A Three-Arm Current ComparatorDigitally Assisted Bridge for the Comparison of Arbitrary FourTerminal-Pair Impedances

Original

Availability:
This version is available at: 11583/2671321 since: 2017-05-21T21:45:49Z

Publisher:
Institute of Electrical and Electronics Engineers Inc.

Published
DOI:10.1109/TIM.2016.2637458

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
A three-arm current comparator digitally-assisted bridge for the comparison of arbitrary four terminal-pair impedances

Massimo Ortolano, Vincenzo D’Elia, and Luca Callegaro

Abstract—High accuracy impedance measurements are performed with coaxial transformer bridges, whose conventional design allow the comparison of like impedances — pure resistors or capacitors. Here we present a current comparator bridge suited for the measurement of impedances of arbitrary magnitudes and phase angles. The bridge has three arms, to connect the impedance under measurement and two calibrated standards. The bridge is digitally assisted and its operation is based on a polyphase digital sine wave synthesizer. To allow the measurement of mid- to low-impedance magnitudes, the bridge network and the balancing procedure are designed to approximate the four terminal-pair definition of the three impedance standards. The bridge has been extensively tested with conventional impedance standards and custom designed phase standards. The relative base accuracy is in the 10^{-5}–10^{-6} range at kHz frequency.

Index Terms—Impedance measurement, bridge circuits, electromagnetic devices, precision measurements.

I. INTRODUCTION

Transformer impedance bridges [1]–[3] allow the measurement of the impedance ratio between two standards with ultimate accuracy at audio frequency. Such performance is based on the properties of the electromagnetic ratio devices employed, which provide voltage or current ratios very close to the nominal value and having extremely low drifts in time or versus environmental conditions [4]. The complexity of traditional transformer impedance bridges can be reduced in digitally-assisted bridges [3, Ch. 5] [5]–[9] which allow also automated or semi-automated operation.

The major limitation of transformer ratio bridges is that they provide a measurement only if the nominal ratio of the impedances being measured is either real (in ratio bridges) or the imaginary unit (in quadrature bridges) [3, Ch. 4].

This work presents a three-arm, four terminal-pair, current comparator, digitally-assisted bridge: its simple architecture allows the comparison of unlike impedances over the complex plane with a four terminal-pair definition in the audio frequency range. To keep the number of auxiliary signals components to a minimum, the four terminal-pair definition is here approximated by nulling the average of the low voltage terminal-pairs (ports) of the three impedances.

A current comparator (see [10] and references therein) then combines the three admittance currents in a weighted sum, each weight being equal to the number of turns of the corresponding comparator winding. Small deviations of this sum from zero are compensated by injecting a signal generated by a digital source.

This four terminal-pair bridge has been introduced in [11] and is a development of the two terminal-pair bridge described in [12]. In the present paper we develop in detail the theory of operation, the sources of errors and we present a large selection of results.

II. PRINCIPLE OF OPERATION

A simplified schematic of the three-arm, four terminal-pair, current comparator, digitally-assisted bridge is represented in Figure 1. It is composed of the following basic elements: the voltage source E, providing the bridge excitation; the current comparator CC; three main arms containing the compared admittances Y_m, $m = 1, \ldots, 3$ (for ease of notation, here and in the following sections, k denotes an index running from 0 to 3, whereas m denotes an index running from 1 to 3); the injection arm containing the voltage source E_0 which drives the admittance Y_0; and the synchronous detector D which senses the bridge main balance. In addition, the auxiliary voltage sources E_{I_k} and $E_{I_{II}}$, and the auxiliary detectors D_k and D_{II} are employed to approximate the four terminal-pair definition of the compared admittances, as described below in this Section. All sources are adjustable both in magnitude and phase. Without loss of generality, let us take admittances Y_1 and Y_2 as calibrated standards and Y_0 as the measurand. Y_0 is also a known admittance standard.

[Figure 1 about here.]

CC consists of a ferromagnetic core with high permeance \mathcal{P}, a primary winding with taps at turn numbers n_1, n_2 and n_3, an injection winding with turn number n_0 and a detection winding connected to D. Turn numbers are considered positive at the dotted ports, negative otherwise. The choice of turn numbers is briefly addressed in Section IV. The currents I_k, $k = 0, \ldots, 3$, crossing the bridge arms produce the magnetomotive force $\mathcal{M} = \sum_{k=0}^{3} n_k I_k$. The bridge is balanced when the magnetic
The bridge balance is not affected by small changes of E. All voltage sources are ideal with zero output impedance. The two tracking voltage sources E_L are arranged to let the adjustment of the low voltages V_{lm} without altering appreciably the voltage drops $V_{Hm} - V_{Lm}$, and, therefore, the currents I_m. Each low voltage V_{Lm} can be measured by connecting the synchronous detector D_H to the appropriate port.

The voltage source E_H and the synchronous detector D_H form a potentiometric arm measuring the voltage drop across the high side of the bridge, from the main excitation to each of the high-voltage ports V_{Hm}.

After applying the main excitation voltage E, the measurement procedure consists of the following steps:

0) Leaving unconnected the potentiometric arm composed by the source E_H and the detector D_H, set $E_L = 0$ and balance D by adjusting E_0.
1) For each Y_m connect the detector D_L to the low-voltage port V_{Lm}; adjust E_L to balance D_L, $V_{Lm} = 0$; if the main balance D changes, readjust E_0 and E_L in turns until both D and D_H are balanced; and let then E_{Lm} be the value of E_L for the admittance Y_m at the convergence of the two equilibria.
2) Set $E_L = (\sum_{m=1}^{3} E_{Lm})/3$, to minimize the deviation of each low-voltage port from perfect four terminal-pair definition.
3) Recheck D and, whether necessary, readjust E_0.
4) For each Y_m, connect the potentiometric arm $E_{H} - D_H$ to the high-voltage port V_{Hm}; balance D_H by adjusting E_H; and let E_{Hm} be the value of E_H for the admittance Y_m when D_H is balanced.

To derive a practical measurement model from the above procedure, we make the assumptions below. We investigate the effect of these assumptions in Section III.

A1) All voltage sources are ideal with zero output impedance.
A2) The tracking between the two voltage sources E_L is perfect.
A3) The bridge balance is not affected by small changes of E_L, that is, the currents I_m do not change appreciably during steps 1 and 2 of the measurement procedure.

From figure 1, and by assumption A3, we have $I_m = Y_m(E + E_{Lm} - E_{Hm})$ at step 1, and $I_m = Y_m(E + E_{Lm} - E_{Hm} - V_{Lm})$ at step 2. These yield $V_{Lm} = E_L - E_{Lm}$ and, by substitution, $I_m = Y_m(E + E_{Lm} - E_{Hm})$. In addition, when the bridge is balanced, $I_0 = Y_0 E_0$. With the currents I_0, \ldots, I_3 thus obtained, the bridge balance equation $\sum_{k=0}^{3} n_k I_k = 0$ can be solved for the unknown admittance Y_3 yielding

$$Y_3 = -n_1 Y_1(E + E_{L1} - E_{H1}) + n_2 Y_2(E + E_{L2} - E_{H2}) - n_3(E + E_{L3} - E_{H3}) = 0$$

For practical calculations and for the evaluation of the uncertainty, it is more convenient to rewrite the measurement function (1) into the following form:

$$Y_3 = -t_{13} Y_1 \left[1 + \frac{E_{L1} - E_{H1}}{E} - t_{23} Y_2 \left[1 + \frac{E_{L2} - E_{H2}}{E} - t_{03} Y_0 \left[1 + \frac{E_0}{E} \right] \right] \right]$$

$$= -t_{13} Y_1 + \frac{E_{L1} - E_{H1}}{E} + \frac{E_{L2} - E_{H2}}{E} + \frac{E_0}{E}$$

where we have defined the turn ratios $t_{jk} = n_j/n_k$.

Of course, the bridge can also be used to compare like impedances. In such a case, only two arms are needed (e.g., Y_1 and Y_3) and the measurement model can be simplified to determine the ratio

$$W_{13} = \frac{Z_1}{Z_3} = -t_{13} + \frac{E_{L1} - E_{H1}}{E} + t_{03} Y_0 E_0 Y_1 E$$

with $Z_k = 1/Y_k$.

III. ERROR SOURCES

We now drop assumptions A1–A3 of Section II. Firstly, we add a series impedance z_{H1} to the excitation branch $E + E_L$. This impedance is crossed by the total current $I_1 + I_2 + I_3$. Then, we accept a mismatch ΔE_L between the two voltages E_L. And lastly, we assume that there is a shunt admittance Y_{Lm} at each low-voltage port. These admittances cause the equilibrium to be dependent on the low voltages V_{Lm} and generate a measurement error due to the shunt currents.

Takings into account the above conditions, the currents entering the comparator are

$$I_m = Y_m[E + E_L + \Delta E_L - E_{Hm} - V_{Lm} - z_{H1}(I_1 + I_2 + I_3)] - V_{Lm} Y_{Lm}$$

At first order, $I_1 + I_2 + I_3 \approx Y E$, with $Y = Y_1 + Y_2 + Y_3$, and $V_{Lm} \approx E_L - E_{Lm}$. Therefore,

$$I_m \approx Y_m[E + E_{Lm} - E_{Hm} + \Delta E_L - z_{H1} Y E] - (E_L - E_{Lm}) Y_{Lm} Y_m$$

By substituting the currents I_m into the bridge balance equation, after some algebra we obtain

$$Y_3 = -t_{13} Y_1 \left[1 + \frac{E_{L1} - E_{H1}}{E} + \epsilon + \epsilon_1 \right]$$

$$-t_{23} Y_2 \left[1 + \frac{E_{L2} - E_{H2}}{E} + \epsilon + \epsilon_2 \right]$$

$$-t_{03} Y_0 \left[1 + \frac{E_0}{E} + \epsilon + \epsilon_3 \right]$$

$$\approx -t_{13} Y_1 + \frac{E_{L1} - E_{H1}}{E} + \frac{E_{L2} - E_{H2}}{E} + \frac{E_0}{E}$$

$$= -t_{13} Y_1 + \frac{E_{L1} - E_{H1}}{E} + \frac{E_{L2} - E_{H2}}{E} + \frac{E_0}{E} + \epsilon + \epsilon_1 + \epsilon + \epsilon_2 + \epsilon + \epsilon_3$$

$$\approx -t_{13} Y_1 + \frac{E_{L1} - E_{H1}}{E} + \frac{E_{L2} - E_{H2}}{E} + \frac{E_0}{E}$$

$$= -t_{13} Y_1 + \frac{E_{L1} - E_{H1}}{E} + \frac{E_{L2} - E_{H2}}{E} + \frac{E_0}{E} + \epsilon + \epsilon_1 + \epsilon + \epsilon_2 + \epsilon + \epsilon_3$$

$$\approx -t_{13} Y_1 + \frac{E_{L1} - E_{H1}}{E} + \frac{E_{L2} - E_{H2}}{E} + \frac{E_0}{E} + \epsilon + \epsilon_1 + \epsilon + \epsilon_2 + \epsilon + \epsilon_3$$
the region (identified by a triplet \(n_1, n_2, n_3 \)) is shown in Figure 2. The best bridge setting corresponds to regions based on the distance partition of the complex admittance (impedance) plane into standards. The programs that perform an exhaustive search through all the possible triplets of turn numbers fail from straightforward because all the terms are generally complex quantities and their relative magnitude is strongly dependent on the specific experimental set-up. However, the measurement function (6) can be used on a case-by-case basis to estimate the error and to evaluate the uncertainty, possibly with the help of a numerical tool. In the case of comparison of like impedances, equation (3) becomes

\[
W_{13} = -t_{13} \left(1 + \frac{E_{1L1} - E_{1H1}}{E} + \epsilon + \epsilon_1 + t_{01} \frac{E_0}{Y_1} \right) \frac{1}{1 + \frac{E_{1L3} - E_{1H3}}{E} + \epsilon + \epsilon_3},
\]

IV. CURRENT COMPARATOR SETTINGS

The choice of the turn numbers \(n_1, n_2 \) and \(n_3 \) is described in detail in [12] and is here briefly recalled. The available standards \(Y_1 \) and \(Y_2 \) and the set of available CC tap triplets \(\{n_1, n_2, n_3\} \) define a discrete set of bridge nominal work-points \(Y = \{Y_3^n(n_1, n_2, n_3)\} \), with \(Y_3^n(n_1, n_2, n_3) = -t_{13}Y_1 - t_{23}Y_2 \) in the admittance complex plane (and the reciprocal set \(Z = \{Z_3^n(n_1, n_2, n_3) = [Y_3^n(n_1, n_2, n_3)]^{-1}\} \) in the impedance plane). In other words, the admittances \(Y_1, Y_2 \) and \(Y_3^n(n_1, n_2, n_3) \) on taps \(n_1, n_2 \) and \(n_3 \) equilibrate the bridge with null injection \(I_0 \approx 0 \).

When measuring a generic admittance \(Y_3 \), better measurement accuracies are achieved for smaller injection currents \(I_0 \), that is, close to one of the working points of the set \(Y \). The partition of the complex admittance (impedance) plane into regions based on the distance\(^1\) from the points of the set \(Y \) (or \(Z \)) is called Voronoi tessellation [13]. An example tessellation is shown in Figure 2. The best bridge setting corresponds to the region (identified by a triplet \(n_1, n_2, n_3 \)) closer to \(Y_3 \). In our implementation, the setting is identified by a simple program that performs an exhaustive search through all the possible triplets of turn numbers.

\[\text{[Figure 2 about here.]}\]

\(^1\) A proper definition of such a distance is given in [12].

V. EXPERIMENTAL SET-UP

The implementation of the bridge here presented is derived from the two terminal-pair version described in [12]. The coaxial schematic of the bridge is reported in Figure 3, and a photograph is shown in Figure 4.

The bridge requires for its operation a polyphase signal source with phase for each channel. In this work we have employed two different sources:

- A 5-channel source developed at INRIM and described in [6], [7], based on a commercial digital-to-analogue (DAC) board\(^2\) and filter/buffer output stages, with fine trimming of the analog gain of each channel.
- A 7-channel source developed at the University of Zielona Góra (UZG) [14], based on 18-bit digital-to-analogue converters with adjustable full scale (1 V, 2.5 V, 5 V and 10 V) and isolated precision filter/buffer output stages [15] having relative amplitude and phase stability in the \(10^{-11}\) range.

The clocks of both sources are locked to the INRIM 10 MHz frequency standard.

Voltages \(E_L \) and \(E_H \) are obtained from two source output channels through 200 : 1 feedthrough injection voltage transformers [3, Sec. 3.3.9].

The current comparator CC, described in detail in [8], is wound on a toroidal amorphous ferromagnetic core. It is provided with a primary ratio winding having 21 taps corresponding to turn numbers \(n = -100, -90, \ldots, +90, +100 \), a \(n_0 = 40 \)-turn balance injection winding for \(I_0 \). The 200-turn injection winding is doubly shielded (electrostatic and magnetic shields) from the other windings.

The detector employed is a Stanford Research mod. 830 lock-in amplifier, which is manually switched across the positions D, D\(_L\) and D\(_H\). When in position D\(_H\), the detector is connected to the bridge through a 1 : 200 feedthrough transformer.

The adjustments of the voltages \(E_0, E_{1Lm} \) and \(E_{1Hm} \) needed for the measurement procedure are done with an automatic balancing algorithm [16]. The whole measurement procedure takes around 5–10 min.

\[\text{[Figure 3 about here.]}\]

\[\text{[Figure 4 about here.]}\]

VI. MEASUREMENT RESULTS

A. Standards

The bridge implementation described in Section V has been thoroughly tested with different kind of impedances, pure and impure, in the \(10 \Omega–100 \Omega\) range. Here we report the results obtained in the range below around \(10 \Omega\), the most interesting for what concerns four-terminal pair operation.

Table I lists the measured standards. TÜBİTAK Ulusal Metroloji Enstitüsü (UME) developed a number of resistive ratio standards and impure impedance standards, the latter to be employed as phase standards at 1 kHz. Table I also reports

\(^2\) National Instruments NI-DAQ 6733 PCI Board, 16 bit resolution, 10 V full scale.
the current comparator settings \(n_1, n_2 \) and \(n_3 \) for each set of standards.

[Table 1 about here.]

B. Uncertainty components

According to the measurement functions (6) and (10), we considered the following uncertainty components:

- Uncertainty of the calibrated admittance standards \(Y_1 \) and \(Y_2 \), and of the injection admittance standard \(Y_0 \). These are calibrated by comparison with the maintained national AC resistance and capacitance scales.
- Uncertainty of the turn ratios. The associated uncertainty has been evaluated through a partial characterization of CC as

\[
\frac{u(|t_{jk}|)}{|t_{jk}|} \approx 10^{-6} \times \max(|t_{jk}|,|t_{jk}|-1) \left(\frac{f}{1000 \text{ Hz}} \right)^2 ,
\]

for the magnitude, and

\[
\frac{u(\arg t_{jk})}{t_{jk}} \approx 1.5 \times 10^{-6} \times \frac{f}{1000 \text{ Hz}} ,
\]

for the phase.

- Uncertainty of the voltage ratios \(E_0/E, E_{Lm}/E \) and \(E_{Hm}/E \). Four different source channels generate the voltages \(E, E_0, E_{Lm} \) and \(E_{Hm} \). The voltage ratios can then be written as

\[
\frac{E_0}{E} = (1 + g_0)E_{0}^{\text{set}} ,
\]

\[
\frac{E_{Lm}}{E} = (1 + g_L)E_{Lm}^{\text{set}} + \delta V_L ,
\]

\[
\frac{E_{Hm}}{E} = (1 + g_H)E_{Hm}^{\text{set}} + \delta V_H ,
\]

where the superscript \(\text{set} \) denotes the source settings; \(g_0, g_L \) and \(g_H \) represent gain error terms; and \(\delta V_L \) and \(\delta V_H \) account for the balance uncertainty. The gain error terms depend on the matching between the source channels generating \(E_0, E_{Lm}, E_{Hm} \) and the reference channel generating \(E \), and on the accuracy of the injection transformers voltage ratio. From (14) we can infer that voltages \(E_{Lm} \) are correlated, with a correlation coefficient of about 1, because they are all generated from the same source channel, and \(g_L \) is independent of \(m \). The same can be said for the voltages \(E_{Hm} \), from (15). This correlation limits the contribution of the voltages \(E_{Lm} \) and \(E_{Hm} \) to the overall uncertainty. The sources employed in this experiment have channel gains matched at the \(10^{-4} \) level, for both magnitude and phase. The balance uncertainty is better than 1 \(\mu \V \).

- Mismatch of the \(E_L \) sources. This term is actually negligible and has not been considered.

- Effect of the excitation branch impedance \(z_{\text{H}} \). In our experimental set-up, the impedance \(z_{\text{H}} \) can be modelled as a resistance \(r_{\text{H}} = (70 \pm 14) \Omega \) in series with an inductance \(L_{\text{H}} = (1.9 \pm 1.1) \mu \text{H} \). This impedance comprises the source output impedance, the injection transformer impedance and the cable impedance up to node H of figure 3. Its large uncertainty accounts for possible set-up variations (e.g., the usage of two different sources).

- Effect of the shunt admittances \(Y_{Lm} \). On the basis of our experimental set-up, we considered capacitive shunt admittances of the order of 500 \(\Omega \). The term \(\Delta Y_3 \) has been accounted for as an uncertainty component.

The propagation of uncertainty has been carried out according to Supplement 2 of the Guide to the expression of uncertainty in measurement [17] with the help of Metas.UncLib [18].

C. Results

Tables II and III report the results obtained with the standards listed in Table I.

[Table 2 about here.]
[Table 3 about here.]

Table IV details the uncertainty budget for standard no. 13, a 30° inductive phase standard. The main uncertainty components are those associated to the reference standards \(Y_1 \) and \(Y_2 \). The uncertainty due to the approximate definition of the low port voltages is below \(10^{-6} \), Table IV reports also, for comparison, the result \(Z_3^{\text{ref}} \) obtained with the three-voltmeter method \(^3\) [19]. The relative discrepancy between the two results is \((9 \pm 40) \times 10^{-6} \). Also for the other results of Table III, the main uncertainty components are those of the standards \(Y_1 \) and \(Y_2 \), and, secondarily, that of CC. The uncertainties reported in Table III are at least one order of magnitude better than those of the best commercial \(\text{LCR} \) meters, and are comparable with those reported in the literature for state-of-the-art systems capable of arbitrary impedance measurements [19]–[22].

For the pure impedance standards of Table II, instead, the main uncertainty component is that of CC, especially at high turn ratios. This can be reduced through calibration.

[Table 4 about here.]

VII. CONCLUSIONS

The digitally assisted bridge here presented has two main features: i) it allows the measurement of impedances with arbitrary magnitude and phase; ii) it approximates the four-terminal pair definition of all standards with a minimal bridge network complexity. The bridge accuracy has been validated with purposely-built standards over a large range of magnitude and phase. The technique employed to achieve feature ii) is not limited to the particular bridge investigated and can be applied to other bridge networks too.

ACKNOWLEDGEMENT

The authors thank R. Rybski and J. Kaczmarek of UZG, Poland, for the development of one of the sources employed in this work, and G. Gülmez of UME, Turkey, for the development of the impure standards.

\(^3\)For \(Z_3^{\text{ref}} \) only the magnitude is reported, because the phase uncertainty of \(Z_3^{\text{ref}} \) is much greater than that of \(Z_3 \).
REFERENCES

Massimo Ortolano was born in 1969. He received the M.Sc. degree in electronic engineering *cum laude* in 1997 from the Politecnico di Torino, Torino, Italy, and the Ph.D. degree in metrology in 2001, from the same university. Since 2000, he is an assistant professor with the Department of Electronics and Telecommunications, Politecnico di Torino, where he is in charge of several courses on electronic measurements. He collaborates with the Istituto Nazionale di Ricerca Metrologica (INRIM) on noise metrology, modelling of quantum Hall effect devices, impedance metrology and electrolytic conductivity measurements. His research interests include also fundamental constants and time and frequency metrology.

Vincenzo D’Elia was born in 1965. He received the High School degree in electronics from the Technical School G. Plana, Turin, Italy, in 1988. After working with a telecommunication company, in 1996 he joined the Department of Electrical Metrology, Istituto Elettrotecnico Nazionale Galileo Ferraris (IEN), now Istituto Nazionale di Ricerca Metrologica (INRIM), Turin. He is currently involved in impedance, inductive voltage ratio and low current measurements.

Luca Callegaro was born in 1967. He received the degree in Electronic Engineering and the Ph.D. degree in Physics from Politecnico di Milano, Milan, Italy, in 1992 and 1996, respectively. He joined the Istituto Nazionale di Ricerca Metrologica, INRIM (formerly Istituto Elettrotecnico Nazionale Galileo Ferraris, IEN), Torino, Italy, in 1996. He has been member of the Scientific Council of IEN (1998-2005), adjunct professor of electronic measurements at Politecnico di Torino, Italy. He is responsible of research activity on electrical impedance at INRIM, and of the national standards of electrical capacitance, inductance, ac resistance and ac voltage ratio. He is the Italian contact person of EURAMET TC-EM and member of its Working Group on Strategic Planning. He is the Italian deputy officer for the Commission A of URSI. He is author of about 70 papers on international reviews and of the book *Electrical impedance: principles, measurement and applications* (Taylor & Francis, 2012).
List of Figures

1. Simplified schematic of the three-arm, four terminal-pair, current comparator, digitally-assisted bridge. The compared admittances are Y_1, Y_2 and Y_3. The voltage source E is the main bridge excitation. CC is the current comparator. CC’s main winding has taps with turn numbers n_1, n_2 and n_3, counted with respect to the tap connected to E_L; positive turn numbers are marked by black dots (in the figure above, $n_1, n_2 > 0$ and $n_3 < 0$). Currents entering the CC taps are considered positive. CC’s injection winding, with turn number $n_0 < 0$, is connected to an injection arm composed of the voltage source E_0 and the admittance Y_0. CC’s detection winding is connected to the synchronous detector D, which senses the bridge main balance. The two tracking voltage sources E_L allow the adjustment of the low-voltage ports voltages $V_{L1}–V_{L3}$, which are measured by the synchronous detector D_L. The potentiometric arm composed by the voltage source E_H and the synchronous detector D_H is used to measure the voltage drop across the high side of the bridge.

2. A region of the Voronoi tessellation of the complex plane corresponding to the measurement no. 13 reported in Table I. The white circles represent the bridge nominal working points, which depend on the values of Y_1 and Y_2, and on the available CC tap triplets (n_1, n_2, n_3). The gray scale represents the magnitude of the magnetization of the current comparator generated by I_0 and needed to achieve bridge balance, relative to the total magnetization generated by I_1, I_2, I_3. The red circle is the Z_3 value being measured; Z_3 falls in the region corresponding to $n_1 = −60, n_2 = 70, n_3 = −100$, as reported in the last columns of Table I. It is worth noting that Z_3 is close to the boundary between two different regions: therefore, for this particular case, the bridge setting is sensitive to the a priori knowledge of Z_3.

3. Coaxial implementation of the principle schematic diagram of Figure 1. Injection/detection transformers provide voltages E_L, E_H and the detection of D_L. The black rectangles along arms 1 and 3 represent two coaxial equalizers.

4. Picture of the experimental set-up (sources and detector not shown).
Figure 1. Simplified schematic of the three-arm, four terminal-pair, current comparator, digitally-assisted bridge. The compared admittances are Y_1, Y_2 and Y_3. The voltage source E is the main bridge excitation. CC is the current comparator. CC’s main winding has taps with turn numbers n_1, n_2 and n_3, counted with respect to the tap connected to E_L; positive turn numbers are marked by black dots (in the figure above, $n_1, n_2 > 0$ and $n_3 < 0$). Currents entering the CC taps are considered positive. CC’s injection winding, with turn number $n_0 < 0$, is connected to an injection arm composed of the voltage source E_0 and the admittance Y_0. CC’s detection winding is connected to the synchronous detector D, which senses the bridge main balance. The two tracking voltage sources E_L allow the adjustment of the low-voltage ports voltages V_{L1} to V_{L3}, which are measured by the synchronous detector D_L. The potentiometric arm composed by the voltage source E_H and the synchronous detector D_H is used to measure the voltage drop across the high side of the bridge.
Figure 2. A region of the Voronoi tessellation of the complex plane corresponding to the measurement no. 13 reported in Table I. The white circles represent the bridge nominal working points, which depend on the values of Y_1 and Y_2, and on the available CC tap triplets (n_1, n_2, n_3). The gray scale represents the magnitude of the magnetization of the current comparator generated by I_0 and needed to achieve bridge balance, relative to the total magnetization generated by I_1, I_2, I_3. The red circle is the Z_3 value being measured; Z_3 falls in the region corresponding to $n_1 = -60$, $n_2 = 70$, $n_3 = -100$, as reported in the last columns of Table I. It is worth noting that Z_3 is close to the boundary between two different regions: therefore, for this particular case, the bridge setting is sensitive to the a priori knowledge of Z_3.
Figure 3. Coaxial implementation of the principle schematic diagram of Figure 1. Injection/detection transformers provide voltages E_L, E_H and the detection of D_L. The black rectangles along arms 1 and 3 represent two coaxial equalizers.
Figure 4. Picture of the experimental set-up (sources and detector not shown).
Selection of measured standards with the corresponding current comparator settings ($n_0 = -40$ for all measurements) and the excitation voltage E (RMS value). The upper part of the table lists pure impedance standards (for these, only two arms are employed, and fields Y_2 and n_2 are left empty; an asterisk * indicates that admittances Y_3 and Y_1 are part of a same ratio standard).

II Results for pure impedance standards. Uncertainties are stated as standard uncertainties with a coverage factor of 1. The numbers in brackets in the fourth and sixth columns represent respectively the relative uncertainties $u(\text{Re} W_{13})/|W_{13}|$ and $u(\text{Im} W_{13})/|W_{13}|$ in parts per 10^6.

III Results for impure impedance standards. Uncertainties are stated as standard uncertainties with a coverage factor of 1. The numbers in brackets in the fourth and sixth columns represent respectively the uncertainties $u(|Z_3|)/|Z_3|$ in parts per 10^6 and $u(\arg Z_3)$ in µrad.

IV Uncertainty budget for measurement standard no. 13 of Table I at frequency $f = 1003.0033$ Hz. Quantities $E_{L1} - E_{L3}$, like $E_{H1} - E_{H3}$, are correlated with a correlation coefficient of 1; the propagation of uncertainty accounts for these correlations. Column nine reports the relative uncertainty components $u_i(|Z_3|)/|Z_3|$ in parts per 10^6. Main uncertainty components are highlighted in bold. Type A uncertainty is negligible and has not been reported. For comparison, the last row reports the result Z_3^{ref} obtained by measuring the same standard with the three voltmeter method.
Table 1

Selection of measured standards with the corresponding current comparator settings \((n_0 = -40\) for all measurements) and the excitation voltage \(E\) (RMS value). The upper part of the table lists pure impedance standards (for these, only two arms are employed, and fields \(Y_2\) and \(n_2\) are left empty; an asterisk * indicates that admittances \(Y_3\) and \(Y_1\) are part of a same ratio standard).

<table>
<thead>
<tr>
<th>(Y_3)</th>
<th>(Y_2)</th>
<th>(Y_1)</th>
<th>(Y_0)</th>
<th>(n_3)</th>
<th>(n_2)</th>
<th>(n_1)</th>
<th>(E/V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure impedance standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TÜBITAK UME mod. 0083</td>
<td>*</td>
<td>3 kΩ</td>
<td>Gen. Rad. mod. 3632</td>
<td>30</td>
<td>–90</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>TÜBITAK UME mod. 0084</td>
<td>1 kΩ</td>
<td>*</td>
<td>Gen. Rad. mod. 3632</td>
<td>10</td>
<td>–70</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>TÜBITAK UME mod. 0086</td>
<td>10 kΩ</td>
<td>7 kΩ</td>
<td>Gen. Rad. mod. 3632</td>
<td>30</td>
<td>–90</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>TÜBITAK UME mod. 0087</td>
<td>10 kΩ</td>
<td>*</td>
<td>Gen. Rad. mod. 3632</td>
<td>10</td>
<td>–70</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>Tinsley</td>
<td>INRIM (custom)</td>
<td>10Ω</td>
<td>Towa</td>
<td>50</td>
<td>–50</td>
<td>0.20</td>
</tr>
<tr>
<td>6</td>
<td>Tinsley</td>
<td>INRIM (custom)</td>
<td>10Ω</td>
<td>100 nF</td>
<td>10</td>
<td>–100</td>
<td>0.20</td>
</tr>
<tr>
<td>Impure impedance standards (phase standards)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>TÜBITAK UME mod. 0097L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TÜBITAK UME mod. 0098R</td>
<td>12.53 kΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TÜBITAK UME mod. 0103L</td>
<td>3.62 kΩ+1 H (+60° at 1 kHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TÜBITAK UME mod. 0103R</td>
<td>11.0 kΩ+1 H (+30° at 1 kHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TÜBITAK UME mod. 0104L</td>
<td>110 kΩ+10 mH (+30° at 1 kHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TÜBITAK UME mod. 0104R</td>
<td>36Ω+10 mH (+60° at 1 kHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>INRIM SL006 + TÜBITAK UME R1</td>
<td>100 mH+ 1100 Ω (+30° at 1 kHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>INRIM SL006 + TÜBITAK UME R2</td>
<td>100 mH+ 362Ω (+60° at 1 kHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table II
Results for pure impedance standards. Uncertainties are stated as standard uncertainties with a coverage factor of 1. The numbers in brackets in the fourth and sixth columns represent respectively the relative uncertainties $\frac{u(\text{Re} W_{13})}{|W_{13}|}$ and $\frac{u(\text{Im} W_{13})}{|W_{13}|}$ in parts per 10^6.

<table>
<thead>
<tr>
<th>f/Hz</th>
<th>Re W_{13}</th>
<th>Im W_{13}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 999.9945</td>
<td>2.999 951 3(96)</td>
<td>$-7.88(51) \times 10^{-3}$</td>
</tr>
<tr>
<td>2 999.9945</td>
<td>6.999 812(51)</td>
<td>$-4.69(12) \times 10^{-4}$</td>
</tr>
<tr>
<td>3 399.9978</td>
<td>3.000 083 7(30)</td>
<td>$-2.578(30) \times 10^{-4}$</td>
</tr>
<tr>
<td>4 999.9945</td>
<td>3.000 083 9(96)</td>
<td>$-6.473(51) \times 10^{-4}$</td>
</tr>
<tr>
<td>5 1592.348</td>
<td>3.000 071(25)</td>
<td>$-1.0292(76) \times 10^{-3}$</td>
</tr>
<tr>
<td>6 1999.989</td>
<td>3.000 080(36)</td>
<td>-1.292493×10^{-3}</td>
</tr>
<tr>
<td>7 999.9972</td>
<td>3.000 06(23)</td>
<td>$-3.223(23) \times 10^{-3}$</td>
</tr>
<tr>
<td>8 999.9945</td>
<td>7.000 058(51)</td>
<td>$-4.479(12) \times 10^{-3}$</td>
</tr>
<tr>
<td>9 999.9945</td>
<td>1.000 004 3(27)</td>
<td>$6.016(60) \times 10^{-4}$</td>
</tr>
<tr>
<td>10 1003.0031</td>
<td>0.100 000 012(12)</td>
<td>$5.050(63) \times 10^{-5}$</td>
</tr>
</tbody>
</table>
Table III

Results for impure impedance standards. Uncertainties are stated as standard uncertainties with a coverage factor of 1. The numbers in brackets in the fourth and sixth columns represent respectively the uncertainties \(u(|Z_3|)/|Z_3|\) in parts per 10⁶ and \(u(\arg Z_3)\) in μrad.

| \(f/\text{Hz}\) | \(|Z_3|/\Omega\) | \(\arg Z_3\)° |
|----------------|-----------------|----------------|
| 7 | 999.9945 | 7955.938(46) | −30.02387(29) [5.1] |
| 8 | 999.9945 | 5037.039(39) | −60.43885(47) [8.3] |
| 9 | 1002.9913 | 7281.304(68) | 60.04101(56) [9.8] |
| 10 | 1002.9913 | 12 568.878(70)| 30.14258(30) [5.3] |
| 11 | 1003.0033 | 125.671(15) [120] | 30.1359(43) [75] |
| 12 | 1003.0033 | 72.959(10)[140] | 59.813(13) [223] |
| 13 | 1003.0033 | 1256.911(33)[26] | 30.0968(18) [31] |
| 14 | 1003.0033 | 726.189(22)[31] | 60.2186(22) [38] |
Table IV

Uncertainty budget for measurement standard no. 13 of Table I at frequency $f = 1003.0033$ Hz. Quantities $E_{1,1} - E_{3,3}$, like $E_{H1} - E_{H3}$, are correlated with a correlation coefficient of 1; the propagation of uncertainty accounts for these correlations. Column nine reports the relative uncertainty components $u_i([Z_3]/Z_3)$ in parts per 10^6. Main uncertainty components are highlighted in bold. Type A uncertainty is negligible and has not been reported. For comparison, the last row reports the result Z_3^{det} obtained by measuring the same standard with the three voltmeter method.

| Quantity | $|x_i|$ | arg x_i/rad | $u(|x_i|)$ | $u(\text{arg } x_i)/\text{rad}$ | Type | $u(|Z_3|)/\text{mΩ}$ | $u(\text{arg } Z_3)/\text{µrad}$ |
|----------|--------|--------------|-------------|-------------------------------|------|------------------------|------------------------------|
| Y_0 | 1.000 049 8 µS | 0.012 579 9 | 6.4 pS | 0.000 004 2 | B | 0.2 | [0.2] | 0.2 |
| Y_1 | 630.260 µS | 1.570 725 | 11 nS | 0.000 042 | B | 22.4 | [17.8] | 12.4 |
| Y_2 | 999.9248 µS | −0.000 113 | 1.6 nS | 0.000 034 | B | 18.9 | [15.0] | 25.8 |
| θ_{03} | 0.400 000 0 | 0.000 000 0 | 1.0 \times 10$^{-6}$ | 0.000 001 5 | B | 0.1 | [0.1] | 0.1 |
| θ_{13} | 0.600 000 0 | 0.000 000 0 | 1.0 \times 10$^{-6}$ | 0.000 001 5 | B | 0.9 | [0.7] | 0.8 |
| θ_{23} | 0.700 000 0 | 3.141 592 7 | 1.0 \times 10$^{-6}$ | 0.000 001 5 | B | 1.6 | [1.3] | 1.3 |
| E_{0_1}/E | 57.8816 | 1.050 02 | 0.0058 | 0.000 10 | B | 3.7 | [2.9] | 2.9 |
| E_{1_1}/E | 0.001 341 6 | −2.7786 | 5.8 \times 10$^{-6}$ | 0.0043 | B | 3.5 | [2.8] | 2.8 |
| E_{1_2}/E | 0.002 129 7 | −3.1174 | 5.8 \times 10$^{-6}$ | 0.0027 | B | 6.4 | [5.1] | 5.1 |
| E_{2_3}/E | 0.002 086 1 | 3.1336 | 5.8 \times 10$^{-6}$ | 0.0028 | B | 7.3 | [5.8] | 5.8 |
| E_{3_1}/E | 0.000 104 2 | 0.451 | 5.8 \times 10$^{-6}$ | 0.055 | B | 3.5 | [2.8] | 2.8 |
| E_{3_2}/E | 0.000 260 3 | 0.093 | 5.8 \times 10$^{-6}$ | 0.022 | B | 6.4 | [5.1] | 5.1 |
| E_{3_3}/E | 0.000 211 7 | −0.210 | 5.8 \times 10$^{-6}$ | 0.027 | B | 7.3 | [5.8] | 5.8 |
| ΔY_3 | 70.7 mΩ | 0.17 | 7.1 mΩ | 0.10 | B | 0.5 | [0.4] | 0.4 |
| ΔZ_3 | 0 | 0 | 0.67 nS | 6.28 | B | 0.81 | [0.6] | 1.0 |
| Z_3 | 1256.911 Ω | 0.525 291 | 33 | [26] | 31 |
| Z_3^{det} | 1256.898 Ω | 37 | [30] |