
28 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Development of a Virtual Collision Sensor for Industrial Robots / Indri, Marina; Trapani, Stefano; Lazzero, Ivan. - In:
SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 17:5(2017), pp. 1-23. [10.3390/s17051148]

Original

Development of a Virtual Collision Sensor for Industrial Robots

Publisher:

Published
DOI:10.3390/s17051148

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2671492 since: 2017-05-22T16:29:27Z

MDPI AG

sensors

Article

Development of a Virtual Collision Sensor for
Industrial Robots

Marina Indri 1,* , Stefano Trapani 1 and Ivan Lazzero 2

1 Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24,
Torino 10129, Italy; stefano.trapani@polito.it

2 COMAU SpA, Via Rivalta 30, Grugliasco (TO) 10095, Italy; ivan.lazzero@comau.com
* Correspondence: marina.indri@polito.it; Tel.: +39-011-090-7066

Academic Editor: Vittorio M. N. Passaro
Received: 6 April 2017; Accepted: 16 May 2017 ; Published: 18 May 2017

Abstract: Collision detection is a fundamental issue for the safety of a robotic cell. While several
common methods require specific sensors or the knowledge of the robot dynamic model, the proposed
solution is constituted by a virtual collision sensor for industrial manipulators, which requires as
inputs only the motor currents measured by the standard sensors that equip a manipulator and the
estimated currents provided by an internal dynamic model of the robot (i.e., the one used inside
its controller), whose structure, parameters and accuracy are not known. The collision detection is
achieved by comparing the absolute value of the current residue with a time-varying, positive-valued
threshold function, including an estimate of the model error and a bias term, corresponding to the
minimum collision torque to be detected. The value of such a term, defining the sensor sensitivity,
can be simply imposed as constant, or automatically customized for a specific robotic application
through a learning phase and a subsequent adaptation process, to achieve a more robust and faster
collision detection, as well as the avoidance of any false collision warnings, even in case of slow
variations of the robot behavior. Experimental results are provided to confirm the validity of the
proposed solution, which is already adopted in some industrial scenarios.

Keywords: collision detection; industrial manipulators; virtual sensors

1. Introduction

Collision detection and avoidance are fundamental issues for the safety of a robotic cell in any
industrial environment, not only in the future when the presence of collaborative robots directly
working with humans is expected to grow, but also in current, standard production lines. Errors in
programming, as well as unexpected events or objects in the robot workspace may lead to collisions,
despite the monitoring activity of collision avoidance procedures (e.g., like in [1,2]), if they are based on
a detailed prior knowledge of the cell and of the elements in it. Using an advanced collision detection
procedure, collisions can be quickly detected, so that an appropriate reaction, reducing their effects,
can be planned and executed.

The matter has been widely investigated in the most recent years with particular application to
the case of Human-Machine Interaction (HMI) [3,4], which is effectively and safely achieved through
the adoption of particular strategies and technological solutions, like the usage of Light Weight
Robots (LWRs). These robots are specifically designed for the interaction with unknown environments
and humans, thanks to a light-weight mechanical design minimizing their inertia; they are also
equipped with several integrated sensors and advanced control strategies for compliant manipulation
[3]. The coverage of the manipulator with a visco-elastic material [5] is another effective strategy to
mitigate the collision effects thanks to the property of the material and to detect contact forces. Specific
solutions have been also adopted to reduce the contact forces in the case of collisions, decoupling the

Sensors 2017, 17, 1148; doi:10.3390/s17051148 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 1148 2 of 23

inertia of the link with that of the rotor. e.g., introducing an elastic transmission between the actuator
and the link; other more advanced approaches use a double actuator or implement a Variable Stiffness
Transmission (VST), like in [4].

It is evident that all of these approaches are devoted to HMI applications and are implementable
for robots having a particular mechanical structure and, most of all, enhanced sensor equipment, which
cannot be constituted by only the proprioceptive sensors that are present in the standard industrial
robots, providing joint positions and velocities and motor currents: the presence of some kind of
force/torque sensor is mandatory for such solutions.

In the industrial context, the collision detection problem is characterized by different goals, safety
levels and sensor facilities. In this scenario, the main goal is the preservation of the robot mechanical
parts in the case of impact, as well as the robustness of the procedure to false collision detection; the
sensitivity of the collision detection method and the possibility of varying it are fundamental to avoid
the wrong detection of collisions that never actually occurred, with the consequent unjustified stop of
the production cycle.

A further important application of an effective collision detection procedure in the industrial
context is aimed at monitoring the correct execution of the programmed task. Sometimes, a failure in
the process may occur, causing various possible troubles in the cell; if the effects of the fault on the
manipulator are similar to those caused by a collision, a collision detection procedure can detect the
anomaly and then immediately stop the robot. A typical example is given by the case in which a spot
welding gun electrode gets stuck on the work-piece at the end of the welding process.

Several methods can be found in the literature to detect collisions for industrial robots, but some
of them are based again on the usage of sensors that are not included in the standard equipment of
manipulators. For example, some techniques use vision sensors [6] to detect the presence of unmodeled
objects in the cell, or exploit algorithmic approaches, typical of methods using proprioceptive sensors
only, but making use also of extra sensors (e.g., torque sensors), to improve the performance of the
procedure [7,8].

The most common methods using only proprioceptive sensors typically divide the collision
detection problem into two sub-problems: the computation of a residual term depending from external
forces and the comparison of such a term with a predefined threshold function. The residual term is
generally determined as the difference between a signal measured by the available proprioceptive
sensors, somehow related to the total joint torques, and the same physical quantity mathematically
computed in absence of collisions. Most of the approaches using only proprioceptive sensors can be
classified as model based [9,10], because they require the full knowledge of the robot dynamic model
and of its parameters to compute the residual term, for which they often make use of observers (e.g., the
residual observer in [9,11,12] or the disturbance observer in [10,13]). The main drawbacks of these
methods, which will be analyzed in detail in Subsection 1.1, are related to the limited portability of their
software implementation, since the dynamic model of the specific considered robot is required each
time, and to the dependance of their performances on the quality of the used dynamic model. Adaptive
solutions are sometimes adopted to cope with model error problems, increasing their complexity and
the related computational burden in the case of real-time implementation.

Non-model-based approaches have been rarely investigated, even if they would be preferable in
the industrial context, because their software implementation can be independent from the particular
robot, thus achieving a high portability to different classes of manipulators, as well as to various
industrial applications and processes. The most interesting non-model-based method to be mentioned
is the grey-box approach proposed in [14]. The procedure relies on the knowledge of the general
structure of model-errors and uses this information to re-map the model error into five terms, one of
which includes the external force. The five terms are computed without using the parameters of the
model, but through an on-line estimation process carried out by a recursive least square algorithm.

The solution proposed in this paper is constituted by a virtual collision sensor for industrial
manipulators, which has been developed through a research activity carried on by the collaboration

Sensors 2017, 17, 1148 3 of 23

of Politecnico di Torino and COMAU SpA, and motivated by critical situations that occurred
in some factories and production lines using COMAU manipulators, as well as by the goal of
improving a previous COMAU software solution for collision detection, which required a high
level of customization and long warm up phases. The core of the virtual collision sensor is given
by the collision detection procedure that was proposed in [15], which is here revised and enhanced,
introducing the possibility of automatically customizing the sensor sensitivity for a specific robotic
application and, subsequently, slowly adapting it. This new functionality enhances the sensor ability of
recognizing even light collisions while avoiding the risk of generating false collision alarms and allows
coping with possible slow variations of the robot behavior. The computational burden is anyway kept
low to meet the requirements for real-time implementation in the robot control software; moreover,
thanks to such an enhanced sensitivity, a more robust and faster detection is achieved, when a collision
actually occurs.

The inputs of the developed virtual collision sensor are the motor current values measured
by the standard sensors mounted on the Direct Current (DC) motors actuating the joints and the
corresponding estimated currents as provided by the original robot controller, on the basis of an
internal dynamic model of the manipulator, whose structure and parameters are not available. In this
sense, the proposed approach can be considered as a non model-based one, since the virtual sensor
simply uses the same information about the robot dynamics employed within the robot controller,
without any knowledge about how this information is obtained, i.e., without any knowledge of the
quality of the adopted dynamic model inside the controller. The only actual assumption, that the
proposed approach relies on is that some estimate of the motor currents is available, as it always
happens in the controller of any industrial manipulator, independently of the specific control scheme.
The model error is directly estimated within the virtual sensor, taking into account the robot behavior
in its various motion phases through the analysis of the current trends. A smart threshold function is
thus generated, to be compared with the current residue to detect collisions. Finite State Machines
(FSMs) are used to manage the computation of the threshold function and its comparison with the
current residue only in the phases in which collisions can actually occur, so to enhance the efficiency
of the procedure, as well as to handle the learning and adaptation process of the sensor sensitivity.
This last new functionality is applicable to cyclic motion processes and is enabled only if and when the
user requests it. It is based on a learning phase, carried out in parallel with the standard working of
the virtual collision sensor, during which the current residue is monitored to determine, for the specific
robot, the “best” value of the current parameter, associated with the minimum collision torque that the
virtual sensor should be able to detect on each joint. The idea of monitoring the robot behavior during
some cycles is common to various approaches for anomaly detection (see, e.g., [16] and the references
therein), but in our case, there is no model to be trained (as in any proper learning process), but
simply the continuous update of the parameter defining the sensor sensitivity on each joint, in order to
avoid the risk of false collisions. In [17], a sensorless tool collision detection method is proposed for
multi-axis machine tools, based on the information acquired during a previous training phase, carried
out in absence of collisions; such information is then used to compute thresholds from a statistical
distribution. In our approach, instead, the monitoring process is handled in parallel, with the only aim
of determining a fine, customized value for the sensor sensitivity. Once determined, it is immediately
adopted in the collision detection procedure, while starting a further adaptation process to cope with
possible slow variations of the robot behavior. In this way, the sensor sensitivity becomes a function
of time, properly and continuously refining its value. It must be underlined that there is no proper,
dynamic adaptive law, like in the adaptive filtering solution proposed in [14], in the model-based
approach in [12] and in the adaptive torque estimation developed in [18], but simply a slow adaptation
process introducing small or very small corrections to the sensor sensitivity value, so to keep low the
computational burden in real time.

The developed virtual collision sensor is oriented to be used in the industrial context, with the
purpose to be both very robust to false detection and characterized by an adjustable sensitivity, so

Sensors 2017, 17, 1148 4 of 23

that a collision can be quickly detected, before any damage either of the workspace or of the robot
itself might occur; HMI applications are not included as a use case of the proposed virtual sensor.
Additional interesting features of the proposed approach are the absence of any initial set-up phase
and the generalization of the software implementation.

It is important to underline that the proposed approach, even if fully developed in the COMAU
environment, has a general validity, and it can be used and implemented in the control software
architecture of the industrial robots of any manufacturer, as well as applied to manipulators devoted
to lab activities, provided that the motor currents are on-line measured and some estimate of them is
available, possibly computed on the basis of the reference trajectory imposed on the robot.

After a brief overview of the most common model-based collision detection methods in Section 1.1,
the collision detection problem is formally stated in Section 2. The working characteristics of the proposed
virtual collision sensor are illustrated in Section 3, with details about the model error estimation in
Section 3.1 and monitoring of the currents and of their time derivatives in Sections 3.2 and 3.2.1,
respectively. Section 4 is devoted to the automatic learning and adaptation process of the collision
sensor sensitivity, whereas Section 5 illustrates the whole implementation structure of the virtual sensor.
Experimental results are reported and discussed in Section 6. Section 7 finally draws some conclusions.

1.1. Model-Based Approaches for Collision Detection

This section investigates the most common collision detection approaches, using proprioceptive
sensors only like the proposed one, but requiring the actual knowledge of the robot dynamic model,
in order to show the differences with respect to the developed virtual sensor, as well as to discuss pros
and cons.

Two main kinds of approaches belong to the class of model-based collision detection methods:
The Residual OBserver (ROB) methods and the Disturbance OBserver (DOB) ones.

In the first technique, proposed in [9,11], the collision detection is performed monitoring the
evolution of a residual term, computed by processing the generalized momentum of the robot
manipulator through a residual observer. A pro of this method is the avoidance of any acceleration
measurement, but the computation of the manipulator inertia matrix (on the basis of the available
dynamic model) is required to determine the total energy of the robot. An adaptive version was
proposed in [12] to cope with problems related to the model errors, but increasing in this way its
complexity. Further ROB approaches were subsequently developed, either aimed at improving the
performances, e.g., using dynamic (instead of static) thresholds to monitor the residual term [19,20] or
specifically adapted to particular tasks, like in [21,22], where a technique was developed to distinguish
the effects of unintended collisions from the forces due to cooperative tasks in HMI applications.

The DOB model-based approach [10,13] is based on the introduction of an observer of the
disturbance forces. It was developed directly exploiting the knowledge of the dynamic robot model to
estimate all of the disturbance forces acting on the robot, including also the external ones. A threshold
is used to monitor the level of external forces and eventually detect the collision. Some solutions
were proposed to improve the performances of this method, reducing its sensitivity to model errors.
An interesting example was the application of an appropriate band-pass filter to the disturbance torque,
so that all of the errors included in the band of the mechanical motion of the robot (that are the main
responsible of the overall model error) can be attenuated, as well as the errors at high frequency caused
by the noise of the sensors. Using this approach, only the contribution of external forces should be
preserved from filtering.

A known problem of model-based approaches is the presence of model errors that degrade the
estimate of external forces. In ROB, the effects of model errors are reduced removing the dependency
of the residual by the acceleration values; this can be very important because the acceleration values
are not measured by a sensor, but they are computed by derivation. A second limitation of the
model-based approach is its connection with the particular robot; the requirement of knowing the
parameters of the robot implies a customization of the software in the implementation phase to each

Sensors 2017, 17, 1148 5 of 23

single manipulator (otherwise, the model errors would increase, and the risk of detecting false collision
would grow, as well); so that, even though the overall approach can be defined as general, its software
implementation cannot.

The proposed virtual collision sensor tries to overcome these drawbacks, providing an actual
general solution, robust to false collision detection, as requested in the industrial scenario.

2. Problem Statement and System Characteristics

The goal is the development of a virtual collision sensor, easily applicable to various types
of manipulators (i.e., both low-payload and high-payload robots and/or with different kinematic
structures), neither requiring specific customizations, nor inserting further, ad hoc sensors beyond the
standard ones generally equipping any industrial robot. The virtual collision sensor must contribute
to guarantee the mechanical integrity of the robot and the cell and the correct execution of the working
process, avoiding false collision alarms that would stop the production cycle. Moreover, it should
correctly work without the necessity of a too long warm up phase, before reaching a good level of
reliability in detecting an actual collision. In such a case, in fact, any stop of the normal activity of the
robot could lead to a loss of accuracy and the need to warm up again.

DC motors are considered as actuators, and the only available real sensors are supposed to be:

• the encoders, mounted on the motor shafts;
• the current sensors, providing the currents absorbed by the motors.

The information provided by the encoders will not be actually employed by the virtual sensor:
it would be useful, in fact, only to estimate the joint torques on the basis of the robot dynamic model,
which is a solution that has been discarded (as previously discussed) just to avoid any dependence of
the collision detection procedure on the characteristics of the specific robot.

The only actual assumption, which the proposed collision detection approach will rely on, is the
availability of the estimates of the motor currents, used inside the original robot controller. Such
estimates are computed on the basis of an internal dynamic model of the manipulator, whose structure
and parameters are not known. This assumption is quite realistic, independent of the particular control
scheme adopted. Let I(t) = [Ii(t)], i = 1, ..., n, be the vector of the measured currents of the robot
motors, where n is the number of joints. The typical control scheme of an industrial robot builds
such a command current vector as the sum of a feedforward term I f f (t), pre-computed using the
reference trajectory samples of the joint positions, velocities and accelerations, and a feedback control
term Ir(t), which is determined by the specific implemented controller (it could be simply the output
of a PID-type joint regulator or the result of a more complex control law). The feedforward term is
equal to or includes the vector IDM(t) = [IDM,i(t)], i = 1, ..., n, of the currents estimated by the robot
dynamic model. Such a vector is assumed to be available to the virtual collision sensor, together
with the measured currents collected in I(t). On the basis of this information only, the virtual sensor
will have to continuously update the n-dimensional Collision vector (as in the scheme reported in
Figure 1), collecting a logical variable for each joint; when at least one of such variables becomes TRUE
uppercase? , a collision is detected, and a proper stopping procedure will be immediately applied to
the robot.

Figure 1. Virtual collision sensor scheme.

Sensors 2017, 17, 1148 6 of 23

3. The Proposed Collision Detection Virtual Sensor

The virtual collision sensor action is based on the computation of the current residue vector
R(t) = [Ri(t)], i = 1, ..., n, given by:

R(t) = I(t)− IDM(t) (1)

where the estimated current vector IDM(t) is assumed to have been computed by the internal robot
dynamic model in absence of any collision, i.e., the complete expression of IDM(t), if available, would
be of the following type:

IDM(t) = K−1
I (M̂(qd)q̈d + n̂(qd, q̇d)) (2)

where qd(t), q̇d(t) and q̈d(t) are the reference joint position, velocity and acceleration vectors,
respectively, M̂(·) is an estimate of the robot inertia matrix, n̂(·) includes the estimates of the torques
due to centrifugal and Coriolis effects, friction and gravity and KI is the diagonal matrix of the
conversion coefficients KI,i of the motors (from current to torque).

In the ideal case, i.e., if the internal dynamic model were able to exactly replicate the behavior of
the robot, the current residue R(t) would be zero in absence of any collision. In a real case, some model
error is always present, also when a good dynamic model is available, so that the current residue
is expected to be small on average, but never identically zero. When a collision occurs, the current
residue immediately grows, because in this case, the measured motor currents include also the effects
of the torques applied to the joints due to the collision forces.

The working mode of the developed virtual collision sensor is based on the comparison of the
current residue R(t) with a proper smart threshold, positive-value, vector function S(t) (including a
varying threshold Si(t) for each joint), according to the following collision detection conditions:{

If |Ri(t)| > Si(t) then Collisioni = TRUE
If |Ri(t)| ≤ Si(t) then Collisioni = FALSE

(3)

Too simplistic solutions for the definition of S(t) have to be discarded; for example, a constant
threshold value for each joint would unlikely guarantee the required robustness to false collision
detection, even if computed on some kind of prior knowledge of the robot behavior (e.g., acquired
during a previous, complete work-cycle). An experimental investigation considering various motions
for different COMAU manipulators in absence of collisions showed that the current residue values can
vary from some tenths of an ampere up to some amperes. This behavior justifies the adoption of a
proper smart threshold function in the collision test.

The solution proposed in [15] and here revised is given by the introduction of a threshold varying
function, defined as:

S(t) = m̂err(t) + Collbias(t) (4)

the first term, m̂err(t), represents an estimate of the absolute value of the model error in absence
of collisions. Such an estimate is determined using the only available information, i.e., the current
residue R(t) computed inside the virtual collision sensor as in (1). The second term in (4), Collbias(t),
represents the sensitivity of the virtual sensor; its entries are positive and are given by the current
values corresponding to the minimum collision torque that the virtual sensor should be able to detect
on each joint.

The ability of the proposed virtual sensor of detecting collisions, avoiding false alarms, does not
depend on the actual quality of the robot dynamic model (which is unknown), but on the capacity of
the virtual sensor itself of computing a reliable estimate m̂err(t) of the model error. Considering the
adopted expression (4) for the threshold function S(t), the absence of any collision at time t is correctly
detected on the i-th joint by the second condition in (3) if:

Sensors 2017, 17, 1148 7 of 23

∆merr,i(t) ≤ Collbias,i(t) (5)

where:

∆merr,i(t) = |Ri(t)| − m̂err,i(t) (6)

Inequality (5) shows that small values can be adopted for Collbias,i, i.e., a fine sensitivity of the sensor
can be achieved, if ∆merr,i(t) is sufficiently small; otherwise, Collbias,i must be increased to avoid false
collision alarms.

In [15], Collbias(t) was assumed as constant for all of the joints, simply leaving the user the
possibility of changing it, if necessary. In practice, a unique value was adopted for all of the joints and
maintained for any robot to which the collision detection procedure was applied. The results were
satisfactory, but open to possible improvements, in particular with reference to robustness and speed
in detecting a collision. In this paper, the algorithms used in [15] for the computation of m̂err(t) are
only slightly modified, since they allowed good results even for the simplistic choice of a constant
Collbias vector, while an automatic learning and adaptation process of the entries of Collbias(t) is now
proposed, to enhance the robustness of the procedure and the speed in detecting a collision, as well
as to cope with possible slow variations of the robot behavior. The model error estimation process is
described in Subsection 3.1, while the automatic adaptation of the sensor sensitivity will be developed
in Section 4, after having illustrated in Subsection 3.2 the FSM used to monitor the currents behavior.

3.1. Model Error Estimation

By the direct analysis of the behavior of the motor currents during any movement of a robot,
independently of the specific manipulator and the specific (unknown) internal dynamic model
providing IDM(t), it experimentally results that:

• in the motion phases in which IDM(t) is almost constant (or it is varying very slowly), the residue
R(t) shows a similar behavior, i.e., it is almost constant or slowly varying;

• when IDM(t) rapidly varies, also the residue does, possibly reaching very high values for
some joint.

The two situations indicate that when the current is almost constant, i.e., when the corresponding
torque applied to the joint is almost constant, the dynamic behavior of the system is intrinsically easier
to be reconstructed by the internal dynamic model, whatever it is. On the contrary, when the robot is
in an acceleration or deceleration phase, i.e., when the currents are rapidly varying, the model error
automatically tends to grow, because more complex dynamic effects are acting on the robot, and their
estimation is typically and reasonably more difficult. Such observations lead to the opportunity of
estimating the model error using different algorithms in the two situations, which will be denoted
as steady state and unsteady state, respectively. Figure 2 shows a small portion of a real work cycle
carried out by a NJ4 110 robot employed in an automotive production line, highlighting the different
behavior of the current residue during the steady state (white background) and the unsteady one
(blue background).

During the steady state, the model error for the i-th joint can be simply estimated on the basis of
an average process, considering the maximum values reached (in absolute value) by the residue during
such a steady state time interval, denoted by Tss, from the time instant tss, at which the FSM enters the
steady state, up to the current time instant t. The process starting at time tss can be expressed as:

ERRss,i(t) =
1

N + 1

(
|Ri(tss)|+ ∑

τ∈Tss

errss,i(τ)

)
(7)

where |Ri(tss)| is the last residue value obtained before the transition to the steady state, errss,i(·) is the
function containing the maximum values reached by |Ri(t)| during the steady state until the current

Sensors 2017, 17, 1148 8 of 23

time instant t, whilst N is the number of samples of the function in the same interval. The usage of
|Ri(tss)| has been introduced in order to allow a more rapid settling of the values provided by the
average process, so as to avoid too small values of ERRss,i(t) at the very beginning of the steady state.

Figure 2. Behavior of the current residue of the second joint of an NJ4 110 in the steady (white
background) and unsteady (blue background) states.

The model error for the i-th joint is then computed by sampling ERRss,i(t) with a proper sampling
time Ts, so obtaining a model error defined as:

m̂err,i(t) =
{

ERRss,i(t) t = k Ts

ERRss,i ((k− 1)Ts) t ∈ [(k− 1)Ts, k Ts)
(8)

as shown in (8), m̂err,i(t) is actually updated only at time instants t = k Ts. A proper choice of Ts is
necessary to allow the correct detection of collision. In particular, Ts cannot be too small, otherwise it
would not be possible to properly distinguish the residue and the model error during the steady state,
in which both IDM,i(t) and Ii(t) change very slowly (and the residue, as well) in absence of collisions.
On the contrary, Ts cannot be too high, otherwise the actual variation of the residue could not be
correctly captured. From a data-driven analysis of the collision timing, Ts has been set equal to 0.2 s.

During an unsteady state, two functions, computed during every unsteady state, are combined to
estimate the model error for the i-th joint as:

m̂err,i(t) = δ esterr,i(t) + (1− δ) errus,i(t) (9)

where errus,i(t) is the function containing the maximum values reached by |Ri(t)| during an unsteady
state, esterr,i(t) is computed on a predefined number of residue samples, saved in a buffer, and δ ∈ [0, 1]
weighs the contributions of the two terms. In particular, esterr,i(t) is given by:

esterr,i(t) = ERRus,i(t) + 3 ·
√

1
N ∑

τ∈Tus

(
ERRus,i(τ)− errus,i(τ)

)2 (10)

where Tus is the time set in which the currents are in the unsteady state, and:

ERRus,i(t) =
1
N ∑

τ∈Tus

errus,i(τ) (11)

Figure 3 shows the behavior of the two model errors for the first joint of the NJ4 170 (whose technical
characteristics are available on the COMAU website [23] with an estimated payload of 124.5 kg, while
executing the motion reported in Figure 4. The phases in which IDM,1(t) is in steady state are highlighted

Sensors 2017, 17, 1148 9 of 23

by a cyan background. The black line, corresponding to the estimate of the model error in the steady
state, is applied only in such cyan phases, whereas the model error in blue is applied the rest of time;
such a solution allows one to considerably improve the sensitivity of the algorithm, which can adapt
its behavior on the basis of the actual working conditions. The results in Figure 3 have been obtained
setting δ = 0.5 as in all of the experimental tests reported in Section 6.

Figure 3. Comparison between m̂err,1(t) computed for the steady state and for unsteady ones.

Figure 4. Position, velocity and acceleration of the first joint of the NJ4 170 robot.

The change of the parameter δ modifies the behavior of m̂err,i(t) for the unsteady states. When
its value is decreased, the model error is more influenced by the maximum value reached during the
whole elaboration, so obtaining a procedure more reliable in terms of false collisions, but less rapid
to adapt its behavior to the new trend of the residue (e.g., in Figure 5, for δ = 0.05, the model error
remains close to the maximum reached value). On the contrary, when δ is increased, the model error
estimation becomes more reactive, so improving the sensibility of the algorithm (e.g., in Figure 5, for
δ = 0.95, the model error remains close to the residual values), but simultaneously increasing the risk
of false collision alarms. The adoption of a proper trade-off value is then recommended.

The transition between the steady state estimation and the unsteady one is performed without
any particular management; despite this choice leading to discontinuities in the computation of the
threshold (4), such an approach does not cause any functional anomaly in practice, so that it can be
adopted to keep the computational burden low in the real-time implementation of the virtual sensor.

Sensors 2017, 17, 1148 10 of 23

Figure 5. Behavior of the model error m̂err,1(t) in the unsteady states for different values of δ

Remark 1. When the payload declaration is wrong (or the payload is changed without updating the relative
information in the control scheme and, hence, in the adopted dynamic model), a poor current estimate IDM
could be provided, leading to the risk of possible failures in the collision detection. When the error in the payload
declaration is small (e.g., in the case of an imprecise auto-determination of the payload), the algorithm can still
correctly work, thanks to the automatic convergence of the estimated model error to higher values. Instead, when
the user payload declaration is totally wrong, the virtual sensor could provide a false collision output, which
actually corresponds to the detection of the anomalous situation generated by the wrong payload declaration, like
in the case of a work-piece remaining accidentally attached to the gripper, whose effects are similar to those of
a collision.

In the self-identification procedure of the payload used by COMAU, the estimate of the payload parameters is
sufficiently accurate to avoid false collisions with the proposed virtual sensor; on the contrary, when the procedure
is modified by the user (e.g., in order to reduce the stroke of the joints), the quality of the achieved estimate
generally worsens, leading to a possible false collision detection (as in the case of explicit wrong declaration of
the payload).

It is important to note that IDM is used in the robot control system, so that payload declaration errors could
worsen the motion accuracy, especially in the acceleration and deceleration phases with possible low frequency
vibrations, which could contribute to the detection of false collisions.

3.2. Monitoring of the Currents’ Behavior through an FSM

The trends of the currents I(t) and IDM(t), i.e., the inputs of the virtual sensor, are monitored
to distinguish:

• steady and unsteady states, to apply the most suitable model error estimation algorithm;
• unsafe and safe states, i.e., situations in which collisions might actually occur or not, so to perform

the collision detection test only in the unsafe ones, thus enhancing the efficiency of the virtual
sensor implementation.

The monitoring action is performed implementing a five-state FSM for each joint, after having
applied a proper filtering action to both I(t) and IDM(t). Such a filtering action, which is mandatory
for the measured current, is applied as-it-is to the estimated one, as well, so to avoid any time delay
between them. A low-pass filter with a 10–20-Hz bandwidth can represent a satisfactory solution
in general.

The five states of the FSM of the i-th joint, which is reported in Figure 6 with a sketch of the
currents behavior in the various states (Ii(t) in red and IDM,i(t) in blue), are:

Sensors 2017, 17, 1148 11 of 23

• Steady state, in which the estimated current IDM,i(t) is almost constant or very slowly varying
(as in the phases having white background in Figure 2); this state is recognized by computing the
first and the second order time derivatives of IDM,i(t), which must tend both to zero. It is worth
noting that IDM,i(t) is not affected by noise, since it is provided by the internal robot dynamic
model on the basis of the reference joint trajectory, so that the time derivative computation can be
made without any numerical problem.

• Moving state, in which the current values of Ii(t) and IDM,i(t) vary rapidly, but remaining
synchronous, as in Figure 7a; this state is distinguished by the previous one monitoring the time
derivative of both Ii(t) and IDM,i(t), denoted as dp_Ii(t) and dp_IDM,i(t), respectively: when
they start to increase in absolute value, the steady state is abandoned, and the FSM switches
to the moving state. The synchronicity of the currents is detected by comparing dp_Ii(t) and
dp_IDM,i(t), as detailed in Subsection 3.2.1.

• Reversing and reversing_DM states, in which only one of the two currents, Ii(t) or IDM,i(t),
changes its trend, i.e., the sign of its time derivative changes; two states of reversing type are
used to distinguish the two possible cases, i.e., which of the two currents is changing its trend,
as sketched in Figure 6.

• Impulse state, in which sudden impulses of Ii(t), which are not present in IDM,i(t) occur (see
Figure 7b); this state is recognized by monitoring the error between the time derivatives of
the currents.

Figure 6. FSM scheme with the sketch of the currents behavior in the various states (Ii in red and IDM,i

in blue).

(a) Moving state (b) Impulse state

Figure 7. Examples of the behavior of Ii(t) and IDM,i(t) during the moving and the impulse states.

Sensors 2017, 17, 1148 12 of 23

The two reversing states and the impulse one, in which the measured and the estimated currents
are not accordingly varying, are surely unsafe states, in which the anomalous currents behavior may
be due to a collision. The moving and the steady states should correspond to the standard working
conditions of the robot, in which acceleration/deceleration phases alternate with the constant velocity
ones, but only the moving state can be surely considered as safe; in fact, the steady one is recognized
on the basis of the estimated current behavior only, so that for the sake of robustness, it is convenient
to handle it as a potentially unsafe state.

On the basis of such a distinction between safe and unsafe states, the virtual sensor will avoid
performing the collision test based on (3) when the FSM is in the moving state, so to improve its
working efficiency; on the contrary, the test will be executed in any other state.

3.2.1. Monitoring of the Currents’ Time Derivatives

In all of the states, but the steady one, the time derivatives of both the measured and the estimated
currents have to be computed and monitored. The noise that inevitably affects the measured current
makes the pure numerical computation of its derivative unsuitable for our purposes. The insertion of a
filter with a narrow or very narrow band has to be avoided, because it could lead to unacceptable delays
in detecting changes of the current signal trend and, hence, in detecting a possible collision. The adopted
solution is based on the dynamical estimation of the noise affecting dp_Ii(t), via the statistical computation
of the error between the time derivatives of the two currents (since IDM,i(t) is not affected by noise, also
its time derivative is not). Such a result is used to define an upper bound Thmax and a lower bound Thmin
of dp_Ii(t), as shown in Figure 8, where the limits are indicated by solid red lines.

(a) Moving state: the time derivative
error is within the noise limits

(b) Moving state: both the time
derivatives are outside the limits, but
having the same sign

(c) Impulse state: the highest bounds
(dashed red lines) are overcome by the
time derivative error

(d) Reversing state: in the highlighted
region (dashed magenta line), the time
derivatives have different signs

Figure 8. Examples of the behavior of dp_Ii(t) and dp_IDM,i(t) in the moving, reversing and impulse
states. The solid red lines indicate the Thmax and Thmin bounds; the green line and the blue one
represent dp_Ii(t) and IDM,i(t), respectively, and the solid black line their difference, computed as
dp_Ii(t) - dp_IDM,i(t).

Sensors 2017, 17, 1148 13 of 23

In particular, the FSM is in the moving state if one of the two following situation occurs: (i) the
difference between dp_Ii(t) and dp_IDM,i(t) is within the noise limits (see Figure 8a), (ii) dp_Ii(t) and
dp_IDM,i(t) are both over the limits, but they have the same sign (see Figure 8b). However, when
the first case occurs, if a very rapid impulse of the current values brings the error to overcome a
further much higher bound (dashed red lines in Figure 8c), the FSM changes its state into impulse.
As in the second case of the moving state, for the reversing and the reversing_DM states, the error
between dp_Ii(t) and dp_IDM,i(t) and their signs are both monitored, but in this case, the change of
the FSM occurs when the error is over the limits and the signs of the time derivatives are different (see
Figure 8d).

Remark 2. The insertion of the filtering action on the measured and estimated currents and the estimation of the
model error through average processes would determine an initial, transient phase in the computation of S(t), in
which the collision detection could be not fully reliable. This is not a problem in practice, since the duration of
such a time interval is generally smaller than the waiting phase that is usually set by the robot constructors after
the launch of the “drive-on” state, in which the motors are active and the manipulator is ready to perform the
assigned task. In the COMAU case, the duration of this phase is of some ms; such a time interval is more than
sufficient to achieve a reliable value of the threshold function, so that the virtual collision sensor will be properly
working also at the beginning of the robot motion.

4. Automatic Learning and Adaptation of the Sensor Sensitivity to Collisions

The adoption of a constant vector Collbias in the definition (4) of the threshold function has
allowed satisfactory results for a wide class of manipulators, employed in different robotic applications,
simply keeping the same values (heuristically determined) in all of the implementations; some results
are reported and discussed in Section 6. Despite this, significant differences have been noted with
reference to the actual ability of all of the joints of detecting a collision and/or to the speed in detecting
it. The adoption of a unique, constant Collbias vector can result in quite different levels of sensor
sensibility with respect to the specific behavior of each robot, with no possibility of taking into account
possible slow variations in the robot behavior as time goes by.

An automatic learning and adaptation process of the sensor sensitivity is now proposed to cope
with such problems, under the assumption that the whole motion process of the robot is cyclic, as
in any industrial application. The goal is to determine the “best” Collbias term for the specific robot
application through a learning phase and to subsequently apply it enabling a slow adaptation phase,
in which further small variations of the robot behavior are automatically taken into account. In this
context, the learning process is aimed at automatically finding a customized value for the Collbias term
for the specific installation of the virtual sensor, while the subsequent adaptation process introduces
small or very small corrections to such a term, in order to avoid any false collision detection caused by
slow changes of the residue values, e.g., due to temperature variations.

In the proposed learning and adaptation process, an initial, constant Collbias0 vector is assumed
to be available (somehow heuristically determined) and employed as Collbias in the threshold function
S(t) used in the collision test, if the user does not request to adapt it. The entries of such a vector
are generally sufficiently high to limit/avoid the risk of false collision detection during the standard,
correct execution of the robot moving cycle. A learning bias estimation block is introduced (and kept
always active), which executes a parallel collision test, still defined as in (3), but adopting a different
threshold function, denoted as SIdent(t), whose i-th entry is defined as:

SIdent,i(t) = m̂err,i(t) + CollIdent,i(t) (12)

in which m̂err,i(t) is still computed as in (8) and (9) in the steady and unsteady states, respectively,
while CollIdent,i(t) is going to be updated as in the activity diagram reported in Figure 9, starting from
CollIdent,i(0) = 0. This initial choice intentionally leads to a virtual (false) collision detection by the bias

Sensors 2017, 17, 1148 14 of 23

estimation block, when the collision condition |Ri(t)| > SIdent,i(t) holds for the i-th joint. No collision
actually occurs, but such a condition is used to update CollIdent,i(t) imposing:

CollIdent,i(t) = |Ri(t)| − m̂err,i(t) (13)

i.e., equal to the minimum value, which would allow one to avoid a false collision detection, if used
in the main collision test. The minimum duration of the learning process is set according to the
characteristics and duration of the whole motion that the robot cyclically repeats (e.g., a pick-and-place
cycle). At least an entire cycle must be monitored during the learning phase to obtain a reliable estimate

of the minimum CollIdent,i(t) (denoted as Coll
(0)
Ident,i) that should be adopted, but a longer learning

time can be imposed for the sake of robustness; for example, in the experimental tests reported and
discussed in Section 6, a learning time of three cycles is considered.

Further actions are performed by the bias estimation block, when a virtual (false) collision is
detected, to initialize a possible subsequent adaptation process, which actually starts only if and when
the user requests it. It must be underlined that even if the bias estimation block is always active, and
hence CollIdent,i is continuously updated, no change is introduced in (4) in the main collision test until
the user’s request. Such a request determines the immediate application of the new bias value (as soon
as the minimum learning time has passed), and the start of a slow adaptation of Collbias,i by defining:

Collbias,i(tadapt) = Coll
(k)
Ident,i + e(−tadapt/τa)

(
Coll0,i − Coll

(k)
Ident,i

)
(14)

where tadapt is a time variable that is set to zero by the bias estimation block each time it detects a

virtual (false) collision, Coll
(k)
Ident,i indicates the value of Collident,i updated for the k-th time by such a

block after the start of the adaptation process (k = 0 corresponds to the value that directly substitutes
the original Collbias0,i) and τa is the time constant of the adaptation process. τa must be much greater
than the typical values of collision detection times, so to avoid a too rapid increase of the bias term
that could prevent the correct detection of a real collision; since the collision detecting times are
expected to be of the order of some tens of ms, τa must be chosen so to have a rise time of Collbias,i
of some minutes or tens of minutes. The Coll0,i parameter in (14) is used to force the application of
the new bias term at the end of the learning phase and to define the initial condition of any further
adaptation process. In particular, the immediate application (after the user’s request) of the first bias

term Coll
(0)
Ident,i, provided at the end of the learning phase, is simply achieved by imposing:

Coll0,i = Coll
(0)
Ident,i (15)

this implies that the adaptation function (14) will actually change the Collbias,i value only when the

bias estimation block provides a new, updated estimate Coll
(k)
Ident,i, with k > 0. Each time this happens,

this new value is automatically used in (14), while the bias estimation block imposes:

Coll0,i = Collbias,i
tadapt = 0

(16)

as indicated in the activity diagram reported in Figure 9. These assignments make the adaptation

process (14) restart from the current Collbias,i value and let it tend to the new Coll
(k)
Ident,i. Such a value

will be actually, slowly reached, according to the settling time imposed by τa, only if in the meantime,

no further updated value Coll
(k)
Ident,i is provided by the bias estimation block; otherwise, the adaptation

process will restart again, imposing the convergence of Collbias,i to such a new value.

Sensors 2017, 17, 1148 15 of 23

Figure 9. Activity diagram of the bias estimation block for the i-th joint.

Remark 3. If the user never asks for the adaptation of the Collbias term, tadapt remains always equal to zero,
and the original Collbias0 vector is indefinitely maintained in the threshold function (4) used in the collision
test (3).

An FSM included in the virtual collision sensor handles the entire learning and adaptation
process, guaranteeing in particular that the adaptive expression (14) of Collbias,i(t) is actually used in
the collision test only if a sufficient learning time has passed (corresponding to one process cycle or
more, according to the user preferences, as previously discussed). This condition is ensured simply

maintaining tadapt = 0 until the established learning time has passed and a first reliable Coll
(0)
Ident,i

value has been computed. The FSM (sketched in Figure 10) uses four states to manage the learning
and adaptation process through three main services:

• Init, corresponding to the user’s request of a new learning and adaptation process of Collbias.
It sets to zero all the entries of Collident and the time variable tadapt; such a variable will
remain locked to zero until the beginning of the adaptation phase, enabled by the subsequent
adapt service.

• Set: It allows the direct application of the new Coll
(0)
Ident vector estimated during the learning

phase, from which the slow adaptation process will start.
• Adapt: it lets the adaptation process (14) start, unlocking the time variable tadapt, so that the vector

Collbias in (4) becomes a slow function of time.

Figure 10. FSM for the sensor sensitivity adaptation.

Sensors 2017, 17, 1148 16 of 23

The sequence of operations performed in the four states of the FSM can then be summarized
as follows:

1. IDLE : The FSM remains in the IDLE state until an adaptation request is received. The values of
the CollIdent vector are continuously updated by the bias estimation block, but their values do
not affect Collbias and the threshold function (4) actually used in the collision test. The user can
send a request (AdaptReq) using a specific instruction to be inserted in the user program.

2. INIT: The FSM launches the Init service, so that the bias estimation process restarts from
CollIdent = 0 (any previous value of CollIdent is discarded).

3. LEARNING: The FSM remains in the LEARNING state until the imposed learning time has

passed and a reliable Coll
(0)
Ident vector has been determined by the bias estimation block. When

such a waiting phase is over (LearningEnd), while leaving the LEARNING state the set service

directly applies the new Coll
(0)
Ident vector.

4. ADAPT: The FSM launches the adapt service and then comes back to IDLE, leaving the bias
estimation block and the adaptation law (14) both active.

A complete cycle involving the initialization (init), learning, set and adapting phases is shown in
Figure 11; it highlights the great difference in behavior of the threshold function before and after the
set instant. The figure compares the current residue (in absolute value) Ri(t), the identified threshold
function SIdent,i(t) and the threshold function actually applied in the collision test, defined as αSi(t),
where the Si(t) function given in (4) is multiplied by a factor α, slightly greater than one, to avoid
possible problems in the practical implementation, as discussed in the next section.

Figure 11. Example of a cycle involving init, learning, set and adapting phases.

5. Whole Structure of the Virtual Collision Sensor

The virtual collision sensor is not aware of the robotic structure of the whole system, so that
it simply works checking the current values of each joint one by one. The global virtual sensor is
then composed by a cycle in which each joint is tested by the virtual collision sensor block; when a
collision occurs a collision event is raised, so that a properly post-collision handling can be carried out.
As shown in Figure 12a, the call of the virtual collision sensor block is preceded by an initialization
phase, in which the parameters related to the activation and the timing of the adaptation phase are
read and used for the subsequent update of the memory (update memory block). During such a phase,
the object called collision detection state, containing the state of the algorithm, is used together with
the new input values (e.g., current values and adaptation parameters) in order to define the inputs for
the collision detection procedure (i.e., the object called collision detection inputs).

Sensors 2017, 17, 1148 17 of 23

(a) General activity diagram of the
collision detection procedure

(b) Activity diagram of the virtual
collision sensor block

Figure 12. Overall activity diagrams.

The flowchart representing the virtual collision sensor block was already presented in [15], but
here, some modifications are introduced in order to implement the learning and adaptation of the
sensor sensitivity. The workflow of the new virtual collision sensor block (Figure 12b) is presented
using the graphical representation provided by the activity diagrams, which allows defining additional
characteristics like the parameters involved in the activities and the sets of activities that can be
executed in parallel (fork/joint statement).

The first part of the activity flow (i.e., from the starting block to the FSM) is not changed from a
conceptual point of view; the input values are pre-elaborated (e.g., applying a filtering action on the
input signals), and the first and second order time derivatives of Ii and IDM,i are computed. The time
derivatives are then used by the subsequent three blocks (which can be executed in parallel) to evaluate
if Ii and IDM,i change their trend and to detect when IDM,i enters in a steady condition. The FSM works
as shown in Figure 6, monitoring the behavior of the current signals.

The rest of the activity diagram has been slightly changed to introduce the new features; in
particular, a specific block (called computes Collbias) computing Collbias,i(t) using (14) is introduced;
such an activity is performed in parallel execution with respect to the computation of the model
errors (carried out by the so-called computes m̂err(t) block, reported in Figure 13a). The computes
thresholds block performs the computation of the two thresholds S(t) and SIdent(t), using respectively
Equations (4) and (12).

Sensors 2017, 17, 1148 18 of 23

(a) Activity diagram of the
computes merr,i(t) block

(b) Activity diagram of the collision
check block

Figure 13. Activity diagrams of the blocks computing the terms of the threshold function.

The last two activities are performed in parallel; the first one computes CollIdent,i as shown in the
activity diagram in Figure 9, whereas the second one carries out the collision test (collision check block;
see Figure 13b) with small differences with respect to the basic version proposed in [15]. The adaptation
phase is based on a parallel updating of CollIdent,i(t) without stopping the robot.

It must be noted that the procedure properly works only if Si(t) is always greater then SIdent,i(t),
in particular after the end of the learning phase when the subsequent set action is performed; in fact,
if such a condition does not hold, whenever the bias estimation block detects a (false) collision, the
collision check block would detect it, as well, because in practice, they would perform the same test
with the same threshold. In order to avoid this kind of problem, the threshold really applied in the
collision test (3) is slightly increased (see the example reported in Figure 14) substituting Si(t) with:

Scoll,i(t) = αSi(t) (17)

where α is slightly greater then one, just to let the threshold function used in the collision check block
be always different from the one used in the bias estimation block.

Figure 14. Behavior of threshold functions and current residue during the adaptation phase for the
second joint of an NS12 manipulator.

Sensors 2017, 17, 1148 19 of 23

Remark 4. The usage of the coefficient α does not lead the procedure to become insensitive to real collisions;
in fact, after the application of the new bias through the set service, the threshold function decreases drastically
with respect to its initial value, so that the α coefficient cannot produce in practice an increase of the threshold
function sufficient to let it reach values greater then the initial ones (see Figure 11). In the worst case in which
CollIdent is equal to Collbias,0, the system would have a worsening of its sensibility of about (α− 1)% with
respect to the basic version.

6. Experimental Results

Experimental tests are carried out in order to compare the performances of the basic version of the
procedure proposed in [15] with those of the complete virtual sensor, including the sensitivity learning
and adaptation process. The experiments are performed on a NS 12 robot by COMAU (Grugliasco, Italy)
by imposing real collisions in some predefined positions of the work-space. The movements are defined
using the programming language (i.e., the PDL2) of the COMAU control system (called C5G), through
which a cyclical program repeating several movements has been created. The collisions tests are carried
out for different types of movement, i.e., when the robot is moving linearly in a plane parallel to the floor
(left→ right) and when the robot is moving linearly along a line perpendicular to the floor (top→ bottom).
For both cases, the collisions are imposed in different points of the workspace by placing an obstacle
(a cardboard box of about 15 kg) along the line of movement of the robot just during the motion. In order
to highlight the behavior in different conditions, some of the collision points are chosen in the central part
of the workspace, i.e., near the robot base (denoted as NR in Tables 1 and 2), whereas some others are taken
close to the frontier of the workspace (EOS in Tables 1 and 2).

Table 1. Comparison between the collision Detection Times (DT) of the basic version and the
adaptive one.

Performed Tests DT Adapt (s) DT Basic (s) Average Reduction %

top→ bottom EOS 0.026 0.106 75.5
top→ bottom NR 0.024 0.186 87.1
left→ right EOS 0.010 0.044 77.3
left→ right NR 0.010 0.046 78.3

Table 2. Comparison of the number of axes that are able to detect the collision using the
basic collision detection procedure and the proposed virtual sensor, including the learning and
adaptive functionalities.

Ax

Performed Tests 1 2 3 4 5 6

Basic

top→ bottom EOS _ • _ _ _ _
top→ bottom NR _ _ _ _ • •
left→ right EOS • _ _ _ _ _
left→ right NR • _ _ • _ _

Adaptive

top→ bottom EOS _ • • • • •
top→ bottom NR _ • • _ • •
left→ right EOS • _ • • • •
left→ right NR • • • • • •

For each point of collision, two tests are performed: (i) using the basic version of the algorithm
proposed in [15]; (ii) using the adaptive virtual sensor developed here; in the case of the basic version,
the collision detection is enabled with the standard thresholds, whereas for the adaptive virtual sensor,
an initial learning phase of three cycles is performed before the collision. The obtained results show a

Sensors 2017, 17, 1148 20 of 23

very large decrease of the time required to detect the collision when the adaptive version is used, in
particular, the detection time of the basic version can be reduced between 56% and 87% (see Table 1).
A second important improvement is related to the number of axes able to detect the collision; as shown
in Table 2 for this particular experiment, in which the collision with a cardboard box could be difficult
to detect because of its low stiffness, the basic algorithm is able to detect it with no more then two axes,
whereas the adaptive version detects the collision with almost all joints (and in some cases, just with
all of them), thus enhancing the robustness of the collision detection process.

A further set of experiments is carried out in order to show the behavior of the adaptive virtual
sensor in the case of collisions with different materials. The tests are performed on a COMAU NS 12
imposing a vertical motion to provoke a collision with a stack of elements of the following materials:
(i) paper and cardboard, (ii) polystyrene and (iii) foam rubber. The detection times of the tests are
summarized in Table 3, where it can be seen that the stack of foam rubber requires a longer time
because of its low stiffness, whereas polystyrene and paper show similar detection times. Such a
result could be attributed to the similar stiffness characteristics of the surfaces of the last two materials,
as confirmed also by the current behavior that is reported in Figure 15 for the sixth joint (which is
the first one detecting the collision) in the three tests; to facilitate the analysis of the results, the three
different detection times have been made coincident. As can be seen in the white background region
of the figure, a more rapid increase of the current in the paper/cardboard and in the polystyrene cases
allows a faster collision detection than in the foam rubber one. The robustness of the collision detection
process is confirmed for all of the materials: as shown in Table 4, only the first joint in the foam rubber
case fails to detect the collision, whereas all of the joints detect it with the other two materials. It is
worth noticing that the first joint is not directly involved in the motion causing the collision, so that the
obtained results prove a high robustness of the virtual collision sensor.

Table 3. Collision Detection Times (DT) for the three different materials using the adaptive
virtual sensor.

Performed Tests DT Adapt (s)

paper and cardboard 0.036
polystyrene 0.022
foam rubber 0.076

Figure 15. Behavior of the current I during the collisions for three different materials.

Sensors 2017, 17, 1148 21 of 23

Table 4. Axes able to detect the collision for the three different materials using the adaptive
virtual sensor.

Ax

Performed Tests 1 2 3 4 5 6

Adaptive

paper and cardboard • • • • • •
polystyrene • • • • • •
foam rubber _ • • • • •

The basic version of the collision detection procedure was gradually applied by COMAU during
2016 to factories and production lines, starting with the Fiat Chrysler Automobiles (FCA) plant of
Cassino (Southern Italy), which is mainly composed of high-payload robots involved in handling
applications. The procedure was then inserted in further production lines, e.g., in TOFAS (Turkey) in
the last supplying of 30 robots, in the Pirelli plant, where after a first test involving just a few robots,
the procedure is going to be extended to the rest of the robots pool, and in the FCA plant in Cordoba
(Argentina), where it has been installed on about 160 robots. The new adaptive virtual collision sensor
here proposed is going to be soon tested in a real industrial context, exploiting the suitability of its
characteristics to the cyclical nature of the industrial applications.

7. Conclusions

In this paper, an enhanced version of the collision detection algorithm presented in [15] has been
proposed to achieve a complete virtual collision sensor. The virtual sensor includes a new feature,
activated by the user, that allows one to estimate the most suitable collision sensor sensitivity for the
specific task performed by the robot; moreover, a slow adaptation phase is imposed after its application,
in order to avoid false collisions due to very slow changes of the motor currents’ behavior. The adaptive
version is applicable only in the case of cyclical motions (typical of industrial applications), because it
requires an initial learning phase during which the bias term of the threshold function is estimated.
The new procedure shows very good improvements with respect to the basic one in terms of both
sensibility and robustness, so that it could be used for high precision contact-tasks, as well, if combined
with a proper post-collision reaction, e.g, by using an impedance control law; such an issue will be
investigated in future works.

Acknowledgments: Stefano Trapani is carrying out his research activity as a PhD student at Politecnico di Torino
within a Ph.D. Project in Apprenticeship in collaboration with COMAU, co-funded by Regione Piemonte.

Author Contributions: All of the authors contributed extensively to the work presented in this paper and in
particular to the development of the procedure, on which the virtual collision sensor is based. Stefano Trapani and
Ivan Lazzero developed the software architecture implementing the virtual sensor. Stefano Trapani performed the
experiments. Marina Indri and Stefano Trapani analyzed the data and mainly wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

HMI Human-Machine Interaction
LWR Light Weight Robot
VST Variable Stiffness Transmission
ROB Residual OBserver
DOB Disturbance OBserver
FSM Finite State Machine

Sensors 2017, 17, 1148 22 of 23

References

1. Fenucci, A.; Indri, M.; Romanelli, F. A real time distributed approach to collision avoidance for industrial
manipulators. In Proceedings of the IEEE International Conference on Emerging Technology and Factory
Automation, Barcelona, Spain, 16–19 September 2014.

2. Luca, A.D.; Flacco, F. Integrated control for pHRI: Collision avoidance, detection, reaction and
collaboration. In Proceedings of the IEEE RAS/EMBS International Conference on Biomedical Robotics and
Biomechatronics, Rome, Italy, 24–27 June 2012.

3. Hirzinger, G.; Albu-Schaffer, A.; Hahnle, M.; Schaefer, I.; Sporer, N. On a New Generation of Torque
Controlled Light-Weight Robots. In Proceedings of the IEEE International Conference on Robotics and
Automation, Seoul, Korea, 21–26 May 2001.

4. Bicchi, A; Tonietti, G. Fast and Soft Arm Tactics: Dealing with the Safety-Performance Trade-Off in Robot
Arms Design and Control. IEEE Robot. Autom. Mag. 2004, 11, 22–33.

5. Yamada, Y.; Hirasawa, Y.; Huang, S.; Umetani, Y.; Suita, K. Human-Robot Contact in the Safeguarding Space.
IEEE/ASME Trans. Mechatron. 1997, 2, 230–236.

6. Ebert, D.M.; Henrich, D.D. Safe Human-Robot-Cooperation: Image-based collision detection for Industrial
Robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Lausanne, Switzerland, 30 September–4 October 2002.

7. Cho, C.N.; Kim, Y.L.; Song, J.B. Adaptation-and-collision detection scheme for safe physical human-robot
interaction. In Proceedings of the Asian Control Conference, Istanbul, Turkey, 23–26 June 2013.

8. Lu, S.; Chung, J.H.; Velinsky, S.A. Human-Robot Collision Detection and Identification Based on Wrist
and Base Force/Torque Sensors. In Proceedings of the IEEE International Conference on Robotics and
Automation, Barcelona, Spain, 18–22 April 2005.

9. Luca, A.D.; Albu-Schaffer, A.; Haddadin, S.; Hirzinger, G. Collision Detection and Safe Reaction with
the DLR-III Lightweight Manipulator Arm. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Bejing, China, 9–15 October 2006.

10. Jung, B.J.; Choi, H.R.; Koo, J.C.; Moon, H. Collision Detection Using Band Designed Disturbance Observer.
In Proceedings of the IEEE International Conference on Automation Science and Engineering, Seoul, Korea,
20–24 August 2012.

11. Haddadin, S.; Albu-Schäffer, A.; Luca, A.D.; Hirzinger, G. Collision Detection and Reaction: A Contribution
to Safe Physical Human-Robot Interaction. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Nice, France, 22–26 September 2008.

12. De Luca, A.; Mattone, R. Sensorless Robot Collision Detection and Hybrid Force/Motion Control.
In Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain,
18–22 April 2005.

13. Jung, B.j.; Koo, J.C,; Choi, H.R.; Moon, H. Enhanced Collision Detection Method Using Frequency Boundary
of Dynamic Model. In Proceedings of the IEEE International Symposium on Robotics, Seoul, Korea,
24–26 October 2013.

14. Makarov, M.; Caldas, A.; Grossard, M.; Rodriguez-Ayerbe, P.; Dumur, D. Adaptive Filtering for Robust
Proprioceptive Robot Impact Detection Under Model Uncertainties. IEEE/ASME Trans. Mechatron. 2014,
19, 1917 – 1928.

15. Indri, M.; Trapani, S.; Lazzero, I. A General Procedure for Collision Detection between an Industrial Robot
and the Environment. In Proceedings of the 20th IEEE Conference on Emerging Technologies and Factory
Automation, Luxembourg, 8–11 September 2015.

16. Park, D.; Erickson, Z.; Bhattacharjee, T,; Kemp, C.C. Multimodal Execution Monitoring for Anomaly
Detection During Robot Manipulation. In Proceedings of the 2016 IEEE International Conference on
Robotics and Automation, Stockholm, Sweden, 16–21 May 2016.

17. Shigematsu, T.; Koike, R.; Kakinuma, Y.; Aoyama, T.; Ohnishi, K. Sensorless tool collision detection for
multi-axis machine tools by integration of disturbance information. In Proceedings of the 49th CIRP
Conference on Manufacturing Systems, Stuttgart, Germany, 25–27 May 2016.

18. Shi, Z.; Li, Y.; Liu, G. Adaptive torque estimation of robot joint with harmonic drive transmission. Mech. Syst.
Signal Process. 2017, 96, 1–15.

Sensors 2017, 17, 1148 23 of 23

19. Sotoudehnejad, V.; Takhmar, A.; Kermani, M.R.; Polushin, I.G. Counteracting Modeling Errors for Sensitive
Observer-Based Manipulator Collision Detection. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012.

20. Sotoudehnejad, V.; Kermani, M.R. Velocity-Based Variable Thresholds for Improving Collision Detection
in Manipulators. In Proceedings of the IEEE International Conference on Robotics and Automation,
Hong Kong, China, 31 May–7 June 2014.

21. Lee, S.D.; Song, J.B. Collision detection for safe human-robot cooperation of a redundant manipulator.
In Proceedings of the IEEE International Conference on Control, Automation and Systems, Seoul, Korea,
22–25 October 2014.

22. Lee, S.D.; Kim, Y.L.; Song, J.B. Novel Collision Detection Index based on Joint Torque Sensors for a Redundant
Manipulator. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Tokyo, Japan, 3–8 November 2013.

23. COMAU Website. Available online: http://www.comau.com (accessed on 17 May 2017).

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.comau.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model-Based Approaches for Collision Detection

	Problem Statement and System Characteristics
	The Proposed Collision Detection Virtual Sensor
	Model Error Estimation
	Monitoring of the Currents' Behavior through an FSM
	Monitoring of the Currents' Time Derivatives

	Automatic Learning and Adaptation of the Sensor Sensitivity to Collisions
	Whole Structure of the Virtual Collision Sensor
	Experimental Results
	Conclusions

