong et al., 2016), hydrogen embrittlement (Murakami, 2002; Liu et al., 2010), carbide 
decohesion (Shiozawa et al., 2001), matrix fragmentation (Shanyavskiy, 2013) or formation of persistent slip 
bands (Huang et al., 2010). 

4. the SIF threshold reduction has the most general formulation fulfilling the following three basic conditions: 
a. the principle of dimensional homogeneity, for which ,th rk  must be proportional to the stress 

amplitude and to the square-root of the defect size. 
b. the initial condition, for which ,th rk  must be proportional to the square-root of the initial defect size 

when crack starts growing. 
c. the defect size dependency, for which ,th rk  may depend on the defect size. 



	 Davide S. Paolino et al. / Procedia Structural Integrity 3 (2017) 411–423� 4132 Author name / Structural Integrity Procedia  00 (2017) 000–000 

1. Introduction 

The increasing demand for high performance machinery able to sustain significant loads for a very large number 
of cycles (larger than 108 cycles) is presently driving the research on the Very-High-Cycle Fatigue (VHCF) response 
of many metallic materials. 

In the last decades, the extensive experimental investigation on VHCF has shown that failures mainly originate 
from internal defects (inclusions, pores and inhomogeneities) with a typical fish-eye morphology. Within the fish-
eye, depending on the defect size and on the applied stress, fracture surfaces may show the so-called Fine Granular 
Area (FGA) in the vicinity of the internal defect. The FGA (also called Optically Dark Area or ODA by Murakami, 
Granular Bright Facet or GBF by Shiozawa and Rough Surface Area or RSA by Ochi) is a restricted region, dark at 
the optical microscope, that plays a key role in the initiation of the VHCF failure, since its formation consumes more 
than the 98% of the VHCF life. Researchers still dispute about the actual mechanism behind the FGA formation (Li 
et al., 2016), but they unanimously accept that, within the FGA, crack can grow even if the Stress Intensity Factor 
(SIF) is below the SIF threshold for crack growth. 

In the present paper, the reduction of the SIF threshold within the FGA is originally modeled in agreement with 
the different weakening mechanisms proposed in the literature. Starting from a very general formulation for the SIF 
reduction, possible scenarios for crack growth from the initial defect are also identified and described. It is 
theoretically demonstrated that, depending on the scenario, a VHCF limit may also be present and its final 
formulation recalls the well-known expression previously proposed by Murakami (Murakami, 2002). An illustrative 
numerical example, based on experimental data, is finally reported in the paper in order to show the applicability of 
the proposed model and its potentialities. 

 
 

Nomenclature 

FGA    Fine Granular Area 
HV    Vickers Hardness 
SIF    Stress Intensity Factor 
VHCF    Very-High-Cycle Fatigue 

ca , da , ,0da , ,FGA maxa , FiEa  projected area of defects 

,th gc , ,th g , ,th rc , ,th r   parameters involved in SIF thresholds 

Ic , Im , IIc , IIm , IIIc , IIIm , sc , sm , Paris’ constants in the three stages of crack growth 

dk     SIF of defect 

,th gk , ,th lk , ,th rk    SIF thresholds 

s     stress amplitude 

ls     fatigue limit 

fN     number of cycles to failure 

IN , ,I minN , ,I maxN , IIN , IIIN  number of cycles in the three stages of crack growth 

 

 Author name / Structural Integrity Procedia 00 (2017) 000–000  3 

2. Methods 

A general expression for modeling the SIF threshold within the FGA is presented in Section 2.1. Starting from the 
proposed model, an expression for the fatigue limit is defined in Section 2.2 and a model for the crack growth rate is 
introduced in Section 2.3. 

2.1. SIF threshold within the FGA 

It is generally acknowledged that crack can grow within the FGA even if the SIF is below the SIF threshold of the 
material. Regardless of the physical justification for this unexpected experimental evidence, crack growth can occur 
in the FGA only if a local reduction of the global SIF threshold of the material is accepted. 

The following assumptions permit to define a general model for the local reduction of the SIF threshold within 
the FGA: 

 
1. the global SIF threshold, referred to as ,th  gk , can be expressed as (Shiozawa et al. 2001; Murakami, 2002; 

Tanaka and Akiniwa, 2002; Chapetti et al., 2003; Liu et al., 2006; Li et al., 2010; Hong et al., 2014; 
Matsunaga et al., 2015): 

  ,
, , 120


  th g

th g th g dk c HV a ,    (1) 

where da  is the projected area of the defect, HV  is the Vickers hardness of the material in the vicinity of the 

defect and , 0th gc  and ,0 1/ 2 th g  (being , 0 th g  in case of global SIF threshold for long cracks) are 

two material coefficients. 
2. the SIF for an internal defect, referred to as dk , is given by (Murakami, 2002): 

1/2
0.5 d dk s a ,    (2) 

where s  is the local stress amplitude at the defect location. 
3. within the FGA, the local SIF threshold, referred to as ,th lk , is defined as: 

, , , th l th g th rk k k ,    (3) 

where ,th rk  accounts for the reduction of the SIF threshold induced by the different weakening mechanisms 

proposed in the literature: local grain refinement (Sakai, 2009; Nakamura et al., 2010; Grad et al., 2012; 
Sakai et al, 2015; Hong et al., 2016), hydrogen embrittlement (Murakami, 2002; Liu et al., 2010), carbide 
decohesion (Shiozawa et al., 2001), matrix fragmentation (Shanyavskiy, 2013) or formation of persistent slip 
bands (Huang et al., 2010). 

4. the SIF threshold reduction has the most general formulation fulfilling the following three basic conditions: 
a. the principle of dimensional homogeneity, for which ,th rk  must be proportional to the stress 

amplitude and to the square-root of the defect size. 
b. the initial condition, for which ,th rk  must be proportional to the square-root of the initial defect size 

when crack starts growing. 
c. the defect size dependency, for which ,th rk  may depend on the defect size. 



414	 Davide S. Paolino et al. / Procedia Structural Integrity 3 (2017) 411–4234 Author name / Structural Integrity Procedia  00 (2017) 000–000 

According to the conditions a)-c), the easiest and most general formulation for ,th rk  is: 

  ,1/2
, , ,0 ,0/




th r

th r th r d d dk c s a a a ,    (4) 

where ,0da  is the projected area of the initial defect and , 0th rc  and , 0 th r  (being , 0 th r  if ,th rk  is a 

constant value) are two material coefficients that ensure , ,0  th l th gk k  for any da  value. 

5. FGA forms until , , th l d th gk k k . 

 
From Eqs. (1), (3) and (4), the general expression for the local SIF threshold is finally given by: 

    ,, 1/2
, , , ,0 ,0120 /


  

th rth g
th l th g d th r d d dk c HV a c s a a a .   (5) 

2.2. Fatigue limit expression 

According to assumption 5) in Section 2.1, the following four distinct cases may occur: 
1.    ,0 , ,0d d th g dk a k a : fatigue life is finite and the FGA does not form. Crack grows until failure 

without the assistance of any weakening mechanism. 

2.      , ,0 ,0 , ,0 th l d d d th g dk a k a k a : fatigue life is finite, the FGA forms and it reaches its maximum 

extension, ,FGA maxa . Within the FGA, crack can grow thanks to the weakening mechanisms proposed in 

the literature (Shiozawa et al., 2001; Murakami, 2002; Sakai, 2009; Huang et al., 2010; Liu et al., 2010; 
Nakamura et al., 2010; Grad et al., 2012; Shanyavskiy, 2013; Sakai et al, 2015; Hong et al., 2016). When dk  

reaches ,th gk , the FGA attains its maximum extension. Then crack grows until failure without the assistance 

of any weakening mechanism. 

3.      , ,0 ,0 , ,0 th l d d d th g dk a k a k a : fatigue life is infinite, the FGA forms but it does not reach the 

maximum extension. Within the FGA, crack can grow thanks to any of the weakening mechanisms proposed 
in the literature (Shiozawa et al., 2001; Murakami, 2002; Sakai, 2009; Huang et al., 2010; Liu et al., 2010; 
Nakamura et al., 2010; Grad et al., 2012; Shanyavskiy, 2013; Sakai et al, 2015; Hong et al., 2016). When 

,th lk  reaches dk , the FGA stops forming at ,FGA FGA maxa a  and crack arrests. 

4.    ,0 , ,0d d th l dk a k a : fatigue life is infinite and the FGA does not form. Crack cannot grow from the 

initial defect. 
Fig. 1 qualitatively depicts the four cases in a double logarithmic plot of the SIF with respect to the defect size. 
The transition between case 2) and case 3) discriminates between finite and infinite fatigue life and it occurs 

when, for a given initial defect size, the stress amplitude equals the material fatigue limit. It can be demonstrated 
(Paolino et al., 2016) that the material fatigue limit, referred to as ls , can be expressed as: 

 
,

,
1/2

,0

120





l th g

th g
l s

d

c HV
s c

a
,    (6) 
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where 
 
   

,

,

1/2
1/2

, , ,

,, , ,

1 / 2 0.5

0.5 1/ 2


   

  



  
 
   

th g

th r

l

th g th g th r
s

th rth g th r th r
c

c
. Eq. (6) recalls the well-known expression proposed 

by Murakami (Murakami, 2002) and it can be obtained by imposing the condition of tangency (Fig. 2) between the 

 d dk a  curve (Eq. (1)) and the  ,th l dk a  curve (Eq. (5)). 

 

a) 76 b) 

c) d) 

Fig. 1. Variation of relevant SIFs with defect size in VHCF: a) Finite life without FGA formation; b) Finite life with FGA formation; c) Infinite 
life with FGA formation; d) Infinite life without FGA formation. 

 

Fig. 2. Variation of relevant SIFs with defect size in fatigue limit condition. 

2.3. Crack growth rate within the FGA 

In the VHCF literature (Tanaka and Akiniwa, 2002; Marines-Garcia et al., 2008; Su et al., in press), the crack 
growth rate within the FGA is usually modeled with the Paris’ law. Three stages can be present in sigmoidal crack 
growth rate diagrams related to VHCF failures from internal defects (see Fig. 3): the below-threshold region within 
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Fig. 1. Variation of relevant SIFs with defect size in VHCF: a) Finite life without FGA formation; b) Finite life with FGA formation; c) Infinite 
life with FGA formation; d) Infinite life without FGA formation. 

 

Fig. 2. Variation of relevant SIFs with defect size in fatigue limit condition. 

2.3. Crack growth rate within the FGA 

In the VHCF literature (Tanaka and Akiniwa, 2002; Marines-Garcia et al., 2008; Su et al., in press), the crack 
growth rate within the FGA is usually modeled with the Paris’ law. Three stages can be present in sigmoidal crack 
growth rate diagrams related to VHCF failures from internal defects (see Fig. 3): the below-threshold region within 
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the FGA (up to ,th gk ), the steady crack propagation region from the border of the FGA (with SIF equal to ,th gk ) to 

the border of the fish-eye (with SIF equal to FiEk ), the unsteady crack propagation region beyond the fish-eye 
border (with SIF larger than FiEk ). 

 

 

Fig. 3. The three stages of crack propagation in a crack growth rate diagram for VHCF failures from internal defects. 

In order to model the below-threshold region, the modified Paris’ law proposed by Donahue et al. (1972) (see also 
Sun et al., 2014) is here adopted (a stress ratio equal to -1 is assumed in the following, yielding the effective stress 
equal to the stress amplitude): 

 ,  Im
I d th l

da c k k
dN

,    (7) 

where Ic  and Im  are the two Paris’ constants related to the first propagation stage, from ,0da  to ,FGA maxa . 

From the border of the FGA to the border of the fish-eye (with size FiEa ), the crack growth rate is modeled 
with the conventional Paris’ law, in agreement with the literature (Tanaka and Akiniwa, 2002; Marines-Garcia et al., 
2008; Su et al., in press): 

 IIm
II d

da c k
dN

,    (8) 

where IIc  and IIm  are the two Paris’ constants related to the second propagation stage, from ,FGA maxa  to FiEa .  

Final fracture may occur when the crack size reaches the border of the fish-eye. In these cases, the third stage of 
crack propagation is not visible on fracture surfaces and it can be neglected. In some other cases, crack can 
propagate beyond the fish-eye border until it reaches the border of the final fracture, with size ca . . In these cases, 

a third stage of crack propagation is visible on fracture surfaces and it can be modeled again with the conventional 
Paris’ law (Su et al., in press): 

 Author name / Structural Integrity Procedia 00 (2017) 000–000  7 

 IIIm
III d

da c k
dN

,    (9) 

where IIIc  and IIIm  are the two Paris’ constants related to the third propagation stage, from FiEa  to ca . 

By taking into account the three stages of propagation, the number of cycles to failure, fN , can be expressed as: 

  f I II IIIN N N N ,    (10) 

where IN , IIN .  and IIIN  are the number of cycles consumed within stages I, II and III, respectively. 
Following the procedure usually adopted in the VHCF literature (e.g., Su et al., in press), IN  can be estimated by 
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being sc  and sm  the two Paris’ constants for surface cracks in the steady phase of crack growth. 

The difference between ,I minN  and ,I maxN  is generally negligible if fN  is larger than 810  cycles. Thus, the 

average value between ,I minN  and ,I maxN  is a good approximation for . IN .. 

The approximated experimental IN  values can be used for the estimation of the four parameters Ic , Im , ,th rc  

and ,th r : according to nonlinear least squares method, the parameter estimates are obtained by minimizing the sum 

of squared percent errors between the experimental  10log IN  values and the  10log IN  values computed through 

integration of Eq. (7). The other two parameters involved in Eq. (7) (i.e., ,th gc  and ,th g ) are estimated through 

application of the ordinary least squares method to the experimental data related to the ,FGA maxa  values measured 

on the fracture surfaces. In particular, ,th gc  and ,th g  are obtained with a linear fit of the  ,d FGA maxk a  values vs. 

the ,FGA maxa  values, in a log-log plot (Paolino et al., 2016). 
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3. Application to an experimental dataset 

In order to show the applicability of the proposed approach, model parameters are fitted to an experimental 
dataset. 

VHCF tests are carried out on Gaussian specimens (Paolino et al., 2014) made of an AISI H13 steel with Vickers 
hardness 560 kgf/mm2. Details on the testing setup and on the tested material are reported in Tridello et al. (2015) 
and Tridello et al. (2016) and will not be recalled here for the sake of brevity. Twelve specimens are loaded at a 
constant stress amplitude up to failure. The number of cycles to failure ranges from 4.2∙107 to 3.85∙109 cycles. 
Fracture surfaces are seen through a Scanning-Electron-Microscope (SEM) in order to measure the initial defect size 
(i.e., 0da ) in each specimen; whereas, the FGA sizes (i.e., ,FGA maxa ) are measured from pictures taken at the 

optical microscope. From the SEM analysis, all the fatigue fractures nucleated from non-metallic inclusions (oxide-
type inclusions). 

The local stress amplitude in the vicinity of the initial defect is considered as the stress amplitude applied during 
the test. As shown in the S-N plot of the experimental dataset (Fig. 4), the local stress amplitudes are in the range 
500 – 635 MPa. 

 

 
Fig. 4. S-N plot of the experimental dataset. 

As a first step, the parameters  and  are estimated from the FGA sizes. As shown in Fig. 5, the linear model of Eq. 
(1) is in good agreement with the experimental data. 

 

 
Fig. 5. Global SIF threshold variation as a function of the FGA size. 

 Author name / Structural Integrity Procedia 00 (2017) 000–000  9 

In particular, according to Eq. (1), the least squares estimates of ,th gc  and ,th g  are given by: 





3
,

,

1.979 10

0.2916

  




th g

th g

c
,    (13) 

where   denotes the parameter estimate. It is worth noting that the estimates ,th gc  and ,th g  are in agreement with 

the values proposed in the literature for ,th gc  (Li et al., 2010; Liu et al., 2008) and for ,th g  (Murakami, 2002; Liu et 

al., 2008; Li et al., 2010; Matsunaga et al., 2015). 
In order to estimate Ic , Im , ,th rc  and ,th r , the experimental number of cycles consumed in stage I must be 

computed from Eqs. (11) and (12). The two Paris’ constants in Eq. (12) (i.e., sc =4.6∙10-12 and 3.21sm ) are taken 
from the available literature (Schuchtar and Plumtree, 1988) for a very similar steel type. Fig. 6 shows the variation 
of the ratios of , /I min fN N  and , /I max fN N  with fN . 

 

 

Fig. 6. Variation of the ratios  and  with the number of cycles to failure. 

As shown in Fig. 6, the difference between ,I minN  and ,I maxN  is negligible. Therefore, the average value 

between ,I minN  and ,I maxN  can be considered as a good approximation of the actual IN . In agreement with the 

literature (Tanaka and Akiniwa, 2002; Hong et al., 2014; Su et al., in press), the ratio /I fN N  increases rapidly with 

fN  and, for the experimental dataset, is larger than 99.5%. From the experimental IN  values and from the 

measured ,0da  and ,FGA maxa  values, it is also possible to compute the average crack growth rate within stage I: 
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where ,a Iv  denotes the average /da dN  in stage I. Fig. 7 shows the variation of ,a Iv  with fN . 
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Fig. 7. Variation of the average crack growth rate within stage I with the number of cycles to failure. 

As shown in Fig. 7, the crack growth rate decreases with the number of cycles to failure. It is worth noting that, 
for fN  larger than 109, the crack growth rate is smaller than the physical threshold of 10-13 m/cycle suggested by 

Pippan et al. (2002) and is far below one Burgers’ vector (Tanaka and Akiniwa, 2002; Zhao et al., 2011; Sun et al., 
2014). Therefore, it can be argued that crack growth within the FGA is not uniform: crack alternatively arrests and 
grows with an average rate that can be smaller than 10-13 m/cycle. 
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Fig. 8 shows the good agreement obtained between the experimental and the estimated values of IN  and ,a Iv , 

after the fitting procedure. 

a) b) 

Fig. 8. Comparison between estimated and experimental data: a) Number of cycles consumed in stage I; b) Average crack growth rate in stage I. 

From the estimates in Eqs. (13) and (15), it is also possible to estimate an average fatigue limit, according to the 
expression in Eq. (6). The fatigue limit depends on the initial defect size. Fig. 9 shows the variation of the fatigue 
limit with the initial defect size, for the experimental dataset. 
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Fig. 9. Variation of the fatigue limit with the initial defect size. 

As shown in Fig. 9 and reported in the literature (Murakami, 2002; Furuya, 2011), the fatigue limit decreases with 
the initial defect size. As expected from the definition of fatigue limit, the values in Fig. 9 are far below the stress 
amplitudes that induce failure for the investigated material. 

Depending on the stress amplitude and on the initial defect size, the different scenarios in Figs. (1) and (2) may 
occur. Fig. (10) shows the Paris’ diagram for an initial defect size equal to 40 m and for different relevant values of 
the stress amplitude. 

 

 

Fig. 10. Variation of the fatigue limit with the initial defect size. 

As shown in Fig. (10), for stress amplitudes below the fatigue limit of 384 MPa the crack arrests and the fatigue 
life is infinite. In particular, for stress amplitudes below 350 MPa, the FGA does not form; whereas, in the range 350 
– 384 MPa, the FGA forms but it does not reach its maximum size. For stress amplitudes above the fatigue limit, the 
crack does not arrest and the fatigue life is finite. In particular, for stress amplitudes larger than 704 MPa, the FGA 
does not form; whereas, in the range 384 – 704 MPa the FGA forms and it reaches its maximum size. 

4. Conclusions 

A simple and general formulation for the reduction of the SIF threshold in the FGA was proposed in the paper. It 
was shown that, with the proposed formulation, the different weakening mechanisms involved in the FGA formation 
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can be quantitatively modeled. From the proposed formulation, a general expression for the fatigue limit and a crack 
growth rate model for crack propagation from internal defect up to failure were defined. The procedure for the 
estimation of the six parameters in the crack growth rate model was also shown. 

The model was successfully applied to an experimental dataset. The estimated and the experimental average 
crack growth rates within the FGA were found to be far below the physical threshold for crack growth. This 
experimental evidence suggested that crack does not grow uniformly within the FGA and that it rather alternates 
arrest and propagation phases. 

References 

Chapetti, M. D., Tagawa, T., Miyata, T., 2003. Ultra-long cycle fatigue of high-strength carbon steels part II: estimation of fatigue limit for failure 
from internal inclusions. Materials Science and Engineering: A 356, 236-244. 

Donahue, R. J., Clark, H. M., Atanmo, P., Kumble, R., McEvily, A. J., 1972. Crack opening displacement and the rate of fatigue crack growth. 
International Journal of Fracture Mechanics 8, 209-219. 

Furuya, Y., 2011. Notable size effects on very high cycle fatigue properties of high-strength steel. Materials Science and Engineering: A 528, 
5234-5240. 

Grad, P., Reuscher, B., Brodyanski, A., Kopnarski, M., Kerscher, E., 2012. Mechanism of fatigue crack initiation and propagation in the very high 
cycle fatigue regime of high-strength steels. Scripta Materialia 67, 838-841. 

Hong, Y., Lei, Z., Sun, C., Zhao, A., 2014. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength 
steels. International Journal of Fatigue 58, 144-151. 

Hong, Y., Liu, X., Lei, Z., Sun, C., 2016. The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-
strength steels. International Journal of Fatigue 89, 108-118. 

Huang, Z., Wagner, D., Bathias, C., Paris, P. C., 2010. Subsurface crack initiation and propagation mechanisms in gigacycle fatigue. Acta 
Materialia 58, 6046-6054. 

Li, Y. D., Zhang, L. L., Fei, Y. H., Liu, X. Y., Li, M. X., 2016. On the formation mechanisms of fine granular area (FGA) on the fracture surface 
for high strength steels in the VHCF regime. International Journal of Fatigue 82, 402-410. 

Li, W., Sakai, T., Li, Q., Lu, L. T., Wang, P., 2010. Reliability evaluation on very high cycle fatigue property of GCr15 bearing steel. International 
Journal of Fatigue 32, 1096-1107. 

Liu, Y. B., Yang, Z. G., Li, Y. D., Chen, S. M., Li, S. X., Hui, W. J., Weng, Y. Q., 2008. On the formation of GBF of high-strength steels in the 
very high cycle fatigue regime. Materials Science and Engineering: A 497, 408-415. 

Liu, Y. B., Li, Y. D., Li, S. X., Yang, Z. G., Chen, S. M., Hui, W. J., Weng, Y. Q., 2010. Prediction of the S–N curves of high-strength steels in the 
very high cycle fatigue regime. International journal of fatigue 32, 1351-1357. 

Marines-Garcia, I., Paris, P. C., Tada, H., Bathias, C., Lados, D., 2008. Fatigue crack growth from small to large cracks on very high cycle fatigue 
with fish-eye failures. Engineering Fracture Mechanics 75, 1657-1665. 

Matsunaga, H., Sun, C., Hong, Y., Murakami, Y., 2015. Dominant factors for very‐high‐cycle fatigue of high‐strength steels and a new design 
method for components. Fatigue & Fracture of Engineering Materials & Structures 38, 1274-1284. 

Murakami, Y., 2002. Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, Oxford, UK. 
Nakamura, T., Oguma, H., Shinohara, Y., 2010. The effect of vacuum-like environment inside sub-surface fatigue crack on the formation of ODA 

fracture surface in high strength steel. Procedia Engineering 2, 2121-2129. 
Paolino, D. S., Tridello, A., Chiandussi, G., Rossetto, M., 2014. On specimen design for size effect evaluation in ultrasonic gigacycle fatigue 

testing. Fatigue & Fracture of Engineering Materials & Structures 37, 570-579. 
Paolino, D. S., Tridello, A., Chiandussi, G., Rossetto, M., 2016. S‐N curves in the very‐high‐cycle fatigue regime: statistical modeling based on 

the hydrogen embrittlement consideration. Fatigue & Fracture of Engineering Materials & Structures 39, 1319-1336. 
Pippan, R., Tabernig, B., Gach, E., Riemelmoser, F., 2002. Non‐propagation conditions for fatigue cracks and fatigue in the very high‐cycle 

regime. Fatigue & Fracture of Engineering Materials & Structures 25, 805-811. 
Sakai, T., 2009. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use. Journal of 

solid mechanics and materials engineering 3, 425-439. 
Sakai, T., Oguma, N., Morikawa, A., 2015. Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior 

crack initiation site for a bearing steel in very high‐cycle fatigue. Fatigue & Fracture of Engineering Materials & Structures 38, 1305-1314. 
Schuchtar, E., Plumtree, A., 1988. Temperature and Frequency Effects on Fatigue Crack Propagation. ECF 7. Failure Analysis – Theory and 

Practice 2, 1081-1086. 
Shanyavskiy, A. A., 2013. Mechanisms and modeling of subsurface fatigue cracking in metals. Engineering Fracture Mechanics 110, 350-363. 
Shiozawa, K., Lu, L., Ishihara, S., 2001. S–N curve characteristics and subsurface crack initiation behaviour in ultra‐long life fatigue of a high 

carbon‐chromium bearing steel. Fatigue & Fracture of Engineering Materials & Structures 24, 781-790. 
Su, H., Liu, X., Sun, C., Hong, Y., in press. Nanograin layer formation at crack initiation region for very‐high‐cycle fatigue of a Ti–6Al–4V alloy. 

Fatigue & Fracture of Engineering Materials & Structures. 
Sun, C., Lei, Z., Hong, Y., 2014. Effects of stress ratio on crack growth rate and fatigue strength for high cycle and very-high-cycle fatigue of 

metallic materials. Mechanics of Materials 69, 227-236. 

 Author name / Structural Integrity Procedia 00 (2017) 000–000  13 

Tanaka, K., Akiniwa, Y., 2002. Fatigue crack propagation behaviour derived from S–N data in very high cycle regime. Fatigue & Fracture of 
Engineering Materials & Structures 25 775-784. 

Tridello, A., Paolino, D. S., Chiandussi, G., Rossetto, M., 2015. VHCF response of AISI H13 steel: assessment of size effects through Gaussian 
specimens. Procedia Engineering 109, 121-127. 

Tridello, A., Paolino, D. S., Chiandussi, G., Rossetto, M., 2016. Different inclusion contents in H13 steel: Effects on VHCF response of Gaussian 
specimens. Key Engineering Materials 665, 49-52. 

Zhao, A., Xie, J., Sun, C., Lei, Z., Hong, Y., 2011. Prediction of threshold value for FGA formation. Materials Science and Engineering: A 528, 
6872-6877. 



	 Davide S. Paolino et al. / Procedia Structural Integrity 3 (2017) 411–423� 42312 Author name / Structural Integrity Procedia  00 (2017) 000–000 

can be quantitatively modeled. From the proposed formulation, a general expression for the fatigue limit and a crack 
growth rate model for crack propagation from internal defect up to failure were defined. The procedure for the 
estimation of the six parameters in the crack growth rate model was also shown. 

The model was successfully applied to an experimental dataset. The estimated and the experimental average 
crack growth rates within the FGA were found to be far below the physical threshold for crack growth. This 
experimental evidence suggested that crack does not grow uniformly within the FGA and that it rather alternates 
arrest and propagation phases. 
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