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THE NORMAL HOLONOMY OF CR-SUBMANIFOLDS

ANTONIO J. DI SCALA AND FRANCISCO VITTONE

Abstract. We study the normal holonomy group, i.e. the holonomy group of the

normal connection, of a CR-submanifold of a complex space form. We show that the

normal holonomy group of a coisotropic submanifold acts as the holonomy representation

of a Riemannian symmetric space. In case of a totally real submanifold we give two

results about reduction of codimension. We describe explicitly the action of the normal

holonomy in the case in which the totally real submanifold is contained in a totally real

totally geodesic submanifold. In such a case we prove the compactness of the normal

holonomy group.

1. Introduction

The objective of this paper is to study the normal holonomy group of CR-submanifolds

of complex space forms.

For submanifolds of Rn or more generally of real space forms, a fundamental result is the

Normal Holonomy Theorem[21]. It asserts roughly that the non-trivial component of the

action of the restricted normal holonomy group acts on any normal space as the isotropy

representation of a Riemannian symmetric space (called s-representation for short). The

Normal Holonomy Theorem is a very important tool for the study of submanifold geometry,

especially in the context of submanifolds with “simple extrinsic geometric invariants”, like

isoparametric and homogeneous submanifolds (see [6] for an introduction to this subject).

Moreover, the Normal Holonomy Theorem has reveled to have important consecuences in

the study of intrinsic riemannian geometry, as it can be seen, for example, in the very

important role it plays in the geometric proof of Berger’s Theorem [23]. So a natural

question is whether it can be generalized to submanifolds of other ambient spaces, and in

particular to submanifolds of complex space forms.

The main tool in the proof of Olmos’s theorem is the simplicity of the Ricci equation

in real space forms. Therefore CR-submanifolds constitute the natural family of subman-

ifolds to explore the validity of the Normal Holonomy Theorem, and they include some

important types of submanifolds such as complex, isotropic (also called totally real or

anti-invariant), coisotropic (also called CR-generic) and Lagrangian. (see section 2.2).

CR-submanifolds have been widely studied, see for example [4, 5, 7, 13, 16]. Isotropic

or totally real submanifolds are those on which the complex structure J maps the tangent
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2 A. J. DI SCALA AND F. VITTONE

space into the normal space at each point. In contraposition, coisotropic submanifolds are

those on which J maps the normal space into the tangent space. Lagrangian submanifolds

are those which are at the same time isotropic and coisotropic.

Our main result shows that the Normal Holonomy Theorem holds for coisotropic sub-

manfolds of complex space forms.

Theorem 1. Let M be a coisotropic submanifold of a complex space form Sc. Then

the restricted normal holonomy group of M acts on the normal space as the holonomy

representation of a Riemannian symmetric space i.e. a flat factor plus a s-representation.

For Lagrangian submanifolds the complex structure J of the ambient space form in-

duces a natural isomorphism between the normal and the Riemannian holonomy groups.

Therefore we obtain the following important consequence.

Corollary 1.1. A Ricci flat Lagrangian submanifold of a complex space form Sc has non-

exceptional Levi-Civita holonomy, i.e., it is either flat or the restricted holonomy group of

its Levi-Civita connection is SO(TM).

Non-full totally real submanifolds and Lagrangian submanifolds play also an impor-

tant role on the study of extrinsically symmetric submanifolds. In [19], it was shown

that extrinsically symmetric submanifolds of complex space forms are complex subman-

ifolds, totally real submanifolds contained in a totally real totally geodesic submanifold,

or lagrangian submanifolds of a totally geodesic complex submanifold.

In Section 5 we explore the normal holonomy group of totally real submanifolds of

complex space forms. We start with an example showing that the strategy we used for

coisotropic submanifolds can not be adapted to this case. In particular, we characterize

the so called holomorphic circles [2, page 8, Definition] (also called Kähler-Frenet curves

[18, Introduction]) as those curves of the complex projective space whose pull-back to the

sphere via the Hopf fibration has flat normal bundle. We give two results about reduction

of codimension. For totally real submanifolds of totally geodesic totally real submanifolds

of a complex space form we give an explicit description of the action of its normal holo-

nomy group. It turns out that the normal holonomy group is compact but it does not act,

in general, as in Olmos’ holonomy theorem.

We end the paper with an observation missed in [1] about the restricted normal holo-

nomy of a complex submanifold.

Theorem 2. Let M be a full (non necessarily complete) complex submanifold of a complex

space form and let Hol0p(M,∇⊥) be the restricted holonomy group of the normal connection.

Then Hol0p(M,∇⊥) acts on the normal space νp(M) as the isotropy representation of a (non

necessarily irreducible) Hermitian symmetric space without flat factor.
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In [1] the above result was proved under the additional hypothesis that either the normal

holonomy group acts irreducibly or the second fundamental form has no nullity. Theorem

2 plays an important role in the local classification of normal holonomies given in [12] (see

[9] for a global result).

2. Preliminaries and basic facts

2.1. Complex space forms and Hopf fibrations. Let Sc be a complex space form of

holomorphic sectional curvature c. For the sake of simplicity we shall assume that Sc is

one of the standard models, that is, the complex euclidean space Cn if c = 0, the complex

projective space CPn if c = 4 or the complex hyperbolic space CHn if c = −4. However

all the results here are valid for arbitrary c.

Denote by J the complex structure, by 〈 , 〉 the standard metric and by ∇ the Levi-

Civita connection on Sc.
We will now introduce the Hopf fibrations for the complex hyperbolic and projective

spaces.

If z = (z0, z1, · · · , zn), w = (w0, w1, · · · , wn) ∈ Cn+1, define

〈z, w〉 = Re

(
n∑
i=0

ziwi

)
; 〈z, w〉1 = Re

(
−z0w0 +

n∑
i=1

ziwi

)

Then 〈 , 〉 is the standard inner product on Cn+1, which can be identified with the Eu-

clidean space R2n+2.

On the other hand, 〈 , 〉1 is a scalar product of signature 2 on Cn+1. We will denote

by Cn+1
1 the complex vector space Cn+1 with this scalar product. Then Cn+1

1 can be

identified with the standard semi-Euclidean space R2n+2
2 .

For c = 4, denote by N c the (2n+ 1)-dimensional sphere in Cn+1, that is

N4 = S2n+1 = {z ∈ Cn+1 : 〈z, z〉 = 1}

and for c = −4 denote by N c the Lorentzian pseudo-hyperbolic space (or anti-De Sitter

space) Hn+1
1 in Cn+1

1 , that is,

N−4 = Hn+1
1 = {z ∈ Cn+1 : 〈z, z〉1 = −1}.

Recall that Hn+1
1 is a Lorentzian real space form of constant sectional curvature K = −1

(see [24, Prop. 29, page 113]).

The one-parameter group U(1) = {z = eiθ : θ ∈ R} acts by multiplication on N c and

Sc = N c/U(1). Moreover, the standard projection

πc : N c → Sc

is a principal fiber bundle, called Hopf fibration.



4 A. J. DI SCALA AND F. VITTONE

Let ηp := p be the position vector field on N c and let Vp and Hp be the vertical and

horizontal subspaces associated to πc at p respectively. That is, Vp = Tp(π
−1
c (πc(p)) and

Hp = (Vp)
⊥ ⊂ TpN c. Then

Vp = spanR{Jηp}; Hp ≡ Tπc(p)Sc.

Jη is called the Hopf vector field of N c. Observe that Hp is a J-invariant subspace and

dπc identifies J|Hp
with the complex structure J of Sc. Moreover, π4 is a Riemannian sub-

mersion and π(−4) is a pseudo Riemannian one, and in both cases H defines a Riemannian

subbundle of TN c.

Denote by ∇′ the Levi-Civita connection of N c and by gc the metric on N c induced

from the corresponding inner product on the ambient complex space.

For a vector field X in Sc we will always denote by X̂ its horizontal lift to N c, i.e., X̂

is the only horizontal vector field in N c, πc-related to X. Then from O’Neil formulas for

a submersion one gets that for each X, Y ∈ X(Sc),

(1) ∇′
X̂
Ŷ = ̂(∇XY ) + gc(X,JY )Jη

(2) ∇′JηX̂ = ∇′
X̂
Jη = JX̂ = ĴX.

(cf. [20])

2.2. CR-submanifolds. A submanifold M of Sc (or more generally, of a Kählerian man-

ifold) is called a CR-submanifold if there exists a differentiable distribution D on M such

that for each x ∈M , Dx is a complex subspace of TxSc, i.e., JDx = Dx, and the orthogonal

distribution D⊥ ⊂ TM is anti-invariant, i.e., JD⊥x is normal to M .

There are three particular cases of CR-submanifolds we are interested in. If Dx = TxM ,

then M is a complex submanifold of Sc.
If on the contrary Dx = {0}, i.e. JTxM ⊂ νxM for each x, then M is a totally real (

also called anti-invariant or isotropic) submanifold of Sc.
Finally, if dim D⊥x = dim νxM , and consequently JνxM ⊂ TxM , M is called a

coisotropic ( also called generic CR-submanifold) of Sc.
A submanifold which is both totally real and coisotropic, i.e., JTxM = νxM is called a

Lagrangian submanifold of Sc.
For general facts about CR-submanifolds of Kähler manifolds see for example [4, 5, 7,

16, 13].

We will now introduce some preliminaries on the general theory of submanifolds of

a complex space form and state how the geometry of a submanifold M of the complex

projective or hyperbolic space relates with that of its pull-back via the Hopf fibration.

Let M be a Riemannian submanifold of Sc. Denote by ∇ the Levi-Civita connection

of M and by ∇⊥ the normal connection on the normal bundle νM = (TM)⊥. Let α

and A be the second fundamental form and shape operator of M respectively. They
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are defined, taking tangent and normal components with respect to the decomposition

TSc|M = TM ⊕ νM by the Gauss and Codazzi formulas

(3) ∇XY = ∇XY + α(X,Y ), ∇Xξ = −AξX +∇⊥Xξ

and related by 〈α(X,Y ), ξ〉 = 〈AξX,Y 〉, for any tangent vector fields X and Y to M and

any normal vector field ξ.

Denote by R
c

the Riemannian curvature tensor of Sc. Recall that if X,Y ∈ X(Sc) then

(4) R
c
X,Y =

1

4
c(X ∧ Y + JX ∧ JY − 2 〈JX, Y 〉 J)

where X ∧ Y (Z) = 〈Y, Z〉X − 〈X,Z〉Y .

Let R and R⊥ be the Riemannian and the normal curvature tensors of M respectively.

Then for X,Y, Z tangent to M and ξ, ζ normal to M , the well known equations of Gauss,

Codazzi and Ricci hold:

(5)
〈
R
c
X,Y Z,W

〉
= 〈RX,Y Z,W 〉+ 〈α(X,Z), α(Y,W )〉 − 〈α(X,W ), α(Y, Z)〉

(6) (R
c
X,Y Z)⊥ = (∇∗Xα)(Y, Z)− (∇∗Y α)(X,Z)

(7)
〈
R
c
X,Y ξ, ζ

〉
=
〈
R⊥X,Y ξ, ζ

〉
− 〈[Aξ, Aζ ]X,Y 〉 .

where ∇∗ is the connection ∇⊕∇⊥ on the vector bundle TSc|M .

Assume now that M ⊂ Sc with c = 4 or c = −4.

Set M̂ = π−1(M) and π̂ = πc|M̂ where πc is the Hopf fibration introduced in the previous

section. Then π̂ : M̂ →M is a principal U(1)-bundle. If c > 0, i.e. M ⊂ CPn, then M̂ is

a Riemannian submanifold of the sphere N4 = S2n+1 and π̂ is a Riemannian submersion.

If c < 0, i.e. M ⊂ CHn, then M̂ is a Lorentzian submanifold of N (−4) = Hn+1
1 and π̂

a pseudo-Riemannian submersion (observe that for c = −4 one has g(−4)(Jη, Jη) = −1).

Along this paper we will call M̂ the pull-back of M .

The vertical subspace V̂p of π̂ coincides with Vp = RJηp and the horizontal subspace

Ĥp = Hp ∩ TpM̂ is isometric via dπ̂p with Tπ̂(p)M .

IfX,Y are tangent vector fields toM and ξ is a normal vector field toM , their horizontal

lifts are respectively tangent and normal to M̂ .

Denote by ∇̂, ∇̂⊥, α̂ and Â the Levi-Civita and normal connections respectively and

the second fundamental form and shape operator of M̂ . Then from equations (1) and (2)

it is not difficult to obtain the following equations (recall that the hat ·̂ always indicates

the horizontal lift of a vector):

(8) ∇̂X̂ Ŷ = ∇̂XY + 〈X, JY 〉 Jη, α̂(X̂, Ŷ ) = ̂α(X,Y ).
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(9) Âξ̂X̂ = ÂξX − 〈X, Jξ〉 Jη, ∇̂⊥
X̂
ξ̂ = ∇̂⊥Xξ

(10) Âξ̂Jη = −(Ĵξ)> ∇̂⊥Jη ξ̂ = (Ĵξ)⊥

for vector fields X, Y tangent to M and a vector field ξ normal to M .

2.3. Normal holonomy. Given a submanifold M of a (pseudo-)Riemannian manifold N ,

the normal holonomy group is the holonomy group associated to the normal connection

∇⊥ of M . Namely, given a piecewise differentiable curve γ : I → M such that γ(0) = p

and a normal vector ξp ∈ νpM , one defines as usual the parallel displacement τ⊥γ (ξp) of ξp

along γ with respect to the connection ∇⊥.

Set Ωp(M) the set of piecewise differentiable loops of M based at p and by Ω0
p(M) ⊂

Ωp(M) the set of null-homotopic piecewise differentiable loops of M based at p. Then the

normal holonomy group of M at p is defined as

Holp(M,∇⊥) = {τ⊥γ : νpM → νpM : γ ∈ Ωp(M)} ⊂ O(νpM)

and the restricted normal holonomy group of M at p is the subgroup of Holp(M,∇⊥)

defined as

Hol0p(M,∇⊥) = {τ⊥γ : νpM → νpM : γ ∈ Ω0
p(M)} ⊂ SO(νpM).

Hol0p(M,∇⊥) is the connected component of the identity of Holp(M,∇⊥).

3. Coisotropic submanifolds: Proof of Theorem 1

Observe that for the case c = 0, Theorem 1 is a direct consequence of the Normal

Holonomy Theorem for real space forms [21]. Therefore we will prove it for c 6= 0.

3.1. The strategy: The strategy will be the following. Consider a coisotropic subman-

ifold M of Sc and its pull-back M̂ via the Hopf fibration π : N c → Sc. Then for each

p ∈ M̂ , dπp defines an isometric isomorphism between νpM̂ and νπ(p)M and conjugation

by dπp defines an isomorphism between SO(νπ(p)M) and SO(νpM̂). We will show that

for any p ∈ M̂ :

(1) The action of Hol0π(p)(M,∇⊥) on νπ(p)M identifies, via conjugation with dπp, with

the action of Hol0p(M̂, ∇̂⊥) on νpM̂ .

(2) Hol0p(M̂, ∇̂⊥) acts on νpM̂ as the holonomy representation of a Riemannian sym-

metric space.

We start with some technical results. We will keep the notations introduced in Section

2.2.

Fix some p in M̂ and set x = π̂(p). Let γ(t) = eitp be a vertical curve in M̂ such that

γ(0) = p. For ξ ∈ νxM , let ξ̂(t) be the horizontal lift of ξ to M̂ at γ(t). Then we have:
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Lemma 3.1. M is a coisotropic submanifold if and only if ξ̂(t) is a ∇̂⊥-parallel vector

field along γ(t) = eitp for each p ∈ M̂ and each ξ ∈ Tπ̂(p)M .

Proof. Fix p in M and let ξp ∈ νpM̂ . Set ξ := dπ̂p(ξp) and let ξ̂(t) be the normal vector

field along γ(t) = eitp defined above. Observe first that ξ̂(t) = eit · ξ̂p (identifying each

tangent space of N c with a subspace of the ambient space). So

∇′γ′(t)ξ̂ =
d

dt |t

(
eit · ξ̂p

)
= Jξ̂(t).

Since Jξ̂(t) is the horizontal lift at γ(t) of Jξ, we get that ξ̂ is ∇̂⊥-parallel in M̂ for each

ξ ∈ νπ̂(p)M and each p ∈ M̂ if anf only if JνxM is tangent for each x ∈M , that is, if and

only if M is a coisotropic submanifold. �

Remark 3.2. Let Jη be the Hopf vector field of N c and let {ϕt = eit}t∈R be its flow.

Then ϕt is an isometry of N c and Lemma 3.1 can be stated as follows: M is coisotropic

submanifold if and only if ϕt is a transvection with respect to the normal connection of

M̂ , along ϕt(p), for each p ∈ M̂ .

Lemma 3.3. Let M be a coisotropic submanifold of a complex space form Sc, with c 6= 0

and let M̂ be its pullback via the Hopf fibration πc : N c → Sc. Let Jη be the Hopf vector

field. Fix p ∈ M̂ and set x = π(p). Then

(1) R̂⊥
Jη,X̂

= 0 for any horizontal vector X̂ ∈ TpM ;

(2) [Âξ̂, Âζ̂ ]Jη = 0, for any ξ̂, ζ̂ ∈ νpM̂ ;

(3) AξJζ = AζJξ for any ξ, ζ ∈ νxM (cf. [16, Lemma 2.1])

Proof. We will prove first that statements (1), (2) and (3) are equivalent. Let ξ, ζ ∈ νxM
and let ξ̂, ζ̂ be the horizontal lifts of ξ and ζ at p respectively.

Since N c is a real space form (a Lorentzian space form in the case of c < 0) the Ricci

equation gives

(11) 〈R̂⊥
Jη,X̂

ξ̂, ζ̂〉 = 〈[Âξ̂, Âζ̂ ]Jη, X̂〉.

for any horizontal tangent vector X̂ ∈ TpM̂ . This proves the equivalence between (1) and

(2).

On the other hand, from equations (9) and (10) we have

[Âξ̂, Âζ̂ ]Jη = −Âξ̂(Ĵζ) + Âζ̂(Ĵξ)

= −ÂξJζ + 〈Jξ, Jζ〉Jη + ÂζJξ − 〈Jξ, Jζ〉Jη

= ̂AζJξ −AξJζ

This proves the equivalence between (2) and (3).
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Let us prove (3). Let Y ∈ TxM . Then

〈AξJζ, Y 〉 = 〈α(Jζ, Y ), ξ〉 =
〈
∇Y Jζ, ξ

〉
=
〈
J∇Y ζ, ξ

〉
= 〈AζY, Jξ〉 = 〈AζJξ, Y 〉 .

Since Y is arbitrary, this concludes the proof. �

The following is an immediate consequence of Lemma 3.3 and a result in [22, Appendix].

Corollary 3.4. Let M̂ be the pull-back to N c of a coisotropic submanifold M of a complex

space form Sc, c 6= 0 via the Hopf fibration π. Then for any piecewise-differentiable curve

σ : I → M̂ there exist a horizontal curve σ0 and a vertical curve γ (with respect to π) such

that

τ̂⊥σ = τ̂⊥γ ◦ τ̂⊥σ0 ,

where τ̂⊥ denotes the ∇̂⊥ parallel displacement on M̂ .

Proposition 3.5. Let M be a coisotropic submanifold of a complex space form Sc, with

c 6= 0 and let M̂ be its pullback via the Hopf fibration πc : N c → Sc. Fix p ∈ M̂ and

set x = π(p). Then the action of Holx(M,∇⊥) on νxM is identified, via conjugation with

dπp, with the action of Holp(M̂, ∇̂⊥) on νpM̂ .

Proof. Fix p ∈ M̂ and let x = π(p) ∈M . We can consider the normal holonomy group of

M at x acting on νpM̂ via dπp in the following way.

If τ⊥ ∈ Holx(M,∇⊥) and ξ̂ ∈ νpM̂ , then

τ⊥ · ξ̂ := (dπp|νpM̂ )−1 ◦ τ⊥ ◦ dπp(ξ̂).

If c(t) is a loop in M based at x, then its horizontal lift ĉ(t) at p is a curve in M̂ such

that π(ĉ(1)) = π(p) = x. There is a unique vertical simple curve δ(t) = eiθtĉ(1) in M̂

joining ĉ(1) and ĉ(0) = p, for some fixed real number θ. Consider the loop σ(t) based at p

obtained by moving along ĉ from p to ĉ(1) and then along δ from ĉ(1) back to p. Then if

τ⊥ is the ∇⊥-parallel displacement in M along c, from (9) and Lemma 3.1 we obtain that

the parallel displacement of any normal vector ξp ∈ νpM̂ along σ is actually τ⊥ · ξp.
Conversely, if σ is a loop in M̂ based at p, then by Corollary 3.4, there exist a vertical

curve γ and a horizontal curve σ0 starting at p such that τ̂⊥σ = τ̂⊥γ ◦ τ̂⊥σ0 . Now, if τ⊥ is the

∇⊥-parallel displacement in M along the loop π(σ0), then from equation (9) and Lemma

3.1 it is easy to see that for any ξp ∈ νpM̂ , τ̂⊥γ ◦ τ̂⊥σ0(ξp) = τ⊥ · ξp.
This shows that the action of Holx(M,∇⊥) on νxM is the same, via conjugation with

dπ̂p, as the action of Holp(M̂, ∇̂⊥) on νpM̂ . �

3.2. Proof of Theorem 1 when c > 0. From Proposition 3.5 it follows that:

1) The action of Hol0π(p)(M,∇⊥) on νπ(p)M identifies, via conjugation with dπp, with

the action of Hol0p(M̂, ∇̂⊥) on νpM̂ .

Since M̂ is a submanifold of a sphere, the Normal Holonomy Theorem [21] implies that:
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2) Hol0p(M̂, ∇̂⊥) acts on νpM̂ as the holonomy representation of a Riemannian symmet-

ric space.

This proves Theorem 1 when c > 0. 2

3.3. Proof of Theorem 1 when c < 0. From Proposition 3.5 it follows that:

1) The action of Hol0π(p)(M,∇⊥) on νπ(p)M identifies, via conjugation with dπp, with

the action of Hol0p(M̂, ∇̂⊥) on νpM̂ .

Since the pull-back M̂ is a Lorentzian submanifold of the anti-De-Sitter space, Olmos’

normal holonomy theorem [21] can not be used directly. Actually, Olmos’ normal holonomy

theorem is not true for an arbitrary Lorentzian submanifold of the anti-De-Sitter space.

However, Olmos’ proof can be adapted to our case i.e. when M̂ is the pull-back of a

coisotropic submanifold of the complex hyperbolic space.

Theorem 1 for c < 0 is a consequence of Proposition 3.5 and the following result.

Proposition 3.6. Let M be a coisotropic submanifold of the complex hyperbolic space

CHn and let π : Hn+1
1 → CHn be the Hopf fibration. Let M̂ ⊂ Hn+1

1 be the pull-back of

M . Let p ∈ M̂ and let Hol0p(M̂, ∇̂⊥) be the restricted normal holonomy group at p.

Then Hol0p(M̂, ∇̂⊥) is compact, there exists a unique (up to order) orthogonal decompo-

sition νpM̂ = V0⊕· · ·⊕Vk of the normal space νpM̂ into Hol0p(M̂, ∇̂⊥)-invariant subspaces

and there exist normal subgroups Φ0, · · · ,Φk of Hol0p(M̂, ∇̂⊥) such that

i) Hol0p(M̂, ∇̂⊥) = Φ0 × · · · × Φk (direct product);

ii) Φi acts trivially on Vj if i 6= j;

iii) Φ0 = {1} and if i ≥ 1, Φi acts irreducibly on Vi as the isotropy representation of

an irreducible Riemannian symmetric space.

Proof. The key object in Olmos’ proof is the algebraic curvature tensor R⊥ on νM̂ with

non positive sectional curvature and that carries the same geometric information as

the normal curvature tensor R̂⊥ of M̂ .

Following [21] we introduce the algebraic curvature tensor R⊥ on νM̂ by the formula:〈
R⊥(ξ1, ξ2)ξ3, ξ4

〉
:= −1

2
tr([Âξ1 , Âξ2 ] ◦ [Âξ3 , Âξ4 ])

So in the same way as in [21], one can prove

(i) R⊥(ξ1, ξ2) = −R⊥(ξ2, ξ1);

(ii)
〈
R⊥(ξ1, ξ2)ξ3, ξ4

〉
= −

〈
ξ3,R⊥(ξ1, ξ2)ξ4

〉
;

(iii)
〈
R⊥(ξ1, ξ2)ξ3, ξ4

〉
=
〈
R⊥(ξ3, ξ4)ξ1, ξ2

〉
(iv) R⊥(ξ1, ξ2)ξ3 +R⊥(ξ2, ξ3)ξ1 +R⊥(ξ3, ξ1)ξ2 = 0.

(v) Im(R⊥p ) = Im(R̂⊥p ).

Now we compute the sectional curvature 〈R⊥(ξ, ζ)ζ, ξ〉. Choose an orthonormal basis

{e0, e1, · · · , ek} of TpM̂ such that e0 = Jη is the Hopf vector and therefore e1, · · · , ek are

horizontal vectors.
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So we have

〈R⊥(ξ, ζ)ζ, ξ〉 =
1

2
tr([Âξ, Âζ ]

2)

= −1

2

〈
[Âξ, Âζ ]

2Jη, Jη
〉

+
1

2

k∑
i=1

〈
[Âξ, Âζ ]

2ei, ei

〉

= −1

2

k∑
i=1

〈
[Âξ, Âζ ]ei, [Âξ, Âζ ]ei

〉
≤ 0

since by Lemma 3.3 [Âξ, Âζ ]Jη = 0 hence the vectors [Âξ, Âζ ]ei are horizontal.

Observe also that

(12) 〈R⊥(ξ, ζ)ζ, ξ〉 = 0 if and only if [Âζ , Âξ] = 0

So Hol0p(M,∇⊥) is trivial or the scalar curvature of R⊥ does not vanish. In the second

case, it follows from the results in [25] that Hol0p(M,∇⊥) is equivalent to the isotropy

representation of an irreducible Riemannian symmetric space. �

4. Lagrangian submanifolds: Proof of Corollary 1.1

Since Lagrangian submanifolds are in particular coisotropic submanifolds we get the

following result.

Theorem 3. Let M be a Lagrangian submanifold a complex space form and let Hol0p(M,∇⊥)

be the restricted holonomy group of the normal connection. Then Hol0p(M,∇⊥) acts on

the normal space νpM as the holonomy representation of a Riemannian symmetric space.

We give now the proof of Corollary 1.1.

Proof. Since M is a Lagrangian submanifold, the complex structure J defines an iso-

morphism between the tangent space TpM and the normal space νpM . Let ξ(t) be a

∇⊥-parallel normal field along a loop γ(t) based at p. Then Jξ(t) is a tangent field along

γ(t) which is parallel with respect to the Levi-Civita connection ∇ of M . Indeed,

∇γ′(t)Jξ(t) = J
(
∇⊥γ′(t)ξ(t)−Aξ(t)(γ

′(t))
)

= −JAξ(t)(γ′(t)),

which shows that ∇γ′(t)Jξ(t) is normal to M , and hence ∇γ′(t)Jξ(t) = 0.

In a similar way, if X(t) is a vector field of M along γ, parallel with respect to the

Levi-Civita connection of M , we get that JX(t) is a ∇⊥-parallel vector field along γ.

Then the isomorphism J is an intertwiner isomorphism between the normal and the

tangent holonomy groups. Hence, by the above theorem, the tangent holonomy group

acts as an s-representation.

So the tangent holonomy group is the holonomy group of a Riemannian symmetric

space. Since M is Ricci flat, either Hol0(M,∇) = SO(TM) or M is flat. �
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5. Totally real submanifolds: some results about their normal holonomy

group

Along this section we keep the notations of Section 2.2.

5.1. An example. Let us give an example showing that the strategy we followed for

coisotropic submanifolds does not work for totally real submanifolds. Namely, the normal

holonomy group of the pull-back M̂ can be different from the normal holonomy group ofM .

Let M ⊂ CPn, n > 1 be a curve of the complex projective space. Then the normal

holonomy group of M is of course trivial.

To compute the normal curvature tensor of M̂ we need to compute the shape operators

of M̂ . Let T be a unit vector field tangent to M and denote by T̂ its horizontal lift to

M̂ . Then {Jη, T̂} is an orthogonal frame of TM̂ . Observe that the normal bundle of M

splits as νM = RJT ⊕ (RJT )⊥ where J(RJT )⊥ = (RJT )⊥. Then the normal bundle of

the pull-back M̂ splits as

νM̂ = RJT̂ ⊕ (RJT̂ )⊥

where J(RJT̂ )⊥ = (RJT̂ )⊥. Let ξ be a section of (RJT )⊥ and consider the section ξ̂ of

ν(M̂). Then, by equations (9) and (10) the shape operator Âξ̂ of M̂ in direction ξ̂ is given

in the frame {Jη, T̂} by the following 2× 2 matrix:

Âξ̂ =

(
0 0

0 〈Aξ(T ), T 〉

)
.

The shape operator ÂJT̂ of M̂ is given in the frame {Jη, T̂} by the following 2×2 matrix:

ÂJT̂ =

(
0 1

1 〈AJT (T ), T 〉

)
.

So we have the following proposition.

Proposition 5.1. Let M ⊂ CPn be a curve of the complex projective space. Then the

pull-back M̂ has flat normal bundle if and only if

〈Aξ(T ), T 〉 = 0

for all ξ ∈ ν(M) such that 〈ξ, JT 〉 = 0. Equivalently, M̂ has flat normal bundle if and

only if the curve M is a so called holomorphic circle [2, page 8, Definition] (also called

Kähler-Frenet curve [18, Introduction]). Namely,

∇TT = κJT

where κ is a smooth function on M .
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Proof. The pull-back M̂ is a submanifold of a sphere. Then by the Ricci equation, M

has flat normal bundle if and only if all shape operators commute. Then the conclusion

follows from

[Âξ̂, ÂJT̂ ] =

(
0 −〈Aξ(T ), T 〉

〈Aξ(T ), T 〉 0

)
�

Remark 5.2. Interesting examples of holomorphic circles are the so called magnetic

geodesics (cf. [14, Introduction]).

Then if M ⊂ CPn is not a holomorphic circle we get a submanifold whose normal

holonomy group is different from the normal holonomy group of its pull-back M̂ . Indeed,

by the above proposition the normal bundle of M̂ is not flat whilst the normal bundle of

M is. Moreover, by [6, Exercise 4.6.16, page 136] we get the following proposition.

Proposition 5.3. Let M be a full curve of CPn which is not an holomorphic circle and

let M̂ be its pull-back. Then the normal holonomy group Holp(M̂, ∇̂⊥) acts transitively on

the unit sphere of the normal space.

5.2. Injection of the normal holonomy group. At the light of the above example

one can not expect to identify the normal holonomy of M with that of its pull-back M̂ .

However, we will show that the holonomy group of M injects into the normal holonomy

group of M̂ . We will need the following lemma.

Lemma 5.4. Let M be a submanifold of a space form Sc, with c 6= 0, and let M̂ be its

pullback to N c. Then M is totally real if and only if the horizontal distribution Ĥ is a

parallel distribution of M̂ .

Proof. The only if part was proved in [20, Lemma 1.1]. For convenience of the reader we

give here a proof. From equation (8) it is immediate to see that if M is totally real then Ĥ

is an autoparallel distribution and therefore parallel since the Hopf vector field is geodesic.

On the other hand, if H is parallel, equation (8) implies 〈X,JY 〉 = 0 for every X,Y ∈
X(M) and so M is totally real. �

Theorem 4. Let M be a totally real submanifold of a complex space form Sc with c 6= 0.

Let M̂ be its pullback to N c. Then the normal holonomy group Holp(M,∇⊥) is a subgroup

of Holp̂(M̂, ∇̂⊥), where p̂ is any point of M̂ such that πc(p̂) = p.

Proof. Let σ be a loop in M based at p and let σ̂ be its horizontal lift to M̂ at p̂. Since

Ĥ is an integrable distribution, one gets that σ̂ is also a loop in M̂ based at p̂.

Moreover dπ̂ defines an isometry between the normal spaces of M̂ and M , which from

equation (9) preserves parallel transport along horizontal curves. This implies that the

map Φ : Holp(M,∇⊥) → Holp̂(M̂, ∇̂⊥) given by Φ(τ⊥σ ) = τ⊥σ̂ is an injective homomor-

phism. �
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5.3. Reduction of codimension.

Theorem 5. Let M be a totally real submanifod of a complex space form Smc .

(1) There exists a totally geodesic complex submanifold Snc of Smc such that M ⊂ Snc if

and only if there exists a ∇⊥-parallel sub-bundle W0 of νM such that TM ⊕W0

is J-invariant.

If in particular J(TM) is ∇⊥-parallel (i.e. W0 = J(TM)), then M is a Lagrangian

submanifold of Snc (cf. [8]).

(2) There exists a totally geodesic totally real submanifold N of Smc such that M ⊂ N
if and only if there exists a ∇⊥-parallel subbundle W0 of νM such that the first

normal space N1 of M is contained in W0 and W0 ⊥ J(TM).

Proof. Let M be a totally real submanifold of a complex space form Sc. By the result in

[11] we know that if the first normal space N1 = α(TM×TM) is contained in a∇⊥-parallel

sub-bundle W of νM such that V := TM ⊕W is R
c
-invariant, then M is contained in

a totally geodesic submanifold N of Sc of dimension equal to rank(V). We are going to

show that this is indeed the case in both items.

Statement (1). Assume that there is a ∇⊥-parallel sub-bundle W0 of νM such that

V := TM⊕W0 is J-invariant. From equation (4) one can easily see that V is R
c
-invariant.

Since V is J-invariant and M is totally real, one has that

W0 = J(TM)⊕W1

and W1 is J-invariant. Let W2 = (W0)
⊥ ⊂ νM . So the normal bundle of M decomposes as

νM = J(TM)⊕W1⊕W2. Given two tangent vectors X,Y to M , set α(X,Y ) = ξ+ξ1+ξ2,

where ξ ∈ J(TM), ξ1 ∈W1 and ξ2 ∈W2. Then one has

(13) ∇XJY = J∇XY = J∇XY + Jξ + Jξ1 + Jξ2 .

On the other hand, ∇XJY = −AJYX +∇⊥XJY . Comparing with the normal part in (13)

we get

∇⊥XJY = J∇XY + Jξ1 + Jξ2 .

Since J(TM) ⊂W0 and W0 is ∇⊥-parallel we get

Jξ2 = ∇⊥XJY − Jξ1 − J∇XY ∈W0

Since W2 is also J-invariant, we get Jξ2 = 0 and so α(X,Y ) ∈W0.

Therefore the first normal space is contained in W0 and M is contained in a totally

geodesic submanifold N of Sc whose tangent bundle (along M) is TM ⊕W0 = V. Since V

is J-invariant it follows that N is a complex totally geodesic submanifold hence a complex

space form Snc .

The converse is immediate, taking W0 = νM ∩ TSnc .
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Statement (2). Assume now that there exists a ∇⊥-parallel sub-bundle W0 of νM such

that N1 ⊂ W0 and W0 ⊥ J(TM ⊕W0). Then it is not difficult to see, from equation (4)

that V := TM ⊕W0 is R
c
-invariant. Since W0 contains the first normal space of M , there

is a totally geodesic submanifold N of Sn containing M whose tangent bundle along M is

TM ⊕W0. This implies that N is totally real. Conversely, assume that M is contained in

a totally geodesic totally real submanifold N of Smc . Then W0 := νM ∩ TN satisfies the

conditions of the statement. �

Remark 5.5. Let M be a non-full totally real submanifold of a complex space form Smc
contained in a complex space form Snc ⊂ Smc . Then (νSnc )|M is contained in ν0(M), the

largest parallel and flat sub-bundle of νM .

In fact (νSnc )|M is ∇⊥-parallel. So, to prove the inclusion (νSnc )|M ⊂ ν0(M), it is enough

to see that
〈
R⊥X,Y ξ, ζ

〉
= 0 for every ξ, ζ ∈ (νSnc )|M . To see this, observe that the first

normal space of M is contained in TSnc and so if ξ, ζ ∈ (νSnc )|M then Aξ = Aζ = 0. Hence

from the Ricci equation (7) we have〈
R⊥X,Y ξ, ζ

〉
=
〈
R
c
X,Y ξ, ζ

〉
= 0

for every X, Y ∈ X(M).

From Theorem 3, Theorem 5 and Remark 5.5 one immediately gets the following

Corollary 5.6. Let M be a totally real submanifold of a complex space form Snc . If

J(TM) is a ∇⊥-parallel sub-bundle of νM , then the restricted normal holonomy group

Hol0(M,∇⊥) acts on each normal space as the holonomy representation of a symmetric

space (i.e. a flat factor plus an s-representation).

Now we compute the normal holonomy group Hol(M,∇⊥) of a totally real submanifold

M ⊂ N ⊂ Smc , where N is a totally geodesic totally real submanifold of Smc , i.e., N is a

real projective space in the case c > 0 and N is a real hyperbolic space in the case c < 0.

Theorem 6. Let M be a totally real submanifold of a complex space form Smc contained

in a totally real, totally geodesic submanifold N of Smc , with dim(M) ≥ 2. The normal

bundle νM decomposes as the sum of the ∇⊥-parallel subbundles

νM = νNM ⊕ νN|M ,

where νNM is the normal bundle of M as a submanifold of N . Then

(1) The restricted normal holonomy group acts on νNM as the holonomy representa-

tion of a symmetric space.

(2) The parallel subbundle νN|M splits as

νN|M = W ⊕W⊥

where W is the smallest ∇⊥-parallel subbundle containing J(TM). The group

Hol(M,∇⊥) acts trivially on W⊥ and it is the full orthogonal group on W i.e.

hol(M,∇⊥)|W = so(W ).
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(3) W = J(TM) if and only if M is a totally geodesic submanifold of Smc .

Proof. The parallel splitting ν(M) = νNM⊕νN|M follows from the fact that N is a totally

geodesic submanifold of M . Since N is also totally real, it is a real space form and so

Hol0(M,∇⊥) acts on νNM as the holonomy representation of a symmetric space as follows

from Olmos’ Theorem [21]. This proves (1).

For (2), let E1 := ∇⊥J(TM) be the subbundle of ν(N)|M obtained by taking deriva-

tives of sections of J(TM). By taking further derivatives we get the subbundles Ej :=

∇⊥ · · · ∇⊥︸ ︷︷ ︸
j−times

J(TM). So the smallest ∇⊥-parallel subbundle of νN|M containing J(TM) is

W = J(TM) + E1 + E2 + E3 + · · · .

To prove that hol(M,∇⊥)|W = so(W ) notice that the curvature tensor of ∇⊥ on νN|M is

R⊥X,Y ξ =
1

4
c(JX ∧ JY )(ξ).

This immediately implies that W⊥ is flat i.e. the action of Hol(M,∇⊥) on W⊥ is triv-

ial and that Λ2J(TM) ⊂ hol(M,∇⊥)|W . As it is well-known the covariant derivatives

∇jR⊥ also belong to the holonomy algebra hol(M,∇⊥)|W . As consequence we get that

J(TM) ∧ Ei and Ei ∧ Ej are both contained in hol(M,∇⊥)|W . Thus, Λ2W is contained

in the Lie algebra hol(M,∇⊥)|W which proves that hol(M,∇⊥)|W = so(W ). This proves

(2).

To prove (3) observe that W = J(TM) if and only if J(TM) is ∇⊥-parallel. Take

X,Y ∈ X(M). Then comparing the normal parts of ∇XJY = J∇XY one gets

J∇XY + Jα(X,Y ) = ∇⊥XJY

since α(TM×TM)∩J(TM) = {0}. Therefore J(TM) is parallel if and only if Jα(X,Y ) =

0, i.e. M is totally geodesic. This proves (3) and completes the proof of the theorem. �

One of the consequences of Olmos’ holonomy theorem is the compactness of the re-

stricted normal holonomy group of a submanifold of a real space form. In general there

are no reasons to expect the compactness of the normal holonomy group for submanifolds

of a Riemannian space even in the case of submanifolds of symmetric spaces (e.g. [1,

Theorem 10, (b,i)]).

For a totally real submanifold contained in a totally real totally geodesic submanifold

of a complex space form Smc the following theorem shows that the normal holonomy group

is indeed compact.

We will need the following lemma which is a standard consequence of [15, Proposition

6.6., page 122].

Lemma 5.7. Let K be a compact connected Lie group and let N�K be a normal subgroup

of K. If the center of K is contained in N , then N is closed, and hence compact in K.
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Theorem 7. Let M be a totally real submanifold of a complex space form Smc contained in

a totally real, totally geodesic submanifold N of Smc . Then the restricted normal holonomy

group Hol0p(M,∇⊥) at p ∈M is compact.

Proof. According to the decomposition νM = νNM⊕W⊕W⊥, any element τ of Hol0p(M,∇⊥)

has the block diagonal form

τ =

 A 0 0

0 B 0

0 0 1

 .

By item (2) of Theorem 6 the map φ : Hol0p(M,∇⊥) → SO(W ) defined by φ(τ) = B

gives rise to the following short exact sequence of groups

(14) 0→ Ker(φ)→ Hol0p(M,∇⊥)→ SO(W )→ 0

Then to show that Hol0p(M,∇⊥) is compact it is enough to show that Ker(φ) is compact.

By definition we have that τ ∈ Ker(φ) if and only if

τ =

 A 0 0

0 1 0

0 0 1


and so we have an injective map ψ : Ker(φ) → Hol0p(M ⊂ N,∇⊥), where Hol0p(M ⊂
N,∇⊥) is the normal holonomy group of M regarded as a submanifold of N .

Claim 1: The image ψ(Ker(φ)) is a normal subgroup of Hol0p(M ⊂ N,∇⊥).

Indeed, any element x of Hol0p(M ⊂ N,∇⊥) is determined by a null-homotopic loop γ

in M based at p. Then the parallel transport τγ ∈ Hol0p(M,∇⊥) has the matrix

τγ =

 x 0 0

0 B 0

0 0 1


Then that Ker(φ) is a normal subgroup of Hol0p(M,∇⊥) follows from a direct computation

with the diagonal block decomposition.

Claim 2: The center of Hol0p(M ⊂ N,∇⊥) is contained in ψ(Ker(φ)).

Indeed, the short sequence (14) induces a morphism

ρ : SO(W )→ Hol0p(M ⊂ N,∇⊥)/ψ(Ker(φ)) .

Observe that if dim(W ) > 2 then SO(W ) is a semisimple Lie group hence the center of

Hol0p(M ⊂ N,∇⊥) must be contained in ψ(Ker(φ)). If dim(W ) = 1 then M is a curve so

the claim is trivial. If dim(W ) = 2 then M is a surface with parallel JTM . So part (3) of
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Theorem 6 implies that Hol0p(M ⊂ N,∇⊥) is trivial and the claim follows.

Then the theorem follows from Lemma 5.7 taking into account that Hol0p(M ⊂ N,∇⊥)

is a compact Lie group due to Olmos’ holonomy theorem [21]. �

As an immediate consequence we have the following corollary.

Corollary 5.8. Let M be a totally real submanifold of a complex space form Smc contained

in a totally real totally geodesic submanifold N of Smc . Then the normal holonomy group

Hol0p(M,∇⊥) is a product K×SO(W ) where K�Hol0p(M ⊂ N,∇⊥) is a compact normal

subgroup containing the center of Hol0p(M ⊂ N,∇⊥). More precisely, the normal subbundle

νNM splits as

νNM = ν1 ⊕ ν2 ,

and the normal holonomy group Hol0p(M ⊂ N,∇⊥) is a product

Hol0p(M ⊂ N,∇⊥) = K × ρ(SO(W )) ,

where K acts on ν1 and ρ(SO(W )) acts on ν2. The normal bundle νpM splits as

νp(M) = ν1 ⊕ ν2 ⊕W ⊕W⊥

and Hol0p(M,∇⊥) = K × SO(W ) acts as K × ρ(SO(W ))× SO(W )× 1.

Corollary 5.9. Let M be a totally real submanifold of a complex space form Smc , con-

tained in a totally real totally geodesic submanifold N of Smc . The normal holonomy group

Holp(M,∇⊥) acts as the holonomy representation of a Riemannian symmetric space if and

only if the representation ρ : SO(W )→ SO(ν2) is trivial. Moreover, if the codimension of

M in N is smaller than dim(M), then Holp(M,∇⊥) acts as the holonomy representation

of a symmetric space i.e. the representation ρ is trivial.

Proof. The first part is a direct consequence of the previous corollary.

For the second part we only need to prove that under these hypothesis ρ(SO(W )) is trivial.

Observe that dim(M) > 1 and if dim(M) = 2 then M is a surface in the three dimensional

real space form N . So νNM is flat hence ρ is trivial.

Assume dim(M) ≥ 3. Since the codimension of M is smaller than its dimension, we

should have a representation ρ : SO(W )→ SO(ν2) with dimW ≥ dim J(TM) > dim(ν2).

This shows that ρ is trivial in case dimW = 3 or dimW ≥ 5, since SO(W ) is a simple Lie

group and dimSO(W ) > dimSO(ν2).

If dimW = 4, we must have 3 ≤ dim(M) ≤ 4. If dim(M) = 4, J(TM) = W and hence

M is totally geodesic by (3) of Theorem 6. So νNM is flat and ρ(SO(W )) is trivial. If

dim(M) = 3, then it is a hypersurface in N or it has codimension equal to 2. In the last

case, we should have a representation ρ : SO(4)→ SO(2) which must be again trivial. �
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6. Complex submanifolds: Proof of Theorem 2

In [9] it was proved that the normal holonomy group of a full complete complex sub-

manifold of the projective space is either the full group SO(ν(M)) or the submanifold has

parallel second fundamental form.

In this section we prove Theorem 2 which improves the results of [1] and complete the

local classification of normal holonomies of complex submanifolds of complex space forms.

For the flat complex space form Cn the result is in [10, Remark 2.2., page 253]. Namely,

the existence of a flat factor for the normal holonomy action implies a reduction of codi-

mension which is not possible since the submanifold is assumed to be full.

For the complex projective space or its non compact dual the result was proved in

[1] under the stronger hypothesis that either the action of Hol0p(M,∇⊥) is irreducible or

the second fundamental form α of M has no nullity i.e. the index of relative nullity

µ(p) = dim(Np) of M is zero, where

Np = ∩ξ∈νpM ker(Aξ).

So it is enough to show that if the index of relative nullity of M is non zero then Theorem

2 holds. In this case, there exists a unitary vector X ∈ Np and then by the Ricci equation

(7), one has

R⊥(X, JX)ξ = − c
2
Jξ ,

for any ξ ∈ νpM , where c is the constant holomorphic sectional curvature of the non flat

complex space form. This shows that the complex structure J belongs to the Lie algebra

of the normal holonomy group at the point p ∈ M . Then Theorem 2 follows from [1,

Theorem 24 and Proposition 9]. 2

Remark 6.1. Without the hypothesis of the submanifold being full Theorem 2 is not true.

Indeed, the normal holonomy group of a codimension 2 totally geodesic CPn ⊂ CPn+2 is

the diagonal action of U(1) on C2. Such action is not even polar [6, pag. 92, exercise

3.10.6] hence cannot be an s-representation.

Remark 6.2. The normal holonomy action of a complex submanifold is not necessarily

irreducible. Here is an example: Let M ⊂ C3 be the cone given by the equation

x2 + y2 + z2 = 0 ,

Then the projectivization Z of the product of cones M ×M ⊂ C6 gives a 3-dimensional

algebraic variety of CP 5 . The normal holonomy group of the smooth open subset Zsmooth ⊂
Z does not act irreducibly on the normal space at any point p ∈ Zsmooth. This is so

since the normal holonomy group of Zsmooth is the same as the normal holonomy at a

smooth point of the product M ×M ⊂ C6 see [9, Remark 5, page 211]. We note that the

induced Riemannian metric (from the Fubini-Study metric on CP 5) on Zsmooth is locally

irreducible.
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